#include <stddef.h>
#include "chess.h"
#include "data.h"
#if defined(UNIX)
# include <unistd.h>
# include <sys/types.h>
# include <sys/stat.h>
#else
# include <fcntl.h> /* needed for definition of "_O_BINARY" */
#endif
/*
*******************************************************************************
* *
* Initialize() performs routine initialization before anything else is *
* attempted. It uses a group of service routines to initialize various *
* data structures that are needed before the engine can do anything at all. *
* *
*******************************************************************************
*/
void Initialize() {
int /*i, */major, id; // Pierre-Marie Baty -- unused variable
TREE *tree;
int j;
tree = block[0];
for (j = 1; j < MAX_BLOCKS + 1; j++)
block[j] = NULL;
InitializeMasks();
InitializeMagic();
InitializeSMP();
InitializeAttackBoards();
InitializePawnMasks();
InitializeChessBoard(tree);
InitializeKillers();
#if !defined(UNIX)
_fmode = _O_BINARY; /* set file mode binary to avoid text translation */
#endif
#if defined(EPD)
EGInit();
#endif
tree->last[0] = tree->move_list;
tree->last[1] = tree->move_list;
sprintf(log_filename
, "%s/book.bin", book_path
);
book_file
= fopen(log_filename
, "rb+");
if (!book_file) {
book_file
= fopen(log_filename
, "rb");
if (!book_file) {
Print(128, "unable to open book file [%s/book.bin].\n", book_path);
Print(128, "book is disabled\n");
} else {
Print(128, "unable to open book file [%s/book.bin] for \"write\".\n",
book_path);
Print(128, "learning is disabled\n");
}
}
sprintf(log_filename
, "%s/books.bin", book_path
);
normal_bs_file
= fopen(log_filename
, "rb");
books_file = normal_bs_file;
if (!normal_bs_file)
Print(128, "unable to open book file [%s/books.bin].\n", book_path);
sprintf(log_filename
, "%s/bookc.bin", book_path
);
computer_bs_file
= fopen(log_filename
, "rb");
if (computer_bs_file)
Print(128, "found computer opening book file [%s/bookc.bin].\n",
book_path);
if (book_file) {
int maj_min;
fseek(book_file
, 0-sizeof(int), SEEK_END
); // Pierre-Marie Baty -- fixed signedness warning
fread(&maj_min
, 4, 1, book_file
);
major = BookIn32((unsigned char *) &maj_min);
major = major >> 16;
if (major < 23) {
Print(4095, "\nERROR! book.bin not made by version 23.0 or later\n");
book_file = 0;
books_file = 0;
}
}
id = InitializeGetLogID();
sprintf(log_filename
, "%s/log.%03d", log_path
, id
);
sprintf(history_filename
, "%s/game.%03d", log_path
, id
);
log_file
= fopen(log_filename
, "w");
history_file
= fopen(history_filename
, "w+");
if (!history_file) {
printf("ERROR, unable to open game history file, exiting\n");
CraftyExit(1);
}
AlignedMalloc((void **) &trans_ref, 64,
sizeof(HASH_ENTRY) * hash_table_size);
AlignedMalloc((void **) &hash_path, 64,
sizeof(HPATH_ENTRY) * hash_path_size);
AlignedMalloc((void **) &pawn_hash_table, 32,
sizeof(PAWN_HASH_ENTRY) * pawn_hash_table_size);
if (!trans_ref) {
Print(128,
"AlignedMalloc() failed, not enough memory (primary trans/ref table).\n");
hash_table_size = 0;
trans_ref = 0;
}
if (!pawn_hash_table) {
Print(128,
"AlignedMalloc() failed, not enough memory (pawn hash table).\n");
pawn_hash_table_size = 0;
pawn_hash_table = 0;
}
/*
************************************************************
* *
* Now for some NUMA stuff. We need to allocate the local *
* memory for each processor, but we can't touch it here *
* or it will be faulted in and be allocated on the *
* current CPU, which is not where it should be located *
* for optimal NUMA performance. ThreadInit() will do the *
* actual initialization after each new process is created *
* so that the pages of local memory will be faulted in on *
* the correct processor and use local node memory for *
* optimal performance. *
* *
* If we are using CPU affinity, we need to set this up *
* for thread 0 BEFORE we initialize the split blocks so *
* that they will fault in on the correct node. *
* *
************************************************************
*/
#if defined(AFFINITY)
cpu_set_t cpuset;
pthread_t current_thread = pthread_self();
CPU_ZERO(&cpuset);
CPU_SET(0, &cpuset);
pthread_setaffinity_np(current_thread, sizeof(cpu_set_t), &cpuset);
#endif
#if !defined(UNIX)
ThreadMalloc((int) 0);
#else
for (i = 0; i < CPUS; i++) {
for (j = 0; j < MAX_BLOCKS_PER_CPU; j++) {
AlignedMalloc((void **) &block[i * MAX_BLOCKS_PER_CPU + j + 1], 2048,
(size_t) sizeof(TREE));
}
}
for (i = 1; i < MAX_BLOCKS_PER_CPU; i++) {
memset((void *) block
[i
], 0, sizeof(TREE
));
LockInit(block[i]->lock);
}
#endif
initialized_threads++;
InitializeHashTables();
InitializeKingSafety();
}
/*
*******************************************************************************
* *
* InitializeAttackBoards() is used to initialize the basic bitboards that *
* deal with what squares a piece attacks. *
* *
*******************************************************************************
*/
void InitializeAttackBoards(void) {
int i, j, frank, ffile, trank, tfile, nmobility;
int sq, lastsq;
static const int knightsq[8] = { -17, -15, -10, -6, 6, 10, 15, 17 };
static const int bishopsq[4] = { -9, -7, 7, 9 };
static const int rooksq[4] = { -8, -1, 1, 8 };
uint64_t sqs;
/*
initialize pawn attack boards
*/
for (i = 0; i < 64; i++) {
pawn_attacks[white][i] = 0;
if (i < 56)
for (j = 2; j < 4; j++) {
sq = i + bishopsq[j];
if (Abs(Rank(sq) - Rank(i)) == 1 && Abs(File(sq) - File(i)) == 1 &&
sq < 64 && sq > -1)
pawn_attacks[white][i] =
pawn_attacks[white][i] | (uint64_t) 1 << sq;
}
pawn_attacks[black][i] = 0;
if (i > 7)
for (j = 0; j < 2; j++) {
sq = i + bishopsq[j];
if (Abs(Rank(sq) - Rank(i)) == 1 && Abs(File(sq) - File(i)) == 1 &&
sq < 64 && sq > -1)
pawn_attacks[black][i] =
pawn_attacks[black][i] | (uint64_t) 1 << sq;
}
}
/*
initialize knight attack board
*/
for (i = 0; i < 64; i++) {
knight_attacks[i] = 0;
frank = Rank(i);
ffile = File(i);
for (j = 0; j < 8; j++) {
sq = i + knightsq[j];
if (sq < 0 || sq > 63)
continue;
trank = Rank(sq);
tfile = File(sq);
if (Abs(frank - trank) > 2 || Abs(ffile - tfile) > 2)
continue;
knight_attacks[i] = knight_attacks[i] | (uint64_t) 1 << sq;
}
nmobility = -lower_n;
for (j = 0; j < 4; j++)
nmobility +=
PopCnt(knight_attacks[i] & mobility_mask_n[j]) *
mobility_score_n[j];
knight_mobility_table[i] = nmobility;
}
/*
initialize bishop/queen attack boards and masks
*/
for (i = 0; i < 64; i++) {
for (j = 0; j < 4; j++) {
sq = i;
lastsq = sq;
sq = sq + bishopsq[j];
while (Abs(Rank(sq) - Rank(lastsq)) == 1 &&
Abs(File(sq) - File(lastsq)) == 1 && sq < 64 && sq > -1) {
if (bishopsq[j] == 7)
plus7dir[i] = plus7dir[i] | (uint64_t) 1 << sq;
else if (bishopsq[j] == 9)
plus9dir[i] = plus9dir[i] | (uint64_t) 1 << sq;
else if (bishopsq[j] == -7)
minus7dir[i] = minus7dir[i] | (uint64_t) 1 << sq;
else
minus9dir[i] = minus9dir[i] | (uint64_t) 1 << sq;
lastsq = sq;
sq = sq + bishopsq[j];
}
}
}
plus1dir[64] = 0;
plus7dir[64] = 0;
plus8dir[64] = 0;
plus9dir[64] = 0;
minus1dir[64] = 0;
minus7dir[64] = 0;
minus8dir[64] = 0;
minus9dir[64] = 0;
/*
initialize rook/queen attack boards
*/
for (i = 0; i < 64; i++) {
for (j = 0; j < 4; j++) {
sq = i;
lastsq = sq;
sq = sq + rooksq[j];
while (((Abs(Rank(sq) - Rank(lastsq)) == 1 &&
Abs(File(sq) - File(lastsq)) == 0)
|| (Abs(Rank(sq) - Rank(lastsq)) == 0 &&
Abs(File(sq) - File(lastsq)) == 1)) && sq < 64 && sq > -1) {
if (rooksq[j] == 1)
plus1dir[i] = plus1dir[i] | (uint64_t) 1 << sq;
else if (rooksq[j] == 8)
plus8dir[i] = plus8dir[i] | (uint64_t) 1 << sq;
else if (rooksq[j] == -1)
minus1dir[i] = minus1dir[i] | (uint64_t) 1 << sq;
else
minus8dir[i] = minus8dir[i] | (uint64_t) 1 << sq;
lastsq = sq;
sq = sq + rooksq[j];
}
}
}
/*
initialize bishop attack board
*/
for (i = 0; i < 64; i++) {
bishop_attacks[i] =
plus9dir[i] | minus9dir[i] | plus7dir[i] | minus7dir[i];
}
/*
initialize rook attack board
*/
for (i = 0; i < 64; i++) {
rook_attacks[i] = file_mask[File(i)] | rank_mask[Rank(i)];
}
/*
initialize king attack board
*/
for (i = 0; i < 64; i++) {
king_attacks[i] = 0;
for (j = 0; j < 64; j++) {
if (Distance(i, j) == 1)
king_attacks[i] = king_attacks[i] | SetMask(j);
}
}
/*
direction[sq1][sq2] gives the "move direction" to move from
sq1 to sq2. intervening[sq1][sq2] gives a bit vector that indicates
which squares must be unoccupied in order for <sq1> to attack <sq2>,
assuming a sliding piece is involved. to use this, you simply have
to Or(intervening[sq1][sq2],occupied_squares) and if the result is
"0" then a sliding piece on sq1 would attack sq2 and vice-versa.
*/
for (i = 0; i < 64; i++) {
for (j = 0; j < 64; j++)
intervening[i][j] = 0;
sqs = plus1dir[i];
while (sqs) {
j = LSB(sqs);
directions[i][j] = 1;
intervening[i][j] = plus1dir[i] ^ plus1dir[j - 1];
sqs &= sqs - 1;
}
sqs = plus7dir[i];
while (sqs) {
j = LSB(sqs);
directions[i][j] = 7;
intervening[i][j] = plus7dir[i] ^ plus7dir[j - 7];
sqs &= sqs - 1;
}
sqs = plus8dir[i];
while (sqs) {
j = LSB(sqs);
directions[i][j] = 8;
intervening[i][j] = plus8dir[i] ^ plus8dir[j - 8];
sqs &= sqs - 1;
}
sqs = plus9dir[i];
while (sqs) {
j = LSB(sqs);
directions[i][j] = 9;
intervening[i][j] = plus9dir[i] ^ plus9dir[j - 9];
sqs &= sqs - 1;
}
sqs = minus1dir[i];
while (sqs) {
j = LSB(sqs);
directions[i][j] = -1;
intervening[i][j] = minus1dir[i] ^ minus1dir[j + 1];
sqs &= sqs - 1;
}
sqs = minus7dir[i];
while (sqs) {
j = LSB(sqs);
directions[i][j] = -7;
intervening[i][j] = minus7dir[i] ^ minus7dir[j + 7];
sqs &= sqs - 1;
}
sqs = minus8dir[i];
while (sqs) {
j = LSB(sqs);
directions[i][j] = -8;
intervening[i][j] = minus8dir[i] ^ minus8dir[j + 8];
sqs &= sqs - 1;
}
sqs = minus9dir[i];
while (sqs) {
j = LSB(sqs);
directions[i][j] = -9;
intervening[i][j] = minus9dir[i] ^ minus9dir[j + 9];
sqs &= sqs - 1;
}
}
}
/*
*******************************************************************************
* *
* InitializeMagic() initializes the magic number tables used in the new *
* magic move generation algorithm. We also initialize a set of parallel *
* tables that contain mobility scores for each possible set of magic attack *
* vectors, which saves significant time in the evaluation, since it is done *
* here before the game actually starts. *
* *
*******************************************************************************
*/
void InitializeMagic(void) {
int i, j;
int initmagicmoves_bitpos64_database[64] = {
63, 0, 58, 1, 59, 47, 53, 2,
60, 39, 48, 27, 54, 33, 42, 3,
61, 51, 37, 40, 49, 18, 28, 20,
55, 30, 34, 11, 43, 14, 22, 4,
62, 57, 46, 52, 38, 26, 32, 41,
50, 36, 17, 19, 29, 10, 13, 21,
56, 45, 25, 31, 35, 16, 9, 12,
44, 24, 15, 8, 23, 7, 6, 5
};
/*
Bishop attacks and mobility
*/
for (i = 0; i < 64; i++) {
int squares[64];
int numsquares = 0;
uint64_t temp = magic_bishop_mask[i];
while (temp) {
uint64_t abit = temp & (0-temp); // Pierre-Marie Baty -- fixed signedness warning
squares[numsquares++] =
initmagicmoves_bitpos64_database[(abit *
0x07EDD5E59A4E28C2ull) >> 58];
temp ^= abit;
}
for (temp = 0; temp < (uint64_t) 1 << numsquares; temp++) {
uint64_t moves;
int t = -lower_b;
uint64_t tempoccupied =
InitializeMagicOccupied(squares, numsquares, temp);
moves = InitializeMagicBishop(i, tempoccupied);
*(magic_bishop_indices[i] +
(tempoccupied * magic_bishop[i] >> magic_bishop_shift[i])) = moves;
moves |= SetMask(i);
for (j = 0; j < 4; j++)
t += PopCnt(moves & mobility_mask_b[j]) * mobility_score_b[j];
if (t < 0)
t *= 2;
*(magic_bishop_mobility_indices[i] +
(tempoccupied * magic_bishop[i] >> magic_bishop_shift[i])) = t;
}
}
/*
Rook attacks and mobility
*/
for (i = 0; i < 64; i++) {
int squares[64];
int numsquares = 0;
int t;
uint64_t temp = magic_rook_mask[i];
while (temp) {
uint64_t abit = temp & (0-temp); // Pierre-Marie Baty -- fixed signedness warning
squares[numsquares++] =
initmagicmoves_bitpos64_database[(abit *
0x07EDD5E59A4E28C2ull) >> 58];
temp ^= abit;
}
for (temp = 0; temp < (uint64_t) 1 << numsquares; temp++) {
uint64_t tempoccupied =
InitializeMagicOccupied(squares, numsquares, temp);
uint64_t moves = InitializeMagicRook(i, tempoccupied);
*(magic_rook_indices[i] +
(tempoccupied * magic_rook[i] >> magic_rook_shift[i])) = moves;
moves |= SetMask(i);
t = -1;
for (j = 0; j < 4; j++)
t += PopCnt(moves & mobility_mask_r[j]) * mobility_score_r[j];
*(magic_rook_mobility_indices[i] +
(tempoccupied * magic_rook[i] >> magic_rook_shift[i])) =
mob_curve_r[t];
}
}
}
/*
*******************************************************************************
* *
* InitializeMagicBishop() does the bishop-specific initialization for a *
* particular square on the board. *
* *
*******************************************************************************
*/
uint64_t InitializeMagicBishop(int square, uint64_t occupied) {
uint64_t ret = 0;
uint64_t abit;
uint64_t abit2;
uint64_t rowbits = (uint64_t) 0xFF << 8 * (square / 8);
abit = (uint64_t) 1 << square;
abit2 = abit;
do {
abit <<= 8 - 1;
abit2 >>= 1;
if (abit2 & rowbits)
ret |= abit;
else
break;
} while (abit && !(abit & occupied));
abit = (uint64_t) 1 << square;
abit2 = abit;
do {
abit <<= 8 + 1;
abit2 <<= 1;
if (abit2 & rowbits)
ret |= abit;
else
break;
} while (abit && !(abit & occupied));
abit = (uint64_t) 1 << square;
abit2 = abit;
do {
abit >>= 8 - 1;
abit2 <<= 1;
if (abit2 & rowbits)
ret |= abit;
else
break;
} while (abit && !(abit & occupied));
abit = (uint64_t) 1 << square;
abit2 = abit;
do {
abit >>= 8 + 1;
abit2 >>= 1;
if (abit2 & rowbits)
ret |= abit;
else
break;
} while (abit && !(abit & occupied));
return ret;
}
/*
*******************************************************************************
* *
* InitializeMagicOccupied() generates a specific occupied-square bitboard *
* needed during initialization. *
* *
*******************************************************************************
*/
uint64_t InitializeMagicOccupied(int *squares, int numSquares,
uint64_t linoccupied) {
int i;
uint64_t ret = 0;
for (i = 0; i < numSquares; i++)
if (linoccupied & (uint64_t) 1 << i)
ret |= (uint64_t) 1 << squares[i];
return ret;
}
/*
*******************************************************************************
* *
* InitializeMagicRook() does the rook-specific initialization for a *
* particular square on the board. *
* *
*******************************************************************************
*/
uint64_t InitializeMagicRook(int square, uint64_t occupied) {
uint64_t ret = 0;
uint64_t abit;
uint64_t rowbits = (uint64_t) 0xFF << 8 * (square / 8);
abit = (uint64_t) 1 << square;
do {
abit <<= 8;
ret |= abit;
} while (abit && !(abit & occupied));
abit = (uint64_t) 1 << square;
do {
abit >>= 8;
ret |= abit;
} while (abit && !(abit & occupied));
abit = (uint64_t) 1 << square;
do {
abit <<= 1;
if (abit & rowbits)
ret |= abit;
else
break;
} while (!(abit & occupied));
abit = (uint64_t) 1 << square;
do {
abit >>= 1;
if (abit & rowbits)
ret |= abit;
else
break;
} while (!(abit & occupied));
return ret;
}
/*
*******************************************************************************
* *
* InitializeChessBoard() initializes the chess board to the normal starting *
* position. It then calls SetChessBitboards() to correctly set the usual *
* occupied-square bitboards to correspond to the starting position. *
* *
*******************************************************************************
*/
void InitializeChessBoard(TREE * tree) {
int i;
if (strlen(initial_position
)) {
int nargs;
nargs = ReadParse(initial_position, args, " ;");
SetBoard(tree, nargs, args, 1);
} else {
for (i = 0; i < 64; i++)
PcOnSq(i) = empty;
game_wtm = 1;
/*
place pawns
*/
for (i = 0; i < 8; i++) {
PcOnSq(i + 8) = pawn;
PcOnSq(i + 48) = -pawn;
}
/*
place knights
*/
PcOnSq(B1) = knight;
PcOnSq(G1) = knight;
PcOnSq(B8) = -knight;
PcOnSq(G8) = -knight;
/*
place bishops
*/
PcOnSq(C1) = bishop;
PcOnSq(F1) = bishop;
PcOnSq(C8) = -bishop;
PcOnSq(F8) = -bishop;
/*
place rooks
*/
PcOnSq(A1) = rook;
PcOnSq(H1) = rook;
PcOnSq(A8) = -rook;
PcOnSq(H8) = -rook;
/*
place queens
*/
PcOnSq(D1) = queen;
PcOnSq(D8) = -queen;
/*
place kings
*/
PcOnSq(E1) = king;
PcOnSq(E8) = -king;
/*
initialize castling status so all castling is legal.
*/
Castle(0, black) = 3;
Castle(0, white) = 3;
/*
initialize enpassant status.
*/
EnPassant(0) = 0;
/*
now, set the bit-boards.
*/
SetChessBitBoards(tree);
}
/*
clear the caches.
*/
for (i = 0; i < 64; i++)
tree->cache_n[i] = ~0ull;
/*
initialize 50 move counter and repetition list/index.
*/
Reversible(0) = 0;
tree->rep_index = 0;
tree->rep_list[0] = HashKey;
}
/*
*******************************************************************************
* *
* SetChessBitBoards() is used to set the occupied-square bitboards so that *
* they agree with the current real chessboard. *
* *
*******************************************************************************
*/
void SetChessBitBoards(TREE * tree) {
int side, piece, square;
HashKey = 0;
PawnHashKey = 0;
Material = 0;
for (side = black; side <= white; side++)
for (piece = empty; piece <= king; piece++)
Pieces(side, piece) = 0;
for (square = 0; square < 64; square++) {
if (!PcOnSq(square))
continue;
piece = PcOnSq(square);
side = (piece > 0) ? 1 : 0;
Pieces(side, Abs(piece)) |= SetMask(square);
Occupied(side) |= SetMask(square);
Hash(side, Abs(piece), square);
if (Abs(piece) == pawn)
HashP(side, square);
Material += PieceValues(side, Abs(piece));
}
if (Pieces(white, king))
KingSQ(white) = LSB(Pieces(white, king));
if (Pieces(black, king))
KingSQ(black) = LSB(Pieces(black, king));
if (EnPassant(0))
HashEP(EnPassant(0));
if (!(Castle(0, white) & 1))
HashCastle(0, white);
if (!(Castle(0, white) & 2))
HashCastle(1, white);
if (!(Castle(0, black) & 1))
HashCastle(0, black);
if (!(Castle(0, black) & 2))
HashCastle(1, black);
/*
initialize black/white piece counts.
*/
for (side = black; side <= white; side++)
for (piece = pawn; piece <= king; piece++)
TotalPieces(side, piece) = PopCnt(Pieces(side, piece));
for (side = black; side <= white; side++) {
TotalPieces(side, occupied) = 0;
for (piece = knight; piece < king; piece++)
TotalPieces(side, occupied) +=
PopCnt(Pieces(side, piece)) * p_vals[piece];
}
TotalAllPieces = PopCnt(OccupiedSquares);
/*
initialize major/minor counts.
*/
for (side = black; side <= white; side++) {
TotalMajors(side) = TotalPieces(side, rook)
+ 2 * TotalPieces(side, queen);
TotalMinors(side) = TotalPieces(side, knight)
+ TotalPieces(side, bishop);
}
tree->rep_index = 0;
tree->rep_list[0] = HashKey;
}
/*
*******************************************************************************
* *
* InitializeGetLogID() is used to determine the nnn (in log.nnn) to use for *
* the current game. It is typically the ID of the last log + 1, but we do *
* not know what that is if we just started the engine. We simply look thru *
* existing log files in the current directory and use the next un-used name *
* in sequence. *
* *
*******************************************************************************
*/
int InitializeGetLogID(void) {
#if defined(UNIX)
struct stat
*fileinfo
= malloc(sizeof(struct stat
));
#endif
int t;
if (!log_id) {
for (log_id = 1; log_id < 300; log_id++) {
sprintf(log_filename
, "%s/log.%03d", log_path
, log_id
);
sprintf(history_filename
, "%s/game.%03d", log_path
, log_id
);
log_file
= fopen(log_filename
, "r");
if (!log_file)
break;
}
#if defined(UNIX)
/* a kludge to work around an xboard 4.2.3 problem. It sends two "quit"
commands, which causes every other log.nnn file to be empty. this code
looks for a very small log.nnn file as the last one, and if it is small,
then we simply overwrite it to solve this problem temporarily. this will
be removed when the nexto xboard version comes out to fix this extra quit
problem. */
{
char tfn[128];
FILE *tlog;
sprintf(tfn
, "%s/log.%03d", log_path
, log_id
- 1);
if (tlog) {
fstat(fileno(tlog), fileinfo);
if (fileinfo->st_size < 1700)
log_id--;
}
}
#endif
}
t = log_id++;
return t;
}
/*
*******************************************************************************
* *
* InitializeHashTables() is used to clear all hash entries completely, so *
* that no old information remains to interefere with a new game or test *
* position. *
* *
*******************************************************************************
*/
void InitializeHashTables(void) {
unsigned int i, side; // Pierre-Marie Baty -- fixed type
transposition_age = 0;
if (!trans_ref)
return;
for (i = 0; i < hash_table_size; i++) {
(trans_ref + i)->word1 = 0;
(trans_ref + i)->word2 = 0;
}
for (i = 0; i < hash_path_size; i++)
(hash_path + i)->hash_path_age = -99;
if (!pawn_hash_table)
return;
for (i = 0; i < pawn_hash_table_size; i++) {
(pawn_hash_table + i)->key = 0;
(pawn_hash_table + i)->score_mg = 0;
(pawn_hash_table + i)->score_eg = 0;
for (side = black; side <= white; side++) {
(pawn_hash_table + i)->defects_k[side] = 0;
(pawn_hash_table + i)->defects_e[side] = 0;
(pawn_hash_table + i)->defects_d[side] = 0;
(pawn_hash_table + i)->defects_q[side] = 0;
(pawn_hash_table + i)->all[side] = 0;
(pawn_hash_table + i)->passed[side] = 0;
}
}
}
/*
*******************************************************************************
* *
* InitializeKillers() is used to zero the killer moves so that old killers *
* don't screw up ordering while processing test suites. *
* *
*******************************************************************************
*/
void InitializeKillers(void) {
int i;
for (i = 0; i < MAXPLY; i++) {
block[0]->killers[i].move1 = 0;
block[0]->killers[i].move2 = 0;
}
}
/*
*******************************************************************************
* *
* InitializeKingSafety() is used to initialize the king safety matrix. *
* This is set so that the matrix, indexed by king safety pawn structure *
* index and by king safety piece tropism, combines the two indices to *
* produce a single score. As either index rises, the king safety score *
* tracks along, but as both rise, the king safety score rises much more *
* quickly. *
* *
*******************************************************************************
*/
void InitializeKingSafety() {
int safety, tropism;
for (safety = 0; safety < 16; safety++) {
for (tropism = 0; tropism < 16; tropism++) {
king_safety[safety][tropism] =
180 * ((safety_vector[safety] + 100) * (tropism_vector[tropism] +
100) / 100 - 100) / 100;
}
}
/*
for (safety = 0; safety < 16; safety++) {
for (tropism = 0; tropism < 16; tropism++) {
printf("%4d", king_safety[safety][tropism]);
}
printf("\n");
}
*/
}
/*
*******************************************************************************
* *
* InitializeMasks() is used to initialize the various bitboard masks that *
* are used throughout Crafty. *
* *
*******************************************************************************
*/
void InitializeMasks(void) {
int i, j;
/*
masks to set/clear a bit on a specific square
*/
for (i = 0; i < 64; i++) {
ClearMask(i) = ~((uint64_t) 1 << i);
SetMask(i) = (uint64_t) 1 << i;
}
ClearMask(BAD_SQUARE) = 0;
SetMask(BAD_SQUARE) = 0;
/*
masks to select bits on a specific rank or file
*/
rank_mask[0] = (uint64_t) 255;
for (i = 1; i < 8; i++)
rank_mask[i] = rank_mask[i - 1] << 8;
file_mask[FILEA] = (uint64_t) 1;
for (i = 1; i < 8; i++)
file_mask[FILEA] = file_mask[FILEA] | file_mask[FILEA] << 8;
for (i = 1; i < 8; i++)
file_mask[i] = file_mask[i - 1] << 1;
/*
masks to determine if a pawn has nearby neighbors or not.
*/
for (i = 8; i < 56; i++) {
if (File(i) > 0 && File(i) < 7)
mask_pawn_connected[i] =
SetMask(i - 1) | SetMask(i + 1) | SetMask(i - 9) | SetMask(i - 7)
| SetMask(i + 7) | SetMask(i + 9);
else if (File(i) == 0)
mask_pawn_connected[i] =
SetMask(i + 1) | SetMask(i - 7) | SetMask(i + 9);
else if (File(i) == 7)
mask_pawn_connected[i] =
SetMask(i - 1) | SetMask(i - 9) | SetMask(i + 7);
}
#if !defined(INLINEASM)
msb[0] = 64;
lsb[0] = 16;
for (i = 1; i < 65536; i++) {
lsb[i] = 16;
for (j = 0; j < 16; j++)
if (i & (1 << j)) {
msb[i] = j;
if (lsb[i] == 16)
lsb[i] = j;
}
}
#endif
msb_8bit[0] = 8;
lsb_8bit[0] = 8;
pop_cnt_8bit[0] = 0;
for (i = 1; i < 256; i++) {
pop_cnt_8bit[i] = 0;
for (j = 0; j < 8; j++)
if (i & (1 << j))
pop_cnt_8bit[i]++;
lsb_8bit[i] = 8;
for (j = 0; j < 8; j++) {
if (i & (1 << j)) {
msb_8bit[i] = j;
if (lsb_8bit[i] == 8)
lsb_8bit[i] = j;
}
}
}
}
/*
*******************************************************************************
* *
* InitializePawnMasks() is used to initialize the various bitboard masks *
* that are used in pawn evaluation. *
* *
*******************************************************************************
*/
void InitializePawnMasks(void) {
int i, j;
/*
initialize isolated pawn masks, which are nothing more than 1's on
the files adjacent to the pawn file.
*/
for (i = 0; i < 64; i++) {
if (!File(i))
mask_pawn_isolated[i] = file_mask[File(i) + 1];
else if (File(i) == 7)
mask_pawn_isolated[i] = file_mask[File(i) - 1];
else
mask_pawn_isolated[i] = file_mask[File(i) - 1] | file_mask[File(i) + 1];
}
/*
initialize passed pawn masks, which are nothing more than 1's on
the pawn's file and the adjacent files, but only on ranks that are
in "front" of the pawn.
*/
for (i = 0; i < 64; i++) {
if (!File(i)) {
mask_passed[white][i] = plus8dir[i] | plus8dir[i + 1];
mask_passed[black][i] = minus8dir[i] | minus8dir[i + 1];
} else if (File(i) == 7) {
mask_passed[white][i] = plus8dir[i - 1] | plus8dir[i];
mask_passed[black][i] = minus8dir[i - 1] | minus8dir[i];
} else {
mask_passed[white][i] = plus8dir[i - 1] | plus8dir[i] | plus8dir[i + 1];
mask_passed[black][i] =
minus8dir[i - 1] | minus8dir[i] | minus8dir[i + 1];
}
}
/*
initialize hidden passed pawn masks, which are nothing more than 1's on
squares where the opponent can't have pawns so that our "hidden" passed
will work (say we have pawns on h6 and g5, and our opponent has a pawn on
h7. he can't have pawns at g6 or f7 or we can't play g6 and free up our h
pawn.
*/
for (i = 0; i < 8; i++) {
mask_hidden_left[black][i] = 0;
mask_hidden_right[black][i] = 0;
mask_hidden_left[white][i] = 0;
mask_hidden_right[white][i] = 0;
if (i > 0) {
mask_hidden_left[white][i] |= SetMask(39 + i) | SetMask(47 + i);
mask_hidden_left[black][i] |= SetMask(15 + i) | SetMask(7 + i);
}
if (i > 1) {
mask_hidden_left[white][i] |= SetMask(46 + i) | SetMask(38 + i);
mask_hidden_left[black][i] |= SetMask(6 + i) | SetMask(14 + i);
}
if (i < 6) {
mask_hidden_right[white][i] |= SetMask(50 + i) | SetMask(42 + i);
mask_hidden_right[black][i] |= SetMask(10 + i) | SetMask(18 + i);
}
if (i < 7) {
mask_hidden_right[white][i] |= SetMask(41 + i) | SetMask(49 + i);
mask_hidden_right[black][i] |= SetMask(17 + i) | SetMask(9 + i);
}
}
/*
these masks are used to determine if the other side has any pawns
that can attack [square].
*/
for (i = 8; i < 56; i++) {
if (!File(i)) {
mask_no_pattacks[white][i] = minus8dir[i + 1];
mask_no_pattacks[black][i] = plus8dir[i + 1];
} else if (File(i) == 7) {
mask_no_pattacks[white][i] = minus8dir[i - 1];
mask_no_pattacks[black][i] = plus8dir[i - 1];
} else {
mask_no_pattacks[white][i] = minus8dir[i - 1] | minus8dir[i + 1];
mask_no_pattacks[black][i] = plus8dir[i + 1] | plus8dir[i - 1];
}
}
/*
enpassant pawns are on either file adjacent to the current file, and
on the same rank.
*/
for (i = 0; i < 64; i++)
mask_eptest[i] = 0;
for (i = 25; i < 31; i++)
mask_eptest[i] = SetMask(i - 1) | SetMask(i + 1);
for (i = 33; i < 39; i++)
mask_eptest[i] = SetMask(i - 1) | SetMask(i + 1);
mask_eptest[A4] = SetMask(B4);
mask_eptest[H4] = SetMask(G4);
mask_eptest[A5] = SetMask(B5);
mask_eptest[H5] = SetMask(G5);
/*
initialize masks used to evaluate pawn races. these masks are
used to determine if the opposing king is in a position to stop a
passed pawn from racing down and queening. the data is organized
as pawn_race[side][onmove][square], where side is black or white,
and onmove indicates which side is to move for proper tempo
evaluation.
*/
for (i = 0; i < 64; i++) {
pawn_race[white][white][i] = 0;
pawn_race[white][black][i] = 0;
pawn_race[black][white][i] = 0;
pawn_race[black][black][i] = 0;
}
for (j = 8; j < 56; j++) {
for (i = 0; i < 64; i++) {
/* white pawn, wtm */
if (j < 16) {
if (KingPawnSquare(j + 8, i, File(j) + 56, 1))
pawn_race[white][white][j] |= SetMask(i);
} else {
if (KingPawnSquare(j, i, File(j) + 56, 1))
pawn_race[white][white][j] |= SetMask(i);
}
/* white pawn, btm */
if (j < 16) {
if (KingPawnSquare(j + 8, i, File(j) + 56, 0))
pawn_race[white][black][j] |= SetMask(i);
} else {
if (KingPawnSquare(j, i, File(j) + 56, 0))
pawn_race[white][black][j] |= SetMask(i);
}
/* black pawn, wtm */
if (j > 47) {
if (KingPawnSquare(j - 8, i, File(j), 0))
pawn_race[black][white][j] |= SetMask(i);
} else {
if (KingPawnSquare(j, i, File(j), 0))
pawn_race[black][white][j] |= SetMask(i);
}
/* black pawn, btm */
if (j > 47) {
if (KingPawnSquare(j - 8, i, File(j), 1))
pawn_race[black][black][j] |= SetMask(i);
} else {
if (KingPawnSquare(j, i, File(j), 1))
pawn_race[black][black][j] |= SetMask(i);
}
}
}
/*
is_outside[p][a]
p=8 bit mask for passed pawns
a=8 bit mask for all pawns on board
p must have left-most or right-most bit set when compared to
mask 'a'. and this bit must be separated from the next bit
by at least one file (ie the outside passed pawn is 2 files
from the rest of the pawns, at least.
ppsq = square that contains a (potential) passed pawn.
psql = leftmost pawn, period.
psqr = rightmost pawn, period.
0 -> passed pawn is not 'outside'
1 -> passed pawn is 'outside'
2 -> passed pawn is 'outside' on both sides of board
*/
for (i = 0; i < 256; i++) {
for (j = 0; j < 256; j++) {
int ppsq1, ppsq2, psql, psqr;
is_outside[i][j] = 0;
ppsq1 = lsb_8bit[i];
if (ppsq1 < 8) {
psql = lsb_8bit[j];
if (ppsq1 < psql - 1 || psql == 8)
is_outside[i][j] += 1;
}
ppsq2 = msb_8bit[i];
if (ppsq2 < 8) {
psqr = msb_8bit[j];
if (ppsq2 > psqr + 1 || psqr == 8)
is_outside[i][j] += 1;
}
if (ppsq1 == ppsq2 && is_outside[i][j] > 0)
is_outside[i][j] = 1;
}
}
}
/*
*******************************************************************************
* *
* InitlializeSMP() is used to initialize the pthread lock variables. *
* *
*******************************************************************************
*/
void InitializeSMP(void) {
LockInit(lock_smp);
LockInit(lock_split);
LockInit(lock_io);
LockInit(lock_root);
LockInit(block[0]->lock);
#if defined(UNIX) && (CPUS > 1)
pthread_attr_init(&attributes);
pthread_attr_setdetachstate(&attributes, PTHREAD_CREATE_DETACHED);
#endif
}