// render.cpp
 
 
 
// thanks ChaotikMind for optimizing the engine a bit :)
 
 
 
#include "common.h"
 
 
 
 
 
// note: DirectX requires a C++ compiler.
 
#include "DirectX9/Include/d3d9.h"
 
#include "DirectX9/Include/d3dx9.h"
 
 
 
// include the Direct3D library files
 
#pragma comment (lib, "DirectX9/Lib/x86/d3d9.lib")
 
#pragma comment (lib, "DirectX9/Lib/x86/d3dx9.lib")
 
 
 
 
 
// define this to display framerate
 
#define WANT_FRAMERATE
 
 
 
 
 
// handy macro to print a chatter channel reply
 
#define PRINT_CCREPLY(ccreply) \
 
{ \
 
   Render_wprintf (rect.right, initial_height - combined_height, initial_width - rect.right, ALIGN_LEFT, ALIGN_TOP, ALIGN_LEFT, \
 
                   chat_fontindex, (ccreply)->color, &rect, \
 
                   L"["); \
 
   Render_wprintf (rect.right, initial_height - combined_height, initial_width - rect.right, ALIGN_LEFT, ALIGN_TOP, ALIGN_LEFT, \
 
                   chat_fontindex, RGBA_TO_RGBACOLOR (159, 159, 159, RGBACOLOR_ALPHA ((ccreply)->color)), &rect, \
 
                   (ccreply)->channelname); \
 
   Render_wprintf (rect.right, initial_height - combined_height, initial_width - rect.right, ALIGN_LEFT, ALIGN_TOP, ALIGN_LEFT, \
 
                   chat_fontindex, (ccreply)->color, &rect, \
 
                   L"] "); /* closing bracket + non-breakable space */ \
 
   Render_wprintf (rect.right, initial_height - combined_height, initial_width - rect.right, ALIGN_LEFT, ALIGN_TOP, ALIGN_LEFT, \
 
                   chat_fontindex, RGBA_TO_RGBACOLOR (159, 159, 159, RGBACOLOR_ALPHA ((ccreply)->color)), &rect, \
 
                   (ccreply)->nickname); \
 
   Render_wprintf (rect.right, initial_height - combined_height, initial_width - rect.right, ALIGN_LEFT, ALIGN_TOP, ALIGN_LEFT, \
 
                   chat_fontindex, (ccreply)->color, &rect, \
 
                   L": "); /* colon + non-breakable space */ \
 
   if ((ccreply)->text != NULL) \
 
      Render_wprintf (rect.right, initial_height - combined_height, initial_width - rect.right, ALIGN_LEFT, ALIGN_TOP, ALIGN_LEFT, \
 
                      chat_fontindex, (ccreply)->color, &rect, \
 
                      (ccreply)->text); \
 
}
 
 
 
 
 
// handy macro to draw a GUI button
 
#define DRAW_BUTTON_IF_NEEDED(button) \
 
{ \
 
   if ((button).state != 0) \
 
      Render_DrawSprite (&sprites[(button).sprite_index], (button).left, (button).top, (button).width, (button).height, ((button).state == 2 ? 0xFF : 0x7F)); \
 
}
 
 
 
 
 
// handy macro to draw a GUI text
 
#define DRAW_TEXT_IF_NEEDED(text) \
 
{ \
 
   if ((text).is_displayed) \
 
   { \
 
      Render_wprintf ((int) ((text).xpos_percent * (float) initial_width) / 100, (int) ((text).ypos_percent * (float) initial_height) / 100, \
 
                      (int) ((text).maxwidth_percent * (float) initial_width) / 100, (text).horizontal_align, (text).vertical_align, (text).text_align, (text).font_index, \
 
                      ((text).want_fade ? \
 
                       RGBACOLOR_SETALPHA ((text).color, \
 
                                           (((text).appear_time + (text).disappear_time) * 0.5f > current_time ? \
 
                                           /* fading in  */ (int) FadeFloat (0, RGBACOLOR_ALPHA ((text).color), (text).appear_time, (text).appear_time + 0.5f) : \
 
                                           /* fading out */ (int) FadeFloat (RGBACOLOR_ALPHA ((text).color), 0, (text).disappear_time - 3.0f, (text).disappear_time))) : \
 
                       (text).color), \
 
                      NULL, (text).buffer); \
 
      if ((text).disappear_time < current_time) \
 
         (text).is_displayed = false; \
 
   } \
 
}
 
 
 
 
 
#pragma pack(push,1)
 
 
 
// definition for a vector
 
typedef struct vector_s
 
{
 
   float x; // X component
 
   float y; // Y component
 
   float z; // Z component
 
} vector_t;
 
 
 
 
 
// definition for a texture coordinates pair
 
typedef struct texcoord_s
 
{
 
   float u; // X coordinate of the texture point this vertex corresponds to
 
   float v; // Y coordinate of the texture point this vertex corresponds to
 
} texcoord_t;
 
 
 
 
 
// definition for a vertex (must be in that order for Direct3D)
 
typedef struct vertex_s
 
{
 
   vector_t position; // position in space
 
   vector_t normal; // coordinates of the unary normal vector of the plane this vertex is on (for illumination)
 
   texcoord_t texcoord; // coordinates of the texture point this vertex corresponds to
 
} vertex_t;
 
 
 
#pragma pack(pop)
 
 
 
 
 
// definition for a reflected object (qsort array element to sort reflections by distance)
 
typedef struct reflectedobject_s
 
{
 
   sceneobject_t *object; // pointer to the scene object
 
   float distance; // distance to viewer camera
 
} reflectedobject_t;
 
 
 
 
 
// definition for a material (light reflection type)
 
typedef struct material_s
 
{
 
   wchar_t name[32]; // material name
 
   float ambient; // ambient reflection value ranging from 0 to 1
 
   float diffuse; // diffuse reflection value ranging from 0 to 1
 
   float emissive; // emissive reflection value ranging from 0 to 1
 
   float specular; // specular reflection value ranging from 0 to 1
 
   float shininess; // shininess (specular factor)
 
   float transparency; // transparency value ranging from 0 (fully transparent) to 1 (opaque)
 
} material_t;
 
 
 
 
 
// definition for a mesh
 
typedef struct mesh_s
 
{
 
   unsigned long hash; // basic content hash, to avoid duplicates
 
   unsigned long vertex_format;
 
   IDirect3DVertexBuffer9 *d3dvertices; // handled opaquely by Direct3D
 
   int vertice_size;
 
   int vertice_count;
 
   bool is_indexed; // set to TRUE if this mesh has an index buffer
 
   IDirect3DIndexBuffer9 *d3dindices; // handled opaquely by Direct3D
 
   int indice_size;
 
   int indice_count;
 
} mesh_t;
 
 
 
 
 
// definition for a texture
 
typedef struct texture_s
 
{
 
   unsigned long hash; // basic content hash, to avoid duplicates
 
   int width;
 
   int height;
 
   IDirect3DTexture9 *texture;
 
} texture_t;
 
 
 
 
 
// definition for a font
 
typedef struct font_s
 
{
 
   unsigned long pathname_hash;
 
   ID3DXFont *font;
 
} font_t;
 
 
 
 
 
// definition for a sprite
 
typedef struct sprite_s
 
{
 
   unsigned long hash; // basic content hash, to avoid duplicates
 
   ID3DXSprite *sprite;
 
   int texture_index;
 
} sprite_t;
 
 
 
 
 
// global variables used in this module only
 
static IDirect3D9 *d3d = NULL; // our Direct3D interface
 
static IDirect3DDevice9 *d3ddev = NULL; // the device class
 
 
 
static material_t *materials = NULL;
 
static int material_count = 0;
 
static texture_t *textures = NULL;
 
static int texture_count = 0;
 
static mesh_t *meshes = NULL;
 
static int mesh_count = 0;
 
static font_t *fonts = NULL;
 
static int font_count = 0;
 
static sprite_t *sprites = NULL;
 
static int sprite_count = 0;
 
static const float fov_value = 45.0f; // field of view width, in degrees
 
static const float viewdist_near = 1.0f; // nearest view plane distance
 
static const float viewdist_far = 200.0f; // farthest view plane distance
 
static int initial_width = 0; // initial width of the render surface, in pixels (typically equal to the max displayable size)
 
static int initial_height = 0; // initial height of the render surface, in pixels (typically equal to the max displayable size)
 
static float current_width = 0.0f; // current width of the client area on which the render surface is rendered, in pixels
 
static float current_height = 0.0f; // current height of the client area on which the render surface is rendered, in pixels
 
static D3DCOLOR ambient_light;
 
static vector_t camera_position;
 
static const vector_t scene_center = { 0.0f, 0.0f, 0.0f };
 
static const vector_t upwards_direction = { 0.0f, 0.0f, 1.0f };
 
static int best_supported_filter;
 
static bool is_fsaa_supported = false;
 
 
 
static wchar_t printf_buffer[0xffff];
 
 
 
 
 
// prototypes of functions used in this module only
 
static bool Render_LoadMesh_X (mesh_t *mesh, const wchar_t *xfile_pathname);
 
static bool Render_LoadMesh_Obj (mesh_t *mesh, const wchar_t *objfile_pathname);
 
static void Render_DrawSceneObjectReflection (sceneobject_t *sceneobject);
 
static void Render_DrawSceneObject (sceneobject_t *sceneobject);
 
static void Render_DrawSceneTile (sceneobject_t *sceneobject);
 
static void Render_DrawSprite (sprite_t *sprite, float x_percent, float y_percent, float width_percent, float height_percent, int alpha);
 
static void Render_GetTextBoundaries (int max_width, int font_id, wchar_t *text, RECT *rect);
 
static void Render_wprintf (int x, int y, int max_width, int horiz_align, int vert_align, int text_align, int font_id, unsigned long color_rgba, RECT *out_rect, const wchar_t *fmt, ...);
 
static float DistanceToCamera (float x, float y, float z);
 
static float FadeFloat (float from, float to, float start_time, float end_time);
 
static unsigned long HashString (const wchar_t *string_buffer);
 
static unsigned long HashFile (const wchar_t *file_pathname);
 
static void ResolveWildcard (wchar_t *file_pathname, wchar_t *extensions_separated_by_bars);
 
static int SortReflectedObjects (const void *object1, const void *object2);
 
 
 
 
 
bool Render_Init (void)
 
{
 
   // this function sets up and initializes Direct3D
 
 
 
   static wchar_t *default_materialname = L"default";
 
 
 
   D3DCAPS9 device_capabilities;
 
   unsigned long behaviour_flags;
 
   unsigned long multisample_quality_count;
 
   D3DPRESENT_PARAMETERS d3dpp;
 
   wchar_t errorfile_path[MAX_PATH];
 
   wchar_t line_buffer[256];
 
   material_t material;
 
   HRESULT ret;
 
   RECT rect;
 
   RECT viewport_rect;
 
   FILE *fp;
 
 
 
   // create the Direct3D interface
 
   d3d = Direct3DCreate9 (D3D_SDK_VERSION);
 
 
 
   // get hardware capabilities
 
   if (FAILED (d3d->GetDeviceCaps (D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, &device_capabilities)))
 
   {
 
      MessageBox (NULL, LOCALIZE (L"Error_CouldNotCreateD3DDevGetDeviceCapsFailed"), LOCALIZE (L"FatalError"), MB_ICONERROR | MB_OK);
 
      terminate_everything = true; // this is a fatal error
 
      return (false);
 
   }
 
 
 
   // grab info from that and adjust our D3D settings
 
   best_supported_filter = (device_capabilities.RasterCaps & D3DPRASTERCAPS_ANISOTROPY ? D3DTEXF_ANISOTROPIC : D3DTEXF_LINEAR);
 
   behaviour_flags = (device_capabilities.VertexProcessingCaps != 0 ? D3DCREATE_HARDWARE_VERTEXPROCESSING : D3DCREATE_SOFTWARE_VERTEXPROCESSING);
 
 
 
   // see if simple (non-maskable) full-scene antialiasing is supported and in how many quality flavors
 
   if (SUCCEEDED (d3d->CheckDeviceMultiSampleType (D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, D3DFMT_X8R8G8B8, false, D3DMULTISAMPLE_NONMASKABLE, &multisample_quality_count)))
 
      is_fsaa_supported = true; // remember FSAA is supported
 
 
 
   memset (&d3dpp, 0, sizeof (d3dpp)); // clear out the struct for use
 
   d3dpp.Windowed = true; // always windowed (because we can't display dialog boxes in fullscreen mode)
 
   d3dpp.BackBufferCount = 1;
 
   d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD; // discard old frames
 
   d3dpp.hDeviceWindow = hMainWnd; // set the window to be used by Direct3D
 
   d3dpp.EnableAutoDepthStencil = true; // enable Z-buffer and stencil buffer
 
   d3dpp.AutoDepthStencilFormat = D3DFMT_D24S8; // D3DFMT_D15S1 15 bits should be enough to store each pixel's Z depth
 
   if (is_fsaa_supported)
 
   {
 
      d3dpp.MultiSampleType = D3DMULTISAMPLE_NONMASKABLE; // use multisampling (full scene antialiasing) if supported
 
      d3dpp.MultiSampleQuality = multisample_quality_count - 1; // use the best available multisample quality
 
   }
 
   else
 
   {
 
      d3dpp.MultiSampleType = D3DMULTISAMPLE_NONE; // do not use multisampling (full scene antialiasing)
 
      d3dpp.MultiSampleQuality = 0;
 
   }
 
 
 
   // get main window's current rectangle and full screen size
 
   GetWindowRect (hMainWnd, &rect);
 
 
 
   // create a device class using this information and the info from the d3dpp stuct. Resize the window to the max displayable
 
   // size before creating the DirectX device, so as to guarantee the viewport will never be upscaled in case of window resize.
 
   MoveWindow (hMainWnd, rect.left, rect.top, GetSystemMetrics (SM_CXSCREEN), GetSystemMetrics (SM_CYSCREEN), false);
 
   if (FAILED (ret = d3d->CreateDevice (D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, hMainWnd, behaviour_flags, &d3dpp, &d3ddev)))
 
   {
 
      MessageBox (NULL, LOCALIZE (L"Error_CouldNotCreateD3DDevCreateDeviceFailed"), LOCALIZE (L"FatalError"), MB_ICONERROR | MB_OK);
 
 
 
      // on error, write a log file on the user's desktop
 
      errorfile_path[0] = 0;
 
      SHGetSpecialFolderPath (NULL, errorfile_path, CSIDL_DESKTOP, true);
 
      wcscat_s (errorfile_path, WCHAR_SIZEOF (errorfile_path), L"\\Chess Giants error.log");
 
      _wfopen_s (&fp, errorfile_path, L"w, ccs=UNICODE");
 
      if (fp != NULL)
 
      {
 
         fwprintf (fp, L"device_capabilities.DeviceType = %d\n", device_capabilities.DeviceType);
 
         fwprintf (fp, L"device_capabilities.AdapterOrdinal = %ul\n", device_capabilities.AdapterOrdinal);
 
         fwprintf (fp, L"device_capabilities.Caps = %ul\n", device_capabilities.Caps);
 
         fwprintf (fp, L"device_capabilities.Caps2 = %ul\n", device_capabilities.Caps2);
 
         fwprintf (fp, L"device_capabilities.Caps3 = %ul\n", device_capabilities.Caps3);
 
         fwprintf (fp, L"device_capabilities.PresentationIntervals = %ul\n", device_capabilities.PresentationIntervals);
 
         fwprintf (fp, L"device_capabilities.CursorCaps = %ul\n", device_capabilities.CursorCaps);
 
         fwprintf (fp, L"device_capabilities.DevCaps = %ul\n", device_capabilities.DevCaps);
 
         fwprintf (fp, L"device_capabilities.PrimitiveMiscCaps = %ul\n", device_capabilities.PrimitiveMiscCaps);
 
         fwprintf (fp, L"device_capabilities.RasterCaps = %ul\n", device_capabilities.RasterCaps);
 
         fwprintf (fp, L"device_capabilities.ZCmpCaps = %ul\n", device_capabilities.ZCmpCaps);
 
         fwprintf (fp, L"device_capabilities.SrcBlendCaps = %ul\n", device_capabilities.SrcBlendCaps);
 
         fwprintf (fp, L"device_capabilities.DestBlendCaps = %ul\n", device_capabilities.DestBlendCaps);
 
         fwprintf (fp, L"device_capabilities.AlphaCmpCaps = %ul\n", device_capabilities.AlphaCmpCaps);
 
         fwprintf (fp, L"device_capabilities.ShadeCaps = %ul\n", device_capabilities.ShadeCaps);
 
         fwprintf (fp, L"device_capabilities.TextureCaps = %ul\n", device_capabilities.TextureCaps);
 
         fwprintf (fp, L"device_capabilities.TextureFilterCaps = %ul\n", device_capabilities.TextureFilterCaps);
 
         fwprintf (fp, L"device_capabilities.CubeTextureFilterCaps = %ul\n", device_capabilities.CubeTextureFilterCaps);
 
         fwprintf (fp, L"device_capabilities.VolumeTextureFilterCaps = %ul\n", device_capabilities.VolumeTextureFilterCaps);
 
         fwprintf (fp, L"device_capabilities.TextureAddressCaps = %ul\n", device_capabilities.TextureAddressCaps);
 
         fwprintf (fp, L"device_capabilities.VolumeTextureAddressCaps = %ul\n", device_capabilities.VolumeTextureAddressCaps);
 
         fwprintf (fp, L"device_capabilities.LineCaps = %ul\n", device_capabilities.LineCaps);
 
         fwprintf (fp, L"device_capabilities.MaxTextureWidth = %ul\n", device_capabilities.MaxTextureWidth);
 
         fwprintf (fp, L"device_capabilities.MaxTextureHeight = %ul\n", device_capabilities.MaxTextureHeight);
 
         fwprintf (fp, L"device_capabilities.MaxVolumeExtent = %ul\n", device_capabilities.MaxVolumeExtent);
 
         fwprintf (fp, L"device_capabilities.MaxTextureRepeat = %ul\n", device_capabilities.MaxTextureRepeat);
 
         fwprintf (fp, L"device_capabilities.MaxTextureAspectRatio = %ul\n", device_capabilities.MaxTextureAspectRatio);
 
         fwprintf (fp, L"device_capabilities.MaxAnisotropy = %ul\n", device_capabilities.MaxAnisotropy);
 
         fwprintf (fp, L"device_capabilities.MaxVertexW = %f\n", device_capabilities.MaxVertexW);
 
         fwprintf (fp, L"device_capabilities.GuardBandLeft = %f\n", device_capabilities.GuardBandLeft);
 
         fwprintf (fp, L"device_capabilities.GuardBandTop = %f\n", device_capabilities.GuardBandTop);
 
         fwprintf (fp, L"device_capabilities.GuardBandRight = %f\n", device_capabilities.GuardBandRight);
 
         fwprintf (fp, L"device_capabilities.GuardBandBottom = %f\n", device_capabilities.GuardBandBottom);
 
         fwprintf (fp, L"device_capabilities.ExtentsAdjust = %f\n", device_capabilities.ExtentsAdjust);
 
         fwprintf (fp, L"device_capabilities.StencilCaps = %ul\n", device_capabilities.StencilCaps);
 
         fwprintf (fp, L"device_capabilities.FVFCaps = %ul\n", device_capabilities.FVFCaps);
 
         fwprintf (fp, L"device_capabilities.TextureOpCaps = %ul\n", device_capabilities.TextureOpCaps);
 
         fwprintf (fp, L"device_capabilities.MaxTextureBlendStages = %ul\n", device_capabilities.MaxTextureBlendStages);
 
         fwprintf (fp, L"device_capabilities.MaxSimultaneousTextures = %ul\n", device_capabilities.MaxSimultaneousTextures);
 
         fwprintf (fp, L"device_capabilities.VertexProcessingCaps = %ul\n", device_capabilities.VertexProcessingCaps);
 
         fwprintf (fp, L"device_capabilities.MaxActiveLights = %ul\n", device_capabilities.MaxActiveLights);
 
         fwprintf (fp, L"device_capabilities.MaxUserClipPlanes = %ul\n", device_capabilities.MaxUserClipPlanes);
 
         fwprintf (fp, L"device_capabilities.MaxVertexBlendMatrices = %ul\n", device_capabilities.MaxVertexBlendMatrices);
 
         fwprintf (fp, L"device_capabilities.MaxVertexBlendMatrixIndex = %ul\n", device_capabilities.MaxVertexBlendMatrixIndex);
 
         fwprintf (fp, L"device_capabilities.MaxPointSize = %f\n", device_capabilities.MaxPointSize);
 
         fwprintf (fp, L"device_capabilities.MaxPrimitiveCount = %ul\n", device_capabilities.MaxPrimitiveCount);
 
         fwprintf (fp, L"device_capabilities.MaxVertexIndex = %ul\n", device_capabilities.MaxVertexIndex);
 
         fwprintf (fp, L"device_capabilities.MaxStreams = %ul\n", device_capabilities.MaxStreams);
 
         fwprintf (fp, L"device_capabilities.MaxStreamStride = %ul\n", device_capabilities.MaxStreamStride);
 
         fwprintf (fp, L"device_capabilities.VertexShaderVersion = %ul\n", device_capabilities.VertexShaderVersion);
 
         fwprintf (fp, L"device_capabilities.MaxVertexShaderConst = %ul\n", device_capabilities.MaxVertexShaderConst);
 
         fwprintf (fp, L"device_capabilities.PixelShaderVersion = %ul\n", device_capabilities.PixelShaderVersion);
 
         fwprintf (fp, L"device_capabilities.PixelShader1xMaxValue = %f\n", device_capabilities.PixelShader1xMaxValue);
 
         fwprintf (fp, L"device_capabilities.DevCaps2 = %ul\n", device_capabilities.DevCaps2);
 
         fwprintf (fp, L"device_capabilities.MaxNpatchTessellationLevel = %f\n", device_capabilities.MaxNpatchTessellationLevel);
 
         fwprintf (fp, L"device_capabilities.Reserved5 = %ul\n", device_capabilities.Reserved5);
 
         fwprintf (fp, L"device_capabilities.MasterAdapterOrdinal = %ul\n", device_capabilities.MasterAdapterOrdinal);
 
         fwprintf (fp, L"device_capabilities.AdapterOrdinalInGroup = %ul\n", device_capabilities.AdapterOrdinalInGroup);
 
         fwprintf (fp, L"device_capabilities.NumberOfAdaptersInGroup = %ul\n", device_capabilities.NumberOfAdaptersInGroup);
 
         fwprintf (fp, L"device_capabilities.DeclTypes = %ul\n", device_capabilities.DeclTypes);
 
         fwprintf (fp, L"device_capabilities.NumSimultaneousRTs = %ul\n", device_capabilities.NumSimultaneousRTs);
 
         fwprintf (fp, L"device_capabilities.StretchRectFilterCaps = %ul\n", device_capabilities.StretchRectFilterCaps);
 
         fwprintf (fp, L"device_capabilities.VS20Caps.Caps = %ul\n", device_capabilities.VS20Caps.Caps);
 
         fwprintf (fp, L"device_capabilities.VS20Caps.DynamicFlowControlDepth = %d\n", device_capabilities.VS20Caps.DynamicFlowControlDepth);
 
         fwprintf (fp, L"device_capabilities.VS20Caps.NumTemps = %d\n", device_capabilities.VS20Caps.NumTemps);
 
         fwprintf (fp, L"device_capabilities.VS20Caps.StaticFlowControlDepth = %d\n", device_capabilities.VS20Caps.StaticFlowControlDepth);
 
         fwprintf (fp, L"device_capabilities.PS20Caps.Caps = %ul\n", device_capabilities.PS20Caps.Caps);
 
         fwprintf (fp, L"device_capabilities.PS20Caps.DynamicFlowControlDepth = %d\n", device_capabilities.PS20Caps.DynamicFlowControlDepth);
 
         fwprintf (fp, L"device_capabilities.PS20Caps.NumTemps = %d\n", device_capabilities.PS20Caps.NumTemps);
 
         fwprintf (fp, L"device_capabilities.PS20Caps.StaticFlowControlDepth = %d\n", device_capabilities.PS20Caps.StaticFlowControlDepth);
 
         fwprintf (fp, L"device_capabilities.PS20Caps.NumInstructionSlots = %d\n", device_capabilities.PS20Caps.NumInstructionSlots);
 
         fwprintf (fp, L"device_capabilities.VertexTextureFilterCaps = %ul\n", device_capabilities.VertexTextureFilterCaps);
 
         fwprintf (fp, L"device_capabilities.MaxVShaderInstructionsExecuted = %ul\n", device_capabilities.MaxVShaderInstructionsExecuted);
 
         fwprintf (fp, L"device_capabilities.MaxPShaderInstructionsExecuted = %ul\n", device_capabilities.MaxPShaderInstructionsExecuted);
 
         fwprintf (fp, L"device_capabilities.MaxVertexShader30InstructionSlots = %ul\n", device_capabilities.MaxVertexShader30InstructionSlots);
 
         fwprintf (fp, L"device_capabilities.MaxPixelShader30InstructionSlots = %ul\n", device_capabilities.MaxPixelShader30InstructionSlots);
 
         fwprintf (fp, L"========\n");
 
         fwprintf (fp, L"(guessed) behaviour_flags = %ul\n", behaviour_flags);
 
         fwprintf (fp, L"========\n");
 
         fwprintf (fp, L"d3dpp.MultiSampleType = %d\n", d3dpp.MultiSampleType);
 
         fwprintf (fp, L"d3dpp.MultiSampleQuality = %d\n", d3dpp.MultiSampleQuality);
 
         fwprintf (fp, L"========\n");
 
         fwprintf (fp, L"d3d->CreateDevice() returned %d\n", (int) ret);
 
         fclose (fp);
 
 
 
         MessageBox (NULL, LOCALIZE (L"Error_GameCouldNotStartPleaseSendLogToAuthor"), LOCALIZE (L"Information"), MB_ICONINFORMATION | MB_OK);
 
      }
 
      else
 
         MessageBox (NULL, LOCALIZE (L"Error_CouldNotWriteToLogFile"), LOCALIZE (L"FatalError"), MB_ICONERROR | MB_OK);
 
 
 
      terminate_everything = true; // this is a fatal error
 
      return (false);
 
   }
 
 
 
   // save the viewport's width and height
 
   GetClientRect (hMainWnd, &viewport_rect);
 
   initial_width = viewport_rect.right;
 
   initial_height = viewport_rect.bottom;
 
 
 
   // now resize the window to its original size
 
   MoveWindow (hMainWnd, rect.left, rect.top, rect.right - rect.left, rect.bottom - rect.top, false);
 
 
 
   // set the texture parameters
 
   d3ddev->SetSamplerState (0, D3DSAMP_ADDRESSU, D3DTADDRESS_WRAP); // wrap textures around their edges
 
   d3ddev->SetSamplerState (0, D3DSAMP_ADDRESSV, D3DTADDRESS_WRAP);
 
   d3ddev->SetTextureStageState (0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE); // and modulate their alpha with the material's alpha
 
   d3ddev->SetTextureStageState (0, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE);
 
   d3ddev->SetTextureStageState (0, D3DTSS_ALPHAOP, D3DTOP_MODULATE);
 
 
 
   // enable the Z buffer
 
   d3ddev->SetRenderState (D3DRS_ZENABLE, true);
 
 
 
   // disable the stencil buffer
 
   d3ddev->SetRenderState (D3DRS_STENCILENABLE, false);
 
 
 
   // normalize the face normals (if we don't, scaling will cause problems with lighting computations)
 
   d3ddev->SetRenderState (D3DRS_NORMALIZENORMALS, true);
 
 
 
   // turn on alpha blending
 
   d3ddev->SetRenderState (D3DRS_ALPHABLENDENABLE, true);
 
   d3ddev->SetRenderState (D3DRS_BLENDOP, D3DBLENDOP_ADD);
 
   d3ddev->SetRenderState (D3DRS_SRCBLEND, D3DBLEND_SRCALPHA);
 
   d3ddev->SetRenderState (D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);
 
 
 
   // use all of the materials' light reflection properties
 
   d3ddev->SetRenderState (D3DRS_AMBIENTMATERIALSOURCE, D3DMCS_MATERIAL);
 
   d3ddev->SetRenderState (D3DRS_DIFFUSEMATERIALSOURCE, D3DMCS_MATERIAL);
 
   d3ddev->SetRenderState (D3DRS_SPECULARMATERIALSOURCE, D3DMCS_MATERIAL);
 
   d3ddev->SetRenderState (D3DRS_EMISSIVEMATERIALSOURCE, D3DMCS_MATERIAL);
 
   d3ddev->SetRenderState (D3DRS_COLORVERTEX, false);
 
 
 
   // enable 3D lighting
 
   d3ddev->SetRenderState (D3DRS_LIGHTING, true);
 
 
 
   // open and parse the materials file and build the materials list
 
   materials = NULL;
 
   material_count = 0;
 
   _wfopen_s (&fp, L"materials.cfg", L"r, ccs=UNICODE");
 
   if (fp != NULL)
 
   {
 
      // read line per line...
 
      while (fgetws (line_buffer, WCHAR_SIZEOF (line_buffer), fp) != NULL)
 
      {
 
         // can we read a complete material line ?
 
         if (swscanf_s (line_buffer, L"\"%[^\"]\" %f %f %f %f %f %f", material.name, WCHAR_SIZEOF (material.name), &material.ambient, &material.diffuse, &material.emissive, &material.specular, &material.shininess, &material.transparency) == 7)
 
         {
 
            materials = (material_t *) SAFE_realloc (materials, material_count, material_count + 1, sizeof (material_t), false);
 
            memcpy (&materials[material_count], &material, sizeof (material_t));
 
            material_count++; // if so, append this new material to the materials array
 
         }
 
      }
 
      fclose (fp); // finished, close the file
 
   }
 
   materials = (material_t *) SAFE_realloc (materials, material_count, material_count + 1, sizeof (material_t), false);
 
   wcscpy_s (materials[material_count].name, WCHAR_SIZEOF (materials[material_count].name), default_materialname);
 
   materials[material_count].ambient = 1.0f;
 
   materials[material_count].diffuse = 1.0f;
 
   materials[material_count].emissive = 0.0f;
 
   materials[material_count].specular = 0.0f;
 
   materials[material_count].shininess = 0.0f;
 
   materials[material_count].transparency = 1.0f;
 
   material_count++; // append a default material at the end of the array and we're all set
 
 
 
   return (true); // finished
 
}
 
 
 
 
 
void Render_Shutdown (void)
 
{
 
   // this function shuts down the Direct3D interfaces and releases the Direct3D COM objects
 
 
 
   int array_index;
 
 
 
   // close and release font data
 
   SAFE_free ((void **) &fonts);
 
   font_count = 0;
 
 
 
   // close and release sprite data
 
   SAFE_free ((void **) &sprites);
 
   sprite_count = 0;
 
 
 
   // close and release meshes data
 
   if (meshes != NULL)
 
   {
 
      for (array_index = 0; array_index < mesh_count; array_index++)
 
      {
 
         if (meshes[array_index].d3dindices != NULL)
 
            meshes[array_index].d3dindices->Release ();
 
         meshes[array_index].d3dindices = NULL;
 
 
 
         if (meshes[array_index].d3dvertices != NULL)
 
            meshes[array_index].d3dvertices->Release ();
 
         meshes[array_index].d3dvertices = NULL;
 
      }
 
   }
 
   meshes = NULL;
 
   mesh_count = 0;
 
 
 
   // close and release texture data
 
   if (textures != NULL)
 
   {
 
      for (array_index = 0; array_index < texture_count; array_index++)
 
         if (textures[array_index].texture != NULL)
 
            textures[array_index].texture->Release ();
 
      SAFE_free ((void **) &textures);
 
   }
 
   texture_count = 0;
 
 
 
   // close and release materials data
 
   SAFE_free ((void **) &materials);
 
   material_count = 0;
 
 
 
   // close and release the 3D device
 
   if (d3ddev != NULL)
 
      d3ddev->Release ();
 
   d3ddev = NULL;
 
 
 
   // close and release Direct3D
 
   if (d3d != NULL)
 
      d3d->Release ();
 
   d3d = NULL;
 
 
 
   return; // finished
 
}
 
 
 
 
 
void Render_RenderFrame (scene_t *scene)
 
{
 
   // this is the function used to render a single frame
 
 
 
   static int framerate_value = 0;
 
   static int framerate_count = 0;
 
   static float framerate_time = 0;
 
 
 
   D3DXMATRIX scaling_matrix;
 
   D3DXMATRIX translation_matrix;
 
   D3DXMATRIX view_matrix; // the view transform matrix
 
   D3DXMATRIX projection_matrix; // the projection transform matrix
 
   D3DLIGHT9 dxlight;
 
   RECT rect;
 
   float angle;
 
   float sin_pitch;
 
   float sin_yaw;
 
   float cos_pitch;
 
   float cos_yaw;
 
   int light_index;
 
   int object_index;
 
   int cchistory_index;
 
   int cchistory_index2;
 
   int combined_width;
 
   int combined_height;
 
   light_t *light;
 
   ccreply_t *ccreply;
 
   sceneobject_t *sceneobject;
 
   reflectedobject_t *reflectedobjects; // mallocated
 
   int reflectedobject_count;
 
   reflectedobject_t *otherobjects; // mallocated
 
   int otherobject_count;
 
 
 
   if (terminate_everything)
 
      return; // consistency check
 
 
 
   // get the device view port and save the actual width and height
 
   GetClientRect (hMainWnd, &rect);
 
   current_width = (float) rect.right; // they may differ from window width and window height
 
   current_height = (float) rect.bottom; // because of title bars, menus, borders, etc.
 
 
 
   // clear the back buffer, the Z buffer and the stencil buffer
 
   d3ddev->Clear (0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER | D3DCLEAR_STENCIL, D3DCOLOR_XRGB (0, 0, 0), 1.0f, 0);
 
   d3ddev->BeginScene (); // begins the 3D scene
 
 
 
   ////////////////////////////////////////
 
   // Setup scene lights
 
 
 
   // There are three types of light : ambient, diffuse and specular.
 
   // Diffuse lights can be of type directional (sun), point (bulb) or spot (flashlight).
 
 
 
   // The attenuation formula for point lights is :
 
   // Atten = 1 / (att0 + (att1 * d) + (att2 * d²))
 
 
 
   // In spot lights, Phi is the outer cone angle. Theta is the inner cone angle.
 
 
 
   // set the default lighting color
 
   ambient_light = RGBACOLOR_TO_ARGBCOLOR (RGBACOLOR_FULLALPHA (theme->illum.ambient_light));
 
   d3ddev->SetRenderState (D3DRS_AMBIENT, ambient_light);
 
 
 
   // for each light...
 
   for (light_index = 0; light_index < theme->illum.light_count; light_index++)
 
   {
 
      light = &theme->illum.lights[light_index]; // quick access to light
 
 
 
      memset (&dxlight, 0, sizeof (dxlight)); // clear out the dxlight struct for use
 
 
 
      // set its type
 
      if (light->type == LIGHT_DIRECTIONAL)
 
         dxlight.Type = D3DLIGHT_DIRECTIONAL; // directional light (e.g, sun)
 
      else if (light->type == LIGHT_POINT)
 
         dxlight.Type = D3DLIGHT_POINT; // point light (e.g, light bulb)
 
      else if (light->type == LIGHT_SPOT)
 
         dxlight.Type = D3DLIGHT_SPOT; // spot light (e.g, flash light)
 
      else
 
      {
 
         d3ddev->LightEnable (light_index, false); // unknown light ; turn off light #index
 
         continue; // and proceed to the next one
 
      }
 
 
 
      // set its parameters
 
      dxlight.Diffuse = D3DXCOLOR (RGBACOLOR_TO_ARGBCOLOR (RGBACOLOR_FULLALPHA (light->color)));
 
      dxlight.Specular = D3DXCOLOR (0xffffffff);
 
      dxlight.Position.x = light->pos_x;
 
      dxlight.Position.y = light->pos_y;
 
      dxlight.Position.z = light->pos_z;
 
      dxlight.Direction.x = light->direction_x;
 
      dxlight.Direction.y = light->direction_y;
 
      dxlight.Direction.z = light->direction_z;
 
      dxlight.Range = light->range; // light won't be computed after this distance
 
      dxlight.Attenuation0 = light->attenuation_constant; // constant attenuation, see formula
 
      dxlight.Attenuation1 = light->attenuation_proportional; // proportional attenuation, see formula
 
      dxlight.Attenuation2 = light->attenuation_square; // square attenuation, see formula
 
      dxlight.Phi = light->cone_outer * TO_RADIANS; // outer spot cone
 
      dxlight.Theta = light->cone_inner * TO_RADIANS; // inner spot cone
 
 
 
      d3ddev->SetLight (light_index, &dxlight); // send the light struct properties to light #index
 
      d3ddev->LightEnable (light_index, true); // turn on light #index
 
   }
 
 
 
   ////////////////////////////////
 
   // View transform
 
 
 
   // compute the sine and cosine of the pitch component
 
   angle = current_pitch * TO_RADIANS;
 
   sin_pitch = sinf (angle);
 
   cos_pitch = cosf (angle);
 
 
 
   // compute the sine and cosine of the yaw component
 
   angle = current_yaw * TO_RADIANS;
 
   sin_yaw = sinf (angle);
 
   cos_yaw = cosf (angle);
 
 
 
   // build the camera position
 
   camera_position.x = (float) -(cos_pitch * cos_yaw) * current_distance;
 
   camera_position.y = (float) -(cos_pitch * sin_yaw) * current_distance;
 
   camera_position.z = (float) sin_pitch * current_distance;
 
 
 
   // set up a view matrix
 
   D3DXMatrixLookAtLH (&view_matrix,
 
                       (D3DXVECTOR3 *) &camera_position, // camera position
 
                       (D3DXVECTOR3 *) &scene_center, // look-at position
 
                       (D3DXVECTOR3 *) &upwards_direction); // up direction
 
 
 
   // tell Direct3D about our matrix
 
   d3ddev->SetTransform (D3DTS_VIEW, &view_matrix);
 
 
 
   /////////////////////////////////////
 
   // Projection transform
 
 
 
   // set up a projection matrix
 
   D3DXMatrixPerspectiveFovLH (&projection_matrix,
 
                               fov_value * TO_RADIANS, // field of view width
 
                               current_width / current_height, // aspect ratio
 
                               viewdist_near, viewdist_far); // view plane distances
 
 
 
   // tell Direct3D about our matrix
 
   d3ddev->SetTransform (D3DTS_PROJECTION, &projection_matrix);
 
 
 
   /////////////////////////////////////
 
   // End of the transforms
 
 
 
   // if we want it, enable specular lighting
 
   d3ddev->SetRenderState (D3DRS_SPECULARENABLE, options.want_specularlighting);
 
 
 
   // turn on texture filtering if needed
 
   if (options.want_filtering)
 
   {
 
      d3ddev->SetSamplerState (0, D3DSAMP_MINFILTER, best_supported_filter);
 
      d3ddev->SetSamplerState (0, D3DSAMP_MAGFILTER, best_supported_filter);
 
      d3ddev->SetSamplerState (0, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);
 
 
 
      // turn on fullscene antialiasing only if capable
 
      d3ddev->SetRenderState (D3DRS_MULTISAMPLEANTIALIAS, is_fsaa_supported);
 
   }
 
   else
 
   {
 
      d3ddev->SetSamplerState (0, D3DSAMP_MINFILTER, D3DTEXF_NONE);
 
      d3ddev->SetSamplerState (0, D3DSAMP_MAGFILTER, D3DTEXF_NONE);
 
      d3ddev->SetSamplerState (0, D3DSAMP_MIPFILTER, D3DTEXF_NONE);
 
 
 
      // turn off fullscene antialiasing
 
      d3ddev->SetRenderState (D3DRS_MULTISAMPLEANTIALIAS, false);
 
   }
 
 
 
   /////////////////////////////////////////////////////////////
 
   // draw the background elements. No need for a Z buffer here.
 
 
 
   d3ddev->SetRenderState (D3DRS_ZENABLE, false); // disable depth testing
 
 
 
   // draw the background sprite, if any
 
   if (scene->background_spriteindex >= 0)
 
      Render_DrawSprite (&sprites[scene->background_spriteindex], 0.0f, 0.0f, 100.0f, 100.0f, 0xFF);
 
 
 
   // draw the table border
 
   Render_DrawSceneObject (&scene->objects[0]);
 
   Render_DrawSceneObject (&scene->objects[1]);
 
 
 
   // draw the table and build the stencil buffer at the same time
 
   d3ddev->SetRenderState (D3DRS_STENCILENABLE, true); // enable the stencil buffer (i.e. the "frame" for drawing table reflections)
 
   d3ddev->SetRenderState (D3DRS_STENCILFUNC, D3DCMP_ALWAYS); // instruct how to fill it
 
   d3ddev->SetRenderState (D3DRS_STENCILPASS, D3DSTENCILOP_INCRSAT); // instruct how to fill it
 
   Render_DrawSceneObject (&scene->objects[2]); // draw the table squares in the stencil buffer
 
   d3ddev->SetRenderState (D3DRS_STENCILENABLE, false); // finished drawing the stencil buffer
 
 
 
   d3ddev->SetRenderState (D3DRS_ZENABLE, true); // re-enable depth testing
 
 
 
   ////////////////////////////////////////////////////////////
 
   // draw the scene objects and their reflections on the table
 
 
 
   // start with the reflections if we want them, and if the table does it
 
   if (options.want_reflections && (theme->reflection_alpha > 0))
 
   {
 
      // build an array of reflected objects with their distances
 
      reflectedobjects = NULL;
 
      reflectedobject_count = 0;
 
      otherobjects = NULL;
 
      otherobject_count = 0;
 
 
 
      // cycle through all parts and see which ones need to be reflected
 
      for (object_index = 3; object_index < scene->object_count; object_index++)
 
      {
 
         sceneobject = &scene->objects[object_index]; // quick access to scene object
 
 
 
         // is this object a mesh AND it's above the ground ?
 
         if ((sceneobject->mesh_index != -1) && (sceneobject->z > 0))
 
         {
 
            // yes it is. It thus needs to be reflected, so add it to the list
 
            reflectedobjects = (reflectedobject_t *) SAFE_realloc (reflectedobjects, reflectedobject_count, reflectedobject_count + 1, sizeof (reflectedobject_t), false);
 
            reflectedobjects[reflectedobject_count].object = sceneobject; // save scene object
 
            reflectedobjects[reflectedobject_count].distance = DistanceToCamera (sceneobject->x, sceneobject->y, sceneobject->z);
 
            reflectedobject_count++; // we have now one object more to reflect
 
         }
 
         else
 
         {
 
            // no it's not. It doesn't need to be reflected, so add it to the other list
 
            otherobjects = (reflectedobject_t *) SAFE_realloc (otherobjects, otherobject_count, otherobject_count + 1, sizeof (reflectedobject_t), false);
 
            otherobjects[otherobject_count].object = sceneobject; // save scene object
 
            otherobjects[otherobject_count].distance = 0;
 
            otherobject_count++; // we have now one object more to reflect
 
         }
 
      }
 
 
 
      // now sort them from farthest to closest and draw them in this order
 
      qsort (reflectedobjects, reflectedobject_count, sizeof (reflectedobject_t), SortReflectedObjects);
 
      for (object_index = 0; object_index < reflectedobject_count; object_index++)
 
         Render_DrawSceneObjectReflection (reflectedobjects[object_index].object); // draw the reflection
 
      for (object_index = 0; object_index < reflectedobject_count; object_index++)
 
         Render_DrawSceneObject (reflectedobjects[object_index].object); // and draw the objects afterwards
 
      for (object_index = 0; object_index < otherobject_count; object_index++)
 
         Render_DrawSceneObject (otherobjects[object_index].object); // finally, draw the non-reflected objects
 
 
 
      SAFE_free ((void **) &reflectedobjects); // and free the reflected objects array
 
      SAFE_free ((void **) &otherobjects); // and the non-reflected objects array
 
   }
 
   else
 
      for (object_index = 3; object_index < scene->object_count; object_index++)
 
         Render_DrawSceneObject (&scene->objects[object_index]); // else if no reflections, draw the objects, the Z-buffer will sort them
 
 
 
   // draw the overlay texture if required
 
   if (scene->overlay_spriteindex >= 0)
 
      Render_DrawSprite (&sprites[scene->overlay_spriteindex], 0.0f, 0.0f, 100.0f, 100.0f, 0x4F);
 
 
 
   ///////////////
 
   // draw the GUI
 
 
 
   // draw the arrows
 
   DRAW_BUTTON_IF_NEEDED (scene->gui.larrow); // left arrow
 
   DRAW_BUTTON_IF_NEEDED (scene->gui.rarrow); // right arrow
 
   DRAW_TEXT_IF_NEEDED (scene->gui.arrow_text); // arrow text
 
 
 
   if (want_framerate)
 
      Render_wprintf (initial_width - 10, 10, 62, ALIGN_RIGHT, ALIGN_TOP, ALIGN_CENTER, arrow_fontindex, D3DCOLOR_RGBA (255, 255, 255, 255), NULL,
 
                      L"%d textures\n"
 
                      L"%d meshes\n"
 
                      L"%d fonts\n"
 
                      L"%d sprites\n"
 
                      L"%d fps", texture_count, mesh_count, font_count, sprite_count, framerate_value);
 
 
 
   // draw the other GUI buttons
 
   DRAW_BUTTON_IF_NEEDED (scene->gui.chatbutton); // chat button
 
   DRAW_BUTTON_IF_NEEDED (scene->gui.gamesbutton); // games button
 
   DRAW_BUTTON_IF_NEEDED (scene->gui.peoplebutton); // people button
 
 
 
   // does the parts pick line need to be displayed ?
 
   if (scene->gui.is_partspick_displayed)
 
   {
 
#define PARTSIZE_PCT (100.0f / 13.0f)
 
 
 
      if (scene->gui.partspick_selectedpart == 'P')      Render_DrawSprite (&sprites[theme->lastmovetarget_spriteindex],  0.0f * PARTSIZE_PCT, 0.0f, PARTSIZE_PCT, 11.0f, 0xFF);
 
      else if (scene->gui.partspick_selectedpart == 'R') Render_DrawSprite (&sprites[theme->lastmovetarget_spriteindex],  1.0f * PARTSIZE_PCT, 0.0f, PARTSIZE_PCT, 11.0f, 0xFF);
 
      else if (scene->gui.partspick_selectedpart == 'N') Render_DrawSprite (&sprites[theme->lastmovetarget_spriteindex],  2.0f * PARTSIZE_PCT, 0.0f, PARTSIZE_PCT, 11.0f, 0xFF);
 
      else if (scene->gui.partspick_selectedpart == 'B') Render_DrawSprite (&sprites[theme->lastmovetarget_spriteindex],  3.0f * PARTSIZE_PCT, 0.0f, PARTSIZE_PCT, 11.0f, 0xFF);
 
      else if (scene->gui.partspick_selectedpart == 'Q') Render_DrawSprite (&sprites[theme->lastmovetarget_spriteindex],  4.0f * PARTSIZE_PCT, 0.0f, PARTSIZE_PCT, 11.0f, 0xFF);
 
      else if (scene->gui.partspick_selectedpart == 'K') Render_DrawSprite (&sprites[theme->lastmovetarget_spriteindex],  5.0f * PARTSIZE_PCT, 0.0f, PARTSIZE_PCT, 11.0f, 0xFF);
 
      else if (scene->gui.partspick_selectedpart == ' ') Render_DrawSprite (&sprites[theme->lastmovetarget_spriteindex],  6.0f * PARTSIZE_PCT, 0.0f, PARTSIZE_PCT, 11.0f, 0xFF);
 
      else if (scene->gui.partspick_selectedpart == 'k') Render_DrawSprite (&sprites[theme->lastmovetarget_spriteindex],  7.0f * PARTSIZE_PCT, 0.0f, PARTSIZE_PCT, 11.0f, 0xFF);
 
      else if (scene->gui.partspick_selectedpart == 'q') Render_DrawSprite (&sprites[theme->lastmovetarget_spriteindex],  8.0f * PARTSIZE_PCT, 0.0f, PARTSIZE_PCT, 11.0f, 0xFF);
 
      else if (scene->gui.partspick_selectedpart == 'b') Render_DrawSprite (&sprites[theme->lastmovetarget_spriteindex],  9.0f * PARTSIZE_PCT, 0.0f, PARTSIZE_PCT, 11.0f, 0xFF);
 
      else if (scene->gui.partspick_selectedpart == 'n') Render_DrawSprite (&sprites[theme->lastmovetarget_spriteindex], 10.0f * PARTSIZE_PCT, 0.0f, PARTSIZE_PCT, 11.0f, 0xFF);
 
      else if (scene->gui.partspick_selectedpart == 'r') Render_DrawSprite (&sprites[theme->lastmovetarget_spriteindex], 11.0f * PARTSIZE_PCT, 0.0f, PARTSIZE_PCT, 11.0f, 0xFF);
 
      else if (scene->gui.partspick_selectedpart == 'p') Render_DrawSprite (&sprites[theme->lastmovetarget_spriteindex], 12.0f * PARTSIZE_PCT, 0.0f, PARTSIZE_PCT, 11.0f, 0xFF);
 
 
 
      Render_DrawSprite (&sprites[theme->flatsprites[COLOR_WHITE][PART_PAWN]],       0.0f * PARTSIZE_PCT, 0, PARTSIZE_PCT, 11.0f, (((scene->gui.partspick_hoveredpart == 'P') || (scene->gui.partspick_selectedpart == 'P')) ? 0xFF : 0x7F)); // white pawn
 
      Render_DrawSprite (&sprites[theme->flatsprites[COLOR_WHITE][PART_ROOK]],       1.0f * PARTSIZE_PCT, 0, PARTSIZE_PCT, 11.0f, (((scene->gui.partspick_hoveredpart == 'R') || (scene->gui.partspick_selectedpart == 'R')) ? 0xFF : 0x7F)); // white rook
 
      Render_DrawSprite (&sprites[theme->flatsprites[COLOR_WHITE][PART_KNIGHT]],     2.0f * PARTSIZE_PCT, 0, PARTSIZE_PCT, 11.0f, (((scene->gui.partspick_hoveredpart == 'N') || (scene->gui.partspick_selectedpart == 'N')) ? 0xFF : 0x7F)); // white knight
 
      Render_DrawSprite (&sprites[theme->flatsprites[COLOR_WHITE][PART_BISHOP]],     3.0f * PARTSIZE_PCT, 0, PARTSIZE_PCT, 11.0f, (((scene->gui.partspick_hoveredpart == 'B') || (scene->gui.partspick_selectedpart == 'B')) ? 0xFF : 0x7F)); // white bishop
 
      Render_DrawSprite (&sprites[theme->flatsprites[COLOR_WHITE][PART_QUEEN]],      4.0f * PARTSIZE_PCT, 0, PARTSIZE_PCT, 11.0f, (((scene->gui.partspick_hoveredpart == 'Q') || (scene->gui.partspick_selectedpart == 'Q')) ? 0xFF : 0x7F)); // white queen
 
      Render_DrawSprite (&sprites[theme->flatsprites[COLOR_WHITE][PART_KING]],       5.0f * PARTSIZE_PCT, 0, PARTSIZE_PCT, 11.0f, (((scene->gui.partspick_hoveredpart == 'K') || (scene->gui.partspick_selectedpart == 'K')) ? 0xFF : 0x7F)); // white king
 
      Render_DrawSprite (&sprites[theme->lastmovesource_spriteindex],         6.0f * PARTSIZE_PCT, 0, PARTSIZE_PCT, 11.0f, (((scene->gui.partspick_hoveredpart == ' ') || (scene->gui.partspick_selectedpart == ' ')) ? 0xFF : 0x7F)); // erase mark
 
      Render_DrawSprite (&sprites[theme->flatsprites[COLOR_BLACK][PART_KING]],       7.0f * PARTSIZE_PCT, 0, PARTSIZE_PCT, 11.0f, (((scene->gui.partspick_hoveredpart == 'k') || (scene->gui.partspick_selectedpart == 'k')) ? 0xFF : 0x7F)); // black king
 
      Render_DrawSprite (&sprites[theme->flatsprites[COLOR_BLACK][PART_QUEEN]],      8.0f * PARTSIZE_PCT, 0, PARTSIZE_PCT, 11.0f, (((scene->gui.partspick_hoveredpart == 'q') || (scene->gui.partspick_selectedpart == 'q')) ? 0xFF : 0x7F)); // black queen
 
      Render_DrawSprite (&sprites[theme->flatsprites[COLOR_BLACK][PART_BISHOP]],     9.0f * PARTSIZE_PCT, 0, PARTSIZE_PCT, 11.0f, (((scene->gui.partspick_hoveredpart == 'b') || (scene->gui.partspick_selectedpart == 'b')) ? 0xFF : 0x7F)); // black bishop
 
      Render_DrawSprite (&sprites[theme->flatsprites[COLOR_BLACK][PART_KNIGHT]],    10.0f * PARTSIZE_PCT, 0, PARTSIZE_PCT, 11.0f, (((scene->gui.partspick_hoveredpart == 'n') || (scene->gui.partspick_selectedpart == 'n')) ? 0xFF : 0x7F)); // black knight
 
      Render_DrawSprite (&sprites[theme->flatsprites[COLOR_BLACK][PART_ROOK]],      11.0f * PARTSIZE_PCT, 0, PARTSIZE_PCT, 11.0f, (((scene->gui.partspick_hoveredpart == 'r') || (scene->gui.partspick_selectedpart == 'r')) ? 0xFF : 0x7F)); // black rook
 
      Render_DrawSprite (&sprites[theme->flatsprites[COLOR_BLACK][PART_PAWN]],      12.0f * PARTSIZE_PCT, 0, PARTSIZE_PCT, 11.0f, (((scene->gui.partspick_hoveredpart == 'p') || (scene->gui.partspick_selectedpart == 'p')) ? 0xFF : 0x7F)); // black pawn
 
 
 
#undef PARTSIZE_PCT
 
   }
 
 
 
   // draw GUI texts
 
   DRAW_TEXT_IF_NEEDED (scene->gui.comment_text); // move comments
 
   DRAW_TEXT_IF_NEEDED (scene->gui.history_text); // game history
 
   DRAW_TEXT_IF_NEEDED (scene->gui.clock_text); // game clock
 
 
 
   // draw the chatter channels text
 
   Render_GetTextBoundaries (-1, chat_fontindex, L"a", &rect);
 
   combined_height = rect.bottom; // get a string's height
 
 
 
   // cycle through all the chat strings...
 
   ccreply = NULL;
 
   for (cchistory_index = 0; cchistory_index < scene->gui.cchistory_count; cchistory_index++)
 
   {
 
      ccreply = &scene->gui.cchistory[cchistory_index]; // quick access to CC reply
 
      if ((ccreply->text[0] != 0) && (ccreply->arrival_time + 60.0f > current_time))
 
         break; // break at the first one that we should display
 
   }
 
 
 
   // have we some to display ?
 
   if (cchistory_index < scene->gui.cchistory_count)
 
   {
 
      // first, get the remaining text's combined height
 
      for (cchistory_index2 = cchistory_index; cchistory_index2 < scene->gui.cchistory_count; cchistory_index2++)
 
      {
 
         ccreply = &scene->gui.cchistory[cchistory_index2]; // quick access to CC reply
 
 
 
         combined_width = 10;
 
         Render_GetTextBoundaries (initial_width - combined_width, chat_fontindex, L"[] : ", &rect);
 
         combined_width += rect.right;
 
         Render_GetTextBoundaries (initial_width - combined_width, chat_fontindex, ccreply->channelname, &rect);
 
         combined_width += rect.right;
 
         Render_GetTextBoundaries (initial_width - combined_width, chat_fontindex, ccreply->nickname, &rect);
 
         combined_width += rect.right;
 
         Render_GetTextBoundaries (initial_width - combined_width, chat_fontindex, ccreply->text, &rect);
 
         combined_height += rect.bottom; // add this string's height 
 
      }
 
 
 
      // now for each string remaining...
 
      for (; cchistory_index < scene->gui.cchistory_count; cchistory_index++)
 
      {
 
         ccreply = &scene->gui.cchistory[cchistory_index]; // quick access to CC reply
 
         rect.right = 10;
 
         PRINT_CCREPLY (ccreply); // print CC reply on screen
 
         combined_height -= (rect.bottom - rect.top); // draw it from top of zone to bottom
 
      }
 
   }
 
 
 
   // are we online ?
 
   if (Player_FindByType (PLAYER_INTERNET) != NULL)
 
   {
 
      ccreply = &scene->gui.entered_ccreply;
 
      if (!scene->gui.is_entering_text)
 
         ccreply->color = RGBACOLOR_SETALPHA (ccreply->color, RGBACOLOR_ALPHA (ccreply->color) / 6); // if there's no text being entered, fade CC reply a lot
 
 
 
      rect.right = 10;
 
      PRINT_CCREPLY (ccreply); // print CC reply on screen
 
   }
 
 
 
   // print GUI texts
 
   DRAW_TEXT_IF_NEEDED (scene->gui.turn_text); // player turn's text
 
   DRAW_TEXT_IF_NEEDED (scene->gui.central_text); // central notification zone text
 
 
 
   // if needed, print the spinning wheel
 
   if (scene->gui.want_spinwheel)
 
      Render_DrawSprite (&sprites[spinner_spriteindex[(int) (10.0f * current_time) % 12]], 47.0f, 46.0f, 6.0f, 8.0f, 255);
 
 
 
   // are we in demo mode ? if so, display the program name as a watermark
 
#ifdef DEMO
 
   Render_wprintf (initial_width / 2, initial_height * 2 / 3, -1, ALIGN_CENTER, ALIGN_CENTER, ALIGN_CENTER, chat_fontindex,
 
                   D3DCOLOR_RGBA (255, 255, 255, 191),
 
                   NULL, PROGRAM_NAME L" - " PROGRAM_URL L"\n- %d:%02d -", (int) (DEMO_TIMEOUT - current_time) / 60, (int) (DEMO_TIMEOUT - current_time) % 60);
 
#endif // DEMO
 
 
 
   // end 3D rendering on the back buffer
 
   //////////////////////////////////////
 
 
 
   d3ddev->EndScene (); // ends the 3D scene
 
   d3ddev->Present (NULL, NULL, NULL, NULL); // displays the created frame on the screen
 
 
 
   // update the frame rate
 
   if (framerate_time < current_time)
 
   {
 
      framerate_value = framerate_count;
 
      framerate_count = 0;
 
      framerate_time = current_time + 1.0f;
 
   }
 
   framerate_count++; // one frame more elapsed
 
 
 
   return; // finished
 
}
 
 
 
 
 
int Render_LoadMesh (const wchar_t *fmt, ...)
 
{
 
   // this function appends a new mesh in the global meshes buffer and returns its index
 
 
 
   static wchar_t meshfile_pathname[MAX_PATH];
 
   unsigned long hash;
 
   mesh_t *mesh;
 
   int mesh_index;
 
   va_list argptr;
 
 
 
   // concatenate all the arguments in one string
 
   va_start (argptr, fmt);
 
   wvsprintf (meshfile_pathname, fmt, argptr);
 
   va_end (argptr);
 
 
 
   // resolve wildcards and get content hash
 
   ResolveWildcard (meshfile_pathname, L".obj");
 
   hash = HashFile (meshfile_pathname);
 
   
 
   // now cycle through all our loaded meshes and see if it's already loaded
 
   for (mesh_index = 0; mesh_index < mesh_count; mesh_index++)
 
      if (meshes[mesh_index].hash == hash)
 
         return (mesh_index); // if we can find it, return its index so as not to load it twice
 
 
 
   // reallocate space to hold one mesh more
 
   meshes = (mesh_t *) SAFE_realloc (meshes, mesh_count, mesh_count + 1, sizeof (mesh_t), false);
 
   mesh = &meshes[mesh_count]; // quick access to the mesh we'll be working on
 
 
 
   // load the mesh
 
   if (!Render_LoadMesh_Obj (mesh, meshfile_pathname))
 
      return (-1); // bomb out on error
 
 
 
   mesh->hash = hash; // save the hash
 
   mesh_count++; // we know now one mesh more
 
   return (mesh_count - 1); // return its index
 
}
 
 
 
 
 
int Render_LoadTexture (const wchar_t *fmt, ...)
 
{
 
   // this function appends a new texture in the global textures buffer and returns its index
 
 
 
   D3DSURFACE_DESC texture_description;
 
   wchar_t texturefile_pathname[MAX_PATH];
 
   static wchar_t *filename;
 
   unsigned long hash;
 
   int texture_index;
 
   va_list argptr;
 
 
 
   // concatenate all the arguments in one string
 
   va_start (argptr, fmt);
 
   wvsprintf (texturefile_pathname, fmt, argptr);
 
   va_end (argptr);
 
 
 
   // resolve wildcards and get content hash
 
   ResolveWildcard (texturefile_pathname, L".dds|.jpg|.jpeg|.png|.tga|.bmp");
 
   hash = HashFile (texturefile_pathname);
 
 
 
   // now cycle through all our loaded textures and see if it's already loaded
 
   for (texture_index = 0; texture_index < texture_count; texture_index++)
 
      if (textures[texture_index].hash == hash)
 
         return (texture_index); // if we can find it, return its index so as not to load it twice
 
 
 
   // reallocate space to hold one texture more
 
   textures = (texture_t *) SAFE_realloc (textures, texture_count, texture_count + 1, sizeof (texture_t), false);
 
 
 
   // ask Direct3D to prepare texture data
 
   if (FAILED (D3DXCreateTextureFromFile (d3ddev, texturefile_pathname, &textures[texture_count].texture)))
 
   {
 
      MessageBox (NULL, LOCALIZE (L"Error_UnableToAddTextureD3DXCreateTextureFromFileFailed"), LOCALIZE (L"FatalError"), MB_ICONERROR | MB_OK);
 
      terminate_everything = true; // this is a fatal error
 
      return (-1); // bomb out on error
 
   }
 
 
 
   // get info on the newly loaded texture such as size etc.
 
   textures[texture_count].texture->GetLevelDesc (0, &texture_description);
 
   textures[texture_count].width = texture_description.Width; // save texture width (as loaded)
 
   textures[texture_count].height = texture_description.Height; // save texture height (as loaded)
 
   textures[texture_count].hash = hash; // save its hash
 
   texture_count++; // we know now one texture more
 
   return (texture_count - 1); // return its index
 
}
 
 
 
 
 
int Render_LoadFont (const wchar_t *font_name, int font_size, bool is_bold, bool is_italic)
 
{
 
   // this function appends a new font in the global fonts buffer and returns its index
 
 
 
   unsigned long pathname_hash;
 
   int font_index;
 
 
 
   // first, get the hash of the requested pathname (include font size and weight parameters)
 
   pathname_hash = HashString (font_name);
 
   pathname_hash += 3 * (unsigned long) font_size + 2 * (unsigned long) is_bold + (unsigned long) is_italic;
 
 
 
   // now cycle through all our loaded fonts and see if it's already loaded
 
   for (font_index = 0; font_index < font_count; font_index++)
 
      if (fonts[font_index].pathname_hash == pathname_hash)
 
         return (font_index); // if we can find it, return its index so as not to load it twice
 
 
 
   // reallocate space to hold one font more
 
   fonts = (font_t *) SAFE_realloc (fonts, font_count, font_count + 1, sizeof (font_t), false);
 
 
 
   // create a Direct3D font object and record font data
 
   if (FAILED (D3DXCreateFont (d3ddev, font_size, // font height
 
                               0, // font width
 
                               (is_bold ? FW_BOLD : FW_NORMAL), // font weight (bold, etc)
 
                               0, // miplevels
 
                               is_italic, // is italic
 
                               DEFAULT_CHARSET, // charset
 
                               OUT_DEFAULT_PRECIS, // precision
 
                               CLEARTYPE_QUALITY, // font quality (antialiased or not)
 
                               DEFAULT_PITCH | FF_DONTCARE, // font family
 
                               font_name, // font name
 
                               &fonts[font_count].font))) // and a pointer that will receive the font
 
   {
 
      MessageBox (NULL, LOCALIZE (L"Error_UnableToAddFontD3DXCreateFontFailed"), LOCALIZE (L"FatalError"), MB_ICONERROR | MB_OK);
 
      terminate_everything = true; // this is a fatal error
 
      return (-1); // bomb out on error
 
   }
 
 
 
   fonts[font_count].pathname_hash = pathname_hash; // save its hash
 
   font_count++; // we know now one font more
 
   return (font_count - 1); // return its index
 
}
 
 
 
 
 
int Render_LoadSprite (const wchar_t *fmt, ...)
 
{
 
   // this function appends a new sprite in the global sprites buffer and returns its index
 
 
 
   wchar_t spritefile_pathname[MAX_PATH];
 
   unsigned long hash;
 
   int sprite_index;
 
   va_list argptr;
 
 
 
   // concatenate all the arguments in one string
 
   va_start (argptr, fmt);
 
   wvsprintf (spritefile_pathname, fmt, argptr);
 
   va_end (argptr);
 
 
 
   // resolve wildcards and get content hash
 
   ResolveWildcard (spritefile_pathname, L".dds|.jpg|.jpeg|.png|.tga|.bmp");
 
   hash = HashFile (spritefile_pathname);
 
 
 
   // now cycle through all our loaded sprites and see if it's already loaded
 
   for (sprite_index = 0; sprite_index < sprite_count; sprite_index++)
 
      if (sprites[sprite_index].hash == hash)
 
         return (sprite_index); // if we can find it, return its index so as not to load it twice
 
 
 
   // reallocate space to hold one sprite more
 
   sprites = (sprite_t *) SAFE_realloc (sprites, sprite_count, sprite_count + 1, sizeof (sprite_t), false);
 
 
 
   // ask Direct3D to prepare texture data
 
   if (FAILED (D3DXCreateSprite (d3ddev, &sprites[sprite_count].sprite)))
 
   {
 
      MessageBox (NULL, LOCALIZE (L"Error_UnableToAddSpriteD3DXCreateSpriteFailed"), LOCALIZE (L"FatalError"), MB_ICONERROR | MB_OK);
 
      terminate_everything = true; // this is a fatal error
 
      return (-1); // bomb out on error
 
   }
 
   sprites[sprite_count].texture_index = Render_LoadTexture (spritefile_pathname); // register and save sprite texture
 
   sprites[sprite_count].hash = hash; // save its hash
 
 
 
   sprite_count++; // we know now one sprite more
 
   return (sprite_count - 1); // return its index
 
}
 
 
 
 
 
int Render_MaterialIndexOf (const wchar_t *material_name)
 
{
 
   // this function returns the index of the material in the global materials array which has the specified name
 
 
 
   int material_index;
 
 
 
   // cycle through all materials and look whether one with the specified name exists
 
   for (material_index = 0; material_index < material_count; material_index++)
 
      if (_wcsicmp (materials[material_index].name, material_name) == 0)
 
         return (material_index); // if we find one, return its index
 
 
 
   return (material_count - 1); // else return the index of the last material in list, which is the default material
 
}
 
 
 
 
 
void Render_MouseToFloor (short mouse_x, short mouse_y, float *floor_x, float *floor_y)
 
{
 
   // this function converts a mouse coordinates into floor coordinates by doing vector
 
   // projection on the floor plane from the eyepoint of the camera
 
 
 
   static D3DXPLANE floor_plane;
 
   static bool is_planefound = false;
 
 
 
   D3DXMATRIX projection_matrix;
 
   D3DXMATRIX view_matrix;
 
   D3DXMATRIX invertedview_matrix;
 
   float mouse_pitch;
 
   float mouse_yaw;
 
   vector_t v_lookat;
 
   vector_t v_intersection;
 
 
 
   // find the floor plane (only do it once)
 
   if (!is_planefound)
 
   {
 
      D3DXPlaneFromPointNormal (&floor_plane, (D3DXVECTOR3 *) &scene_center, (D3DXVECTOR3 *) &upwards_direction);
 
      is_planefound = true; // once and for all, as this plane will never change
 
   }
 
 
 
   // get the current projection and view matrices, and invert the view matrix
 
   d3ddev->GetTransform (D3DTS_PROJECTION, &projection_matrix);
 
   d3ddev->GetTransform (D3DTS_VIEW, &view_matrix);
 
   D3DXMatrixInverse (&invertedview_matrix, NULL, &view_matrix);
 
 
 
   // convert the mouse coordinates to relative pitch and yaw
 
   mouse_pitch =  (((mouse_x * 2.0f) / current_width) - 1) / projection_matrix._11;
 
   mouse_yaw = -(((mouse_y * 2.0f) / current_height) - 1) / projection_matrix._22;
 
 
 
   // now build a matrix that will describe the mouse direction vector, add it to the camera position, and make it 200 times longer
 
   v_lookat.x = camera_position.x + (mouse_pitch * invertedview_matrix._11 + mouse_yaw * invertedview_matrix._21 + invertedview_matrix._31) * 200.0f;
 
   v_lookat.y = camera_position.y + (mouse_pitch * invertedview_matrix._12 + mouse_yaw * invertedview_matrix._22 + invertedview_matrix._32) * 200.0f;
 
   v_lookat.z = camera_position.z + (mouse_pitch * invertedview_matrix._13 + mouse_yaw * invertedview_matrix._23 + invertedview_matrix._33) * 200.0f;
 
 
 
   // and the intersection point with our ray
 
   D3DXPlaneIntersectLine ((D3DXVECTOR3 *) &v_intersection, &floor_plane, (D3DXVECTOR3 *) &camera_position, (D3DXVECTOR3 *) &v_lookat);
 
 
 
   // now fill the return values
 
   *floor_x = v_intersection.x;
 
   *floor_y = v_intersection.y;
 
 
 
   return; // finished
 
}
 
 
 
 
 
bool Render_IsMouseInBox (short mouse_x, short mouse_y, float x_percent, float y_percent, float width_percent, float height_percent)
 
{
 
   // helper function that returns whether the mouse coordinates are inside a given square
 
 
 
   float mousex_percent;
 
   float mousey_percent;
 
 
 
   // compute mouse coordinates in percents
 
   mousex_percent = (float) (mouse_x * 100) / current_width;
 
   mousey_percent = (float) (mouse_y * 100) / current_height;
 
 
 
   return ((mousex_percent >= x_percent) && (mousex_percent <= x_percent + width_percent)
 
           && (mousey_percent >= y_percent) && (mousey_percent <= y_percent + height_percent));
 
}
 
 
 
 
 
static bool Render_LoadMesh_Obj (mesh_t *mesh, const wchar_t *objfile_pathname)
 
{
 
   // this function loads a mesh from a Wavefront Object file (.obj)
 
 
 
   #define OBJ_INCREASE_OR_RESIZE(count,maxcount,increment,arrayptr,type,erase) { \
 
      (count)++; \
 
      if ((count) == (maxcount)) \
 
      { \
 
         (arrayptr) = (type *) SAFE_realloc ((arrayptr), (maxcount), (maxcount) + (increment), sizeof (type), erase); \
 
         (maxcount) += (increment); \
 
      } \
 
   }
 
   #define OBJ_CONVERT_INDEX(element,current_element_count) if ((element) < 0) (element) = (current_element_count) + (element); else (element)--;
 
   #define OBJ_GET_EXISTING_INDEX_OR_APPEND_VERTEX(uniquevertex) \
 
   { \
 
      hash = &hashtable[*((unsigned long *) &obj.vs[(uniquevertex).iv].x) & 0xFF]; \
 
      for (vertex_index = 0; vertex_index < hash->count; vertex_index++) \
 
         if ((memcmp (&vertices[hash->indices[vertex_index]].position, &obj.vs[(uniquevertex).iv], sizeof (vector_t)) == 0) \
 
             && (memcmp (&vertices[hash->indices[vertex_index]].normal, &obj.ns[(uniquevertex).in], sizeof (vector_t)) == 0) \
 
             && (memcmp (&vertices[hash->indices[vertex_index]].texcoord, &obj.tcs[(uniquevertex).itc], sizeof (texcoord_t)) == 0)) \
 
            break; \
 
      if (vertex_index == hash->count) \
 
      { \
 
         vertex_index = mesh->vertice_count; \
 
         current_vertex = &vertices[vertex_index]; \
 
         memset (current_vertex, 0, sizeof (vertex_t)); \
 
         memcpy (¤t_vertex->position, &obj.vs[(uniquevertex).iv], sizeof (vector_t)); \
 
         if ((uniquevertex).in > -1) \
 
            memcpy (¤t_vertex->normal, &obj.ns[(uniquevertex).in], sizeof (vector_t)); \
 
         if ((uniquevertex).itc > -1) \
 
            memcpy (¤t_vertex->texcoord, &obj.tcs[(uniquevertex).itc], sizeof (texcoord_t)); \
 
         hash = &hashtable[*((unsigned long *) ¤t_vertex->normal.x) & 0xFF]; \
 
         hash->indices = (long *) SAFE_realloc (hash->indices, hash->count, hash->count + 1, sizeof (long), false); \
 
         hash->indices[hash->count] = vertex_index; \
 
         hash->count++; \
 
         mesh->vertice_count++; \
 
      } \
 
      else \
 
         vertex_index = hash->indices[vertex_index]; \
 
   }
 
 
 
   typedef struct obj_uniquevertex_s { long iv, in, itc; } obj_uniquevertex_t;
 
   typedef struct obj_face_s { obj_uniquevertex_t v1, v2, v3; } obj_face_t;
 
   typedef struct obj_hashbucket_s { int count; long *indices; /* mallocated */ } obj_hashbucket_t;
 
   typedef struct objfile_s
 
   {
 
      vector_t *vs; long v_count; long v_maxcount; // array mallocated to v_maxcount
 
      vector_t *ns; long n_count; long n_maxcount; // array mallocated to n_maxcount
 
      texcoord_t *tcs; long tc_count; long tc_maxcount; // array mallocated to tc_maxcount
 
      obj_face_t *fs; long f_count; long f_maxcount; // array mallocated to f_maxcount
 
   } objfile_t;
 
 
 
   static obj_hashbucket_t hashtable[256];
 
   objfile_t obj;
 
   obj_hashbucket_t *hash;
 
   obj_face_t *f;
 
   vertex_t *vertices; // mallocated
 
   unsigned long *indices; // mallocated
 
   vertex_t *current_vertex;
 
   struct _stat fileinfo;
 
   char *filedata; // mallocated
 
   char *fileptr;
 
   int vertex_index;
 
   int array_index;
 
   void *ptr_to;
 
   FILE *fp;
 
 
 
   // open the mesh file and read it as a whole
 
   _wstat (objfile_pathname, &fileinfo);
 
   _wfopen_s (&fp, objfile_pathname, L"rb");
 
   if (fp == NULL)
 
      return (false); // bomb out on error
 
   filedata = (char *) SAFE_malloc (fileinfo.st_size, sizeof (char), false); // mallocate space for data
 
   fread (filedata, fileinfo.st_size, 1, fp); // read file as a whole
 
   fclose (fp); // file is read, close it
 
 
 
   // allocate space for an arbitrary amount of vertices, texture coordinates, normals and faces
 
   memset (&obj, 0, sizeof (obj));
 
   obj.v_maxcount = 10000; obj.vs = (vector_t *) SAFE_malloc (obj.v_maxcount, sizeof (vector_t), false);
 
   obj.n_maxcount = 10000; obj.ns = (vector_t *) SAFE_malloc (obj.n_maxcount, sizeof (vector_t), false);
 
   obj.tc_maxcount = 10000; obj.tcs = (texcoord_t *) SAFE_malloc (obj.tc_maxcount, sizeof (texcoord_t), false);
 
   obj.f_maxcount = 5000; obj.fs = (obj_face_t *) SAFE_malloc (obj.f_maxcount, sizeof (obj_face_t), true); // zero out the faces array (IMPORTANT !)
 
 
 
   // read file line per line...
 
   fileptr = filedata - 1; // start parsing line after line
 
   while (fileptr != NULL)
 
   {
 
      fileptr++; // skip the line feed (or reach the first character, if it's the first pass)
 
 
 
      // is it a vertex-related line ?
 
      if (fileptr[0] == L'v')
 
      {
 
         // is it a vertex, a normal or a texture coordinate ?
 
         if ((fileptr[1] == L' ') && (sscanf_s (&fileptr[2], "%f %f %f", &obj.vs[obj.v_count].x, &obj.vs[obj.v_count].y, &obj.vs[obj.v_count].z) == 3))
 
            OBJ_INCREASE_OR_RESIZE (obj.v_count, obj.v_maxcount, 10000, obj.vs, vector_t, false) // one vertex more has been read
 
         else if ((fileptr[1] == L'n') && (sscanf_s (&fileptr[3], "%f %f %f", &obj.ns[obj.n_count].x, &obj.ns[obj.n_count].y, &obj.ns[obj.n_count].z) == 3))
 
            OBJ_INCREASE_OR_RESIZE (obj.n_count, obj.n_maxcount, 10000, obj.ns, vector_t, false) // one normal more has been read
 
         else if ((fileptr[1] == L't') && (sscanf_s (&fileptr[3], "%f %f", &obj.tcs[obj.tc_count].u, &obj.tcs[obj.tc_count].v) == 2))
 
            OBJ_INCREASE_OR_RESIZE (obj.tc_count, obj.tc_maxcount, 10000, obj.tcs, texcoord_t, false) // one texture coordinate more has been read
 
      }
 
 
 
      // else is it a face-related line ?
 
      else if (fileptr[0] == L'f')
 
      {
 
         // get a quick pointer to current face (note: it's been already blanked out by malloc())
 
         f = &obj.fs[obj.f_count];
 
 
 
         // is it a face with normals, a face without normals or a face without normals and texture coordinates ?
 
         if ((sscanf_s (&fileptr[2], "%d/%d/%d %d/%d/%d %d/%d/%d", &f->v1.iv, &f->v1.itc, &f->v1.in, &f->v2.iv, &f->v2.itc, &f->v2.in, &f->v3.iv, &f->v3.itc, &f->v3.in) == 9)
 
             || (sscanf_s (&fileptr[2], "%d/%d %d/%d %d/%d", &f->v3.iv, &f->v3.itc, &f->v2.iv, &f->v2.itc, &f->v3.iv, &f->v3.itc) == 6)
 
             || (sscanf_s (&fileptr[2], "%d %d %d", &f->v3.iv, &f->v2.iv, &f->v3.iv) == 6))
 
         {
 
            OBJ_CONVERT_INDEX (f->v1.iv, obj.v_count);
 
            OBJ_CONVERT_INDEX (f->v1.in, obj.n_count); // if no normal could be read, its index will be converted from 0 to -1
 
            OBJ_CONVERT_INDEX (f->v1.itc, obj.tc_count); // if no texcoord could be read, its index will be converted from 0 to -1
 
            OBJ_CONVERT_INDEX (f->v2.iv, obj.v_count);
 
            OBJ_CONVERT_INDEX (f->v2.in, obj.n_count); // if no normal could be read, its index will be converted from 0 to -1
 
            OBJ_CONVERT_INDEX (f->v2.itc, obj.tc_count); // if no texcoord could be read, its index will be converted from 0 to -1
 
            OBJ_CONVERT_INDEX (f->v3.iv, obj.v_count);
 
            OBJ_CONVERT_INDEX (f->v3.in, obj.n_count); // if no normal could be read, its index will be converted from 0 to -1
 
            OBJ_CONVERT_INDEX (f->v3.itc, obj.tc_count); // if no texcoord could be read, its index will be converted from 0 to -1
 
            OBJ_INCREASE_OR_RESIZE (obj.f_count, obj.f_maxcount, 5000, obj.fs, obj_face_t, true) // one face more has been read
 
         }
 
      }
 
 
 
      fileptr = strchr (fileptr, '\n'); // proceed to next line
 
   }
 
 
 
   // now build our final vertex and index list
 
   vertices = (vertex_t *) SAFE_malloc (3 * obj.f_count, sizeof (vertex_t), false); // mallocate for the max number of vertices we can have
 
   indices = (unsigned long *) SAFE_malloc (3 * obj.f_count, sizeof (unsigned long), false); // mallocate for the right amount of indices
 
 
 
   // t3h mighty l00p ^^ (builds vertex and index buffers)
 
   memset (hashtable, 0, sizeof (hashtable)); // wipe out the hashtable
 
   mesh->vertice_count = 0; // start with an unoptimized list
 
   for (array_index = 0; array_index < obj.f_count; array_index++)
 
   {
 
      f = &obj.fs[array_index]; // quick access to current face
 
      OBJ_GET_EXISTING_INDEX_OR_APPEND_VERTEX (f->v1);
 
      indices[3 * array_index + 0] = vertex_index;
 
      OBJ_GET_EXISTING_INDEX_OR_APPEND_VERTEX (f->v2);
 
      indices[3 * array_index + 1] = vertex_index;
 
      OBJ_GET_EXISTING_INDEX_OR_APPEND_VERTEX (f->v3);
 
      indices[3 * array_index + 2] = vertex_index;
 
   }
 
 
 
   // now create a correctly-sized DirectX vertex buffer and populate it
 
   mesh->vertex_format = D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_TEX1;
 
   mesh->vertice_size = sizeof (vertex_t);
 
   d3ddev->CreateVertexBuffer (mesh->vertice_count * mesh->vertice_size, // length
 
                               D3DUSAGE_DYNAMIC, // usage
 
                               mesh->vertex_format, // vertex format
 
                               D3DPOOL_DEFAULT, // pool type
 
                               &mesh->d3dvertices, // pointer to the vertex buffer pointer
 
                               NULL); // shared handle
 
   mesh->d3dvertices->Lock (0, mesh->vertice_count * mesh->vertice_size, &ptr_to, D3DLOCK_DISCARD);
 
   memcpy (ptr_to, vertices, mesh->vertice_count * mesh->vertice_size);
 
   mesh->d3dvertices->Unlock ();
 
 
 
   // create a correctly-sized DirectX index buffer and populate it
 
   mesh->is_indexed = true; // remember that we're building an index buffer
 
   mesh->indice_count = obj.f_count * 3;
 
   mesh->indice_size = (mesh->indice_count <= (int) USHRT_MAX ? 2 : 4);
 
   d3ddev->CreateIndexBuffer (mesh->indice_count * mesh->indice_size, // length
 
                              D3DUSAGE_DYNAMIC, // usage
 
                              (mesh->indice_size == 2 ? D3DFMT_INDEX16 : D3DFMT_INDEX32), // format (here, 16 or 32-bit)
 
                              D3DPOOL_DEFAULT, // pool type
 
                              &mesh->d3dindices, // pointer to the index buffer pointer
 
                              NULL); // shared handle
 
   mesh->d3dindices->Lock (0, mesh->indice_count * mesh->indice_size, &ptr_to, D3DLOCK_DISCARD);
 
   if (mesh->indice_size == 2)
 
      for (array_index = 0; array_index < mesh->indice_count; array_index++)
 
         ((unsigned short *) ptr_to)[array_index] = (unsigned short) indices[array_index];
 
   else
 
      memcpy (ptr_to, indices, mesh->indice_count * mesh->indice_size);
 
   mesh->d3dindices->Unlock ();
 
 
 
   // finished, free the temporary objects
 
   for (array_index = 0; array_index < sizeof (hashtable) / sizeof (obj_hashbucket_t); array_index++)
 
      SAFE_free ((void **) &hashtable[array_index].indices);
 
   SAFE_free ((void **) &indices);
 
   SAFE_free ((void **) &vertices);
 
   SAFE_free ((void **) &obj.vs);
 
   SAFE_free ((void **) &obj.ns);
 
   SAFE_free ((void **) &obj.tcs);
 
   SAFE_free ((void **) &obj.fs);
 
   SAFE_free ((void **) &filedata);
 
 
 
   return (true); // Wavefront Object successfully loaded, return TRUE
 
 
 
   #undef OBJ_GET_EXISTING_INDEX_OR_APPEND_VERTEX
 
   #undef OBJ_CONVERT_INDEX
 
   #undef OBJ_INCREASE_OR_RESIZE
 
}
 
 
 
 
 
static void Render_DrawSceneObjectReflection (sceneobject_t *sceneobject)
 
{
 
   // fast helper to draw a mesh at a specified location with certain pitch and yaw angles
 
 
 
   D3DXMATRIX rotation_matrix;
 
   D3DXMATRIX translation_matrix;
 
   D3DXMATRIX reflect_matrix;
 
   D3DXMATRIX scaling_matrix;
 
   material_t *material;
 
   D3DMATERIAL9 d3dmaterial;
 
   D3DXPLANE plane;
 
   mesh_t *mesh;
 
   mesh_t *tile_mesh;
 
   float alpha;
 
 
 
   // draw the reflection below this mesh
 
 
 
   // quick access to meshes
 
   mesh = &meshes[sceneobject->mesh_index];
 
   tile_mesh = &meshes[theme->tile_meshindex];
 
 
 
   // set the world transform at location
 
   D3DXPlaneFromPointNormal (&plane, (D3DXVECTOR3 *) &scene_center, (D3DXVECTOR3 *) &upwards_direction);
 
   D3DXMatrixReflect (&reflect_matrix, &plane);
 
   D3DXMatrixRotationYawPitchRoll (&rotation_matrix, -sceneobject->pitch * TO_RADIANS, 0.0f, -sceneobject->yaw * TO_RADIANS);
 
   D3DXMatrixTranslation (&translation_matrix, sceneobject->x, sceneobject->y, -sceneobject->z);
 
   D3DXMatrixScaling (&scaling_matrix, sceneobject->scale, sceneobject->scale, 1.0f);
 
 
 
   // tell Direct3D about our matrix
 
   d3ddev->SetTransform (D3DTS_WORLD, &(reflect_matrix * scaling_matrix * rotation_matrix * translation_matrix));
 
 
 
   d3ddev->SetRenderState (D3DRS_STENCILENABLE, true); // enable the stencil buffer
 
   d3ddev->SetRenderState (D3DRS_STENCILFUNC, D3DCMP_LESS); // instruct how to fill the stencil buffer
 
   d3ddev->SetRenderState (D3DRS_STENCILPASS, D3DSTENCILOP_KEEP); // instruct how to fill the stencil buffer
 
 
 
   // set the texture for this mesh
 
   if (sceneobject->texture_index != -1)
 
      d3ddev->SetTexture (0, textures[sceneobject->texture_index].texture);
 
   else
 
      d3ddev->SetTexture (0, NULL);
 
 
 
   // adjust the light reflection properties by setting the material
 
   if (sceneobject->material_index != -1)
 
      material = &materials[sceneobject->material_index]; // use the specified scene object material
 
   else
 
      material = &materials[material_count - 1]; // scene object material unspecified, use default material
 
   alpha = theme->reflection_alpha / 256.0f;
 
   d3dmaterial.Ambient = D3DXCOLOR (material->ambient, material->ambient, material->ambient, material->transparency * alpha); // Alpha value not used according to SDK
 
   d3dmaterial.Diffuse = D3DXCOLOR (material->diffuse, material->diffuse, material->diffuse, material->transparency * alpha);
 
   d3dmaterial.Emissive = D3DXCOLOR (material->emissive, material->emissive, material->emissive, material->transparency * alpha); // Alpha value not used according to SDK
 
   d3dmaterial.Specular = D3DXCOLOR (material->specular, material->specular, material->specular, material->transparency * alpha); // Alpha value not used according to SDK
 
   d3dmaterial.Power = material->shininess;
 
   d3ddev->SetMaterial (&d3dmaterial);
 
 
 
   // draw the mesh subset
 
   d3ddev->SetStreamSource (0, mesh->d3dvertices, 0, sizeof (vertex_t));
 
   d3ddev->SetFVF (mesh->vertex_format);
 
   d3ddev->SetRenderState (D3DRS_CULLMODE, D3DCULL_CW); // draw the faces backwards
 
   if (mesh->is_indexed)
 
   {
 
      d3ddev->SetIndices (mesh->d3dindices);
 
      d3ddev->DrawIndexedPrimitive (D3DPT_TRIANGLELIST, 0, 0, mesh->vertice_count, 0, mesh->indice_count / 3);
 
   }
 
   else
 
      d3ddev->DrawPrimitive (D3DPT_TRIANGLELIST, 0, mesh->vertice_count / 3);
 
 
 
   d3ddev->SetRenderState (D3DRS_STENCILENABLE, false); // and disable the stencil buffer
 
 
 
   // now draw the simple shadow below this mesh
 
 
 
   // grab the tools we need in hand
 
   d3ddev->SetRenderState (D3DRS_ZENABLE, false); // disable the Z buffer
 
   d3ddev->SetRenderState (D3DRS_AMBIENT, D3DCOLOR_XRGB (255, 255, 255)); // raise ambient light
 
 
 
   // position the simple shadow sprite
 
   D3DXMatrixScaling (&scaling_matrix, max (sceneobject->simpleshadow_size, sceneobject->z / 5.0f), max (sceneobject->simpleshadow_size, sceneobject->z / 5.0f), 0.0f);
 
   D3DXMatrixTranslation (&translation_matrix, sceneobject->x, sceneobject->y, 0.0f);
 
   d3ddev->SetTransform (D3DTS_WORLD, &(scaling_matrix * translation_matrix));
 
 
 
   // adjust the light reflection properties by setting the material
 
   material = &materials[material_count - 1]; // use the default material
 
   d3dmaterial.Ambient = D3DXCOLOR (material->ambient, material->ambient, material->ambient, material->transparency);
 
   d3dmaterial.Diffuse = D3DXCOLOR (material->diffuse, material->diffuse, material->diffuse, material->transparency);
 
   d3dmaterial.Emissive = D3DXCOLOR (material->emissive, material->emissive, material->emissive, material->transparency);
 
   d3dmaterial.Specular = D3DXCOLOR (material->specular, material->specular, material->specular, material->transparency);
 
   d3dmaterial.Power = material->shininess;
 
   d3ddev->SetMaterial (&d3dmaterial);
 
 
 
   d3ddev->SetTexture (0, textures[theme->shadow_textureindex].texture); // select the texture we want
 
 
 
   // and then draw it
 
   d3ddev->SetStreamSource (0, tile_mesh->d3dvertices, 0, sizeof (vertex_t)); // set stream source
 
   d3ddev->SetFVF (tile_mesh->vertex_format); // select which vertex format we are using
 
   d3ddev->SetRenderState (D3DRS_CULLMODE, D3DCULL_CW); // draw the faces backwards
 
   if (tile_mesh->is_indexed)
 
   {
 
      d3ddev->SetIndices (tile_mesh->d3dindices);
 
      d3ddev->DrawIndexedPrimitive (D3DPT_TRIANGLELIST, 0, 0, tile_mesh->vertice_count, 0, tile_mesh->indice_count / 3);
 
   }
 
   else
 
      d3ddev->DrawPrimitive (D3DPT_TRIANGLELIST, 0, tile_mesh->vertice_count / 3);
 
 
 
   // finished, reset ambient light to its previous value and enable the Z buffer back
 
   d3ddev->SetRenderState (D3DRS_AMBIENT, ambient_light);
 
   d3ddev->SetRenderState (D3DRS_ZENABLE, true);
 
 
 
   return; // finished
 
}
 
 
 
 
 
static void Render_DrawSceneObject (sceneobject_t *sceneobject)
 
{
 
   // fast helper to draw a mesh at a specified location with certain pitch and yaw angles
 
 
 
   D3DXMATRIX rotation_matrix;
 
   D3DXMATRIX translation_matrix;
 
   D3DXMATRIX scaling_matrix;
 
   material_t *material;
 
   D3DMATERIAL9 d3dmaterial;
 
   mesh_t *mesh;
 
 
 
   // is this object a tile (i.e, it has no mesh) ?
 
   if (sceneobject->mesh_index == -1)
 
   {
 
      Render_DrawSceneTile (sceneobject); // then draw it as a tile instead
 
      return; // and return
 
   }
 
 
 
   // quick access to mesh
 
   mesh = &meshes[sceneobject->mesh_index];
 
 
 
   // set the world transform at location
 
   D3DXMatrixRotationYawPitchRoll (&rotation_matrix, sceneobject->pitch * TO_RADIANS, 0.0f, sceneobject->yaw * TO_RADIANS);
 
   D3DXMatrixTranslation (&translation_matrix, sceneobject->x, sceneobject->y, sceneobject->z);
 
   D3DXMatrixScaling (&scaling_matrix, sceneobject->scale, sceneobject->scale, 1.0f);
 
 
 
   // tell Direct3D about our matrix
 
   d3ddev->SetTransform (D3DTS_WORLD, &(scaling_matrix * rotation_matrix * translation_matrix));
 
 
 
   // set the texture for this mesh
 
   if (sceneobject->texture_index != -1)
 
      d3ddev->SetTexture (0, textures[sceneobject->texture_index].texture);
 
   else
 
      d3ddev->SetTexture (0, NULL);
 
 
 
   // adjust the light reflection properties by setting the material
 
   if (sceneobject->material_index != -1)
 
      material = &materials[sceneobject->material_index];
 
   else
 
      material = &materials[material_count - 1];
 
   d3dmaterial.Ambient = D3DXCOLOR (material->ambient, material->ambient, material->ambient, material->transparency);
 
   d3dmaterial.Diffuse = D3DXCOLOR (material->diffuse, material->diffuse, material->diffuse, material->transparency);
 
   d3dmaterial.Emissive = D3DXCOLOR (material->emissive, material->emissive, material->emissive, material->transparency);
 
   d3dmaterial.Specular = D3DXCOLOR (material->specular, material->specular, material->specular, material->transparency);
 
   d3dmaterial.Power = material->shininess;
 
   d3ddev->SetMaterial (&d3dmaterial);
 
 
 
   // draw the mesh subset
 
   d3ddev->SetStreamSource (0, mesh->d3dvertices, 0, sizeof (vertex_t));
 
   d3ddev->SetFVF (mesh->vertex_format);
 
 
 
   // is there transparency on this mesh ?
 
   if (material->transparency < 1)
 
   {
 
      d3ddev->SetRenderState (D3DRS_CULLMODE, D3DCULL_CW); // draw the back faces
 
      if (mesh->is_indexed)
 
      {
 
         d3ddev->SetIndices (mesh->d3dindices);
 
         d3ddev->DrawIndexedPrimitive (D3DPT_TRIANGLELIST, 0, 0, mesh->vertice_count, 0, mesh->indice_count / 3);
 
      }
 
      else
 
         d3ddev->DrawPrimitive (D3DPT_TRIANGLELIST, 0, mesh->vertice_count / 3);
 
   }
 
 
 
   // now draw the front faces
 
   d3ddev->SetRenderState (D3DRS_CULLMODE, D3DCULL_CCW); // draw the front faces
 
   if (mesh->is_indexed)
 
   {
 
      d3ddev->SetIndices (mesh->d3dindices);
 
      d3ddev->DrawIndexedPrimitive (D3DPT_TRIANGLELIST, 0, 0, mesh->vertice_count, 0, mesh->indice_count / 3);
 
   }
 
   else
 
      d3ddev->DrawPrimitive (D3DPT_TRIANGLELIST, 0, mesh->vertice_count / 3);
 
 
 
   return; // finished
 
}
 
 
 
 
 
static void Render_DrawSceneTile (sceneobject_t *sceneobject)
 
{
 
   // fast helper to draw a tile (i.e, an object that doesn't have a mesh) at a specified location
 
 
 
   D3DXMATRIX rotation_matrix;
 
   D3DXMATRIX translation_matrix;
 
   D3DXMATRIX scaling_matrix;
 
   material_t *material;
 
   D3DMATERIAL9 d3dmaterial;
 
   mesh_t *tile_mesh;
 
 
 
   tile_mesh = &meshes[theme->tile_meshindex]; // quick access to tile mesh
 
 
 
   // grab the tools we need in hand
 
   d3ddev->SetRenderState (D3DRS_AMBIENT, D3DCOLOR_RGBA (0xFF, 0xFF, 0xFF, 0xFF)); // raise light
 
 
 
   // set the world transform at location
 
   D3DXMatrixRotationYawPitchRoll (&rotation_matrix, sceneobject->pitch * TO_RADIANS, 0.0f, sceneobject->yaw * TO_RADIANS);
 
   D3DXMatrixTranslation (&translation_matrix, sceneobject->x, sceneobject->y, sceneobject->z);
 
   D3DXMatrixScaling (&scaling_matrix, sceneobject->scale, sceneobject->scale, 1.0f);
 
 
 
   // tell Direct3D about our matrix
 
   d3ddev->SetTransform (D3DTS_WORLD, &(scaling_matrix * rotation_matrix * translation_matrix));
 
 
 
   // adjust the light reflection properties by setting the material
 
   material = &materials[material_count - 1]; // use the default material for tiles
 
   d3dmaterial.Ambient = D3DXCOLOR (material->ambient, material->ambient, material->ambient, material->ambient);
 
   d3dmaterial.Diffuse = D3DXCOLOR (material->diffuse, material->diffuse, material->diffuse, material->diffuse);
 
   d3dmaterial.Emissive = D3DXCOLOR (material->emissive, material->emissive, material->emissive, material->emissive);
 
   d3dmaterial.Specular = D3DXCOLOR (material->specular, material->specular, material->specular, material->specular);
 
   d3dmaterial.Power = material->shininess;
 
   d3ddev->SetMaterial (&d3dmaterial);
 
 
 
   // select the texture we want
 
   d3ddev->SetTexture (0, textures[sceneobject->texture_index].texture);
 
 
 
   // and then draw it
 
   d3ddev->SetStreamSource (0, tile_mesh->d3dvertices, 0, sizeof (vertex_t)); // set stream source
 
   d3ddev->SetFVF (tile_mesh->vertex_format); // select which vertex format we are using
 
   d3ddev->SetRenderState (D3DRS_CULLMODE, D3DCULL_CW); // draw the back faces
 
   if (tile_mesh->is_indexed)
 
   {
 
      d3ddev->SetIndices (tile_mesh->d3dindices);
 
      d3ddev->DrawIndexedPrimitive (D3DPT_TRIANGLELIST, 0, 0, tile_mesh->vertice_count, 0, tile_mesh->indice_count / 3);
 
   }
 
   else
 
      d3ddev->DrawPrimitive (D3DPT_TRIANGLELIST, 0, tile_mesh->vertice_count / 3);
 
 
 
   // finished, reset ambient light to its previous value
 
   d3ddev->SetRenderState (D3DRS_AMBIENT, ambient_light);
 
 
 
   return; // finished
 
}
 
 
 
 
 
static void Render_DrawSprite (sprite_t *sprite, float x_percent, float y_percent, float width_percent, float height_percent, int alpha)
 
{
 
   // fast helper to draw a sprite at a specified location with certain parameters
 
 
 
   D3DXMATRIX scaling_matrix;
 
   texture_t *texture;
 
   float scale_x;
 
   float scale_y;
 
 
 
   texture = &textures[sprite->texture_index]; // quick access to sprite's texture
 
 
 
   scale_x = (width_percent * (float) initial_width) / (float) (100 * texture->width);
 
   scale_y = (height_percent * (float) initial_height) / (float) (100 * texture->height);
 
 
 
   // start rendering the sprite (an optimized version would draw all sprites in a row...)
 
   sprite->sprite->Begin (D3DXSPRITE_ALPHABLEND);
 
 
 
   // scale and position the sprite
 
   D3DXMatrixTransformation2D (&scaling_matrix, // output matrix
 
                               NULL, // scaling center
 
                               0.0f, // scaling rotation
 
                               &D3DXVECTOR2 (scale_x, scale_y), // scaling ratio
 
                               &D3DXVECTOR2 (0, 0), // rotation center
 
                               0.0f, // rotation
 
                               &D3DXVECTOR2 (x_percent * (float) initial_width / 100.0f, y_percent * (float) initial_height / 100.0f)); // translation
 
   sprite->sprite->SetTransform (&scaling_matrix); // tell the sprite about the scaling and position transform
 
 
 
   // now draw the sprite with the specified alpha and finish rendering
 
   sprite->sprite->Draw (texture->texture, NULL, NULL, NULL, D3DCOLOR_ARGB (alpha, 255, 255, 255));
 
   sprite->sprite->End ();
 
 
 
   return; // finished
 
}
 
 
 
 
 
static void Render_GetTextBoundaries (int max_width, int font_id, wchar_t *text, RECT *rect)
 
{
 
   // this function computes and returns the size of the rectangle the specified text will fit into. Note that text may be modified
 
   // to insert new lines if it doesn't fit in a single line.
 
 
 
   int char_index;
 
   int length;
 
   int optimal_length;
 
   bool have_split;
 
 
 
   // blank out the output rectangle
 
   memset (rect, 0, sizeof (RECT));
 
 
 
   // ask direct3D to compute the text size a first time
 
   fonts[font_id].font->DrawText (NULL, text, -1, rect, DT_CALCRECT, D3DCOLOR (0));
 
 
 
   // if max width is not set, set it to viewport width
 
   if (max_width < 0)
 
      max_width = initial_width; // then use it to compute the real max width
 
 
 
   // do we need more than one line ?
 
   if (rect->right > max_width)
 
   {
 
      // see how many lines we need and compute the optimal length of one line
 
      length = wcslen (text);
 
      optimal_length = length / (1 + rect->right / (int) max_width);
 
      have_split = false;
 
      for (char_index = optimal_length; char_index < length; char_index++)
 
         if (iswspace (text[char_index]))
 
         {
 
            text[char_index] = L'\n'; // interpolate linefeeds into string
 
            have_split = true; // remember string has been split
 
            char_index += optimal_length;
 
         }
 
 
 
      // and ask direct3D to compute the text size again
 
      fonts[font_id].font->DrawText (NULL, text, -1, rect, DT_CALCRECT, D3DCOLOR (0));
 
   }
 
 
 
   return; // finished
 
}
 
 
 
 
 
static void Render_wprintf (int x, int y, int max_width, int horiz_align, int vert_align, int text_align, int font_id, unsigned long color_rgba, RECT *out_rect, const wchar_t *fmt, ...)
 
{
 
   // this function displays text on the Direct3D interface according to the given parameters. X and Y are the base coordinates of
 
   // the text's bounding rectangle. Max_width is the maximum allowed width of this rectangle before wrapping words on a new line.
 
   // Horiz_align and vert_align are the alignment parameters of the RECTANGLE relatively to X and Y. Text_align is the alignment of
 
   // the TEXT inside this rectangle (meaning, you can have right-aligned text in a rectangle that is centered on a point). Font_id
 
   // and color.alphargb define the font and color of the text. Out_rect, if filled, will point to a RECT structure describing the text's
 
   // bounding rectangle, after any word wrapping corrections have been made. Fmt is a format string containing the text itself,
 
   // printf-style.
 
 
 
   va_list argptr;
 
   RECT rect;
 
   int left;
 
   int top;
 
 
 
   // concatenate all the arguments in one string
 
   va_start (argptr, fmt);
 
   wvsprintf (printf_buffer, fmt, argptr);
 
   va_end (argptr);
 
 
 
   // get the text boundaries
 
   Render_GetTextBoundaries (max_width, font_id, printf_buffer, &rect);
 
 
 
   // horizontal alignment
 
   if (horiz_align == ALIGN_LEFT)
 
      left = x;
 
   else if (horiz_align == ALIGN_RIGHT)
 
      left = x - rect.right;
 
   else
 
      left = x - rect.right / 2;
 
 
 
   // vertical alignment
 
   if (vert_align == ALIGN_TOP)
 
      top = y;
 
   else if (vert_align == ALIGN_BOTTOM)
 
      top = y - rect.bottom;
 
   else
 
      top = y - rect.bottom / 2;
 
 
 
   // now reposition our rectangle correctly acording to alignment
 
   OffsetRect (&rect, left, top);
 
 
 
   // and draw the text
 
   if (text_align == ALIGN_LEFT)
 
      fonts[font_id].font->DrawText (NULL, printf_buffer, -1, &rect, DT_LEFT, RGBACOLOR_TO_ARGBCOLOR (color_rgba));
 
   else if (horiz_align == ALIGN_RIGHT)
 
      fonts[font_id].font->DrawText (NULL, printf_buffer, -1, &rect, DT_RIGHT, RGBACOLOR_TO_ARGBCOLOR (color_rgba));
 
   else
 
      fonts[font_id].font->DrawText (NULL, printf_buffer, -1, &rect, DT_CENTER, RGBACOLOR_TO_ARGBCOLOR (color_rgba));
 
 
 
   // do we want the output rectangle ?
 
   if (out_rect != NULL)
 
      memcpy (out_rect, &rect, sizeof (rect)); // if so, copy it in the given variable
 
 
 
   return; // finished
 
}
 
 
 
 
 
static float DistanceToCamera (float x, float y, float z)
 
{
 
   // this function computes the distance of the point at coordinates x,y,z to the camera
 
 
 
   vector_t displacement;
 
 
 
   // compute displacement...
 
   displacement.x = x - camera_position.x;
 
   displacement.y = y - camera_position.y;
 
   displacement.z = z - camera_position.z;
 
 
 
   // ...and then Pythagores in 3D
 
   return (sqrtf (displacement.x * displacement.x + displacement.y * displacement.y + displacement.z * displacement.z));
 
}
 
 
 
 
 
static float FadeFloat (float from, float to, float start_time, float end_time)
 
{
 
   // helper function to return a progressive variation between from and to based on time
 
 
 
   if (end_time < current_time)
 
      return (to);
 
 
 
   //      base + (variation) * (               fraction of completion               )
 
   return (from + (to - from) * (current_time - start_time) / (end_time - start_time));
 
}
 
 
 
 
 
static unsigned long HashString (const wchar_t *string_buffer) 
 
{
 
   // super fast string hash function, code courtesy of
 
   // http://www.azillionmonkeys.com/qed/hash.html
 
 
 
   unsigned long length;
 
   unsigned long hash;
 
   unsigned long tmp;
 
   int remaining;
 
 
 
   // first, get the string length and start with this as a hash value
 
   length = wcslen (string_buffer) * sizeof (wchar_t);
 
   hash = length;
 
 
 
   // figure out how many bytes there will remain after 32-bit processing
 
   remaining = length & 3;
 
   length >>= 2;
 
 
 
   // main loop, process 32-bit blocks
 
   for ( ; length > 0; length--)
 
   {
 
      hash += *((const unsigned short *) string_buffer);
 
      tmp = ((*((const unsigned short *) (string_buffer + 2))) << 11) ^ hash;
 
      hash = (hash << 16) ^ tmp;
 
      string_buffer += 2 * sizeof (unsigned short);
 
      hash += hash >> 11;
 
   }
 
 
 
   // handle the remaining bytes
 
   if (remaining == 3)
 
   {
 
      hash += *((const unsigned short *) string_buffer);
 
      hash ^= hash << 16;
 
      hash ^= string_buffer[sizeof (unsigned short)] << 18;
 
      hash += hash >> 11;
 
   }
 
   else if (remaining == 2)
 
   {
 
      hash += *((const unsigned short *) string_buffer);
 
      hash ^= hash << 11;
 
      hash += hash >> 17;
 
   }
 
   else if (remaining == 1)
 
   {
 
      hash += *string_buffer;
 
      hash ^= hash << 10;
 
      hash += hash >> 1;
 
   }
 
 
 
   // force "avalanching" of final 127 bits
 
   hash ^= hash << 3;
 
   hash += hash >> 5;
 
   hash ^= hash << 4;
 
   hash += hash >> 17;
 
   hash ^= hash << 25;
 
   hash += hash >> 6;
 
 
 
   return (hash); // finished, return the hash value
 
}
 
 
 
 
 
static unsigned long HashFile (const wchar_t *file_pathname) 
 
{
 
   // super fast file content pseudo-hash function
 
 
 
   unsigned short value;
 
   struct _stat fileinfo;
 
   FILE *fp;
 
 
 
   // first, get info about the file
 
   if (_wstat (file_pathname, &fileinfo) != 0)
 
      return ((unsigned long) time (NULL)); // if file can't be open, return a random number
 
 
 
   // open the file
 
   _wfopen_s (&fp, file_pathname, L"rb");
 
   if (fp == NULL)
 
      return ((unsigned long) time (NULL)); // if file can't be open, return a random number
 
 
 
   // seek at 2/3 of file size (if file is small enough, return only its content)
 
   if (fileinfo.st_size >= 4)
 
   {
 
      fseek (fp, fileinfo.st_size * 2 / 3, SEEK_SET); // seek at 2/3 of file
 
      fread (&value, 2, 1, fp); // and read a word here
 
   }
 
   else if (fileinfo.st_size >= 2)
 
      fread (&value, 2, 1, fp);
 
   else if (fileinfo.st_size == 1)
 
      value = fgetc (fp);
 
   else
 
      value = 0;
 
 
 
   // finished, close the file
 
   fclose (fp);
 
 
 
   // and return a hash composed of the 16 lower bits of the file size and the value we read
 
   return ((unsigned long) (fileinfo.st_size << 16) | (unsigned long) value);
 
}
 
 
 
 
 
static void ResolveWildcard (wchar_t *file_pathname, wchar_t *extensions_separated_by_bars)
 
{
 
   // this function resolves a pathname ending with .* by testing with various possible
 
   // file extensions until one of the files formed that way is found to exist.
 
 
 
   static wchar_t extension_list[256]; // needs to be modifiable for strtok()
 
   wchar_t *current_extension;
 
   wchar_t *wcstok_context;
 
   struct _stat fileinfo;
 
   int length;
 
 
 
   wcscpy_s (extension_list, WCHAR_SIZEOF (extension_list), extensions_separated_by_bars);
 
   length = wcslen (file_pathname); // get pathname length
 
 
 
   // does the pathname we want NOT end with a wildcard ?
 
   if ((length < 2) || (wcscmp (&file_pathname[length - 2], L".*") != 0))
 
      return; // no need to resolve anything
 
 
 
   // test each extension and see if a corresponding file exists
 
   current_extension = wcstok_s (extension_list, L"|", &wcstok_context);
 
   while (current_extension != NULL)
 
   {
 
      if (*current_extension == L'.')
 
         current_extension++; // if current extension starts with a dot, skip it
 
      wcscpy_s (&file_pathname[length - 1], wcslen (current_extension) + 1, current_extension);
 
      if (_wstat (file_pathname, &fileinfo) == 0)
 
         return; // found a file with this extension
 
      current_extension = wcstok_s (NULL, L"|", &wcstok_context);
 
   }
 
 
 
   wcscpy_s (&file_pathname[length - 1], 2, L"*");
 
   return; // if none of these extensions match, put the wildcard back and return
 
}
 
 
 
 
 
static int SortReflectedObjects (const void *object1, const void *object2)
 
{
 
   // callback function used by qsort() when sorting the reflected objects according to their distance to the viewer
 
 
 
   return ((int) (1000.0f * (((reflectedobject_t *) object2)->distance - ((reflectedobject_t *) object1)->distance)));
 
}