//===- polly/ScopInfo.h -----------------------------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// Store the polyhedral model representation of a static control flow region,
 
// also called SCoP (Static Control Part).
 
//
 
// This representation is shared among several tools in the polyhedral
 
// community, which are e.g. CLooG, Pluto, Loopo, Graphite.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef POLLY_SCOPINFO_H
 
#define POLLY_SCOPINFO_H
 
 
 
#include "polly/ScopDetection.h"
 
#include "polly/Support/SCEVAffinator.h"
 
#include "polly/Support/ScopHelper.h"
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/MapVector.h"
 
#include "llvm/ADT/SetVector.h"
 
#include "llvm/Analysis/RegionPass.h"
 
#include "llvm/IR/DebugLoc.h"
 
#include "llvm/IR/Instruction.h"
 
#include "llvm/IR/Instructions.h"
 
#include "llvm/IR/PassManager.h"
 
#include "llvm/IR/ValueHandle.h"
 
#include "llvm/Pass.h"
 
#include "isl/isl-noexceptions.h"
 
#include <cassert>
 
#include <cstddef>
 
#include <forward_list>
 
#include <optional>
 
 
 
namespace polly {
 
using llvm::AnalysisInfoMixin;
 
using llvm::ArrayRef;
 
using llvm::AssertingVH;
 
using llvm::AssumptionCache;
 
using llvm::cast;
 
using llvm::DataLayout;
 
using llvm::DenseMap;
 
using llvm::DenseSet;
 
using llvm::function_ref;
 
using llvm::isa;
 
using llvm::iterator_range;
 
using llvm::LoadInst;
 
using llvm::make_range;
 
using llvm::MapVector;
 
using llvm::MemIntrinsic;
 
using llvm::PassInfoMixin;
 
using llvm::PHINode;
 
using llvm::RegionNode;
 
using llvm::RegionPass;
 
using llvm::RGPassManager;
 
using llvm::SetVector;
 
using llvm::SmallPtrSetImpl;
 
using llvm::SmallVector;
 
using llvm::SmallVectorImpl;
 
using llvm::StringMap;
 
using llvm::Type;
 
using llvm::Use;
 
using llvm::Value;
 
using llvm::ValueToValueMap;
 
 
 
class MemoryAccess;
 
 
 
//===---------------------------------------------------------------------===//
 
 
 
extern bool UseInstructionNames;
 
 
 
// The maximal number of basic sets we allow during domain construction to
 
// be created. More complex scops will result in very high compile time and
 
// are also unlikely to result in good code.
 
extern unsigned const MaxDisjunctsInDomain;
 
 
 
/// The different memory kinds used in Polly.
 
///
 
/// We distinguish between arrays and various scalar memory objects. We use
 
/// the term ``array'' to describe memory objects that consist of a set of
 
/// individual data elements arranged in a multi-dimensional grid. A scalar
 
/// memory object describes an individual data element and is used to model
 
/// the definition and uses of llvm::Values.
 
///
 
/// The polyhedral model does traditionally not reason about SSA values. To
 
/// reason about llvm::Values we model them "as if" they were zero-dimensional
 
/// memory objects, even though they were not actually allocated in (main)
 
/// memory.  Memory for such objects is only alloca[ed] at CodeGeneration
 
/// time. To relate the memory slots used during code generation with the
 
/// llvm::Values they belong to the new names for these corresponding stack
 
/// slots are derived by appending suffixes (currently ".s2a" and ".phiops")
 
/// to the name of the original llvm::Value. To describe how def/uses are
 
/// modeled exactly we use these suffixes here as well.
 
///
 
/// There are currently four different kinds of memory objects:
 
enum class MemoryKind {
 
  /// MemoryKind::Array: Models a one or multi-dimensional array
 
  ///
 
  /// A memory object that can be described by a multi-dimensional array.
 
  /// Memory objects of this type are used to model actual multi-dimensional
 
  /// arrays as they exist in LLVM-IR, but they are also used to describe
 
  /// other objects:
 
  ///   - A single data element allocated on the stack using 'alloca' is
 
  ///     modeled as a one-dimensional, single-element array.
 
  ///   - A single data element allocated as a global variable is modeled as
 
  ///     one-dimensional, single-element array.
 
  ///   - Certain multi-dimensional arrays with variable size, which in
 
  ///     LLVM-IR are commonly expressed as a single-dimensional access with a
 
  ///     complicated access function, are modeled as multi-dimensional
 
  ///     memory objects (grep for "delinearization").
 
  Array,
 
 
 
  /// MemoryKind::Value: Models an llvm::Value
 
  ///
 
  /// Memory objects of type MemoryKind::Value are used to model the data flow
 
  /// induced by llvm::Values. For each llvm::Value that is used across
 
  /// BasicBlocks, one ScopArrayInfo object is created. A single memory WRITE
 
  /// stores the llvm::Value at its definition into the memory object and at
 
  /// each use of the llvm::Value (ignoring trivial intra-block uses) a
 
  /// corresponding READ is added. For instance, the use/def chain of a
 
  /// llvm::Value %V depicted below
 
  ///              ______________________
 
  ///              |DefBB:              |
 
  ///              |  %V = float op ... |
 
  ///              ----------------------
 
  ///               |                  |
 
  /// _________________               _________________
 
  /// |UseBB1:        |               |UseBB2:        |
 
  /// |  use float %V |               |  use float %V |
 
  /// -----------------               -----------------
 
  ///
 
  /// is modeled as if the following memory accesses occurred:
 
  ///
 
  ///                        __________________________
 
  ///                        |entry:                  |
 
  ///                        |  %V.s2a = alloca float |
 
  ///                        --------------------------
 
  ///                                     |
 
  ///                    ___________________________________
 
  ///                    |DefBB:                           |
 
  ///                    |  store %float %V, float* %V.s2a |
 
  ///                    -----------------------------------
 
  ///                           |                   |
 
  /// ____________________________________ ___________________________________
 
  /// |UseBB1:                           | |UseBB2:                          |
 
  /// |  %V.reload1 = load float* %V.s2a | |  %V.reload2 = load float* %V.s2a|
 
  /// |  use float %V.reload1            | |  use float %V.reload2           |
 
  /// ------------------------------------ -----------------------------------
 
  ///
 
  Value,
 
 
 
  /// MemoryKind::PHI: Models PHI nodes within the SCoP
 
  ///
 
  /// Besides the MemoryKind::Value memory object used to model the normal
 
  /// llvm::Value dependences described above, PHI nodes require an additional
 
  /// memory object of type MemoryKind::PHI to describe the forwarding of values
 
  /// to
 
  /// the PHI node.
 
  ///
 
  /// As an example, a PHIInst instructions
 
  ///
 
  /// %PHI = phi float [ %Val1, %IncomingBlock1 ], [ %Val2, %IncomingBlock2 ]
 
  ///
 
  /// is modeled as if the accesses occurred this way:
 
  ///
 
  ///                    _______________________________
 
  ///                    |entry:                       |
 
  ///                    |  %PHI.phiops = alloca float |
 
  ///                    -------------------------------
 
  ///                           |              |
 
  /// __________________________________  __________________________________
 
  /// |IncomingBlock1:                 |  |IncomingBlock2:                 |
 
  /// |  ...                           |  |  ...                           |
 
  /// |  store float %Val1 %PHI.phiops |  |  store float %Val2 %PHI.phiops |
 
  /// |  br label % JoinBlock          |  |  br label %JoinBlock           |
 
  /// ----------------------------------  ----------------------------------
 
  ///                             \            /
 
  ///                              \          /
 
  ///               _________________________________________
 
  ///               |JoinBlock:                             |
 
  ///               |  %PHI = load float, float* PHI.phiops |
 
  ///               -----------------------------------------
 
  ///
 
  /// Note that there can also be a scalar write access for %PHI if used in a
 
  /// different BasicBlock, i.e. there can be a memory object %PHI.phiops as
 
  /// well as a memory object %PHI.s2a.
 
  PHI,
 
 
 
  /// MemoryKind::ExitPHI: Models PHI nodes in the SCoP's exit block
 
  ///
 
  /// For PHI nodes in the Scop's exit block a special memory object kind is
 
  /// used. The modeling used is identical to MemoryKind::PHI, with the
 
  /// exception
 
  /// that there are no READs from these memory objects. The PHINode's
 
  /// llvm::Value is treated as a value escaping the SCoP. WRITE accesses
 
  /// write directly to the escaping value's ".s2a" alloca.
 
  ExitPHI
 
};
 
 
 
/// Maps from a loop to the affine function expressing its backedge taken count.
 
/// The backedge taken count already enough to express iteration domain as we
 
/// only allow loops with canonical induction variable.
 
/// A canonical induction variable is:
 
/// an integer recurrence that starts at 0 and increments by one each time
 
/// through the loop.
 
using LoopBoundMapType = std::map<const Loop *, const SCEV *>;
 
 
 
using AccFuncVector = std::vector<std::unique_ptr<MemoryAccess>>;
 
 
 
/// A class to store information about arrays in the SCoP.
 
///
 
/// Objects are accessible via the ScoP, MemoryAccess or the id associated with
 
/// the MemoryAccess access function.
 
///
 
class ScopArrayInfo final {
 
public:
 
  /// Construct a ScopArrayInfo object.
 
  ///
 
  /// @param BasePtr        The array base pointer.
 
  /// @param ElementType    The type of the elements stored in the array.
 
  /// @param IslCtx         The isl context used to create the base pointer id.
 
  /// @param DimensionSizes A vector containing the size of each dimension.
 
  /// @param Kind           The kind of the array object.
 
  /// @param DL             The data layout of the module.
 
  /// @param S              The scop this array object belongs to.
 
  /// @param BaseName       The optional name of this memory reference.
 
  ScopArrayInfo(Value *BasePtr, Type *ElementType, isl::ctx IslCtx,
 
                ArrayRef<const SCEV *> DimensionSizes, MemoryKind Kind,
 
                const DataLayout &DL, Scop *S, const char *BaseName = nullptr);
 
 
 
  /// Destructor to free the isl id of the base pointer.
 
  ~ScopArrayInfo();
 
 
 
  ///  Update the element type of the ScopArrayInfo object.
 
  ///
 
  ///  Memory accesses referencing this ScopArrayInfo object may use
 
  ///  different element sizes. This function ensures the canonical element type
 
  ///  stored is small enough to model accesses to the current element type as
 
  ///  well as to @p NewElementType.
 
  ///
 
  ///  @param NewElementType An element type that is used to access this array.
 
  void updateElementType(Type *NewElementType);
 
 
 
  ///  Update the sizes of the ScopArrayInfo object.
 
  ///
 
  ///  A ScopArrayInfo object may be created without all outer dimensions being
 
  ///  available. This function is called when new memory accesses are added for
 
  ///  this ScopArrayInfo object. It verifies that sizes are compatible and adds
 
  ///  additional outer array dimensions, if needed.
 
  ///
 
  ///  @param Sizes       A vector of array sizes where the rightmost array
 
  ///                     sizes need to match the innermost array sizes already
 
  ///                     defined in SAI.
 
  ///  @param CheckConsistency Update sizes, even if new sizes are inconsistent
 
  ///                          with old sizes
 
  bool updateSizes(ArrayRef<const SCEV *> Sizes, bool CheckConsistency = true);
 
 
 
  /// Set the base pointer to @p BP.
 
  void setBasePtr(Value *BP) { BasePtr = BP; }
 
 
 
  /// Return the base pointer.
 
  Value *getBasePtr() const { return BasePtr; }
 
 
 
  // Set IsOnHeap to the value in parameter.
 
  void setIsOnHeap(bool value) { IsOnHeap = value; }
 
 
 
  /// For indirect accesses return the origin SAI of the BP, else null.
 
  const ScopArrayInfo *getBasePtrOriginSAI() const { return BasePtrOriginSAI; }
 
 
 
  /// The set of derived indirect SAIs for this origin SAI.
 
  const SmallSetVector<ScopArrayInfo *, 2> &getDerivedSAIs() const {
 
    return DerivedSAIs;
 
  }
 
 
 
  /// Return the number of dimensions.
 
  unsigned getNumberOfDimensions() const {
 
    if (Kind == MemoryKind::PHI || Kind == MemoryKind::ExitPHI ||
 
        Kind == MemoryKind::Value)
 
      return 0;
 
    return DimensionSizes.size();
 
  }
 
 
 
  /// Return the size of dimension @p dim as SCEV*.
 
  //
 
  //  Scalars do not have array dimensions and the first dimension of
 
  //  a (possibly multi-dimensional) array also does not carry any size
 
  //  information, in case the array is not newly created.
 
  const SCEV *getDimensionSize(unsigned Dim) const {
 
    assert(Dim < getNumberOfDimensions() && "Invalid dimension");
 
    return DimensionSizes[Dim];
 
  }
 
 
 
  /// Return the size of dimension @p dim as isl::pw_aff.
 
  //
 
  //  Scalars do not have array dimensions and the first dimension of
 
  //  a (possibly multi-dimensional) array also does not carry any size
 
  //  information, in case the array is not newly created.
 
  isl::pw_aff getDimensionSizePw(unsigned Dim) const {
 
    assert(Dim < getNumberOfDimensions() && "Invalid dimension");
 
    return DimensionSizesPw[Dim];
 
  }
 
 
 
  /// Get the canonical element type of this array.
 
  ///
 
  /// @returns The canonical element type of this array.
 
  Type *getElementType() const { return ElementType; }
 
 
 
  /// Get element size in bytes.
 
  int getElemSizeInBytes() const;
 
 
 
  /// Get the name of this memory reference.
 
  std::string getName() const;
 
 
 
  /// Return the isl id for the base pointer.
 
  isl::id getBasePtrId() const;
 
 
 
  /// Return what kind of memory this represents.
 
  MemoryKind getKind() const { return Kind; }
 
 
 
  /// Is this array info modeling an llvm::Value?
 
  bool isValueKind() const { return Kind == MemoryKind::Value; }
 
 
 
  /// Is this array info modeling special PHI node memory?
 
  ///
 
  /// During code generation of PHI nodes, there is a need for two kinds of
 
  /// virtual storage. The normal one as it is used for all scalar dependences,
 
  /// where the result of the PHI node is stored and later loaded from as well
 
  /// as a second one where the incoming values of the PHI nodes are stored
 
  /// into and reloaded when the PHI is executed. As both memories use the
 
  /// original PHI node as virtual base pointer, we have this additional
 
  /// attribute to distinguish the PHI node specific array modeling from the
 
  /// normal scalar array modeling.
 
  bool isPHIKind() const { return Kind == MemoryKind::PHI; }
 
 
 
  /// Is this array info modeling an MemoryKind::ExitPHI?
 
  bool isExitPHIKind() const { return Kind == MemoryKind::ExitPHI; }
 
 
 
  /// Is this array info modeling an array?
 
  bool isArrayKind() const { return Kind == MemoryKind::Array; }
 
 
 
  /// Is this array allocated on heap
 
  ///
 
  /// This property is only relevant if the array is allocated by Polly instead
 
  /// of pre-existing. If false, it is allocated using alloca instead malloca.
 
  bool isOnHeap() const { return IsOnHeap; }
 
 
 
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 
  /// Dump a readable representation to stderr.
 
  void dump() const;
 
#endif
 
 
 
  /// Print a readable representation to @p OS.
 
  ///
 
  /// @param SizeAsPwAff Print the size as isl::pw_aff
 
  void print(raw_ostream &OS, bool SizeAsPwAff = false) const;
 
 
 
  /// Access the ScopArrayInfo associated with an access function.
 
  static const ScopArrayInfo *getFromAccessFunction(isl::pw_multi_aff PMA);
 
 
 
  /// Access the ScopArrayInfo associated with an isl Id.
 
  static const ScopArrayInfo *getFromId(isl::id Id);
 
 
 
  /// Get the space of this array access.
 
  isl::space getSpace() const;
 
 
 
  /// If the array is read only
 
  bool isReadOnly();
 
 
 
  /// Verify that @p Array is compatible to this ScopArrayInfo.
 
  ///
 
  /// Two arrays are compatible if their dimensionality, the sizes of their
 
  /// dimensions, and their element sizes match.
 
  ///
 
  /// @param Array The array to compare against.
 
  ///
 
  /// @returns True, if the arrays are compatible, False otherwise.
 
  bool isCompatibleWith(const ScopArrayInfo *Array) const;
 
 
 
private:
 
  void addDerivedSAI(ScopArrayInfo *DerivedSAI) {
 
    DerivedSAIs.insert(DerivedSAI);
 
  }
 
 
 
  /// For indirect accesses this is the SAI of the BP origin.
 
  const ScopArrayInfo *BasePtrOriginSAI;
 
 
 
  /// For origin SAIs the set of derived indirect SAIs.
 
  SmallSetVector<ScopArrayInfo *, 2> DerivedSAIs;
 
 
 
  /// The base pointer.
 
  AssertingVH<Value> BasePtr;
 
 
 
  /// The canonical element type of this array.
 
  ///
 
  /// The canonical element type describes the minimal accessible element in
 
  /// this array. Not all elements accessed, need to be of the very same type,
 
  /// but the allocation size of the type of the elements loaded/stored from/to
 
  /// this array needs to be a multiple of the allocation size of the canonical
 
  /// type.
 
  Type *ElementType;
 
 
 
  /// The isl id for the base pointer.
 
  isl::id Id;
 
 
 
  /// True if the newly allocated array is on heap.
 
  bool IsOnHeap = false;
 
 
 
  /// The sizes of each dimension as SCEV*.
 
  SmallVector<const SCEV *, 4> DimensionSizes;
 
 
 
  /// The sizes of each dimension as isl::pw_aff.
 
  SmallVector<isl::pw_aff, 4> DimensionSizesPw;
 
 
 
  /// The type of this scop array info object.
 
  ///
 
  /// We distinguish between SCALAR, PHI and ARRAY objects.
 
  MemoryKind Kind;
 
 
 
  /// The data layout of the module.
 
  const DataLayout &DL;
 
 
 
  /// The scop this SAI object belongs to.
 
  Scop &S;
 
};
 
 
 
/// Represent memory accesses in statements.
 
class MemoryAccess final {
 
  friend class Scop;
 
  friend class ScopStmt;
 
  friend class ScopBuilder;
 
 
 
public:
 
  /// The access type of a memory access
 
  ///
 
  /// There are three kind of access types:
 
  ///
 
  /// * A read access
 
  ///
 
  /// A certain set of memory locations are read and may be used for internal
 
  /// calculations.
 
  ///
 
  /// * A must-write access
 
  ///
 
  /// A certain set of memory locations is definitely written. The old value is
 
  /// replaced by a newly calculated value. The old value is not read or used at
 
  /// all.
 
  ///
 
  /// * A may-write access
 
  ///
 
  /// A certain set of memory locations may be written. The memory location may
 
  /// contain a new value if there is actually a write or the old value may
 
  /// remain, if no write happens.
 
  enum AccessType {
 
    READ = 0x1,
 
    MUST_WRITE = 0x2,
 
    MAY_WRITE = 0x3,
 
  };
 
 
 
  /// Reduction access type
 
  ///
 
  /// Commutative and associative binary operations suitable for reductions
 
  enum ReductionType {
 
    RT_NONE, ///< Indicate no reduction at all
 
    RT_ADD,  ///< Addition
 
    RT_MUL,  ///< Multiplication
 
    RT_BOR,  ///< Bitwise Or
 
    RT_BXOR, ///< Bitwise XOr
 
    RT_BAND, ///< Bitwise And
 
  };
 
 
 
  using SubscriptsTy = SmallVector<const SCEV *, 4>;
 
 
 
private:
 
  /// A unique identifier for this memory access.
 
  ///
 
  /// The identifier is unique between all memory accesses belonging to the same
 
  /// scop statement.
 
  isl::id Id;
 
 
 
  /// What is modeled by this MemoryAccess.
 
  /// @see MemoryKind
 
  MemoryKind Kind;
 
 
 
  /// Whether it a reading or writing access, and if writing, whether it
 
  /// is conditional (MAY_WRITE).
 
  enum AccessType AccType;
 
 
 
  /// Reduction type for reduction like accesses, RT_NONE otherwise
 
  ///
 
  /// An access is reduction like if it is part of a load-store chain in which
 
  /// both access the same memory location (use the same LLVM-IR value
 
  /// as pointer reference). Furthermore, between the load and the store there
 
  /// is exactly one binary operator which is known to be associative and
 
  /// commutative.
 
  ///
 
  /// TODO:
 
  ///
 
  /// We can later lift the constraint that the same LLVM-IR value defines the
 
  /// memory location to handle scops such as the following:
 
  ///
 
  ///    for i
 
  ///      for j
 
  ///        sum[i+j] = sum[i] + 3;
 
  ///
 
  /// Here not all iterations access the same memory location, but iterations
 
  /// for which j = 0 holds do. After lifting the equality check in ScopBuilder,
 
  /// subsequent transformations do not only need check if a statement is
 
  /// reduction like, but they also need to verify that that the reduction
 
  /// property is only exploited for statement instances that load from and
 
  /// store to the same data location. Doing so at dependence analysis time
 
  /// could allow us to handle the above example.
 
  ReductionType RedType = RT_NONE;
 
 
 
  /// Parent ScopStmt of this access.
 
  ScopStmt *Statement;
 
 
 
  /// The domain under which this access is not modeled precisely.
 
  ///
 
  /// The invalid domain for an access describes all parameter combinations
 
  /// under which the statement looks to be executed but is in fact not because
 
  /// some assumption/restriction makes the access invalid.
 
  isl::set InvalidDomain;
 
 
 
  // Properties describing the accessed array.
 
  // TODO: It might be possible to move them to ScopArrayInfo.
 
  // @{
 
 
 
  /// The base address (e.g., A for A[i+j]).
 
  ///
 
  /// The #BaseAddr of a memory access of kind MemoryKind::Array is the base
 
  /// pointer of the memory access.
 
  /// The #BaseAddr of a memory access of kind MemoryKind::PHI or
 
  /// MemoryKind::ExitPHI is the PHI node itself.
 
  /// The #BaseAddr of a memory access of kind MemoryKind::Value is the
 
  /// instruction defining the value.
 
  AssertingVH<Value> BaseAddr;
 
 
 
  /// Type a single array element wrt. this access.
 
  Type *ElementType;
 
 
 
  /// Size of each dimension of the accessed array.
 
  SmallVector<const SCEV *, 4> Sizes;
 
  // @}
 
 
 
  // Properties describing the accessed element.
 
  // @{
 
 
 
  /// The access instruction of this memory access.
 
  ///
 
  /// For memory accesses of kind MemoryKind::Array the access instruction is
 
  /// the Load or Store instruction performing the access.
 
  ///
 
  /// For memory accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI the
 
  /// access instruction of a load access is the PHI instruction. The access
 
  /// instruction of a PHI-store is the incoming's block's terminator
 
  /// instruction.
 
  ///
 
  /// For memory accesses of kind MemoryKind::Value the access instruction of a
 
  /// load access is nullptr because generally there can be multiple
 
  /// instructions in the statement using the same llvm::Value. The access
 
  /// instruction of a write access is the instruction that defines the
 
  /// llvm::Value.
 
  Instruction *AccessInstruction = nullptr;
 
 
 
  /// Incoming block and value of a PHINode.
 
  SmallVector<std::pair<BasicBlock *, Value *>, 4> Incoming;
 
 
 
  /// The value associated with this memory access.
 
  ///
 
  ///  - For array memory accesses (MemoryKind::Array) it is the loaded result
 
  ///    or the stored value. If the access instruction is a memory intrinsic it
 
  ///    the access value is also the memory intrinsic.
 
  ///  - For accesses of kind MemoryKind::Value it is the access instruction
 
  ///    itself.
 
  ///  - For accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI it is the
 
  ///    PHI node itself (for both, READ and WRITE accesses).
 
  ///
 
  AssertingVH<Value> AccessValue;
 
 
 
  /// Are all the subscripts affine expression?
 
  bool IsAffine = true;
 
 
 
  /// Subscript expression for each dimension.
 
  SubscriptsTy Subscripts;
 
 
 
  /// Relation from statement instances to the accessed array elements.
 
  ///
 
  /// In the common case this relation is a function that maps a set of loop
 
  /// indices to the memory address from which a value is loaded/stored:
 
  ///
 
  ///      for i
 
  ///        for j
 
  ///    S:     A[i + 3 j] = ...
 
  ///
 
  ///    => { S[i,j] -> A[i + 3j] }
 
  ///
 
  /// In case the exact access function is not known, the access relation may
 
  /// also be a one to all mapping { S[i,j] -> A[o] } describing that any
 
  /// element accessible through A might be accessed.
 
  ///
 
  /// In case of an access to a larger element belonging to an array that also
 
  /// contains smaller elements, the access relation models the larger access
 
  /// with multiple smaller accesses of the size of the minimal array element
 
  /// type:
 
  ///
 
  ///      short *A;
 
  ///
 
  ///      for i
 
  ///    S:     A[i] = *((double*)&A[4 * i]);
 
  ///
 
  ///    => { S[i] -> A[i]; S[i] -> A[o] : 4i <= o <= 4i + 3 }
 
  isl::map AccessRelation;
 
 
 
  /// Updated access relation read from JSCOP file.
 
  isl::map NewAccessRelation;
 
  // @}
 
 
 
  isl::basic_map createBasicAccessMap(ScopStmt *Statement);
 
 
 
  isl::set assumeNoOutOfBound();
 
 
 
  /// Compute bounds on an over approximated  access relation.
 
  ///
 
  /// @param ElementSize The size of one element accessed.
 
  void computeBoundsOnAccessRelation(unsigned ElementSize);
 
 
 
  /// Get the original access function as read from IR.
 
  isl::map getOriginalAccessRelation() const;
 
 
 
  /// Return the space in which the access relation lives in.
 
  isl::space getOriginalAccessRelationSpace() const;
 
 
 
  /// Get the new access function imported or set by a pass
 
  isl::map getNewAccessRelation() const;
 
 
 
  /// Fold the memory access to consider parametric offsets
 
  ///
 
  /// To recover memory accesses with array size parameters in the subscript
 
  /// expression we post-process the delinearization results.
 
  ///
 
  /// We would normally recover from an access A[exp0(i) * N + exp1(i)] into an
 
  /// array A[][N] the 2D access A[exp0(i)][exp1(i)]. However, another valid
 
  /// delinearization is A[exp0(i) - 1][exp1(i) + N] which - depending on the
 
  /// range of exp1(i) - may be preferable. Specifically, for cases where we
 
  /// know exp1(i) is negative, we want to choose the latter expression.
 
  ///
 
  /// As we commonly do not have any information about the range of exp1(i),
 
  /// we do not choose one of the two options, but instead create a piecewise
 
  /// access function that adds the (-1, N) offsets as soon as exp1(i) becomes
 
  /// negative. For a 2D array such an access function is created by applying
 
  /// the piecewise map:
 
  ///
 
  /// [i,j] -> [i, j] :      j >= 0
 
  /// [i,j] -> [i-1, j+N] :  j <  0
 
  ///
 
  /// We can generalize this mapping to arbitrary dimensions by applying this
 
  /// piecewise mapping pairwise from the rightmost to the leftmost access
 
  /// dimension. It would also be possible to cover a wider range by introducing
 
  /// more cases and adding multiple of Ns to these cases. However, this has
 
  /// not yet been necessary.
 
  /// The introduction of different cases necessarily complicates the memory
 
  /// access function, but cases that can be statically proven to not happen
 
  /// will be eliminated later on.
 
  void foldAccessRelation();
 
 
 
  /// Create the access relation for the underlying memory intrinsic.
 
  void buildMemIntrinsicAccessRelation();
 
 
 
  /// Assemble the access relation from all available information.
 
  ///
 
  /// In particular, used the information passes in the constructor and the
 
  /// parent ScopStmt set by setStatment().
 
  ///
 
  /// @param SAI Info object for the accessed array.
 
  void buildAccessRelation(const ScopArrayInfo *SAI);
 
 
 
  /// Carry index overflows of dimensions with constant size to the next higher
 
  /// dimension.
 
  ///
 
  /// For dimensions that have constant size, modulo the index by the size and
 
  /// add up the carry (floored division) to the next higher dimension. This is
 
  /// how overflow is defined in row-major order.
 
  /// It happens e.g. when ScalarEvolution computes the offset to the base
 
  /// pointer and would algebraically sum up all lower dimensions' indices of
 
  /// constant size.
 
  ///
 
  /// Example:
 
  ///   float (*A)[4];
 
  ///   A[1][6] -> A[2][2]
 
  void wrapConstantDimensions();
 
 
 
public:
 
  /// Create a new MemoryAccess.
 
  ///
 
  /// @param Stmt       The parent statement.
 
  /// @param AccessInst The instruction doing the access.
 
  /// @param BaseAddr   The accessed array's address.
 
  /// @param ElemType   The type of the accessed array elements.
 
  /// @param AccType    Whether read or write access.
 
  /// @param IsAffine   Whether the subscripts are affine expressions.
 
  /// @param Kind       The kind of memory accessed.
 
  /// @param Subscripts Subscript expressions
 
  /// @param Sizes      Dimension lengths of the accessed array.
 
  MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst, AccessType AccType,
 
               Value *BaseAddress, Type *ElemType, bool Affine,
 
               ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes,
 
               Value *AccessValue, MemoryKind Kind);
 
 
 
  /// Create a new MemoryAccess that corresponds to @p AccRel.
 
  ///
 
  /// Along with @p Stmt and @p AccType it uses information about dimension
 
  /// lengths of the accessed array, the type of the accessed array elements,
 
  /// the name of the accessed array that is derived from the object accessible
 
  /// via @p AccRel.
 
  ///
 
  /// @param Stmt       The parent statement.
 
  /// @param AccType    Whether read or write access.
 
  /// @param AccRel     The access relation that describes the memory access.
 
  MemoryAccess(ScopStmt *Stmt, AccessType AccType, isl::map AccRel);
 
 
 
  MemoryAccess(const MemoryAccess &) = delete;
 
  MemoryAccess &operator=(const MemoryAccess &) = delete;
 
  ~MemoryAccess();
 
 
 
  /// Add a new incoming block/value pairs for this PHI/ExitPHI access.
 
  ///
 
  /// @param IncomingBlock The PHI's incoming block.
 
  /// @param IncomingValue The value when reaching the PHI from the @p
 
  ///                      IncomingBlock.
 
  void addIncoming(BasicBlock *IncomingBlock, Value *IncomingValue) {
 
    assert(!isRead());
 
    assert(isAnyPHIKind());
 
    Incoming.emplace_back(std::make_pair(IncomingBlock, IncomingValue));
 
  }
 
 
 
  /// Return the list of possible PHI/ExitPHI values.
 
  ///
 
  /// After code generation moves some PHIs around during region simplification,
 
  /// we cannot reliably locate the original PHI node and its incoming values
 
  /// anymore. For this reason we remember these explicitly for all PHI-kind
 
  /// accesses.
 
  ArrayRef<std::pair<BasicBlock *, Value *>> getIncoming() const {
 
    assert(isAnyPHIKind());
 
    return Incoming;
 
  }
 
 
 
  /// Get the type of a memory access.
 
  enum AccessType getType() { return AccType; }
 
 
 
  /// Is this a reduction like access?
 
  bool isReductionLike() const { return RedType != RT_NONE; }
 
 
 
  /// Is this a read memory access?
 
  bool isRead() const { return AccType == MemoryAccess::READ; }
 
 
 
  /// Is this a must-write memory access?
 
  bool isMustWrite() const { return AccType == MemoryAccess::MUST_WRITE; }
 
 
 
  /// Is this a may-write memory access?
 
  bool isMayWrite() const { return AccType == MemoryAccess::MAY_WRITE; }
 
 
 
  /// Is this a write memory access?
 
  bool isWrite() const { return isMustWrite() || isMayWrite(); }
 
 
 
  /// Is this a memory intrinsic access (memcpy, memset, memmove)?
 
  bool isMemoryIntrinsic() const {
 
    return isa<MemIntrinsic>(getAccessInstruction());
 
  }
 
 
 
  /// Check if a new access relation was imported or set by a pass.
 
  bool hasNewAccessRelation() const { return !NewAccessRelation.is_null(); }
 
 
 
  /// Return the newest access relation of this access.
 
  ///
 
  /// There are two possibilities:
 
  ///   1) The original access relation read from the LLVM-IR.
 
  ///   2) A new access relation imported from a json file or set by another
 
  ///      pass (e.g., for privatization).
 
  ///
 
  /// As 2) is by construction "newer" than 1) we return the new access
 
  /// relation if present.
 
  ///
 
  isl::map getLatestAccessRelation() const {
 
    return hasNewAccessRelation() ? getNewAccessRelation()
 
                                  : getOriginalAccessRelation();
 
  }
 
 
 
  /// Old name of getLatestAccessRelation().
 
  isl::map getAccessRelation() const { return getLatestAccessRelation(); }
 
 
 
  /// Get an isl map describing the memory address accessed.
 
  ///
 
  /// In most cases the memory address accessed is well described by the access
 
  /// relation obtained with getAccessRelation. However, in case of arrays
 
  /// accessed with types of different size the access relation maps one access
 
  /// to multiple smaller address locations. This method returns an isl map that
 
  /// relates each dynamic statement instance to the unique memory location
 
  /// that is loaded from / stored to.
 
  ///
 
  /// For an access relation { S[i] -> A[o] : 4i <= o <= 4i + 3 } this method
 
  /// will return the address function { S[i] -> A[4i] }.
 
  ///
 
  /// @returns The address function for this memory access.
 
  isl::map getAddressFunction() const;
 
 
 
  /// Return the access relation after the schedule was applied.
 
  isl::pw_multi_aff
 
  applyScheduleToAccessRelation(isl::union_map Schedule) const;
 
 
 
  /// Get an isl string representing the access function read from IR.
 
  std::string getOriginalAccessRelationStr() const;
 
 
 
  /// Get an isl string representing a new access function, if available.
 
  std::string getNewAccessRelationStr() const;
 
 
 
  /// Get an isl string representing the latest access relation.
 
  std::string getAccessRelationStr() const;
 
 
 
  /// Get the original base address of this access (e.g. A for A[i+j]) when
 
  /// detected.
 
  ///
 
  /// This address may differ from the base address referenced by the original
 
  /// ScopArrayInfo to which this array belongs, as this memory access may
 
  /// have been canonicalized to a ScopArrayInfo which has a different but
 
  /// identically-valued base pointer in case invariant load hoisting is
 
  /// enabled.
 
  Value *getOriginalBaseAddr() const { return BaseAddr; }
 
 
 
  /// Get the detection-time base array isl::id for this access.
 
  isl::id getOriginalArrayId() const;
 
 
 
  /// Get the base array isl::id for this access, modifiable through
 
  /// setNewAccessRelation().
 
  isl::id getLatestArrayId() const;
 
 
 
  /// Old name of getOriginalArrayId().
 
  isl::id getArrayId() const { return getOriginalArrayId(); }
 
 
 
  /// Get the detection-time ScopArrayInfo object for the base address.
 
  const ScopArrayInfo *getOriginalScopArrayInfo() const;
 
 
 
  /// Get the ScopArrayInfo object for the base address, or the one set
 
  /// by setNewAccessRelation().
 
  const ScopArrayInfo *getLatestScopArrayInfo() const;
 
 
 
  /// Legacy name of getOriginalScopArrayInfo().
 
  const ScopArrayInfo *getScopArrayInfo() const {
 
    return getOriginalScopArrayInfo();
 
  }
 
 
 
  /// Return a string representation of the access's reduction type.
 
  const std::string getReductionOperatorStr() const;
 
 
 
  /// Return a string representation of the reduction type @p RT.
 
  static const std::string getReductionOperatorStr(ReductionType RT);
 
 
 
  /// Return the element type of the accessed array wrt. this access.
 
  Type *getElementType() const { return ElementType; }
 
 
 
  /// Return the access value of this memory access.
 
  Value *getAccessValue() const { return AccessValue; }
 
 
 
  /// Return llvm::Value that is stored by this access, if available.
 
  ///
 
  /// PHI nodes may not have a unique value available that is stored, as in
 
  /// case of region statements one out of possibly several llvm::Values
 
  /// might be stored. In this case nullptr is returned.
 
  Value *tryGetValueStored() {
 
    assert(isWrite() && "Only write statement store values");
 
    if (isAnyPHIKind()) {
 
      if (Incoming.size() == 1)
 
        return Incoming[0].second;
 
      return nullptr;
 
    }
 
    return AccessValue;
 
  }
 
 
 
  /// Return the access instruction of this memory access.
 
  Instruction *getAccessInstruction() const { return AccessInstruction; }
 
 
 
  ///  Return an iterator range containing the subscripts.
 
  iterator_range<SubscriptsTy::const_iterator> subscripts() const {
 
    return make_range(Subscripts.begin(), Subscripts.end());
 
  }
 
 
 
  /// Return the number of access function subscript.
 
  unsigned getNumSubscripts() const { return Subscripts.size(); }
 
 
 
  /// Return the access function subscript in the dimension @p Dim.
 
  const SCEV *getSubscript(unsigned Dim) const { return Subscripts[Dim]; }
 
 
 
  /// Compute the isl representation for the SCEV @p E wrt. this access.
 
  ///
 
  /// Note that this function will also adjust the invalid context accordingly.
 
  isl::pw_aff getPwAff(const SCEV *E);
 
 
 
  /// Get the invalid domain for this access.
 
  isl::set getInvalidDomain() const { return InvalidDomain; }
 
 
 
  /// Get the invalid context for this access.
 
  isl::set getInvalidContext() const { return getInvalidDomain().params(); }
 
 
 
  /// Get the stride of this memory access in the specified Schedule. Schedule
 
  /// is a map from the statement to a schedule where the innermost dimension is
 
  /// the dimension of the innermost loop containing the statement.
 
  isl::set getStride(isl::map Schedule) const;
 
 
 
  /// Is the stride of the access equal to a certain width? Schedule is a map
 
  /// from the statement to a schedule where the innermost dimension is the
 
  /// dimension of the innermost loop containing the statement.
 
  bool isStrideX(isl::map Schedule, int StrideWidth) const;
 
 
 
  /// Is consecutive memory accessed for a given statement instance set?
 
  /// Schedule is a map from the statement to a schedule where the innermost
 
  /// dimension is the dimension of the innermost loop containing the
 
  /// statement.
 
  bool isStrideOne(isl::map Schedule) const;
 
 
 
  /// Is always the same memory accessed for a given statement instance set?
 
  /// Schedule is a map from the statement to a schedule where the innermost
 
  /// dimension is the dimension of the innermost loop containing the
 
  /// statement.
 
  bool isStrideZero(isl::map Schedule) const;
 
 
 
  /// Return the kind when this access was first detected.
 
  MemoryKind getOriginalKind() const {
 
    assert(!getOriginalScopArrayInfo() /* not yet initialized */ ||
 
           getOriginalScopArrayInfo()->getKind() == Kind);
 
    return Kind;
 
  }
 
 
 
  /// Return the kind considering a potential setNewAccessRelation.
 
  MemoryKind getLatestKind() const {
 
    return getLatestScopArrayInfo()->getKind();
 
  }
 
 
 
  /// Whether this is an access of an explicit load or store in the IR.
 
  bool isOriginalArrayKind() const {
 
    return getOriginalKind() == MemoryKind::Array;
 
  }
 
 
 
  /// Whether storage memory is either an custom .s2a/.phiops alloca
 
  /// (false) or an existing pointer into an array (true).
 
  bool isLatestArrayKind() const {
 
    return getLatestKind() == MemoryKind::Array;
 
  }
 
 
 
  /// Old name of isOriginalArrayKind.
 
  bool isArrayKind() const { return isOriginalArrayKind(); }
 
 
 
  /// Whether this access is an array to a scalar memory object, without
 
  /// considering changes by setNewAccessRelation.
 
  ///
 
  /// Scalar accesses are accesses to MemoryKind::Value, MemoryKind::PHI or
 
  /// MemoryKind::ExitPHI.
 
  bool isOriginalScalarKind() const {
 
    return getOriginalKind() != MemoryKind::Array;
 
  }
 
 
 
  /// Whether this access is an array to a scalar memory object, also
 
  /// considering changes by setNewAccessRelation.
 
  bool isLatestScalarKind() const {
 
    return getLatestKind() != MemoryKind::Array;
 
  }
 
 
 
  /// Old name of isOriginalScalarKind.
 
  bool isScalarKind() const { return isOriginalScalarKind(); }
 
 
 
  /// Was this MemoryAccess detected as a scalar dependences?
 
  bool isOriginalValueKind() const {
 
    return getOriginalKind() == MemoryKind::Value;
 
  }
 
 
 
  /// Is this MemoryAccess currently modeling scalar dependences?
 
  bool isLatestValueKind() const {
 
    return getLatestKind() == MemoryKind::Value;
 
  }
 
 
 
  /// Old name of isOriginalValueKind().
 
  bool isValueKind() const { return isOriginalValueKind(); }
 
 
 
  /// Was this MemoryAccess detected as a special PHI node access?
 
  bool isOriginalPHIKind() const {
 
    return getOriginalKind() == MemoryKind::PHI;
 
  }
 
 
 
  /// Is this MemoryAccess modeling special PHI node accesses, also
 
  /// considering a potential change by setNewAccessRelation?
 
  bool isLatestPHIKind() const { return getLatestKind() == MemoryKind::PHI; }
 
 
 
  /// Old name of isOriginalPHIKind.
 
  bool isPHIKind() const { return isOriginalPHIKind(); }
 
 
 
  /// Was this MemoryAccess detected as the accesses of a PHI node in the
 
  /// SCoP's exit block?
 
  bool isOriginalExitPHIKind() const {
 
    return getOriginalKind() == MemoryKind::ExitPHI;
 
  }
 
 
 
  /// Is this MemoryAccess modeling the accesses of a PHI node in the
 
  /// SCoP's exit block? Can be changed to an array access using
 
  /// setNewAccessRelation().
 
  bool isLatestExitPHIKind() const {
 
    return getLatestKind() == MemoryKind::ExitPHI;
 
  }
 
 
 
  /// Old name of isOriginalExitPHIKind().
 
  bool isExitPHIKind() const { return isOriginalExitPHIKind(); }
 
 
 
  /// Was this access detected as one of the two PHI types?
 
  bool isOriginalAnyPHIKind() const {
 
    return isOriginalPHIKind() || isOriginalExitPHIKind();
 
  }
 
 
 
  /// Does this access originate from one of the two PHI types? Can be
 
  /// changed to an array access using setNewAccessRelation().
 
  bool isLatestAnyPHIKind() const {
 
    return isLatestPHIKind() || isLatestExitPHIKind();
 
  }
 
 
 
  /// Old name of isOriginalAnyPHIKind().
 
  bool isAnyPHIKind() const { return isOriginalAnyPHIKind(); }
 
 
 
  /// Get the statement that contains this memory access.
 
  ScopStmt *getStatement() const { return Statement; }
 
 
 
  /// Get the reduction type of this access
 
  ReductionType getReductionType() const { return RedType; }
 
 
 
  /// Update the original access relation.
 
  ///
 
  /// We need to update the original access relation during scop construction,
 
  /// when unifying the memory accesses that access the same scop array info
 
  /// object. After the scop has been constructed, the original access relation
 
  /// should not be changed any more. Instead setNewAccessRelation should
 
  /// be called.
 
  void setAccessRelation(isl::map AccessRelation);
 
 
 
  /// Set the updated access relation read from JSCOP file.
 
  void setNewAccessRelation(isl::map NewAccessRelation);
 
 
 
  /// Return whether the MemoryyAccess is a partial access. That is, the access
 
  /// is not executed in some instances of the parent statement's domain.
 
  bool isLatestPartialAccess() const;
 
 
 
  /// Mark this a reduction like access
 
  void markAsReductionLike(ReductionType RT) { RedType = RT; }
 
 
 
  /// Align the parameters in the access relation to the scop context
 
  void realignParams();
 
 
 
  /// Update the dimensionality of the memory access.
 
  ///
 
  /// During scop construction some memory accesses may not be constructed with
 
  /// their full dimensionality, but outer dimensions may have been omitted if
 
  /// they took the value 'zero'. By updating the dimensionality of the
 
  /// statement we add additional zero-valued dimensions to match the
 
  /// dimensionality of the ScopArrayInfo object that belongs to this memory
 
  /// access.
 
  void updateDimensionality();
 
 
 
  /// Get identifier for the memory access.
 
  ///
 
  /// This identifier is unique for all accesses that belong to the same scop
 
  /// statement.
 
  isl::id getId() const;
 
 
 
  /// Print the MemoryAccess.
 
  ///
 
  /// @param OS The output stream the MemoryAccess is printed to.
 
  void print(raw_ostream &OS) const;
 
 
 
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 
  /// Print the MemoryAccess to stderr.
 
  void dump() const;
 
#endif
 
 
 
  /// Is the memory access affine?
 
  bool isAffine() const { return IsAffine; }
 
};
 
 
 
raw_ostream &operator<<(raw_ostream &OS, MemoryAccess::ReductionType RT);
 
 
 
/// Ordered list type to hold accesses.
 
using MemoryAccessList = std::forward_list<MemoryAccess *>;
 
 
 
/// Helper structure for invariant memory accesses.
 
struct InvariantAccess {
 
  /// The memory access that is (partially) invariant.
 
  MemoryAccess *MA;
 
 
 
  /// The context under which the access is not invariant.
 
  isl::set NonHoistableCtx;
 
};
 
 
 
/// Ordered container type to hold invariant accesses.
 
using InvariantAccessesTy = SmallVector<InvariantAccess, 8>;
 
 
 
/// Type for equivalent invariant accesses and their domain context.
 
struct InvariantEquivClassTy {
 
  /// The pointer that identifies this equivalence class
 
  const SCEV *IdentifyingPointer;
 
 
 
  /// Memory accesses now treated invariant
 
  ///
 
  /// These memory accesses access the pointer location that identifies
 
  /// this equivalence class. They are treated as invariant and hoisted during
 
  /// code generation.
 
  MemoryAccessList InvariantAccesses;
 
 
 
  /// The execution context under which the memory location is accessed
 
  ///
 
  /// It is the union of the execution domains of the memory accesses in the
 
  /// InvariantAccesses list.
 
  isl::set ExecutionContext;
 
 
 
  /// The type of the invariant access
 
  ///
 
  /// It is used to differentiate between differently typed invariant loads from
 
  /// the same location.
 
  Type *AccessType;
 
};
 
 
 
/// Type for invariant accesses equivalence classes.
 
using InvariantEquivClassesTy = SmallVector<InvariantEquivClassTy, 8>;
 
 
 
/// Statement of the Scop
 
///
 
/// A Scop statement represents an instruction in the Scop.
 
///
 
/// It is further described by its iteration domain, its schedule and its data
 
/// accesses.
 
/// At the moment every statement represents a single basic block of LLVM-IR.
 
class ScopStmt final {
 
  friend class ScopBuilder;
 
 
 
public:
 
  /// Create the ScopStmt from a BasicBlock.
 
  ScopStmt(Scop &parent, BasicBlock &bb, StringRef Name, Loop *SurroundingLoop,
 
           std::vector<Instruction *> Instructions);
 
 
 
  /// Create an overapproximating ScopStmt for the region @p R.
 
  ///
 
  /// @param EntryBlockInstructions The list of instructions that belong to the
 
  ///                               entry block of the region statement.
 
  ///                               Instructions are only tracked for entry
 
  ///                               blocks for now. We currently do not allow
 
  ///                               to modify the instructions of blocks later
 
  ///                               in the region statement.
 
  ScopStmt(Scop &parent, Region &R, StringRef Name, Loop *SurroundingLoop,
 
           std::vector<Instruction *> EntryBlockInstructions);
 
 
 
  /// Create a copy statement.
 
  ///
 
  /// @param Stmt       The parent statement.
 
  /// @param SourceRel  The source location.
 
  /// @param TargetRel  The target location.
 
  /// @param Domain     The original domain under which the copy statement would
 
  ///                   be executed.
 
  ScopStmt(Scop &parent, isl::map SourceRel, isl::map TargetRel,
 
           isl::set Domain);
 
 
 
  ScopStmt(const ScopStmt &) = delete;
 
  const ScopStmt &operator=(const ScopStmt &) = delete;
 
  ~ScopStmt();
 
 
 
private:
 
  /// Polyhedral description
 
  //@{
 
 
 
  /// The Scop containing this ScopStmt.
 
  Scop &Parent;
 
 
 
  /// The domain under which this statement is not modeled precisely.
 
  ///
 
  /// The invalid domain for a statement describes all parameter combinations
 
  /// under which the statement looks to be executed but is in fact not because
 
  /// some assumption/restriction makes the statement/scop invalid.
 
  isl::set InvalidDomain;
 
 
 
  /// The iteration domain describes the set of iterations for which this
 
  /// statement is executed.
 
  ///
 
  /// Example:
 
  ///     for (i = 0; i < 100 + b; ++i)
 
  ///       for (j = 0; j < i; ++j)
 
  ///         S(i,j);
 
  ///
 
  /// 'S' is executed for different values of i and j. A vector of all
 
  /// induction variables around S (i, j) is called iteration vector.
 
  /// The domain describes the set of possible iteration vectors.
 
  ///
 
  /// In this case it is:
 
  ///
 
  ///     Domain: 0 <= i <= 100 + b
 
  ///             0 <= j <= i
 
  ///
 
  /// A pair of statement and iteration vector (S, (5,3)) is called statement
 
  /// instance.
 
  isl::set Domain;
 
 
 
  /// The memory accesses of this statement.
 
  ///
 
  /// The only side effects of a statement are its memory accesses.
 
  using MemoryAccessVec = llvm::SmallVector<MemoryAccess *, 8>;
 
  MemoryAccessVec MemAccs;
 
 
 
  /// Mapping from instructions to (scalar) memory accesses.
 
  DenseMap<const Instruction *, MemoryAccessList> InstructionToAccess;
 
 
 
  /// The set of values defined elsewhere required in this ScopStmt and
 
  ///        their MemoryKind::Value READ MemoryAccesses.
 
  DenseMap<Value *, MemoryAccess *> ValueReads;
 
 
 
  /// The set of values defined in this ScopStmt that are required
 
  ///        elsewhere, mapped to their MemoryKind::Value WRITE MemoryAccesses.
 
  DenseMap<Instruction *, MemoryAccess *> ValueWrites;
 
 
 
  /// Map from PHI nodes to its incoming value when coming from this
 
  ///        statement.
 
  ///
 
  /// Non-affine subregions can have multiple exiting blocks that are incoming
 
  /// blocks of the PHI nodes. This map ensures that there is only one write
 
  /// operation for the complete subregion. A PHI selecting the relevant value
 
  /// will be inserted.
 
  DenseMap<PHINode *, MemoryAccess *> PHIWrites;
 
 
 
  /// Map from PHI nodes to its read access in this statement.
 
  DenseMap<PHINode *, MemoryAccess *> PHIReads;
 
 
 
  //@}
 
 
 
  /// A SCoP statement represents either a basic block (affine/precise case) or
 
  /// a whole region (non-affine case).
 
  ///
 
  /// Only one of the following two members will therefore be set and indicate
 
  /// which kind of statement this is.
 
  ///
 
  ///{
 
 
 
  /// The BasicBlock represented by this statement (in the affine case).
 
  BasicBlock *BB = nullptr;
 
 
 
  /// The region represented by this statement (in the non-affine case).
 
  Region *R = nullptr;
 
 
 
  ///}
 
 
 
  /// The isl AST build for the new generated AST.
 
  isl::ast_build Build;
 
 
 
  SmallVector<Loop *, 4> NestLoops;
 
 
 
  std::string BaseName;
 
 
 
  /// The closest loop that contains this statement.
 
  Loop *SurroundingLoop;
 
 
 
  /// Vector for Instructions in this statement.
 
  std::vector<Instruction *> Instructions;
 
 
 
  /// Remove @p MA from dictionaries pointing to them.
 
  void removeAccessData(MemoryAccess *MA);
 
 
 
public:
 
  /// Get an isl_ctx pointer.
 
  isl::ctx getIslCtx() const;
 
 
 
  /// Get the iteration domain of this ScopStmt.
 
  ///
 
  /// @return The iteration domain of this ScopStmt.
 
  isl::set getDomain() const;
 
 
 
  /// Get the space of the iteration domain
 
  ///
 
  /// @return The space of the iteration domain
 
  isl::space getDomainSpace() const;
 
 
 
  /// Get the id of the iteration domain space
 
  ///
 
  /// @return The id of the iteration domain space
 
  isl::id getDomainId() const;
 
 
 
  /// Get an isl string representing this domain.
 
  std::string getDomainStr() const;
 
 
 
  /// Get the schedule function of this ScopStmt.
 
  ///
 
  /// @return The schedule function of this ScopStmt, if it does not contain
 
  /// extension nodes, and nullptr, otherwise.
 
  isl::map getSchedule() const;
 
 
 
  /// Get an isl string representing this schedule.
 
  ///
 
  /// @return An isl string representing this schedule, if it does not contain
 
  /// extension nodes, and an empty string, otherwise.
 
  std::string getScheduleStr() const;
 
 
 
  /// Get the invalid domain for this statement.
 
  isl::set getInvalidDomain() const { return InvalidDomain; }
 
 
 
  /// Get the invalid context for this statement.
 
  isl::set getInvalidContext() const { return getInvalidDomain().params(); }
 
 
 
  /// Set the invalid context for this statement to @p ID.
 
  void setInvalidDomain(isl::set ID);
 
 
 
  /// Get the BasicBlock represented by this ScopStmt (if any).
 
  ///
 
  /// @return The BasicBlock represented by this ScopStmt, or null if the
 
  ///         statement represents a region.
 
  BasicBlock *getBasicBlock() const { return BB; }
 
 
 
  /// Return true if this statement represents a single basic block.
 
  bool isBlockStmt() const { return BB != nullptr; }
 
 
 
  /// Return true if this is a copy statement.
 
  bool isCopyStmt() const { return BB == nullptr && R == nullptr; }
 
 
 
  /// Get the region represented by this ScopStmt (if any).
 
  ///
 
  /// @return The region represented by this ScopStmt, or null if the statement
 
  ///         represents a basic block.
 
  Region *getRegion() const { return R; }
 
 
 
  /// Return true if this statement represents a whole region.
 
  bool isRegionStmt() const { return R != nullptr; }
 
 
 
  /// Return a BasicBlock from this statement.
 
  ///
 
  /// For block statements, it returns the BasicBlock itself. For subregion
 
  /// statements, return its entry block.
 
  BasicBlock *getEntryBlock() const;
 
 
 
  /// Return whether @p L is boxed within this statement.
 
  bool contains(const Loop *L) const {
 
    // Block statements never contain loops.
 
    if (isBlockStmt())
 
      return false;
 
 
 
    return getRegion()->contains(L);
 
  }
 
 
 
  /// Return whether this statement represents @p BB.
 
  bool represents(BasicBlock *BB) const {
 
    if (isCopyStmt())
 
      return false;
 
    if (isBlockStmt())
 
      return BB == getBasicBlock();
 
    return getRegion()->contains(BB);
 
  }
 
 
 
  /// Return whether this statement contains @p Inst.
 
  bool contains(Instruction *Inst) const {
 
    if (!Inst)
 
      return false;
 
    if (isBlockStmt())
 
      return llvm::is_contained(Instructions, Inst);
 
    return represents(Inst->getParent());
 
  }
 
 
 
  /// Return the closest innermost loop that contains this statement, but is not
 
  /// contained in it.
 
  ///
 
  /// For block statement, this is just the loop that contains the block. Region
 
  /// statements can contain boxed loops, so getting the loop of one of the
 
  /// region's BBs might return such an inner loop. For instance, the region's
 
  /// entry could be a header of a loop, but the region might extend to BBs
 
  /// after the loop exit. Similarly, the region might only contain parts of the
 
  /// loop body and still include the loop header.
 
  ///
 
  /// Most of the time the surrounding loop is the top element of #NestLoops,
 
  /// except when it is empty. In that case it return the loop that the whole
 
  /// SCoP is contained in. That can be nullptr if there is no such loop.
 
  Loop *getSurroundingLoop() const {
 
    assert(!isCopyStmt() &&
 
           "No surrounding loop for artificially created statements");
 
    return SurroundingLoop;
 
  }
 
 
 
  /// Return true if this statement does not contain any accesses.
 
  bool isEmpty() const { return MemAccs.empty(); }
 
 
 
  /// Find all array accesses for @p Inst.
 
  ///
 
  /// @param Inst The instruction accessing an array.
 
  ///
 
  /// @return A list of array accesses (MemoryKind::Array) accessed by @p Inst.
 
  ///         If there is no such access, it returns nullptr.
 
  const MemoryAccessList *
 
  lookupArrayAccessesFor(const Instruction *Inst) const {
 
    auto It = InstructionToAccess.find(Inst);
 
    if (It == InstructionToAccess.end())
 
      return nullptr;
 
    if (It->second.empty())
 
      return nullptr;
 
    return &It->second;
 
  }
 
 
 
  /// Return the only array access for @p Inst, if existing.
 
  ///
 
  /// @param Inst The instruction for which to look up the access.
 
  /// @returns The unique array memory access related to Inst or nullptr if
 
  ///          no array access exists
 
  MemoryAccess *getArrayAccessOrNULLFor(const Instruction *Inst) const {
 
    auto It = InstructionToAccess.find(Inst);
 
    if (It == InstructionToAccess.end())
 
      return nullptr;
 
 
 
    MemoryAccess *ArrayAccess = nullptr;
 
 
 
    for (auto Access : It->getSecond()) {
 
      if (!Access->isArrayKind())
 
        continue;
 
 
 
      assert(!ArrayAccess && "More then one array access for instruction");
 
 
 
      ArrayAccess = Access;
 
    }
 
 
 
    return ArrayAccess;
 
  }
 
 
 
  /// Return the only array access for @p Inst.
 
  ///
 
  /// @param Inst The instruction for which to look up the access.
 
  /// @returns The unique array memory access related to Inst.
 
  MemoryAccess &getArrayAccessFor(const Instruction *Inst) const {
 
    MemoryAccess *ArrayAccess = getArrayAccessOrNULLFor(Inst);
 
 
 
    assert(ArrayAccess && "No array access found for instruction!");
 
    return *ArrayAccess;
 
  }
 
 
 
  /// Return the MemoryAccess that writes the value of an instruction
 
  ///        defined in this statement, or nullptr if not existing, respectively
 
  ///        not yet added.
 
  MemoryAccess *lookupValueWriteOf(Instruction *Inst) const {
 
    assert((isRegionStmt() && R->contains(Inst)) ||
 
           (!isRegionStmt() && Inst->getParent() == BB));
 
    return ValueWrites.lookup(Inst);
 
  }
 
 
 
  /// Return the MemoryAccess that reloads a value, or nullptr if not
 
  ///        existing, respectively not yet added.
 
  MemoryAccess *lookupValueReadOf(Value *Inst) const {
 
    return ValueReads.lookup(Inst);
 
  }
 
 
 
  /// Return the MemoryAccess that loads a PHINode value, or nullptr if not
 
  /// existing, respectively not yet added.
 
  MemoryAccess *lookupPHIReadOf(PHINode *PHI) const {
 
    return PHIReads.lookup(PHI);
 
  }
 
 
 
  /// Return the PHI write MemoryAccess for the incoming values from any
 
  ///        basic block in this ScopStmt, or nullptr if not existing,
 
  ///        respectively not yet added.
 
  MemoryAccess *lookupPHIWriteOf(PHINode *PHI) const {
 
    assert(isBlockStmt() || R->getExit() == PHI->getParent());
 
    return PHIWrites.lookup(PHI);
 
  }
 
 
 
  /// Return the input access of the value, or null if no such MemoryAccess
 
  /// exists.
 
  ///
 
  /// The input access is the MemoryAccess that makes an inter-statement value
 
  /// available in this statement by reading it at the start of this statement.
 
  /// This can be a MemoryKind::Value if defined in another statement or a
 
  /// MemoryKind::PHI if the value is a PHINode in this statement.
 
  MemoryAccess *lookupInputAccessOf(Value *Val) const {
 
    if (isa<PHINode>(Val))
 
      if (auto InputMA = lookupPHIReadOf(cast<PHINode>(Val))) {
 
        assert(!lookupValueReadOf(Val) && "input accesses must be unique; a "
 
                                          "statement cannot read a .s2a and "
 
                                          ".phiops simultaneously");
 
        return InputMA;
 
      }
 
 
 
    if (auto *InputMA = lookupValueReadOf(Val))
 
      return InputMA;
 
 
 
    return nullptr;
 
  }
 
 
 
  /// Add @p Access to this statement's list of accesses.
 
  ///
 
  /// @param Access  The access to add.
 
  /// @param Prepend If true, will add @p Access before all other instructions
 
  ///                (instead of appending it).
 
  void addAccess(MemoryAccess *Access, bool Preprend = false);
 
 
 
  /// Remove a MemoryAccess from this statement.
 
  ///
 
  /// Note that scalar accesses that are caused by MA will
 
  /// be eliminated too.
 
  void removeMemoryAccess(MemoryAccess *MA);
 
 
 
  /// Remove @p MA from this statement.
 
  ///
 
  /// In contrast to removeMemoryAccess(), no other access will be eliminated.
 
  ///
 
  /// @param MA            The MemoryAccess to be removed.
 
  /// @param AfterHoisting If true, also remove from data access lists.
 
  ///                      These lists are filled during
 
  ///                      ScopBuilder::buildAccessRelations. Therefore, if this
 
  ///                      method is called before buildAccessRelations, false
 
  ///                      must be passed.
 
  void removeSingleMemoryAccess(MemoryAccess *MA, bool AfterHoisting = true);
 
 
 
  using iterator = MemoryAccessVec::iterator;
 
  using const_iterator = MemoryAccessVec::const_iterator;
 
 
 
  iterator begin() { return MemAccs.begin(); }
 
  iterator end() { return MemAccs.end(); }
 
  const_iterator begin() const { return MemAccs.begin(); }
 
  const_iterator end() const { return MemAccs.end(); }
 
  size_t size() const { return MemAccs.size(); }
 
 
 
  unsigned getNumIterators() const;
 
 
 
  Scop *getParent() { return &Parent; }
 
  const Scop *getParent() const { return &Parent; }
 
 
 
  const std::vector<Instruction *> &getInstructions() const {
 
    return Instructions;
 
  }
 
 
 
  /// Set the list of instructions for this statement. It replaces the current
 
  /// list.
 
  void setInstructions(ArrayRef<Instruction *> Range) {
 
    Instructions.assign(Range.begin(), Range.end());
 
  }
 
 
 
  std::vector<Instruction *>::const_iterator insts_begin() const {
 
    return Instructions.begin();
 
  }
 
 
 
  std::vector<Instruction *>::const_iterator insts_end() const {
 
    return Instructions.end();
 
  }
 
 
 
  /// The range of instructions in this statement.
 
  iterator_range<std::vector<Instruction *>::const_iterator> insts() const {
 
    return {insts_begin(), insts_end()};
 
  }
 
 
 
  /// Insert an instruction before all other instructions in this statement.
 
  void prependInstruction(Instruction *Inst) {
 
    Instructions.insert(Instructions.begin(), Inst);
 
  }
 
 
 
  const char *getBaseName() const;
 
 
 
  /// Set the isl AST build.
 
  void setAstBuild(isl::ast_build B) { Build = B; }
 
 
 
  /// Get the isl AST build.
 
  isl::ast_build getAstBuild() const { return Build; }
 
 
 
  /// Restrict the domain of the statement.
 
  ///
 
  /// @param NewDomain The new statement domain.
 
  void restrictDomain(isl::set NewDomain);
 
 
 
  /// Get the loop for a dimension.
 
  ///
 
  /// @param Dimension The dimension of the induction variable
 
  /// @return The loop at a certain dimension.
 
  Loop *getLoopForDimension(unsigned Dimension) const;
 
 
 
  /// Align the parameters in the statement to the scop context
 
  void realignParams();
 
 
 
  /// Print the ScopStmt.
 
  ///
 
  /// @param OS                The output stream the ScopStmt is printed to.
 
  /// @param PrintInstructions Whether to print the statement's instructions as
 
  ///                          well.
 
  void print(raw_ostream &OS, bool PrintInstructions) const;
 
 
 
  /// Print the instructions in ScopStmt.
 
  ///
 
  void printInstructions(raw_ostream &OS) const;
 
 
 
  /// Check whether there is a value read access for @p V in this statement, and
 
  /// if not, create one.
 
  ///
 
  /// This allows to add MemoryAccesses after the initial creation of the Scop
 
  /// by ScopBuilder.
 
  ///
 
  /// @return The already existing or newly created MemoryKind::Value READ
 
  /// MemoryAccess.
 
  ///
 
  /// @see ScopBuilder::ensureValueRead(Value*,ScopStmt*)
 
  MemoryAccess *ensureValueRead(Value *V);
 
 
 
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 
  /// Print the ScopStmt to stderr.
 
  void dump() const;
 
#endif
 
};
 
 
 
/// Print ScopStmt S to raw_ostream OS.
 
raw_ostream &operator<<(raw_ostream &OS, const ScopStmt &S);
 
 
 
/// Static Control Part
 
///
 
/// A Scop is the polyhedral representation of a control flow region detected
 
/// by the Scop detection. It is generated by translating the LLVM-IR and
 
/// abstracting its effects.
 
///
 
/// A Scop consists of a set of:
 
///
 
///   * A set of statements executed in the Scop.
 
///
 
///   * A set of global parameters
 
///   Those parameters are scalar integer values, which are constant during
 
///   execution.
 
///
 
///   * A context
 
///   This context contains information about the values the parameters
 
///   can take and relations between different parameters.
 
class Scop final {
 
public:
 
  /// Type to represent a pair of minimal/maximal access to an array.
 
  using MinMaxAccessTy = std::pair<isl::pw_multi_aff, isl::pw_multi_aff>;
 
 
 
  /// Vector of minimal/maximal accesses to different arrays.
 
  using MinMaxVectorTy = SmallVector<MinMaxAccessTy, 4>;
 
 
 
  /// Pair of minimal/maximal access vectors representing
 
  /// read write and read only accesses
 
  using MinMaxVectorPairTy = std::pair<MinMaxVectorTy, MinMaxVectorTy>;
 
 
 
  /// Vector of pair of minimal/maximal access vectors representing
 
  /// non read only and read only accesses for each alias group.
 
  using MinMaxVectorPairVectorTy = SmallVector<MinMaxVectorPairTy, 4>;
 
 
 
private:
 
  friend class ScopBuilder;
 
 
 
  /// Isl context.
 
  ///
 
  /// We need a shared_ptr with reference counter to delete the context when all
 
  /// isl objects are deleted. We will distribute the shared_ptr to all objects
 
  /// that use the context to create isl objects, and increase the reference
 
  /// counter. By doing this, we guarantee that the context is deleted when we
 
  /// delete the last object that creates isl objects with the context. This
 
  /// declaration needs to be the first in class to gracefully destroy all isl
 
  /// objects before the context.
 
  std::shared_ptr<isl_ctx> IslCtx;
 
 
 
  ScalarEvolution *SE;
 
  DominatorTree *DT;
 
 
 
  /// The underlying Region.
 
  Region &R;
 
 
 
  /// The name of the SCoP (identical to the regions name)
 
  std::optional<std::string> name;
 
 
 
  // Access functions of the SCoP.
 
  //
 
  // This owns all the MemoryAccess objects of the Scop created in this pass.
 
  AccFuncVector AccessFunctions;
 
 
 
  /// Flag to indicate that the scheduler actually optimized the SCoP.
 
  bool IsOptimized = false;
 
 
 
  /// True if the underlying region has a single exiting block.
 
  bool HasSingleExitEdge;
 
 
 
  /// Flag to remember if the SCoP contained an error block or not.
 
  bool HasErrorBlock = false;
 
 
 
  /// Max loop depth.
 
  unsigned MaxLoopDepth = 0;
 
 
 
  /// Number of copy statements.
 
  unsigned CopyStmtsNum = 0;
 
 
 
  /// Flag to indicate if the Scop is to be skipped.
 
  bool SkipScop = false;
 
 
 
  using StmtSet = std::list<ScopStmt>;
 
 
 
  /// The statements in this Scop.
 
  StmtSet Stmts;
 
 
 
  /// Parameters of this Scop
 
  ParameterSetTy Parameters;
 
 
 
  /// Mapping from parameters to their ids.
 
  DenseMap<const SCEV *, isl::id> ParameterIds;
 
 
 
  /// The context of the SCoP created during SCoP detection.
 
  ScopDetection::DetectionContext &DC;
 
 
 
  /// OptimizationRemarkEmitter object for displaying diagnostic remarks
 
  OptimizationRemarkEmitter &ORE;
 
 
 
  /// A map from basic blocks to vector of SCoP statements. Currently this
 
  /// vector comprises only of a single statement.
 
  DenseMap<BasicBlock *, std::vector<ScopStmt *>> StmtMap;
 
 
 
  /// A map from instructions to SCoP statements.
 
  DenseMap<Instruction *, ScopStmt *> InstStmtMap;
 
 
 
  /// A map from basic blocks to their domains.
 
  DenseMap<BasicBlock *, isl::set> DomainMap;
 
 
 
  /// Constraints on parameters.
 
  isl::set Context;
 
 
 
  /// The affinator used to translate SCEVs to isl expressions.
 
  SCEVAffinator Affinator;
 
 
 
  using ArrayInfoMapTy =
 
      std::map<std::pair<AssertingVH<const Value>, MemoryKind>,
 
               std::unique_ptr<ScopArrayInfo>>;
 
 
 
  using ArrayNameMapTy = StringMap<std::unique_ptr<ScopArrayInfo>>;
 
 
 
  using ArrayInfoSetTy = SetVector<ScopArrayInfo *>;
 
 
 
  /// A map to remember ScopArrayInfo objects for all base pointers.
 
  ///
 
  /// As PHI nodes may have two array info objects associated, we add a flag
 
  /// that distinguishes between the PHI node specific ArrayInfo object
 
  /// and the normal one.
 
  ArrayInfoMapTy ScopArrayInfoMap;
 
 
 
  /// A map to remember ScopArrayInfo objects for all names of memory
 
  ///        references.
 
  ArrayNameMapTy ScopArrayNameMap;
 
 
 
  /// A set to remember ScopArrayInfo objects.
 
  /// @see Scop::ScopArrayInfoMap
 
  ArrayInfoSetTy ScopArrayInfoSet;
 
 
 
  /// The assumptions under which this scop was built.
 
  ///
 
  /// When constructing a scop sometimes the exact representation of a statement
 
  /// or condition would be very complex, but there is a common case which is a
 
  /// lot simpler, but which is only valid under certain assumptions. The
 
  /// assumed context records the assumptions taken during the construction of
 
  /// this scop and that need to be code generated as a run-time test.
 
  isl::set AssumedContext;
 
 
 
  /// The restrictions under which this SCoP was built.
 
  ///
 
  /// The invalid context is similar to the assumed context as it contains
 
  /// constraints over the parameters. However, while we need the constraints
 
  /// in the assumed context to be "true" the constraints in the invalid context
 
  /// need to be "false". Otherwise they behave the same.
 
  isl::set InvalidContext;
 
 
 
  /// The context under which the SCoP must have defined behavior. Optimizer and
 
  /// code generator can assume that the SCoP will only be executed with
 
  /// parameter values within this context. This might be either because we can
 
  /// prove that other values are impossible or explicitly have undefined
 
  /// behavior, such as due to no-wrap flags. If this becomes too complex, can
 
  /// also be nullptr.
 
  ///
 
  /// In contrast to Scop::AssumedContext and Scop::InvalidContext, these do not
 
  /// need to be checked at runtime.
 
  ///
 
  /// Scop::Context on the other side is an overapproximation and does not
 
  /// include all requirements, but is always defined. However, there is still
 
  /// no guarantee that there is no undefined behavior in
 
  /// DefinedBehaviorContext.
 
  isl::set DefinedBehaviorContext;
 
 
 
  /// The schedule of the SCoP
 
  ///
 
  /// The schedule of the SCoP describes the execution order of the statements
 
  /// in the scop by assigning each statement instance a possibly
 
  /// multi-dimensional execution time. The schedule is stored as a tree of
 
  /// schedule nodes.
 
  ///
 
  /// The most common nodes in a schedule tree are so-called band nodes. Band
 
  /// nodes map statement instances into a multi dimensional schedule space.
 
  /// This space can be seen as a multi-dimensional clock.
 
  ///
 
  /// Example:
 
  ///
 
  /// <S,(5,4)>  may be mapped to (5,4) by this schedule:
 
  ///
 
  /// s0 = i (Year of execution)
 
  /// s1 = j (Day of execution)
 
  ///
 
  /// or to (9, 20) by this schedule:
 
  ///
 
  /// s0 = i + j (Year of execution)
 
  /// s1 = 20 (Day of execution)
 
  ///
 
  /// The order statement instances are executed is defined by the
 
  /// schedule vectors they are mapped to. A statement instance
 
  /// <A, (i, j, ..)> is executed before a statement instance <B, (i', ..)>, if
 
  /// the schedule vector of A is lexicographic smaller than the schedule
 
  /// vector of B.
 
  ///
 
  /// Besides band nodes, schedule trees contain additional nodes that specify
 
  /// a textual ordering between two subtrees or filter nodes that filter the
 
  /// set of statement instances that will be scheduled in a subtree. There
 
  /// are also several other nodes. A full description of the different nodes
 
  /// in a schedule tree is given in the isl manual.
 
  isl::schedule Schedule;
 
 
 
  /// Is this Scop marked as not to be transformed by an optimization heuristic?
 
  bool HasDisableHeuristicsHint = false;
 
 
 
  /// Whether the schedule has been modified after derived from the CFG by
 
  /// ScopBuilder.
 
  bool ScheduleModified = false;
 
 
 
  /// The set of minimal/maximal accesses for each alias group.
 
  ///
 
  /// When building runtime alias checks we look at all memory instructions and
 
  /// build so called alias groups. Each group contains a set of accesses to
 
  /// different base arrays which might alias with each other. However, between
 
  /// alias groups there is no aliasing possible.
 
  ///
 
  /// In a program with int and float pointers annotated with tbaa information
 
  /// we would probably generate two alias groups, one for the int pointers and
 
  /// one for the float pointers.
 
  ///
 
  /// During code generation we will create a runtime alias check for each alias
 
  /// group to ensure the SCoP is executed in an alias free environment.
 
  MinMaxVectorPairVectorTy MinMaxAliasGroups;
 
 
 
  /// Mapping from invariant loads to the representing invariant load of
 
  ///        their equivalence class.
 
  ValueToValueMap InvEquivClassVMap;
 
 
 
  /// List of invariant accesses.
 
  InvariantEquivClassesTy InvariantEquivClasses;
 
 
 
  /// The smallest array index not yet assigned.
 
  long ArrayIdx = 0;
 
 
 
  /// The smallest statement index not yet assigned.
 
  long StmtIdx = 0;
 
 
 
  /// A number that uniquely represents a Scop within its function
 
  const int ID;
 
 
 
  /// Map of values to the MemoryAccess that writes its definition.
 
  ///
 
  /// There must be at most one definition per llvm::Instruction in a SCoP.
 
  DenseMap<Value *, MemoryAccess *> ValueDefAccs;
 
 
 
  /// Map of values to the MemoryAccess that reads a PHI.
 
  DenseMap<PHINode *, MemoryAccess *> PHIReadAccs;
 
 
 
  /// List of all uses (i.e. read MemoryAccesses) for a MemoryKind::Value
 
  /// scalar.
 
  DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>> ValueUseAccs;
 
 
 
  /// List of all incoming values (write MemoryAccess) of a MemoryKind::PHI or
 
  /// MemoryKind::ExitPHI scalar.
 
  DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>>
 
      PHIIncomingAccs;
 
 
 
  /// Scop constructor; invoked from ScopBuilder::buildScop.
 
  Scop(Region &R, ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT,
 
       ScopDetection::DetectionContext &DC, OptimizationRemarkEmitter &ORE,
 
       int ID);
 
 
 
  //@}
 
 
 
  /// Return the access for the base ptr of @p MA if any.
 
  MemoryAccess *lookupBasePtrAccess(MemoryAccess *MA);
 
 
 
  /// Create an id for @p Param and store it in the ParameterIds map.
 
  void createParameterId(const SCEV *Param);
 
 
 
  /// Build the Context of the Scop.
 
  void buildContext();
 
 
 
  /// Add the bounds of the parameters to the context.
 
  void addParameterBounds();
 
 
 
  /// Simplify the assumed and invalid context.
 
  void simplifyContexts();
 
 
 
  /// Create a new SCoP statement for @p BB.
 
  ///
 
  /// A new statement for @p BB will be created and added to the statement
 
  /// vector
 
  /// and map.
 
  ///
 
  /// @param BB              The basic block we build the statement for.
 
  /// @param Name            The name of the new statement.
 
  /// @param SurroundingLoop The loop the created statement is contained in.
 
  /// @param Instructions    The instructions in the statement.
 
  void addScopStmt(BasicBlock *BB, StringRef Name, Loop *SurroundingLoop,
 
                   std::vector<Instruction *> Instructions);
 
 
 
  /// Create a new SCoP statement for @p R.
 
  ///
 
  /// A new statement for @p R will be created and added to the statement vector
 
  /// and map.
 
  ///
 
  /// @param R                      The region we build the statement for.
 
  /// @param Name                   The name of the new statement.
 
  /// @param SurroundingLoop        The loop the created statement is contained
 
  ///                               in.
 
  /// @param EntryBlockInstructions The (interesting) instructions in the
 
  ///                               entry block of the region statement.
 
  void addScopStmt(Region *R, StringRef Name, Loop *SurroundingLoop,
 
                   std::vector<Instruction *> EntryBlockInstructions);
 
 
 
  /// Removes @p Stmt from the StmtMap.
 
  void removeFromStmtMap(ScopStmt &Stmt);
 
 
 
  /// Removes all statements where the entry block of the statement does not
 
  /// have a corresponding domain in the domain map (or it is empty).
 
  void removeStmtNotInDomainMap();
 
 
 
  /// Collect all memory access relations of a given type.
 
  ///
 
  /// @param Predicate A predicate function that returns true if an access is
 
  ///                  of a given type.
 
  ///
 
  /// @returns The set of memory accesses in the scop that match the predicate.
 
  isl::union_map
 
  getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate);
 
 
 
  /// @name Helper functions for printing the Scop.
 
  ///
 
  //@{
 
  void printContext(raw_ostream &OS) const;
 
  void printArrayInfo(raw_ostream &OS) const;
 
  void printStatements(raw_ostream &OS, bool PrintInstructions) const;
 
  void printAliasAssumptions(raw_ostream &OS) const;
 
  //@}
 
 
 
public:
 
  Scop(const Scop &) = delete;
 
  Scop &operator=(const Scop &) = delete;
 
  ~Scop();
 
 
 
  /// Increment actual number of aliasing assumptions taken
 
  ///
 
  /// @param Step    Number of new aliasing assumptions which should be added to
 
  /// the number of already taken assumptions.
 
  static void incrementNumberOfAliasingAssumptions(unsigned Step);
 
 
 
  /// Get the count of copy statements added to this Scop.
 
  ///
 
  /// @return The count of copy statements added to this Scop.
 
  unsigned getCopyStmtsNum() { return CopyStmtsNum; }
 
 
 
  /// Create a new copy statement.
 
  ///
 
  /// A new statement will be created and added to the statement vector.
 
  ///
 
  /// @param SourceRel  The source location.
 
  /// @param TargetRel  The target location.
 
  /// @param Domain     The original domain under which the copy statement would
 
  ///                   be executed.
 
  ScopStmt *addScopStmt(isl::map SourceRel, isl::map TargetRel,
 
                        isl::set Domain);
 
 
 
  /// Add the access function to all MemoryAccess objects of the Scop
 
  ///        created in this pass.
 
  void addAccessFunction(MemoryAccess *Access) {
 
    AccessFunctions.emplace_back(Access);
 
 
 
    // Register value definitions.
 
    if (Access->isWrite() && Access->isOriginalValueKind()) {
 
      assert(!ValueDefAccs.count(Access->getAccessValue()) &&
 
             "there can be just one definition per value");
 
      ValueDefAccs[Access->getAccessValue()] = Access;
 
    } else if (Access->isRead() && Access->isOriginalPHIKind()) {
 
      PHINode *PHI = cast<PHINode>(Access->getAccessInstruction());
 
      assert(!PHIReadAccs.count(PHI) &&
 
             "there can be just one PHI read per PHINode");
 
      PHIReadAccs[PHI] = Access;
 
    }
 
  }
 
 
 
  /// Add metadata for @p Access.
 
  void addAccessData(MemoryAccess *Access);
 
 
 
  /// Add new invariant access equivalence class
 
  void
 
  addInvariantEquivClass(const InvariantEquivClassTy &InvariantEquivClass) {
 
    InvariantEquivClasses.emplace_back(InvariantEquivClass);
 
  }
 
 
 
  /// Add mapping from invariant loads to the representing invariant load of
 
  ///        their equivalence class.
 
  void addInvariantLoadMapping(const Value *LoadInst, Value *ClassRep) {
 
    InvEquivClassVMap[LoadInst] = ClassRep;
 
  }
 
 
 
  /// Remove the metadata stored for @p Access.
 
  void removeAccessData(MemoryAccess *Access);
 
 
 
  /// Return the scalar evolution.
 
  ScalarEvolution *getSE() const;
 
 
 
  /// Return the dominator tree.
 
  DominatorTree *getDT() const { return DT; }
 
 
 
  /// Return the LoopInfo used for this Scop.
 
  LoopInfo *getLI() const { return Affinator.getLI(); }
 
 
 
  /// Get the count of parameters used in this Scop.
 
  ///
 
  /// @return The count of parameters used in this Scop.
 
  size_t getNumParams() const { return Parameters.size(); }
 
 
 
  /// Return whether given SCEV is used as the parameter in this Scop.
 
  bool isParam(const SCEV *Param) const { return Parameters.count(Param); }
 
 
 
  /// Take a list of parameters and add the new ones to the scop.
 
  void addParams(const ParameterSetTy &NewParameters);
 
 
 
  /// Return an iterator range containing the scop parameters.
 
  iterator_range<ParameterSetTy::iterator> parameters() const {
 
    return make_range(Parameters.begin(), Parameters.end());
 
  }
 
 
 
  /// Return an iterator range containing invariant accesses.
 
  iterator_range<InvariantEquivClassesTy::iterator> invariantEquivClasses() {
 
    return make_range(InvariantEquivClasses.begin(),
 
                      InvariantEquivClasses.end());
 
  }
 
 
 
  /// Return an iterator range containing all the MemoryAccess objects of the
 
  /// Scop.
 
  iterator_range<AccFuncVector::iterator> access_functions() {
 
    return make_range(AccessFunctions.begin(), AccessFunctions.end());
 
  }
 
 
 
  /// Return whether this scop is empty, i.e. contains no statements that
 
  /// could be executed.
 
  bool isEmpty() const { return Stmts.empty(); }
 
 
 
  StringRef getName() {
 
    if (!name)
 
      name = R.getNameStr();
 
    return *name;
 
  }
 
 
 
  using array_iterator = ArrayInfoSetTy::iterator;
 
  using const_array_iterator = ArrayInfoSetTy::const_iterator;
 
  using array_range = iterator_range<ArrayInfoSetTy::iterator>;
 
  using const_array_range = iterator_range<ArrayInfoSetTy::const_iterator>;
 
 
 
  inline array_iterator array_begin() { return ScopArrayInfoSet.begin(); }
 
 
 
  inline array_iterator array_end() { return ScopArrayInfoSet.end(); }
 
 
 
  inline const_array_iterator array_begin() const {
 
    return ScopArrayInfoSet.begin();
 
  }
 
 
 
  inline const_array_iterator array_end() const {
 
    return ScopArrayInfoSet.end();
 
  }
 
 
 
  inline array_range arrays() {
 
    return array_range(array_begin(), array_end());
 
  }
 
 
 
  inline const_array_range arrays() const {
 
    return const_array_range(array_begin(), array_end());
 
  }
 
 
 
  /// Return the isl_id that represents a certain parameter.
 
  ///
 
  /// @param Parameter A SCEV that was recognized as a Parameter.
 
  ///
 
  /// @return The corresponding isl_id or NULL otherwise.
 
  isl::id getIdForParam(const SCEV *Parameter) const;
 
 
 
  /// Get the maximum region of this static control part.
 
  ///
 
  /// @return The maximum region of this static control part.
 
  inline const Region &getRegion() const { return R; }
 
  inline Region &getRegion() { return R; }
 
 
 
  /// Return the function this SCoP is in.
 
  Function &getFunction() const { return *R.getEntry()->getParent(); }
 
 
 
  /// Check if @p L is contained in the SCoP.
 
  bool contains(const Loop *L) const { return R.contains(L); }
 
 
 
  /// Check if @p BB is contained in the SCoP.
 
  bool contains(const BasicBlock *BB) const { return R.contains(BB); }
 
 
 
  /// Check if @p I is contained in the SCoP.
 
  bool contains(const Instruction *I) const { return R.contains(I); }
 
 
 
  /// Return the unique exit block of the SCoP.
 
  BasicBlock *getExit() const { return R.getExit(); }
 
 
 
  /// Return the unique exiting block of the SCoP if any.
 
  BasicBlock *getExitingBlock() const { return R.getExitingBlock(); }
 
 
 
  /// Return the unique entry block of the SCoP.
 
  BasicBlock *getEntry() const { return R.getEntry(); }
 
 
 
  /// Return the unique entering block of the SCoP if any.
 
  BasicBlock *getEnteringBlock() const { return R.getEnteringBlock(); }
 
 
 
  /// Return true if @p BB is the exit block of the SCoP.
 
  bool isExit(BasicBlock *BB) const { return getExit() == BB; }
 
 
 
  /// Return a range of all basic blocks in the SCoP.
 
  Region::block_range blocks() const { return R.blocks(); }
 
 
 
  /// Return true if and only if @p BB dominates the SCoP.
 
  bool isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const;
 
 
 
  /// Get the maximum depth of the loop.
 
  ///
 
  /// @return The maximum depth of the loop.
 
  inline unsigned getMaxLoopDepth() const { return MaxLoopDepth; }
 
 
 
  /// Return the invariant equivalence class for @p Val if any.
 
  InvariantEquivClassTy *lookupInvariantEquivClass(Value *Val);
 
 
 
  /// Return the set of invariant accesses.
 
  InvariantEquivClassesTy &getInvariantAccesses() {
 
    return InvariantEquivClasses;
 
  }
 
 
 
  /// Check if the scop has any invariant access.
 
  bool hasInvariantAccesses() { return !InvariantEquivClasses.empty(); }
 
 
 
  /// Mark the SCoP as optimized by the scheduler.
 
  void markAsOptimized() { IsOptimized = true; }
 
 
 
  /// Check if the SCoP has been optimized by the scheduler.
 
  bool isOptimized() const { return IsOptimized; }
 
 
 
  /// Mark the SCoP to be skipped by ScopPass passes.
 
  void markAsToBeSkipped() { SkipScop = true; }
 
 
 
  /// Check if the SCoP is to be skipped by ScopPass passes.
 
  bool isToBeSkipped() const { return SkipScop; }
 
 
 
  /// Return the ID of the Scop
 
  int getID() const { return ID; }
 
 
 
  /// Get the name of the entry and exit blocks of this Scop.
 
  ///
 
  /// These along with the function name can uniquely identify a Scop.
 
  ///
 
  /// @return std::pair whose first element is the entry name & second element
 
  ///         is the exit name.
 
  std::pair<std::string, std::string> getEntryExitStr() const;
 
 
 
  /// Get the name of this Scop.
 
  std::string getNameStr() const;
 
 
 
  /// Get the constraint on parameter of this Scop.
 
  ///
 
  /// @return The constraint on parameter of this Scop.
 
  isl::set getContext() const;
 
 
 
  /// Return the context where execution behavior is defined. Might return
 
  /// nullptr.
 
  isl::set getDefinedBehaviorContext() const { return DefinedBehaviorContext; }
 
 
 
  /// Return the define behavior context, or if not available, its approximation
 
  /// from all other contexts.
 
  isl::set getBestKnownDefinedBehaviorContext() const {
 
    if (!DefinedBehaviorContext.is_null())
 
      return DefinedBehaviorContext;
 
 
 
    return Context.intersect_params(AssumedContext).subtract(InvalidContext);
 
  }
 
 
 
  /// Return space of isl context parameters.
 
  ///
 
  /// Returns the set of context parameters that are currently constrained. In
 
  /// case the full set of parameters is needed, see @getFullParamSpace.
 
  isl::space getParamSpace() const;
 
 
 
  /// Return the full space of parameters.
 
  ///
 
  /// getParamSpace will only return the parameters of the context that are
 
  /// actually constrained, whereas getFullParamSpace will return all
 
  //  parameters. This is useful in cases, where we need to ensure all
 
  //  parameters are available, as certain isl functions will abort if this is
 
  //  not the case.
 
  isl::space getFullParamSpace() const;
 
 
 
  /// Get the assumed context for this Scop.
 
  ///
 
  /// @return The assumed context of this Scop.
 
  isl::set getAssumedContext() const;
 
 
 
  /// Return true if the optimized SCoP can be executed.
 
  ///
 
  /// In addition to the runtime check context this will also utilize the domain
 
  /// constraints to decide it the optimized version can actually be executed.
 
  ///
 
  /// @returns True if the optimized SCoP can be executed.
 
  bool hasFeasibleRuntimeContext() const;
 
 
 
  /// Check if the assumption in @p Set is trivial or not.
 
  ///
 
  /// @param Set  The relations between parameters that are assumed to hold.
 
  /// @param Sign Enum to indicate if the assumptions in @p Set are positive
 
  ///             (needed/assumptions) or negative (invalid/restrictions).
 
  ///
 
  /// @returns True if the assumption @p Set is not trivial.
 
  bool isEffectiveAssumption(isl::set Set, AssumptionSign Sign);
 
 
 
  /// Track and report an assumption.
 
  ///
 
  /// Use 'clang -Rpass-analysis=polly-scops' or 'opt
 
  /// -pass-remarks-analysis=polly-scops' to output the assumptions.
 
  ///
 
  /// @param Kind The assumption kind describing the underlying cause.
 
  /// @param Set  The relations between parameters that are assumed to hold.
 
  /// @param Loc  The location in the source that caused this assumption.
 
  /// @param Sign Enum to indicate if the assumptions in @p Set are positive
 
  ///             (needed/assumptions) or negative (invalid/restrictions).
 
  /// @param BB   The block in which this assumption was taken. Used to
 
  ///             calculate hotness when emitting remark.
 
  ///
 
  /// @returns True if the assumption is not trivial.
 
  bool trackAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
 
                       AssumptionSign Sign, BasicBlock *BB);
 
 
 
  /// Add the conditions from @p Set (or subtract them if @p Sign is
 
  /// AS_RESTRICTION) to the defined behaviour context.
 
  void intersectDefinedBehavior(isl::set Set, AssumptionSign Sign);
 
 
 
  /// Add assumptions to assumed context.
 
  ///
 
  /// The assumptions added will be assumed to hold during the execution of the
 
  /// scop. However, as they are generally not statically provable, at code
 
  /// generation time run-time checks will be generated that ensure the
 
  /// assumptions hold.
 
  ///
 
  /// WARNING: We currently exploit in simplifyAssumedContext the knowledge
 
  ///          that assumptions do not change the set of statement instances
 
  ///          executed.
 
  ///
 
  /// @param Kind The assumption kind describing the underlying cause.
 
  /// @param Set  The relations between parameters that are assumed to hold.
 
  /// @param Loc  The location in the source that caused this assumption.
 
  /// @param Sign Enum to indicate if the assumptions in @p Set are positive
 
  ///             (needed/assumptions) or negative (invalid/restrictions).
 
  /// @param BB   The block in which this assumption was taken. Used to
 
  ///             calculate hotness when emitting remark.
 
  /// @param RTC  Does the assumption require a runtime check?
 
  void addAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc,
 
                     AssumptionSign Sign, BasicBlock *BB, bool RTC = true);
 
 
 
  /// Mark the scop as invalid.
 
  ///
 
  /// This method adds an assumption to the scop that is always invalid. As a
 
  /// result, the scop will not be optimized later on. This function is commonly
 
  /// called when a condition makes it impossible (or too compile time
 
  /// expensive) to process this scop any further.
 
  ///
 
  /// @param Kind The assumption kind describing the underlying cause.
 
  /// @param Loc  The location in the source that triggered .
 
  /// @param BB   The BasicBlock where it was triggered.
 
  void invalidate(AssumptionKind Kind, DebugLoc Loc, BasicBlock *BB = nullptr);
 
 
 
  /// Get the invalid context for this Scop.
 
  ///
 
  /// @return The invalid context of this Scop.
 
  isl::set getInvalidContext() const;
 
 
 
  /// Return true if and only if the InvalidContext is trivial (=empty).
 
  bool hasTrivialInvalidContext() const { return InvalidContext.is_empty(); }
 
 
 
  /// Return all alias groups for this SCoP.
 
  const MinMaxVectorPairVectorTy &getAliasGroups() const {
 
    return MinMaxAliasGroups;
 
  }
 
 
 
  void addAliasGroup(MinMaxVectorTy &MinMaxAccessesReadWrite,
 
                     MinMaxVectorTy &MinMaxAccessesReadOnly) {
 
    MinMaxAliasGroups.emplace_back();
 
    MinMaxAliasGroups.back().first = MinMaxAccessesReadWrite;
 
    MinMaxAliasGroups.back().second = MinMaxAccessesReadOnly;
 
  }
 
 
 
  /// Remove statements from the list of scop statements.
 
  ///
 
  /// @param ShouldDelete  A function that returns true if the statement passed
 
  ///                      to it should be deleted.
 
  /// @param AfterHoisting If true, also remove from data access lists.
 
  ///                      These lists are filled during
 
  ///                      ScopBuilder::buildAccessRelations. Therefore, if this
 
  ///                      method is called before buildAccessRelations, false
 
  ///                      must be passed.
 
  void removeStmts(function_ref<bool(ScopStmt &)> ShouldDelete,
 
                   bool AfterHoisting = true);
 
 
 
  /// Get an isl string representing the context.
 
  std::string getContextStr() const;
 
 
 
  /// Get an isl string representing the assumed context.
 
  std::string getAssumedContextStr() const;
 
 
 
  /// Get an isl string representing the invalid context.
 
  std::string getInvalidContextStr() const;
 
 
 
  /// Return the list of ScopStmts that represent the given @p BB.
 
  ArrayRef<ScopStmt *> getStmtListFor(BasicBlock *BB) const;
 
 
 
  /// Get the statement to put a PHI WRITE into.
 
  ///
 
  /// @param U The operand of a PHINode.
 
  ScopStmt *getIncomingStmtFor(const Use &U) const;
 
 
 
  /// Return the last statement representing @p BB.
 
  ///
 
  /// Of the sequence of statements that represent a @p BB, this is the last one
 
  /// to be executed. It is typically used to determine which instruction to add
 
  /// a MemoryKind::PHI WRITE to. For this purpose, it is not strictly required
 
  /// to be executed last, only that the incoming value is available in it.
 
  ScopStmt *getLastStmtFor(BasicBlock *BB) const;
 
 
 
  /// Return the ScopStmts that represents the Region @p R, or nullptr if
 
  ///        it is not represented by any statement in this Scop.
 
  ArrayRef<ScopStmt *> getStmtListFor(Region *R) const;
 
 
 
  /// Return the ScopStmts that represents @p RN; can return nullptr if
 
  ///        the RegionNode is not within the SCoP or has been removed due to
 
  ///        simplifications.
 
  ArrayRef<ScopStmt *> getStmtListFor(RegionNode *RN) const;
 
 
 
  /// Return the ScopStmt an instruction belongs to, or nullptr if it
 
  ///        does not belong to any statement in this Scop.
 
  ScopStmt *getStmtFor(Instruction *Inst) const {
 
    return InstStmtMap.lookup(Inst);
 
  }
 
 
 
  /// Return the number of statements in the SCoP.
 
  size_t getSize() const { return Stmts.size(); }
 
 
 
  /// @name Statements Iterators
 
  ///
 
  /// These iterators iterate over all statements of this Scop.
 
  //@{
 
  using iterator = StmtSet::iterator;
 
  using const_iterator = StmtSet::const_iterator;
 
 
 
  iterator begin() { return Stmts.begin(); }
 
  iterator end() { return Stmts.end(); }
 
  const_iterator begin() const { return Stmts.begin(); }
 
  const_iterator end() const { return Stmts.end(); }
 
 
 
  using reverse_iterator = StmtSet::reverse_iterator;
 
  using const_reverse_iterator = StmtSet::const_reverse_iterator;
 
 
 
  reverse_iterator rbegin() { return Stmts.rbegin(); }
 
  reverse_iterator rend() { return Stmts.rend(); }
 
  const_reverse_iterator rbegin() const { return Stmts.rbegin(); }
 
  const_reverse_iterator rend() const { return Stmts.rend(); }
 
  //@}
 
 
 
  /// Return the set of required invariant loads.
 
  const InvariantLoadsSetTy &getRequiredInvariantLoads() const {
 
    return DC.RequiredILS;
 
  }
 
 
 
  /// Add @p LI to the set of required invariant loads.
 
  void addRequiredInvariantLoad(LoadInst *LI) { DC.RequiredILS.insert(LI); }
 
 
 
  /// Return the set of boxed (thus overapproximated) loops.
 
  const BoxedLoopsSetTy &getBoxedLoops() const { return DC.BoxedLoopsSet; }
 
 
 
  /// Return true if and only if @p R is a non-affine subregion.
 
  bool isNonAffineSubRegion(const Region *R) {
 
    return DC.NonAffineSubRegionSet.count(R);
 
  }
 
 
 
  const MapInsnToMemAcc &getInsnToMemAccMap() const { return DC.InsnToMemAcc; }
 
 
 
  /// Return the (possibly new) ScopArrayInfo object for @p Access.
 
  ///
 
  /// @param ElementType The type of the elements stored in this array.
 
  /// @param Kind        The kind of the array info object.
 
  /// @param BaseName    The optional name of this memory reference.
 
  ScopArrayInfo *getOrCreateScopArrayInfo(Value *BasePtr, Type *ElementType,
 
                                          ArrayRef<const SCEV *> Sizes,
 
                                          MemoryKind Kind,
 
                                          const char *BaseName = nullptr);
 
 
 
  /// Create an array and return the corresponding ScopArrayInfo object.
 
  ///
 
  /// @param ElementType The type of the elements stored in this array.
 
  /// @param BaseName    The name of this memory reference.
 
  /// @param Sizes       The sizes of dimensions.
 
  ScopArrayInfo *createScopArrayInfo(Type *ElementType,
 
                                     const std::string &BaseName,
 
                                     const std::vector<unsigned> &Sizes);
 
 
 
  /// Return the cached ScopArrayInfo object for @p BasePtr.
 
  ///
 
  /// @param BasePtr   The base pointer the object has been stored for.
 
  /// @param Kind      The kind of array info object.
 
  ///
 
  /// @returns The ScopArrayInfo pointer or NULL if no such pointer is
 
  ///          available.
 
  ScopArrayInfo *getScopArrayInfoOrNull(Value *BasePtr, MemoryKind Kind);
 
 
 
  /// Return the cached ScopArrayInfo object for @p BasePtr.
 
  ///
 
  /// @param BasePtr   The base pointer the object has been stored for.
 
  /// @param Kind      The kind of array info object.
 
  ///
 
  /// @returns The ScopArrayInfo pointer (may assert if no such pointer is
 
  ///          available).
 
  ScopArrayInfo *getScopArrayInfo(Value *BasePtr, MemoryKind Kind);
 
 
 
  /// Invalidate ScopArrayInfo object for base address.
 
  ///
 
  /// @param BasePtr The base pointer of the ScopArrayInfo object to invalidate.
 
  /// @param Kind    The Kind of the ScopArrayInfo object.
 
  void invalidateScopArrayInfo(Value *BasePtr, MemoryKind Kind) {
 
    auto It = ScopArrayInfoMap.find(std::make_pair(BasePtr, Kind));
 
    if (It == ScopArrayInfoMap.end())
 
      return;
 
    ScopArrayInfoSet.remove(It->second.get());
 
    ScopArrayInfoMap.erase(It);
 
  }
 
 
 
  /// Set new isl context.
 
  void setContext(isl::set NewContext);
 
 
 
  /// Update maximal loop depth. If @p Depth is smaller than current value,
 
  /// then maximal loop depth is not updated.
 
  void updateMaxLoopDepth(unsigned Depth) {
 
    MaxLoopDepth = std::max(MaxLoopDepth, Depth);
 
  }
 
 
 
  /// Align the parameters in the statement to the scop context
 
  void realignParams();
 
 
 
  /// Return true if this SCoP can be profitably optimized.
 
  ///
 
  /// @param ScalarsAreUnprofitable Never consider statements with scalar writes
 
  ///                               as profitably optimizable.
 
  ///
 
  /// @return Whether this SCoP can be profitably optimized.
 
  bool isProfitable(bool ScalarsAreUnprofitable) const;
 
 
 
  /// Return true if the SCoP contained at least one error block.
 
  bool hasErrorBlock() const { return HasErrorBlock; }
 
 
 
  /// Notify SCoP that it contains an error block
 
  void notifyErrorBlock() { HasErrorBlock = true; }
 
 
 
  /// Return true if the underlying region has a single exiting block.
 
  bool hasSingleExitEdge() const { return HasSingleExitEdge; }
 
 
 
  /// Print the static control part.
 
  ///
 
  /// @param OS The output stream the static control part is printed to.
 
  /// @param PrintInstructions Whether to print the statement's instructions as
 
  ///                          well.
 
  void print(raw_ostream &OS, bool PrintInstructions) const;
 
 
 
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 
  /// Print the ScopStmt to stderr.
 
  void dump() const;
 
#endif
 
 
 
  /// Get the isl context of this static control part.
 
  ///
 
  /// @return The isl context of this static control part.
 
  isl::ctx getIslCtx() const;
 
 
 
  /// Directly return the shared_ptr of the context.
 
  const std::shared_ptr<isl_ctx> &getSharedIslCtx() const { return IslCtx; }
 
 
 
  /// Compute the isl representation for the SCEV @p E
 
  ///
 
  /// @param E  The SCEV that should be translated.
 
  /// @param BB An (optional) basic block in which the isl_pw_aff is computed.
 
  ///           SCEVs known to not reference any loops in the SCoP can be
 
  ///           passed without a @p BB.
 
  /// @param NonNegative Flag to indicate the @p E has to be non-negative.
 
  ///
 
  /// Note that this function will always return a valid isl_pw_aff. However, if
 
  /// the translation of @p E was deemed to complex the SCoP is invalidated and
 
  /// a dummy value of appropriate dimension is returned. This allows to bail
 
  /// for complex cases without "error handling code" needed on the users side.
 
  PWACtx getPwAff(const SCEV *E, BasicBlock *BB = nullptr,
 
                  bool NonNegative = false,
 
                  RecordedAssumptionsTy *RecordedAssumptions = nullptr);
 
 
 
  /// Compute the isl representation for the SCEV @p E
 
  ///
 
  /// This function is like @see Scop::getPwAff() but strips away the invalid
 
  /// domain part associated with the piecewise affine function.
 
  isl::pw_aff
 
  getPwAffOnly(const SCEV *E, BasicBlock *BB = nullptr,
 
               RecordedAssumptionsTy *RecordedAssumptions = nullptr);
 
 
 
  /// Check if an <nsw> AddRec for the loop L is cached.
 
  bool hasNSWAddRecForLoop(Loop *L) { return Affinator.hasNSWAddRecForLoop(L); }
 
 
 
  /// Return the domain of @p Stmt.
 
  ///
 
  /// @param Stmt The statement for which the conditions should be returned.
 
  isl::set getDomainConditions(const ScopStmt *Stmt) const;
 
 
 
  /// Return the domain of @p BB.
 
  ///
 
  /// @param BB The block for which the conditions should be returned.
 
  isl::set getDomainConditions(BasicBlock *BB) const;
 
 
 
  /// Return the domain of @p BB. If it does not exist, create an empty one.
 
  isl::set &getOrInitEmptyDomain(BasicBlock *BB) { return DomainMap[BB]; }
 
 
 
  /// Check if domain is determined for @p BB.
 
  bool isDomainDefined(BasicBlock *BB) const { return DomainMap.count(BB) > 0; }
 
 
 
  /// Set domain for @p BB.
 
  void setDomain(BasicBlock *BB, isl::set &Domain) { DomainMap[BB] = Domain; }
 
 
 
  /// Get a union set containing the iteration domains of all statements.
 
  isl::union_set getDomains() const;
 
 
 
  /// Get a union map of all may-writes performed in the SCoP.
 
  isl::union_map getMayWrites();
 
 
 
  /// Get a union map of all must-writes performed in the SCoP.
 
  isl::union_map getMustWrites();
 
 
 
  /// Get a union map of all writes performed in the SCoP.
 
  isl::union_map getWrites();
 
 
 
  /// Get a union map of all reads performed in the SCoP.
 
  isl::union_map getReads();
 
 
 
  /// Get a union map of all memory accesses performed in the SCoP.
 
  isl::union_map getAccesses();
 
 
 
  /// Get a union map of all memory accesses performed in the SCoP.
 
  ///
 
  /// @param Array The array to which the accesses should belong.
 
  isl::union_map getAccesses(ScopArrayInfo *Array);
 
 
 
  /// Get the schedule of all the statements in the SCoP.
 
  ///
 
  /// @return The schedule of all the statements in the SCoP, if the schedule of
 
  /// the Scop does not contain extension nodes, and nullptr, otherwise.
 
  isl::union_map getSchedule() const;
 
 
 
  /// Get a schedule tree describing the schedule of all statements.
 
  isl::schedule getScheduleTree() const;
 
 
 
  /// Update the current schedule
 
  ///
 
  /// NewSchedule The new schedule (given as a flat union-map).
 
  void setSchedule(isl::union_map NewSchedule);
 
 
 
  /// Update the current schedule
 
  ///
 
  /// NewSchedule The new schedule (given as schedule tree).
 
  void setScheduleTree(isl::schedule NewSchedule);
 
 
 
  /// Whether the schedule is the original schedule as derived from the CFG by
 
  /// ScopBuilder.
 
  bool isOriginalSchedule() const { return !ScheduleModified; }
 
 
 
  /// Intersects the domains of all statements in the SCoP.
 
  ///
 
  /// @return true if a change was made
 
  bool restrictDomains(isl::union_set Domain);
 
 
 
  /// Get the depth of a loop relative to the outermost loop in the Scop.
 
  ///
 
  /// This will return
 
  ///    0 if @p L is an outermost loop in the SCoP
 
  ///   >0 for other loops in the SCoP
 
  ///   -1 if @p L is nullptr or there is no outermost loop in the SCoP
 
  int getRelativeLoopDepth(const Loop *L) const;
 
 
 
  /// Find the ScopArrayInfo associated with an isl Id
 
  ///        that has name @p Name.
 
  ScopArrayInfo *getArrayInfoByName(const std::string BaseName);
 
 
 
  /// Simplify the SCoP representation.
 
  ///
 
  /// @param AfterHoisting Whether it is called after invariant load hoisting.
 
  ///                      When true, also removes statements without
 
  ///                      side-effects.
 
  void simplifySCoP(bool AfterHoisting);
 
 
 
  /// Get the next free array index.
 
  ///
 
  /// This function returns a unique index which can be used to identify an
 
  /// array.
 
  long getNextArrayIdx() { return ArrayIdx++; }
 
 
 
  /// Get the next free statement index.
 
  ///
 
  /// This function returns a unique index which can be used to identify a
 
  /// statement.
 
  long getNextStmtIdx() { return StmtIdx++; }
 
 
 
  /// Get the representing SCEV for @p S if applicable, otherwise @p S.
 
  ///
 
  /// Invariant loads of the same location are put in an equivalence class and
 
  /// only one of them is chosen as a representing element that will be
 
  /// modeled as a parameter. The others have to be normalized, i.e.,
 
  /// replaced by the representing element of their equivalence class, in order
 
  /// to get the correct parameter value, e.g., in the SCEVAffinator.
 
  ///
 
  /// @param S The SCEV to normalize.
 
  ///
 
  /// @return The representing SCEV for invariant loads or @p S if none.
 
  const SCEV *getRepresentingInvariantLoadSCEV(const SCEV *S) const;
 
 
 
  /// Return the MemoryAccess that writes an llvm::Value, represented by a
 
  /// ScopArrayInfo.
 
  ///
 
  /// There can be at most one such MemoryAccess per llvm::Value in the SCoP.
 
  /// Zero is possible for read-only values.
 
  MemoryAccess *getValueDef(const ScopArrayInfo *SAI) const;
 
 
 
  /// Return all MemoryAccesses that us an llvm::Value, represented by a
 
  /// ScopArrayInfo.
 
  ArrayRef<MemoryAccess *> getValueUses(const ScopArrayInfo *SAI) const;
 
 
 
  /// Return the MemoryAccess that represents an llvm::PHINode.
 
  ///
 
  /// ExitPHIs's PHINode is not within the SCoPs. This function returns nullptr
 
  /// for them.
 
  MemoryAccess *getPHIRead(const ScopArrayInfo *SAI) const;
 
 
 
  /// Return all MemoryAccesses for all incoming statements of a PHINode,
 
  /// represented by a ScopArrayInfo.
 
  ArrayRef<MemoryAccess *> getPHIIncomings(const ScopArrayInfo *SAI) const;
 
 
 
  /// Return whether @p Inst has a use outside of this SCoP.
 
  bool isEscaping(Instruction *Inst);
 
 
 
  struct ScopStatistics {
 
    int NumAffineLoops = 0;
 
    int NumBoxedLoops = 0;
 
 
 
    int NumValueWrites = 0;
 
    int NumValueWritesInLoops = 0;
 
    int NumPHIWrites = 0;
 
    int NumPHIWritesInLoops = 0;
 
    int NumSingletonWrites = 0;
 
    int NumSingletonWritesInLoops = 0;
 
  };
 
 
 
  /// Collect statistic about this SCoP.
 
  ///
 
  /// These are most commonly used for LLVM's static counters (Statistic.h) in
 
  /// various places. If statistics are disabled, only zeros are returned to
 
  /// avoid the overhead.
 
  ScopStatistics getStatistics() const;
 
 
 
  /// Is this Scop marked as not to be transformed by an optimization heuristic?
 
  /// In this case, only user-directed transformations are allowed.
 
  bool hasDisableHeuristicsHint() const { return HasDisableHeuristicsHint; }
 
 
 
  /// Mark this Scop to not apply an optimization heuristic.
 
  void markDisableHeuristics() { HasDisableHeuristicsHint = true; }
 
};
 
 
 
/// Print Scop scop to raw_ostream OS.
 
raw_ostream &operator<<(raw_ostream &OS, const Scop &scop);
 
 
 
/// The legacy pass manager's analysis pass to compute scop information
 
///        for a region.
 
class ScopInfoRegionPass final : public RegionPass {
 
  /// The Scop pointer which is used to construct a Scop.
 
  std::unique_ptr<Scop> S;
 
 
 
public:
 
  static char ID; // Pass identification, replacement for typeid
 
 
 
  ScopInfoRegionPass() : RegionPass(ID) {}
 
  ~ScopInfoRegionPass() override = default;
 
 
 
  /// Build Scop object, the Polly IR of static control
 
  ///        part for the current SESE-Region.
 
  ///
 
  /// @return If the current region is a valid for a static control part,
 
  ///         return the Polly IR representing this static control part,
 
  ///         return null otherwise.
 
  Scop *getScop() { return S.get(); }
 
  const Scop *getScop() const { return S.get(); }
 
 
 
  /// Calculate the polyhedral scop information for a given Region.
 
  bool runOnRegion(Region *R, RGPassManager &RGM) override;
 
 
 
  void releaseMemory() override { S.reset(); }
 
 
 
  void print(raw_ostream &O, const Module *M = nullptr) const override;
 
 
 
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 
};
 
 
 
llvm::Pass *createScopInfoPrinterLegacyRegionPass(raw_ostream &OS);
 
 
 
class ScopInfo {
 
public:
 
  using RegionToScopMapTy = MapVector<Region *, std::unique_ptr<Scop>>;
 
  using reverse_iterator = RegionToScopMapTy::reverse_iterator;
 
  using const_reverse_iterator = RegionToScopMapTy::const_reverse_iterator;
 
  using iterator = RegionToScopMapTy::iterator;
 
  using const_iterator = RegionToScopMapTy::const_iterator;
 
 
 
private:
 
  /// A map of Region to its Scop object containing
 
  ///        Polly IR of static control part.
 
  RegionToScopMapTy RegionToScopMap;
 
  const DataLayout &DL;
 
  ScopDetection &SD;
 
  ScalarEvolution &SE;
 
  LoopInfo &LI;
 
  AAResults &AA;
 
  DominatorTree &DT;
 
  AssumptionCache &AC;
 
  OptimizationRemarkEmitter &ORE;
 
 
 
public:
 
  ScopInfo(const DataLayout &DL, ScopDetection &SD, ScalarEvolution &SE,
 
           LoopInfo &LI, AAResults &AA, DominatorTree &DT, AssumptionCache &AC,
 
           OptimizationRemarkEmitter &ORE);
 
 
 
  /// Get the Scop object for the given Region.
 
  ///
 
  /// @return If the given region is the maximal region within a scop, return
 
  ///         the scop object. If the given region is a subregion, return a
 
  ///         nullptr. Top level region containing the entry block of a function
 
  ///         is not considered in the scop creation.
 
  Scop *getScop(Region *R) const {
 
    auto MapIt = RegionToScopMap.find(R);
 
    if (MapIt != RegionToScopMap.end())
 
      return MapIt->second.get();
 
    return nullptr;
 
  }
 
 
 
  /// Recompute the Scop-Information for a function.
 
  ///
 
  /// This invalidates any iterators.
 
  void recompute();
 
 
 
  /// Handle invalidation explicitly
 
  bool invalidate(Function &F, const PreservedAnalyses &PA,
 
                  FunctionAnalysisManager::Invalidator &Inv);
 
 
 
  iterator begin() { return RegionToScopMap.begin(); }
 
  iterator end() { return RegionToScopMap.end(); }
 
  const_iterator begin() const { return RegionToScopMap.begin(); }
 
  const_iterator end() const { return RegionToScopMap.end(); }
 
  reverse_iterator rbegin() { return RegionToScopMap.rbegin(); }
 
  reverse_iterator rend() { return RegionToScopMap.rend(); }
 
  const_reverse_iterator rbegin() const { return RegionToScopMap.rbegin(); }
 
  const_reverse_iterator rend() const { return RegionToScopMap.rend(); }
 
  bool empty() const { return RegionToScopMap.empty(); }
 
};
 
 
 
struct ScopInfoAnalysis : AnalysisInfoMixin<ScopInfoAnalysis> {
 
  static AnalysisKey Key;
 
 
 
  using Result = ScopInfo;
 
 
 
  Result run(Function &, FunctionAnalysisManager &);
 
};
 
 
 
struct ScopInfoPrinterPass final : PassInfoMixin<ScopInfoPrinterPass> {
 
  ScopInfoPrinterPass(raw_ostream &OS) : Stream(OS) {}
 
 
 
  PreservedAnalyses run(Function &, FunctionAnalysisManager &);
 
 
 
  raw_ostream &Stream;
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
/// The legacy pass manager's analysis pass to compute scop information
 
///        for the whole function.
 
///
 
/// This pass will maintain a map of the maximal region within a scop to its
 
/// scop object for all the feasible scops present in a function.
 
/// This pass is an alternative to the ScopInfoRegionPass in order to avoid a
 
/// region pass manager.
 
class ScopInfoWrapperPass final : public FunctionPass {
 
  std::unique_ptr<ScopInfo> Result;
 
 
 
public:
 
  ScopInfoWrapperPass() : FunctionPass(ID) {}
 
  ~ScopInfoWrapperPass() override = default;
 
 
 
  static char ID; // Pass identification, replacement for typeid
 
 
 
  ScopInfo *getSI() { return Result.get(); }
 
  const ScopInfo *getSI() const { return Result.get(); }
 
 
 
  /// Calculate all the polyhedral scops for a given function.
 
  bool runOnFunction(Function &F) override;
 
 
 
  void releaseMemory() override { Result.reset(); }
 
 
 
  void print(raw_ostream &O, const Module *M = nullptr) const override;
 
 
 
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 
};
 
 
 
llvm::Pass *createScopInfoPrinterLegacyFunctionPass(llvm::raw_ostream &OS);
 
} // end namespace polly
 
 
 
namespace llvm {
 
void initializeScopInfoRegionPassPass(PassRegistry &);
 
void initializeScopInfoPrinterLegacyRegionPassPass(PassRegistry &);
 
void initializeScopInfoWrapperPassPass(PassRegistry &);
 
void initializeScopInfoPrinterLegacyFunctionPassPass(PassRegistry &);
 
} // end namespace llvm
 
 
 
#endif // POLLY_SCOPINFO_H