- //===-BlockGenerators.h - Helper to generate code for statements-*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- // 
- // This file defines the BlockGenerator and VectorBlockGenerator classes, which 
- // generate sequential code and vectorized code for a polyhedral statement, 
- // respectively. 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef POLLY_BLOCK_GENERATORS_H 
- #define POLLY_BLOCK_GENERATORS_H 
-   
- #include "polly/CodeGen/IRBuilder.h" 
- #include "polly/Support/ScopHelper.h" 
- #include "llvm/Analysis/ScalarEvolutionExpressions.h" 
- #include "isl/isl-noexceptions.h" 
-   
- namespace polly { 
- using llvm::AllocaInst; 
- using llvm::ArrayRef; 
- using llvm::AssertingVH; 
- using llvm::BasicBlock; 
- using llvm::BinaryOperator; 
- using llvm::CmpInst; 
- using llvm::DataLayout; 
- using llvm::DenseMap; 
- using llvm::DominatorTree; 
- using llvm::Function; 
- using llvm::Instruction; 
- using llvm::LoadInst; 
- using llvm::Loop; 
- using llvm::LoopInfo; 
- using llvm::LoopToScevMapT; 
- using llvm::MapVector; 
- using llvm::PHINode; 
- using llvm::ScalarEvolution; 
- using llvm::SetVector; 
- using llvm::SmallVector; 
- using llvm::StoreInst; 
- using llvm::StringRef; 
- using llvm::Type; 
- using llvm::UnaryInstruction; 
- using llvm::Value; 
-   
- class MemoryAccess; 
- class ScopArrayInfo; 
- class IslExprBuilder; 
-   
- /// Generate a new basic block for a polyhedral statement. 
- class BlockGenerator { 
- public: 
-   typedef llvm::SmallVector<ValueMapT, 8> VectorValueMapT; 
-   
-   /// Map types to resolve scalar dependences. 
-   /// 
-   ///@{ 
-   using AllocaMapTy = DenseMap<const ScopArrayInfo *, AssertingVH<AllocaInst>>; 
-   
-   /// Simple vector of instructions to store escape users. 
-   using EscapeUserVectorTy = SmallVector<Instruction *, 4>; 
-   
-   /// Map type to resolve escaping users for scalar instructions. 
-   /// 
-   /// @see The EscapeMap member. 
-   using EscapeUsersAllocaMapTy = 
-       MapVector<Instruction *, 
-                 std::pair<AssertingVH<Value>, EscapeUserVectorTy>>; 
-   
-   ///@} 
-   
-   /// Create a generator for basic blocks. 
-   /// 
-   /// @param Builder     The LLVM-IR Builder used to generate the statement. The 
-   ///                    code is generated at the location, the Builder points 
-   ///                    to. 
-   /// @param LI          The loop info for the current function 
-   /// @param SE          The scalar evolution info for the current function 
-   /// @param DT          The dominator tree of this function. 
-   /// @param ScalarMap   Map from scalars to their demoted location. 
-   /// @param EscapeMap   Map from scalars to their escape users and locations. 
-   /// @param GlobalMap   A mapping from llvm::Values used in the original scop 
-   ///                    region to a new set of llvm::Values. Each reference to 
-   ///                    an original value appearing in this mapping is replaced 
-   ///                    with the new value it is mapped to. 
-   /// @param ExprBuilder An expression builder to generate new access functions. 
-   /// @param StartBlock  The first basic block after the RTC. 
-   BlockGenerator(PollyIRBuilder &Builder, LoopInfo &LI, ScalarEvolution &SE, 
-                  DominatorTree &DT, AllocaMapTy &ScalarMap, 
-                  EscapeUsersAllocaMapTy &EscapeMap, ValueMapT &GlobalMap, 
-                  IslExprBuilder *ExprBuilder, BasicBlock *StartBlock); 
-   
-   /// Copy the basic block. 
-   /// 
-   /// This copies the entire basic block and updates references to old values 
-   /// with references to new values, as defined by GlobalMap. 
-   /// 
-   /// @param Stmt        The block statement to code generate. 
-   /// @param LTS         A map from old loops to new induction variables as 
-   ///                    SCEVs. 
-   /// @param NewAccesses A map from memory access ids to new ast expressions, 
-   ///                    which may contain new access expressions for certain 
-   ///                    memory accesses. 
-   void copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 
-                 isl_id_to_ast_expr *NewAccesses); 
-   
-   /// Remove a ScopArrayInfo's allocation from the ScalarMap. 
-   /// 
-   /// This function allows to remove values from the ScalarMap. This is useful 
-   /// if the corresponding alloca instruction will be deleted (or moved into 
-   /// another module), as without removing these values the underlying 
-   /// AssertingVH will trigger due to us still keeping reference to this 
-   /// scalar. 
-   /// 
-   /// @param Array The array for which the alloca was generated. 
-   void freeScalarAlloc(ScopArrayInfo *Array) { ScalarMap.erase(Array); } 
-   
-   /// Return the alloca for @p Access. 
-   /// 
-   /// If no alloca was mapped for @p Access a new one is created. 
-   /// 
-   /// @param Access    The memory access for which to generate the alloca. 
-   /// 
-   /// @returns The alloca for @p Access or a replacement value taken from 
-   ///          GlobalMap. 
-   Value *getOrCreateAlloca(const MemoryAccess &Access); 
-   
-   /// Return the alloca for @p Array. 
-   /// 
-   /// If no alloca was mapped for @p Array a new one is created. 
-   /// 
-   /// @param Array The array for which to generate the alloca. 
-   /// 
-   /// @returns The alloca for @p Array or a replacement value taken from 
-   ///          GlobalMap. 
-   Value *getOrCreateAlloca(const ScopArrayInfo *Array); 
-   
-   /// Finalize the code generation for the SCoP @p S. 
-   /// 
-   /// This will initialize and finalize the scalar variables we demoted during 
-   /// the code generation. 
-   /// 
-   /// @see createScalarInitialization(Scop &) 
-   /// @see createScalarFinalization(Region &) 
-   void finalizeSCoP(Scop &S); 
-   
-   /// An empty destructor 
-   virtual ~BlockGenerator() {} 
-   
-   BlockGenerator(const BlockGenerator &) = default; 
-   
- protected: 
-   PollyIRBuilder &Builder; 
-   LoopInfo &LI; 
-   ScalarEvolution &SE; 
-   IslExprBuilder *ExprBuilder; 
-   
-   /// The dominator tree of this function. 
-   DominatorTree &DT; 
-   
-   /// The entry block of the current function. 
-   BasicBlock *EntryBB; 
-   
-   /// Map to resolve scalar dependences for PHI operands and scalars. 
-   /// 
-   /// When translating code that contains scalar dependences as they result from 
-   /// inter-block scalar dependences (including the use of data carrying PHI 
-   /// nodes), we do not directly regenerate in-register SSA code, but instead 
-   /// allocate some stack memory through which these scalar values are passed. 
-   /// Only a later pass of -mem2reg will then (re)introduce in-register 
-   /// computations. 
-   /// 
-   /// To keep track of the memory location(s) used to store the data computed by 
-   /// a given SSA instruction, we use the map 'ScalarMap'. ScalarMap maps a 
-   /// given ScopArrayInfo to the junk of stack allocated memory, that is 
-   /// used for code generation. 
-   /// 
-   /// Up to two different ScopArrayInfo objects are associated with each 
-   /// llvm::Value: 
-   /// 
-   /// MemoryType::Value objects are used for normal scalar dependences that go 
-   /// from a scalar definition to its use. Such dependences are lowered by 
-   /// directly writing the value an instruction computes into the corresponding 
-   /// chunk of memory and reading it back from this chunk of memory right before 
-   /// every use of this original scalar value. The memory allocations for 
-   /// MemoryType::Value objects end with '.s2a'. 
-   /// 
-   /// MemoryType::PHI (and MemoryType::ExitPHI) objects are used to model PHI 
-   /// nodes. For each PHI nodes we introduce, besides the Array of type 
-   /// MemoryType::Value, a second chunk of memory into which we write at the end 
-   /// of each basic block preceding the PHI instruction the value passed 
-   /// through this basic block. At the place where the PHI node is executed, we 
-   /// replace the PHI node with a load from the corresponding MemoryType::PHI 
-   /// memory location. The memory allocations for MemoryType::PHI end with 
-   /// '.phiops'. 
-   /// 
-   /// Example: 
-   /// 
-   ///                              Input C Code 
-   ///                              ============ 
-   /// 
-   ///                 S1:      x1 = ... 
-   ///                          for (i=0...N) { 
-   ///                 S2:           x2 = phi(x1, add) 
-   ///                 S3:           add = x2 + 42; 
-   ///                          } 
-   ///                 S4:      print(x1) 
-   ///                          print(x2) 
-   ///                          print(add) 
-   /// 
-   /// 
-   ///        Unmodified IR                         IR After expansion 
-   ///        =============                         ================== 
-   /// 
-   /// S1:   x1 = ...                     S1:    x1 = ... 
-   ///                                           x1.s2a = s1 
-   ///                                           x2.phiops = s1 
-   ///        |                                    | 
-   ///        |   <--<--<--<--<                    |   <--<--<--<--< 
-   ///        | /              \                   | /              \     . 
-   ///        V V               \                  V V               \    . 
-   /// S2:  x2 = phi (x1, add)   |        S2:    x2 = x2.phiops       | 
-   ///                           |               x2.s2a = x2          | 
-   ///                           |                                    | 
-   /// S3:  add = x2 + 42        |        S3:    add = x2 + 42        | 
-   ///                           |               add.s2a = add        | 
-   ///                           |               x2.phiops = add      | 
-   ///        | \               /                  | \               / 
-   ///        |  \             /                   |  \             / 
-   ///        |   >-->-->-->-->                    |   >-->-->-->--> 
-   ///        V                                    V 
-   /// 
-   ///                                    S4:    x1 = x1.s2a 
-   /// S4:  ... = x1                             ... = x1 
-   ///                                           x2 = x2.s2a 
-   ///      ... = x2                             ... = x2 
-   ///                                           add = add.s2a 
-   ///      ... = add                            ... = add 
-   /// 
-   ///      ScalarMap = { x1:Value -> x1.s2a, x2:Value -> x2.s2a, 
-   ///                    add:Value -> add.s2a, x2:PHI -> x2.phiops } 
-   /// 
-   ///  ??? Why does a PHI-node require two memory chunks ??? 
-   /// 
-   ///  One may wonder why a PHI node requires two memory chunks and not just 
-   ///  all data is stored in a single location. The following example tries 
-   ///  to store all data in .s2a and drops the .phiops location: 
-   /// 
-   ///      S1:    x1 = ... 
-   ///             x1.s2a = s1 
-   ///             x2.s2a = s1             // use .s2a instead of .phiops 
-   ///               | 
-   ///               |   <--<--<--<--< 
-   ///               | /              \    . 
-   ///               V V               \   . 
-   ///      S2:    x2 = x2.s2a          |  // value is same as above, but read 
-   ///                                  |  // from .s2a 
-   ///                                  | 
-   ///             x2.s2a = x2          |  // store into .s2a as normal 
-   ///                                  | 
-   ///      S3:    add = x2 + 42        | 
-   ///             add.s2a = add        | 
-   ///             x2.s2a = add         |  // use s2a instead of .phiops 
-   ///               | \               /   // !!! This is wrong, as x2.s2a now 
-   ///               |   >-->-->-->-->     // contains add instead of x2. 
-   ///               V 
-   /// 
-   ///      S4:    x1 = x1.s2a 
-   ///             ... = x1 
-   ///             x2 = x2.s2a             // !!! We now read 'add' instead of 
-   ///             ... = x2                // 'x2' 
-   ///             add = add.s2a 
-   ///             ... = add 
-   /// 
-   ///  As visible in the example, the SSA value of the PHI node may still be 
-   ///  needed _after_ the basic block, which could conceptually branch to the 
-   ///  PHI node, has been run and has overwritten the PHI's old value. Hence, a 
-   ///  single memory location is not enough to code-generate a PHI node. 
-   /// 
-   /// Memory locations used for the special PHI node modeling. 
-   AllocaMapTy &ScalarMap; 
-   
-   /// Map from instructions to their escape users as well as the alloca. 
-   EscapeUsersAllocaMapTy &EscapeMap; 
-   
-   /// A map from llvm::Values referenced in the old code to a new set of 
-   ///        llvm::Values, which is used to replace these old values during 
-   ///        code generation. 
-   ValueMapT &GlobalMap; 
-   
-   /// The first basic block after the RTC. 
-   BasicBlock *StartBlock; 
-   
-   /// Split @p BB to create a new one we can use to clone @p BB in. 
-   BasicBlock *splitBB(BasicBlock *BB); 
-   
-   /// Copy the given basic block. 
-   /// 
-   /// @param Stmt      The statement to code generate. 
-   /// @param BB        The basic block to code generate. 
-   /// @param BBMap     A mapping from old values to their new values in this 
-   /// block. 
-   /// @param LTS         A map from old loops to new induction variables as 
-   ///                    SCEVs. 
-   /// @param NewAccesses A map from memory access ids to new ast expressions, 
-   ///                    which may contain new access expressions for certain 
-   ///                    memory accesses. 
-   /// 
-   /// @returns The copy of the basic block. 
-   BasicBlock *copyBB(ScopStmt &Stmt, BasicBlock *BB, ValueMapT &BBMap, 
-                      LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses); 
-   
-   /// Copy the given basic block. 
-   /// 
-   /// @param Stmt      The statement to code generate. 
-   /// @param BB        The basic block to code generate. 
-   /// @param BBCopy    The new basic block to generate code in. 
-   /// @param BBMap     A mapping from old values to their new values in this 
-   /// block. 
-   /// @param LTS         A map from old loops to new induction variables as 
-   ///                    SCEVs. 
-   /// @param NewAccesses A map from memory access ids to new ast expressions, 
-   ///                    which may contain new access expressions for certain 
-   ///                    memory accesses. 
-   void copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *BBCopy, 
-               ValueMapT &BBMap, LoopToScevMapT <S, 
-               isl_id_to_ast_expr *NewAccesses); 
-   
-   /// Generate reload of scalars demoted to memory and needed by @p Stmt. 
-   /// 
-   /// @param Stmt  The statement we generate code for. 
-   /// @param LTS   A mapping from loops virtual canonical induction 
-   ///              variable to their new values. 
-   /// @param BBMap A mapping from old values to their new values in this block. 
-   /// @param NewAccesses A map from memory access ids to new ast expressions. 
-   void generateScalarLoads(ScopStmt &Stmt, LoopToScevMapT <S, 
-                            ValueMapT &BBMap, 
-                            __isl_keep isl_id_to_ast_expr *NewAccesses); 
-   
-   /// When statement tracing is enabled, build the print instructions for 
-   /// printing the current statement instance. 
-   /// 
-   /// The printed output looks like: 
-   /// 
-   ///     Stmt1(0) 
-   /// 
-   /// If printing of scalars is enabled, it also appends the value of each 
-   /// scalar to the line: 
-   /// 
-   ///     Stmt1(0) %i=1 %sum=5 
-   /// 
-   /// @param Stmt  The statement we generate code for. 
-   /// @param LTS   A mapping from loops virtual canonical induction 
-   ///              variable to their new values. 
-   /// @param BBMap A mapping from old values to their new values in this block. 
-   void generateBeginStmtTrace(ScopStmt &Stmt, LoopToScevMapT <S, 
-                               ValueMapT &BBMap); 
-   
-   /// Generate instructions that compute whether one instance of @p Set is 
-   /// executed. 
-   /// 
-   /// @param Stmt      The statement we generate code for. 
-   /// @param Subdomain A set in the space of @p Stmt's domain. Elements not in 
-   ///                  @p Stmt's domain are ignored. 
-   /// 
-   /// @return An expression of type i1, generated into the current builder 
-   ///         position, that evaluates to 1 if the executed instance is part of 
-   ///         @p Set. 
-   Value *buildContainsCondition(ScopStmt &Stmt, const isl::set &Subdomain); 
-   
-   /// Generate code that executes in a subset of @p Stmt's domain. 
-   /// 
-   /// @param Stmt        The statement we generate code for. 
-   /// @param Subdomain   The condition for some code to be executed. 
-   /// @param Subject     A name for the code that is executed 
-   ///                    conditionally. Used to name new basic blocks and 
-   ///                    instructions. 
-   /// @param GenThenFunc Callback which generates the code to be executed 
-   ///                    when the current executed instance is in @p Set. The 
-   ///                    IRBuilder's position is moved to within the block that 
-   ///                    executes conditionally for this callback. 
-   void generateConditionalExecution(ScopStmt &Stmt, const isl::set &Subdomain, 
-                                     StringRef Subject, 
-                                     const std::function<void()> &GenThenFunc); 
-   
-   /// Generate the scalar stores for the given statement. 
-   /// 
-   /// After the statement @p Stmt was copied all inner-SCoP scalar dependences 
-   /// starting in @p Stmt (hence all scalar write accesses in @p Stmt) need to 
-   /// be demoted to memory. 
-   /// 
-   /// @param Stmt  The statement we generate code for. 
-   /// @param LTS   A mapping from loops virtual canonical induction 
-   ///              variable to their new values 
-   ///              (for values recalculated in the new ScoP, but not 
-   ///               within this basic block) 
-   /// @param BBMap A mapping from old values to their new values in this block. 
-   /// @param NewAccesses A map from memory access ids to new ast expressions. 
-   virtual void generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, 
-                                     ValueMapT &BBMap, 
-                                     __isl_keep isl_id_to_ast_expr *NewAccesses); 
-   
-   /// Handle users of @p Array outside the SCoP. 
-   /// 
-   /// @param S         The current SCoP. 
-   /// @param Inst      The ScopArrayInfo to handle. 
-   void handleOutsideUsers(const Scop &S, ScopArrayInfo *Array); 
-   
-   /// Find scalar statements that have outside users. 
-   /// 
-   /// We register these scalar values to later update subsequent scalar uses of 
-   /// these values to either use the newly computed value from within the scop 
-   /// (if the scop was executed) or the unchanged original code (if the run-time 
-   /// check failed). 
-   /// 
-   /// @param S The scop for which to find the outside users. 
-   void findOutsideUsers(Scop &S); 
-   
-   /// Initialize the memory of demoted scalars. 
-   /// 
-   /// @param S The scop for which to generate the scalar initializers. 
-   void createScalarInitialization(Scop &S); 
-   
-   /// Create exit PHI node merges for PHI nodes with more than two edges 
-   ///        from inside the scop. 
-   /// 
-   /// For scops which have a PHI node in the exit block that has more than two 
-   /// incoming edges from inside the scop region, we require some special 
-   /// handling to understand which of the possible values will be passed to the 
-   /// PHI node from inside the optimized version of the scop. To do so ScopInfo 
-   /// models the possible incoming values as write accesses of the ScopStmts. 
-   /// 
-   /// This function creates corresponding code to reload the computed outgoing 
-   /// value from the stack slot it has been stored into and to pass it on to the 
-   /// PHI node in the original exit block. 
-   /// 
-   /// @param S The scop for which to generate the exiting PHI nodes. 
-   void createExitPHINodeMerges(Scop &S); 
-   
-   /// Promote the values of demoted scalars after the SCoP. 
-   /// 
-   /// If a scalar value was used outside the SCoP we need to promote the value 
-   /// stored in the memory cell allocated for that scalar and combine it with 
-   /// the original value in the non-optimized SCoP. 
-   void createScalarFinalization(Scop &S); 
-   
-   /// Try to synthesize a new value 
-   /// 
-   /// Given an old value, we try to synthesize it in a new context from its 
-   /// original SCEV expression. We start from the original SCEV expression, 
-   /// then replace outdated parameter and loop references, and finally 
-   /// expand it to code that computes this updated expression. 
-   /// 
-   /// @param Stmt      The statement to code generate 
-   /// @param Old       The old Value 
-   /// @param BBMap     A mapping from old values to their new values 
-   ///                  (for values recalculated within this basic block) 
-   /// @param LTS       A mapping from loops virtual canonical induction 
-   ///                  variable to their new values 
-   ///                  (for values recalculated in the new ScoP, but not 
-   ///                   within this basic block) 
-   /// @param L         The loop that surrounded the instruction that referenced 
-   ///                  this value in the original code. This loop is used to 
-   ///                  evaluate the scalar evolution at the right scope. 
-   /// 
-   /// @returns  o A newly synthesized value. 
-   ///           o NULL, if synthesizing the value failed. 
-   Value *trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 
-                                LoopToScevMapT <S, Loop *L) const; 
-   
-   /// Get the new version of a value. 
-   /// 
-   /// Given an old value, we first check if a new version of this value is 
-   /// available in the BBMap or GlobalMap. In case it is not and the value can 
-   /// be recomputed using SCEV, we do so. If we can not recompute a value 
-   /// using SCEV, but we understand that the value is constant within the scop, 
-   /// we return the old value.  If the value can still not be derived, this 
-   /// function will assert. 
-   /// 
-   /// @param Stmt      The statement to code generate. 
-   /// @param Old       The old Value. 
-   /// @param BBMap     A mapping from old values to their new values 
-   ///                  (for values recalculated within this basic block). 
-   /// @param LTS       A mapping from loops virtual canonical induction 
-   ///                  variable to their new values 
-   ///                  (for values recalculated in the new ScoP, but not 
-   ///                   within this basic block). 
-   /// @param L         The loop that surrounded the instruction that referenced 
-   ///                  this value in the original code. This loop is used to 
-   ///                  evaluate the scalar evolution at the right scope. 
-   /// 
-   /// @returns  o The old value, if it is still valid. 
-   ///           o The new value, if available. 
-   ///           o NULL, if no value is found. 
-   Value *getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap, 
-                      LoopToScevMapT <S, Loop *L) const; 
-   
-   void copyInstScalar(ScopStmt &Stmt, Instruction *Inst, ValueMapT &BBMap, 
-                       LoopToScevMapT <S); 
-   
-   /// Get the innermost loop that surrounds the statement @p Stmt. 
-   Loop *getLoopForStmt(const ScopStmt &Stmt) const; 
-   
-   /// Generate the operand address 
-   /// @param NewAccesses A map from memory access ids to new ast expressions, 
-   ///                    which may contain new access expressions for certain 
-   ///                    memory accesses. 
-   Value *generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst, 
-                                   ValueMapT &BBMap, LoopToScevMapT <S, 
-                                   isl_id_to_ast_expr *NewAccesses); 
-   
-   /// Generate the operand address. 
-   /// 
-   /// @param Stmt         The statement to generate code for. 
-   /// @param L            The innermost loop that surrounds the statement. 
-   /// @param Pointer      If the access expression is not changed (ie. not found 
-   ///                     in @p LTS), use this Pointer from the original code 
-   ///                     instead. 
-   /// @param BBMap        A mapping from old values to their new values. 
-   /// @param LTS          A mapping from loops virtual canonical induction 
-   ///                     variable to their new values. 
-   /// @param NewAccesses  Ahead-of-time generated access expressions. 
-   /// @param Id           Identifier of the MemoryAccess to generate. 
-   /// @param ExpectedType The type the returned value should have. 
-   /// 
-   /// @return The generated address. 
-   Value *generateLocationAccessed(ScopStmt &Stmt, Loop *L, Value *Pointer, 
-                                   ValueMapT &BBMap, LoopToScevMapT <S, 
-                                   isl_id_to_ast_expr *NewAccesses, 
-                                   __isl_take isl_id *Id, Type *ExpectedType); 
-   
-   /// Generate the pointer value that is accesses by @p Access. 
-   /// 
-   /// For write accesses, generate the target address. For read accesses, 
-   /// generate the source address. 
-   /// The access can be either an array access or a scalar access. In the first 
-   /// case, the returned address will point to an element into that array. In 
-   /// the scalar case, an alloca is used. 
-   /// If a new AccessRelation is set for the MemoryAccess, the new relation will 
-   /// be used. 
-   /// 
-   /// @param Access      The access to generate a pointer for. 
-   /// @param L           The innermost loop that surrounds the statement. 
-   /// @param LTS         A mapping from loops virtual canonical induction 
-   ///                    variable to their new values. 
-   /// @param BBMap       A mapping from old values to their new values. 
-   /// @param NewAccesses A map from memory access ids to new ast expressions. 
-   /// 
-   /// @return The generated address. 
-   Value *getImplicitAddress(MemoryAccess &Access, Loop *L, LoopToScevMapT <S, 
-                             ValueMapT &BBMap, 
-                             __isl_keep isl_id_to_ast_expr *NewAccesses); 
-   
-   /// @param NewAccesses A map from memory access ids to new ast expressions, 
-   ///                    which may contain new access expressions for certain 
-   ///                    memory accesses. 
-   Value *generateArrayLoad(ScopStmt &Stmt, LoadInst *load, ValueMapT &BBMap, 
-                            LoopToScevMapT <S, 
-                            isl_id_to_ast_expr *NewAccesses); 
-   
-   /// @param NewAccesses A map from memory access ids to new ast expressions, 
-   ///                    which may contain new access expressions for certain 
-   ///                    memory accesses. 
-   void generateArrayStore(ScopStmt &Stmt, StoreInst *store, ValueMapT &BBMap, 
-                           LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses); 
-   
-   /// Copy a single PHI instruction. 
-   /// 
-   /// The implementation in the BlockGenerator is trivial, however it allows 
-   /// subclasses to handle PHIs different. 
-   virtual void copyPHIInstruction(ScopStmt &, PHINode *, ValueMapT &, 
-                                   LoopToScevMapT &) {} 
-   
-   /// Copy a single Instruction. 
-   /// 
-   /// This copies a single Instruction and updates references to old values 
-   /// with references to new values, as defined by GlobalMap and BBMap. 
-   /// 
-   /// @param Stmt        The statement to code generate. 
-   /// @param Inst        The instruction to copy. 
-   /// @param BBMap       A mapping from old values to their new values 
-   ///                    (for values recalculated within this basic block). 
-   /// @param GlobalMap   A mapping from old values to their new values 
-   ///                    (for values recalculated in the new ScoP, but not 
-   ///                    within this basic block). 
-   /// @param LTS         A mapping from loops virtual canonical induction 
-   ///                    variable to their new values 
-   ///                    (for values recalculated in the new ScoP, but not 
-   ///                     within this basic block). 
-   /// @param NewAccesses A map from memory access ids to new ast expressions, 
-   ///                    which may contain new access expressions for certain 
-   ///                    memory accesses. 
-   void copyInstruction(ScopStmt &Stmt, Instruction *Inst, ValueMapT &BBMap, 
-                        LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses); 
-   
-   /// Helper to determine if @p Inst can be synthesized in @p Stmt. 
-   /// 
-   /// @returns false, iff @p Inst can be synthesized in @p Stmt. 
-   bool canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst); 
-   
-   /// Remove dead instructions generated for BB 
-   /// 
-   /// @param BB The basic block code for which code has been generated. 
-   /// @param BBMap A local map from old to new instructions. 
-   void removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap); 
-   
-   /// Invalidate the scalar evolution expressions for a scop. 
-   /// 
-   /// This function invalidates the scalar evolution results for all 
-   /// instructions that are part of a given scop, and the loops 
-   /// surrounding the users of merge blocks. This is necessary to ensure that 
-   /// later scops do not obtain scalar evolution expressions that reference 
-   /// values that earlier dominated the later scop, but have been moved in the 
-   /// conditional part of an earlier scop and consequently do not any more 
-   /// dominate the later scop. 
-   /// 
-   /// @param S The scop to invalidate. 
-   void invalidateScalarEvolution(Scop &S); 
- }; 
-   
- /// Generate a new vector basic block for a polyhedral statement. 
- /// 
- /// The only public function exposed is generate(). 
- class VectorBlockGenerator final : BlockGenerator { 
- public: 
-   /// Generate a new vector basic block for a ScoPStmt. 
-   /// 
-   /// This code generation is similar to the normal, scalar code generation, 
-   /// except that each instruction is code generated for several vector lanes 
-   /// at a time. If possible instructions are issued as actual vector 
-   /// instructions, but e.g. for address calculation instructions we currently 
-   /// generate scalar instructions for each vector lane. 
-   /// 
-   /// @param BlockGen    A block generator object used as parent. 
-   /// @param Stmt        The statement to code generate. 
-   /// @param VLTS        A mapping from loops virtual canonical induction 
-   ///                    variable to their new values 
-   ///                    (for values recalculated in the new ScoP, but not 
-   ///                     within this basic block), one for each lane. 
-   /// @param Schedule    A map from the statement to a schedule where the 
-   ///                    innermost dimension is the dimension of the innermost 
-   ///                    loop containing the statement. 
-   /// @param NewAccesses A map from memory access ids to new ast expressions, 
-   ///                    which may contain new access expressions for certain 
-   ///                    memory accesses. 
-   static void generate(BlockGenerator &BlockGen, ScopStmt &Stmt, 
-                        std::vector<LoopToScevMapT> &VLTS, 
-                        __isl_keep isl_map *Schedule, 
-                        __isl_keep isl_id_to_ast_expr *NewAccesses) { 
-     VectorBlockGenerator Generator(BlockGen, VLTS, Schedule); 
-     Generator.copyStmt(Stmt, NewAccesses); 
-   } 
-   
- private: 
-   // This is a vector of loop->scev maps.  The first map is used for the first 
-   // vector lane, ... 
-   // Each map, contains information about Instructions in the old ScoP, which 
-   // are recalculated in the new SCoP. When copying the basic block, we replace 
-   // all references to the old instructions with their recalculated values. 
-   // 
-   // For example, when the code generator produces this AST: 
-   // 
-   //   for (int c1 = 0; c1 <= 1023; c1 += 1) 
-   //     for (int c2 = 0; c2 <= 1023; c2 += VF) 
-   //       for (int lane = 0; lane <= VF; lane += 1) 
-   //         Stmt(c2 + lane + 3, c1); 
-   // 
-   // VLTS[lane] contains a map: 
-   //   "outer loop in the old loop nest" -> SCEV("c2 + lane + 3"), 
-   //   "inner loop in the old loop nest" -> SCEV("c1"). 
-   std::vector<LoopToScevMapT> &VLTS; 
-   
-   // A map from the statement to a schedule where the innermost dimension is the 
-   // dimension of the innermost loop containing the statement. 
-   isl_map *Schedule; 
-   
-   VectorBlockGenerator(BlockGenerator &BlockGen, 
-                        std::vector<LoopToScevMapT> &VLTS, 
-                        __isl_keep isl_map *Schedule); 
-   
-   int getVectorWidth(); 
-   
-   Value *getVectorValue(ScopStmt &Stmt, Value *Old, ValueMapT &VectorMap, 
-                         VectorValueMapT &ScalarMaps, Loop *L); 
-   
-   /// Load a vector from a set of adjacent scalars 
-   /// 
-   /// In case a set of scalars is known to be next to each other in memory, 
-   /// create a vector load that loads those scalars 
-   /// 
-   /// %vector_ptr= bitcast double* %p to <4 x double>* 
-   /// %vec_full = load <4 x double>* %vector_ptr 
-   /// 
-   /// @param Stmt           The statement to code generate. 
-   /// @param NegativeStride This is used to indicate a -1 stride. In such 
-   ///                       a case we load the end of a base address and 
-   ///                       shuffle the accesses in reverse order into the 
-   ///                       vector. By default we would do only positive 
-   ///                       strides. 
-   /// 
-   /// @param NewAccesses    A map from memory access ids to new ast 
-   ///                       expressions, which may contain new access 
-   ///                       expressions for certain memory accesses. 
-   Value *generateStrideOneLoad(ScopStmt &Stmt, LoadInst *Load, 
-                                VectorValueMapT &ScalarMaps, 
-                                __isl_keep isl_id_to_ast_expr *NewAccesses, 
-                                bool NegativeStride); 
-   
-   /// Load a vector initialized from a single scalar in memory 
-   /// 
-   /// In case all elements of a vector are initialized to the same 
-   /// scalar value, this value is loaded and shuffled into all elements 
-   /// of the vector. 
-   /// 
-   /// %splat_one = load <1 x double>* %p 
-   /// %splat = shufflevector <1 x double> %splat_one, <1 x 
-   ///       double> %splat_one, <4 x i32> zeroinitializer 
-   /// 
-   /// @param NewAccesses A map from memory access ids to new ast expressions, 
-   ///                    which may contain new access expressions for certain 
-   ///                    memory accesses. 
-   Value *generateStrideZeroLoad(ScopStmt &Stmt, LoadInst *Load, 
-                                 ValueMapT &BBMap, 
-                                 __isl_keep isl_id_to_ast_expr *NewAccesses); 
-   
-   /// Load a vector from scalars distributed in memory 
-   /// 
-   /// In case some scalars a distributed randomly in memory. Create a vector 
-   /// by loading each scalar and by inserting one after the other into the 
-   /// vector. 
-   /// 
-   /// %scalar_1= load double* %p_1 
-   /// %vec_1 = insertelement <2 x double> undef, double %scalar_1, i32 0 
-   /// %scalar 2 = load double* %p_2 
-   /// %vec_2 = insertelement <2 x double> %vec_1, double %scalar_1, i32 1 
-   /// 
-   /// @param NewAccesses A map from memory access ids to new ast expressions, 
-   ///                    which may contain new access expressions for certain 
-   ///                    memory accesses. 
-   Value *generateUnknownStrideLoad(ScopStmt &Stmt, LoadInst *Load, 
-                                    VectorValueMapT &ScalarMaps, 
-                                    __isl_keep isl_id_to_ast_expr *NewAccesses); 
-   
-   /// @param NewAccesses A map from memory access ids to new ast expressions, 
-   ///                    which may contain new access expressions for certain 
-   ///                    memory accesses. 
-   void generateLoad(ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap, 
-                     VectorValueMapT &ScalarMaps, 
-                     __isl_keep isl_id_to_ast_expr *NewAccesses); 
-   
-   void copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst, 
-                      ValueMapT &VectorMap, VectorValueMapT &ScalarMaps); 
-   
-   void copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst, 
-                       ValueMapT &VectorMap, VectorValueMapT &ScalarMaps); 
-   
-   /// @param NewAccesses A map from memory access ids to new ast expressions, 
-   ///                    which may contain new access expressions for certain 
-   ///                    memory accesses. 
-   void copyStore(ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap, 
-                  VectorValueMapT &ScalarMaps, 
-                  __isl_keep isl_id_to_ast_expr *NewAccesses); 
-   
-   /// @param NewAccesses A map from memory access ids to new ast expressions, 
-   ///                    which may contain new access expressions for certain 
-   ///                    memory accesses. 
-   void copyInstScalarized(ScopStmt &Stmt, Instruction *Inst, 
-                           ValueMapT &VectorMap, VectorValueMapT &ScalarMaps, 
-                           __isl_keep isl_id_to_ast_expr *NewAccesses); 
-   
-   bool extractScalarValues(const Instruction *Inst, ValueMapT &VectorMap, 
-                            VectorValueMapT &ScalarMaps); 
-   
-   bool hasVectorOperands(const Instruction *Inst, ValueMapT &VectorMap); 
-   
-   /// Generate vector loads for scalars. 
-   /// 
-   /// @param Stmt           The scop statement for which to generate the loads. 
-   /// @param VectorBlockMap A map that will be updated to relate the original 
-   ///                       values with the newly generated vector loads. 
-   void generateScalarVectorLoads(ScopStmt &Stmt, ValueMapT &VectorBlockMap); 
-   
-   /// Verify absence of scalar stores. 
-   /// 
-   /// @param Stmt The scop statement to check for scalar stores. 
-   void verifyNoScalarStores(ScopStmt &Stmt); 
-   
-   /// @param NewAccesses A map from memory access ids to new ast expressions, 
-   ///                    which may contain new access expressions for certain 
-   ///                    memory accesses. 
-   void copyInstruction(ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap, 
-                        VectorValueMapT &ScalarMaps, 
-                        __isl_keep isl_id_to_ast_expr *NewAccesses); 
-   
-   /// @param NewAccesses A map from memory access ids to new ast expressions, 
-   ///                    which may contain new access expressions for certain 
-   ///                    memory accesses. 
-   void copyStmt(ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses); 
- }; 
-   
- /// Generator for new versions of polyhedral region statements. 
- class RegionGenerator final : BlockGenerator { 
- public: 
-   /// Create a generator for regions. 
-   /// 
-   /// @param BlockGen A generator for basic blocks. 
-   RegionGenerator(BlockGenerator &BlockGen) : BlockGenerator(BlockGen) {} 
-   
-   virtual ~RegionGenerator() {} 
-   
-   /// Copy the region statement @p Stmt. 
-   /// 
-   /// This copies the entire region represented by @p Stmt and updates 
-   /// references to old values with references to new values, as defined by 
-   /// GlobalMap. 
-   /// 
-   /// @param Stmt      The statement to code generate. 
-   /// @param LTS       A map from old loops to new induction variables as SCEVs. 
-   void copyStmt(ScopStmt &Stmt, LoopToScevMapT <S, 
-                 __isl_keep isl_id_to_ast_expr *IdToAstExp); 
-   
- private: 
-   /// A map from old to the first new block in the region, that was created to 
-   /// model the old basic block. 
-   DenseMap<BasicBlock *, BasicBlock *> StartBlockMap; 
-   
-   /// A map from old to the last new block in the region, that was created to 
-   /// model the old basic block. 
-   DenseMap<BasicBlock *, BasicBlock *> EndBlockMap; 
-   
-   /// The "BBMaps" for the whole region (one for each block). In case a basic 
-   /// block is code generated to multiple basic blocks (e.g., for partial 
-   /// writes), the StartBasic is used as index for the RegionMap. 
-   DenseMap<BasicBlock *, ValueMapT> RegionMaps; 
-   
-   /// Mapping to remember PHI nodes that still need incoming values. 
-   using PHINodePairTy = std::pair<PHINode *, PHINode *>; 
-   DenseMap<BasicBlock *, SmallVector<PHINodePairTy, 4>> IncompletePHINodeMap; 
-   
-   /// Repair the dominance tree after we created a copy block for @p BB. 
-   /// 
-   /// @returns The immediate dominator in the DT for @p BBCopy if in the region. 
-   BasicBlock *repairDominance(BasicBlock *BB, BasicBlock *BBCopy); 
-   
-   /// Add the new operand from the copy of @p IncomingBB to @p PHICopy. 
-   /// 
-   /// PHI nodes, which may have (multiple) edges that enter from outside the 
-   /// non-affine subregion and even from outside the scop, are code generated as 
-   /// follows: 
-   /// 
-   /// # Original 
-   /// 
-   ///   Region: %A-> %exit 
-   ///   NonAffine Stmt: %nonaffB -> %D (includes %nonaffB, %nonaffC) 
-   /// 
-   ///     pre: 
-   ///       %val = add i64 1, 1 
-   /// 
-   ///     A: 
-   ///      br label %nonaff 
-   /// 
-   ///     nonaffB: 
-   ///       %phi = phi i64 [%val, %A], [%valC, %nonAffC], [%valD, %D] 
-   ///       %cmp = <nonaff> 
-   ///       br i1 %cmp, label %C, label %nonaffC 
-   /// 
-   ///     nonaffC: 
-   ///       %valC = add i64 1, 1 
-   ///       br i1 undef, label %D, label %nonaffB 
-   /// 
-   ///     D: 
-   ///       %valD = ... 
-   ///       %exit_cond = <loopexit> 
-   ///       br i1 %exit_cond, label %nonaffB, label %exit 
-   /// 
-   ///     exit: 
-   ///       ... 
-   /// 
-   ///  - %start and %C enter from outside the non-affine region. 
-   ///  - %nonaffC enters from within the non-affine region. 
-   /// 
-   ///  # New 
-   /// 
-   ///    polly.A: 
-   ///       store i64 %val, i64* %phi.phiops 
-   ///       br label %polly.nonaffA.entry 
-   /// 
-   ///    polly.nonaffB.entry: 
-   ///       %phi.phiops.reload = load i64, i64* %phi.phiops 
-   ///       br label %nonaffB 
-   /// 
-   ///    polly.nonaffB: 
-   ///       %polly.phi = [%phi.phiops.reload, %nonaffB.entry], 
-   ///                    [%p.valC, %polly.nonaffC] 
-   /// 
-   ///    polly.nonaffC: 
-   ///       %p.valC = add i64 1, 1 
-   ///       br i1 undef, label %polly.D, label %polly.nonaffB 
-   /// 
-   ///    polly.D: 
-   ///        %p.valD = ... 
-   ///        store i64 %p.valD, i64* %phi.phiops 
-   ///        %p.exit_cond = <loopexit> 
-   ///        br i1 %p.exit_cond, label %polly.nonaffB, label %exit 
-   /// 
-   /// Values that enter the PHI from outside the non-affine region are stored 
-   /// into the stack slot %phi.phiops by statements %polly.A and %polly.D and 
-   /// reloaded in %polly.nonaffB.entry, a basic block generated before the 
-   /// actual non-affine region. 
-   /// 
-   /// When generating the PHI node of the non-affine region in %polly.nonaffB, 
-   /// incoming edges from outside the region are combined into a single branch 
-   /// from %polly.nonaffB.entry which has as incoming value the value reloaded 
-   /// from the %phi.phiops stack slot. Incoming edges from within the region 
-   /// refer to the copied instructions (%p.valC) and basic blocks 
-   /// (%polly.nonaffC) of the non-affine region. 
-   /// 
-   /// @param Stmt       The statement to code generate. 
-   /// @param PHI        The original PHI we copy. 
-   /// @param PHICopy    The copy of @p PHI. 
-   /// @param IncomingBB An incoming block of @p PHI. 
-   /// @param LTS        A map from old loops to new induction variables as 
-   /// SCEVs. 
-   void addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, PHINode *PHICopy, 
-                        BasicBlock *IncomingBB, LoopToScevMapT <S); 
-   
-   /// Create a PHI that combines the incoming values from all incoming blocks 
-   /// that are in the subregion. 
-   /// 
-   /// PHIs in the subregion's exit block can have incoming edges from within and 
-   /// outside the subregion. This function combines the incoming values from 
-   /// within the subregion to appear as if there is only one incoming edge from 
-   /// the subregion (an additional exit block is created by RegionGenerator). 
-   /// This is to avoid that a value is written to the .phiops location without 
-   /// leaving the subregion because the exiting block as an edge back into the 
-   /// subregion. 
-   /// 
-   /// @param MA    The WRITE of MemoryKind::PHI/MemoryKind::ExitPHI for a PHI in 
-   ///              the subregion's exit block. 
-   /// @param LTS   Virtual induction variable mapping. 
-   /// @param BBMap A mapping from old values to their new values in this block. 
-   /// @param L     Loop surrounding this region statement. 
-   /// 
-   /// @returns The constructed PHI node. 
-   PHINode *buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S, ValueMapT &BBMap, 
-                         Loop *L); 
-   
-   /// @param Return the new value of a scalar write, creating a PHINode if 
-   ///        necessary. 
-   /// 
-   /// @param MA    A scalar WRITE MemoryAccess. 
-   /// @param LTS   Virtual induction variable mapping. 
-   /// @param BBMap A mapping from old values to their new values in this block. 
-   /// 
-   /// @returns The effective value of @p MA's written value when leaving the 
-   ///          subregion. 
-   /// @see buildExitPHI 
-   Value *getExitScalar(MemoryAccess *MA, LoopToScevMapT <S, ValueMapT &BBMap); 
-   
-   /// Generate the scalar stores for the given statement. 
-   /// 
-   /// After the statement @p Stmt was copied all inner-SCoP scalar dependences 
-   /// starting in @p Stmt (hence all scalar write accesses in @p Stmt) need to 
-   /// be demoted to memory. 
-   /// 
-   /// @param Stmt  The statement we generate code for. 
-   /// @param LTS   A mapping from loops virtual canonical induction variable to 
-   ///              their new values (for values recalculated in the new ScoP, 
-   ///              but not within this basic block) 
-   /// @param BBMap A mapping from old values to their new values in this block. 
-   /// @param LTS   A mapping from loops virtual canonical induction variable to 
-   /// their new values. 
-   void 
-   generateScalarStores(ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMAp, 
-                        __isl_keep isl_id_to_ast_expr *NewAccesses) override; 
-   
-   /// Copy a single PHI instruction. 
-   /// 
-   /// This copies a single PHI instruction and updates references to old values 
-   /// with references to new values, as defined by GlobalMap and BBMap. 
-   /// 
-   /// @param Stmt      The statement to code generate. 
-   /// @param PHI       The PHI instruction to copy. 
-   /// @param BBMap     A mapping from old values to their new values 
-   ///                  (for values recalculated within this basic block). 
-   /// @param LTS       A map from old loops to new induction variables as SCEVs. 
-   void copyPHIInstruction(ScopStmt &Stmt, PHINode *Inst, ValueMapT &BBMap, 
-                           LoopToScevMapT <S) override; 
- }; 
- } // namespace polly 
- #endif 
-