- ////===- SampleProfileLoadBaseImpl.h - Profile loader base impl --*- C++-*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- // 
- /// \file 
- /// This file provides the interface for the sampled PGO profile loader base 
- /// implementation. 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H 
- #define LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H 
-   
- #include "llvm/ADT/ArrayRef.h" 
- #include "llvm/ADT/DenseMap.h" 
- #include "llvm/ADT/DenseSet.h" 
- #include "llvm/ADT/SmallPtrSet.h" 
- #include "llvm/ADT/SmallSet.h" 
- #include "llvm/ADT/SmallVector.h" 
- #include "llvm/Analysis/LoopInfo.h" 
- #include "llvm/Analysis/OptimizationRemarkEmitter.h" 
- #include "llvm/Analysis/PostDominators.h" 
- #include "llvm/IR/BasicBlock.h" 
- #include "llvm/IR/CFG.h" 
- #include "llvm/IR/DebugInfoMetadata.h" 
- #include "llvm/IR/DebugLoc.h" 
- #include "llvm/IR/Dominators.h" 
- #include "llvm/IR/Function.h" 
- #include "llvm/IR/Instruction.h" 
- #include "llvm/IR/Instructions.h" 
- #include "llvm/IR/Module.h" 
- #include "llvm/ProfileData/SampleProf.h" 
- #include "llvm/ProfileData/SampleProfReader.h" 
- #include "llvm/Support/CommandLine.h" 
- #include "llvm/Support/GenericDomTree.h" 
- #include "llvm/Support/raw_ostream.h" 
- #include "llvm/Transforms/Utils/SampleProfileInference.h" 
- #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h" 
-   
- namespace llvm { 
- using namespace sampleprof; 
- using namespace sampleprofutil; 
- using ProfileCount = Function::ProfileCount; 
-   
- #define DEBUG_TYPE "sample-profile-impl" 
-   
- namespace afdo_detail { 
-   
- template <typename BlockT> struct IRTraits; 
- template <> struct IRTraits<BasicBlock> { 
-   using InstructionT = Instruction; 
-   using BasicBlockT = BasicBlock; 
-   using FunctionT = Function; 
-   using BlockFrequencyInfoT = BlockFrequencyInfo; 
-   using LoopT = Loop; 
-   using LoopInfoPtrT = std::unique_ptr<LoopInfo>; 
-   using DominatorTreePtrT = std::unique_ptr<DominatorTree>; 
-   using PostDominatorTreeT = PostDominatorTree; 
-   using PostDominatorTreePtrT = std::unique_ptr<PostDominatorTree>; 
-   using OptRemarkEmitterT = OptimizationRemarkEmitter; 
-   using OptRemarkAnalysisT = OptimizationRemarkAnalysis; 
-   using PredRangeT = pred_range; 
-   using SuccRangeT = succ_range; 
-   static Function &getFunction(Function &F) { return F; } 
-   static const BasicBlock *getEntryBB(const Function *F) { 
-     return &F->getEntryBlock(); 
-   } 
-   static pred_range getPredecessors(BasicBlock *BB) { return predecessors(BB); } 
-   static succ_range getSuccessors(BasicBlock *BB) { return successors(BB); } 
- }; 
-   
- } // end namespace afdo_detail 
-   
- extern cl::opt<bool> SampleProfileUseProfi; 
-   
- template <typename BT> class SampleProfileLoaderBaseImpl { 
- public: 
-   SampleProfileLoaderBaseImpl(std::string Name, std::string RemapName) 
-       : Filename(Name), RemappingFilename(RemapName) {} 
-   void dump() { Reader->dump(); } 
-   
-   using InstructionT = typename afdo_detail::IRTraits<BT>::InstructionT; 
-   using BasicBlockT = typename afdo_detail::IRTraits<BT>::BasicBlockT; 
-   using BlockFrequencyInfoT = 
-       typename afdo_detail::IRTraits<BT>::BlockFrequencyInfoT; 
-   using FunctionT = typename afdo_detail::IRTraits<BT>::FunctionT; 
-   using LoopT = typename afdo_detail::IRTraits<BT>::LoopT; 
-   using LoopInfoPtrT = typename afdo_detail::IRTraits<BT>::LoopInfoPtrT; 
-   using DominatorTreePtrT = 
-       typename afdo_detail::IRTraits<BT>::DominatorTreePtrT; 
-   using PostDominatorTreePtrT = 
-       typename afdo_detail::IRTraits<BT>::PostDominatorTreePtrT; 
-   using PostDominatorTreeT = 
-       typename afdo_detail::IRTraits<BT>::PostDominatorTreeT; 
-   using OptRemarkEmitterT = 
-       typename afdo_detail::IRTraits<BT>::OptRemarkEmitterT; 
-   using OptRemarkAnalysisT = 
-       typename afdo_detail::IRTraits<BT>::OptRemarkAnalysisT; 
-   using PredRangeT = typename afdo_detail::IRTraits<BT>::PredRangeT; 
-   using SuccRangeT = typename afdo_detail::IRTraits<BT>::SuccRangeT; 
-   
-   using BlockWeightMap = DenseMap<const BasicBlockT *, uint64_t>; 
-   using EquivalenceClassMap = 
-       DenseMap<const BasicBlockT *, const BasicBlockT *>; 
-   using Edge = std::pair<const BasicBlockT *, const BasicBlockT *>; 
-   using EdgeWeightMap = DenseMap<Edge, uint64_t>; 
-   using BlockEdgeMap = 
-       DenseMap<const BasicBlockT *, SmallVector<const BasicBlockT *, 8>>; 
-   
- protected: 
-   ~SampleProfileLoaderBaseImpl() = default; 
-   friend class SampleCoverageTracker; 
-   
-   Function &getFunction(FunctionT &F) { 
-     return afdo_detail::IRTraits<BT>::getFunction(F); 
-   } 
-   const BasicBlockT *getEntryBB(const FunctionT *F) { 
-     return afdo_detail::IRTraits<BT>::getEntryBB(F); 
-   } 
-   PredRangeT getPredecessors(BasicBlockT *BB) { 
-     return afdo_detail::IRTraits<BT>::getPredecessors(BB); 
-   } 
-   SuccRangeT getSuccessors(BasicBlockT *BB) { 
-     return afdo_detail::IRTraits<BT>::getSuccessors(BB); 
-   } 
-   
-   unsigned getFunctionLoc(FunctionT &Func); 
-   virtual ErrorOr<uint64_t> getInstWeight(const InstructionT &Inst); 
-   ErrorOr<uint64_t> getInstWeightImpl(const InstructionT &Inst); 
-   ErrorOr<uint64_t> getBlockWeight(const BasicBlockT *BB); 
-   mutable DenseMap<const DILocation *, const FunctionSamples *> 
-       DILocation2SampleMap; 
-   virtual const FunctionSamples * 
-   findFunctionSamples(const InstructionT &I) const; 
-   void printEdgeWeight(raw_ostream &OS, Edge E); 
-   void printBlockWeight(raw_ostream &OS, const BasicBlockT *BB) const; 
-   void printBlockEquivalence(raw_ostream &OS, const BasicBlockT *BB); 
-   bool computeBlockWeights(FunctionT &F); 
-   void findEquivalenceClasses(FunctionT &F); 
-   void findEquivalencesFor(BasicBlockT *BB1, 
-                            ArrayRef<BasicBlockT *> Descendants, 
-                            PostDominatorTreeT *DomTree); 
-   void propagateWeights(FunctionT &F); 
-   void applyProfi(FunctionT &F, BlockEdgeMap &Successors, 
-                   BlockWeightMap &SampleBlockWeights, 
-                   BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights); 
-   uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 
-   void buildEdges(FunctionT &F); 
-   bool propagateThroughEdges(FunctionT &F, bool UpdateBlockCount); 
-   void clearFunctionData(bool ResetDT = true); 
-   void computeDominanceAndLoopInfo(FunctionT &F); 
-   bool 
-   computeAndPropagateWeights(FunctionT &F, 
-                              const DenseSet<GlobalValue::GUID> &InlinedGUIDs); 
-   void initWeightPropagation(FunctionT &F, 
-                              const DenseSet<GlobalValue::GUID> &InlinedGUIDs); 
-   void 
-   finalizeWeightPropagation(FunctionT &F, 
-                             const DenseSet<GlobalValue::GUID> &InlinedGUIDs); 
-   void emitCoverageRemarks(FunctionT &F); 
-   
-   /// Map basic blocks to their computed weights. 
-   /// 
-   /// The weight of a basic block is defined to be the maximum 
-   /// of all the instruction weights in that block. 
-   BlockWeightMap BlockWeights; 
-   
-   /// Map edges to their computed weights. 
-   /// 
-   /// Edge weights are computed by propagating basic block weights in 
-   /// SampleProfile::propagateWeights. 
-   EdgeWeightMap EdgeWeights; 
-   
-   /// Set of visited blocks during propagation. 
-   SmallPtrSet<const BasicBlockT *, 32> VisitedBlocks; 
-   
-   /// Set of visited edges during propagation. 
-   SmallSet<Edge, 32> VisitedEdges; 
-   
-   /// Equivalence classes for block weights. 
-   /// 
-   /// Two blocks BB1 and BB2 are in the same equivalence class if they 
-   /// dominate and post-dominate each other, and they are in the same loop 
-   /// nest. When this happens, the two blocks are guaranteed to execute 
-   /// the same number of times. 
-   EquivalenceClassMap EquivalenceClass; 
-   
-   /// Dominance, post-dominance and loop information. 
-   DominatorTreePtrT DT; 
-   PostDominatorTreePtrT PDT; 
-   LoopInfoPtrT LI; 
-   
-   /// Predecessors for each basic block in the CFG. 
-   BlockEdgeMap Predecessors; 
-   
-   /// Successors for each basic block in the CFG. 
-   BlockEdgeMap Successors; 
-   
-   /// Profile coverage tracker. 
-   SampleCoverageTracker CoverageTracker; 
-   
-   /// Profile reader object. 
-   std::unique_ptr<SampleProfileReader> Reader; 
-   
-   /// Samples collected for the body of this function. 
-   FunctionSamples *Samples = nullptr; 
-   
-   /// Name of the profile file to load. 
-   std::string Filename; 
-   
-   /// Name of the profile remapping file to load. 
-   std::string RemappingFilename; 
-   
-   /// Profile Summary Info computed from sample profile. 
-   ProfileSummaryInfo *PSI = nullptr; 
-   
-   /// Optimization Remark Emitter used to emit diagnostic remarks. 
-   OptRemarkEmitterT *ORE = nullptr; 
- }; 
-   
- /// Clear all the per-function data used to load samples and propagate weights. 
- template <typename BT> 
- void SampleProfileLoaderBaseImpl<BT>::clearFunctionData(bool ResetDT) { 
-   BlockWeights.clear(); 
-   EdgeWeights.clear(); 
-   VisitedBlocks.clear(); 
-   VisitedEdges.clear(); 
-   EquivalenceClass.clear(); 
-   if (ResetDT) { 
-     DT = nullptr; 
-     PDT = nullptr; 
-     LI = nullptr; 
-   } 
-   Predecessors.clear(); 
-   Successors.clear(); 
-   CoverageTracker.clear(); 
- } 
-   
- #ifndef NDEBUG 
- /// Print the weight of edge \p E on stream \p OS. 
- /// 
- /// \param OS  Stream to emit the output to. 
- /// \param E  Edge to print. 
- template <typename BT> 
- void SampleProfileLoaderBaseImpl<BT>::printEdgeWeight(raw_ostream &OS, Edge E) { 
-   OS << "weight[" << E.first->getName() << "->" << E.second->getName() 
-      << "]: " << EdgeWeights[E] << "\n"; 
- } 
-   
- /// Print the equivalence class of block \p BB on stream \p OS. 
- /// 
- /// \param OS  Stream to emit the output to. 
- /// \param BB  Block to print. 
- template <typename BT> 
- void SampleProfileLoaderBaseImpl<BT>::printBlockEquivalence( 
-     raw_ostream &OS, const BasicBlockT *BB) { 
-   const BasicBlockT *Equiv = EquivalenceClass[BB]; 
-   OS << "equivalence[" << BB->getName() 
-      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 
- } 
-   
- /// Print the weight of block \p BB on stream \p OS. 
- /// 
- /// \param OS  Stream to emit the output to. 
- /// \param BB  Block to print. 
- template <typename BT> 
- void SampleProfileLoaderBaseImpl<BT>::printBlockWeight( 
-     raw_ostream &OS, const BasicBlockT *BB) const { 
-   const auto &I = BlockWeights.find(BB); 
-   uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 
-   OS << "weight[" << BB->getName() << "]: " << W << "\n"; 
- } 
- #endif 
-   
- /// Get the weight for an instruction. 
- /// 
- /// The "weight" of an instruction \p Inst is the number of samples 
- /// collected on that instruction at runtime. To retrieve it, we 
- /// need to compute the line number of \p Inst relative to the start of its 
- /// function. We use HeaderLineno to compute the offset. We then 
- /// look up the samples collected for \p Inst using BodySamples. 
- /// 
- /// \param Inst Instruction to query. 
- /// 
- /// \returns the weight of \p Inst. 
- template <typename BT> 
- ErrorOr<uint64_t> 
- SampleProfileLoaderBaseImpl<BT>::getInstWeight(const InstructionT &Inst) { 
-   return getInstWeightImpl(Inst); 
- } 
-   
- template <typename BT> 
- ErrorOr<uint64_t> 
- SampleProfileLoaderBaseImpl<BT>::getInstWeightImpl(const InstructionT &Inst) { 
-   const FunctionSamples *FS = findFunctionSamples(Inst); 
-   if (!FS) 
-     return std::error_code(); 
-   
-   const DebugLoc &DLoc = Inst.getDebugLoc(); 
-   if (!DLoc) 
-     return std::error_code(); 
-   
-   const DILocation *DIL = DLoc; 
-   uint32_t LineOffset = FunctionSamples::getOffset(DIL); 
-   uint32_t Discriminator; 
-   if (EnableFSDiscriminator) 
-     Discriminator = DIL->getDiscriminator(); 
-   else 
-     Discriminator = DIL->getBaseDiscriminator(); 
-   
-   ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 
-   if (R) { 
-     bool FirstMark = 
-         CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 
-     if (FirstMark) { 
-       ORE->emit([&]() { 
-         OptRemarkAnalysisT Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 
-         Remark << "Applied " << ore::NV("NumSamples", *R); 
-         Remark << " samples from profile (offset: "; 
-         Remark << ore::NV("LineOffset", LineOffset); 
-         if (Discriminator) { 
-           Remark << "."; 
-           Remark << ore::NV("Discriminator", Discriminator); 
-         } 
-         Remark << ")"; 
-         return Remark; 
-       }); 
-     } 
-     LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "." << Discriminator << ":" 
-                       << Inst << " (line offset: " << LineOffset << "." 
-                       << Discriminator << " - weight: " << R.get() << ")\n"); 
-   } 
-   return R; 
- } 
-   
- /// Compute the weight of a basic block. 
- /// 
- /// The weight of basic block \p BB is the maximum weight of all the 
- /// instructions in BB. 
- /// 
- /// \param BB The basic block to query. 
- /// 
- /// \returns the weight for \p BB. 
- template <typename BT> 
- ErrorOr<uint64_t> 
- SampleProfileLoaderBaseImpl<BT>::getBlockWeight(const BasicBlockT *BB) { 
-   uint64_t Max = 0; 
-   bool HasWeight = false; 
-   for (auto &I : *BB) { 
-     const ErrorOr<uint64_t> &R = getInstWeight(I); 
-     if (R) { 
-       Max = std::max(Max, R.get()); 
-       HasWeight = true; 
-     } 
-   } 
-   return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 
- } 
-   
- /// Compute and store the weights of every basic block. 
- /// 
- /// This populates the BlockWeights map by computing 
- /// the weights of every basic block in the CFG. 
- /// 
- /// \param F The function to query. 
- template <typename BT> 
- bool SampleProfileLoaderBaseImpl<BT>::computeBlockWeights(FunctionT &F) { 
-   bool Changed = false; 
-   LLVM_DEBUG(dbgs() << "Block weights\n"); 
-   for (const auto &BB : F) { 
-     ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 
-     if (Weight) { 
-       BlockWeights[&BB] = Weight.get(); 
-       VisitedBlocks.insert(&BB); 
-       Changed = true; 
-     } 
-     LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 
-   } 
-   
-   return Changed; 
- } 
-   
- /// Get the FunctionSamples for an instruction. 
- /// 
- /// The FunctionSamples of an instruction \p Inst is the inlined instance 
- /// in which that instruction is coming from. We traverse the inline stack 
- /// of that instruction, and match it with the tree nodes in the profile. 
- /// 
- /// \param Inst Instruction to query. 
- /// 
- /// \returns the FunctionSamples pointer to the inlined instance. 
- template <typename BT> 
- const FunctionSamples *SampleProfileLoaderBaseImpl<BT>::findFunctionSamples( 
-     const InstructionT &Inst) const { 
-   const DILocation *DIL = Inst.getDebugLoc(); 
-   if (!DIL) 
-     return Samples; 
-   
-   auto it = DILocation2SampleMap.try_emplace(DIL, nullptr); 
-   if (it.second) { 
-     it.first->second = Samples->findFunctionSamples(DIL, Reader->getRemapper()); 
-   } 
-   return it.first->second; 
- } 
-   
- /// Find equivalence classes for the given block. 
- /// 
- /// This finds all the blocks that are guaranteed to execute the same 
- /// number of times as \p BB1. To do this, it traverses all the 
- /// descendants of \p BB1 in the dominator or post-dominator tree. 
- /// 
- /// A block BB2 will be in the same equivalence class as \p BB1 if 
- /// the following holds: 
- /// 
- /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 
- ///    is a descendant of \p BB1 in the dominator tree, then BB2 should 
- ///    dominate BB1 in the post-dominator tree. 
- /// 
- /// 2- Both BB2 and \p BB1 must be in the same loop. 
- /// 
- /// For every block BB2 that meets those two requirements, we set BB2's 
- /// equivalence class to \p BB1. 
- /// 
- /// \param BB1  Block to check. 
- /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree. 
- /// \param DomTree  Opposite dominator tree. If \p Descendants is filled 
- ///                 with blocks from \p BB1's dominator tree, then 
- ///                 this is the post-dominator tree, and vice versa. 
- template <typename BT> 
- void SampleProfileLoaderBaseImpl<BT>::findEquivalencesFor( 
-     BasicBlockT *BB1, ArrayRef<BasicBlockT *> Descendants, 
-     PostDominatorTreeT *DomTree) { 
-   const BasicBlockT *EC = EquivalenceClass[BB1]; 
-   uint64_t Weight = BlockWeights[EC]; 
-   for (const auto *BB2 : Descendants) { 
-     bool IsDomParent = DomTree->dominates(BB2, BB1); 
-     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 
-     if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 
-       EquivalenceClass[BB2] = EC; 
-       // If BB2 is visited, then the entire EC should be marked as visited. 
-       if (VisitedBlocks.count(BB2)) { 
-         VisitedBlocks.insert(EC); 
-       } 
-   
-       // If BB2 is heavier than BB1, make BB2 have the same weight 
-       // as BB1. 
-       // 
-       // Note that we don't worry about the opposite situation here 
-       // (when BB2 is lighter than BB1). We will deal with this 
-       // during the propagation phase. Right now, we just want to 
-       // make sure that BB1 has the largest weight of all the 
-       // members of its equivalence set. 
-       Weight = std::max(Weight, BlockWeights[BB2]); 
-     } 
-   } 
-   const BasicBlockT *EntryBB = getEntryBB(EC->getParent()); 
-   if (EC == EntryBB) { 
-     BlockWeights[EC] = Samples->getHeadSamples() + 1; 
-   } else { 
-     BlockWeights[EC] = Weight; 
-   } 
- } 
-   
- /// Find equivalence classes. 
- /// 
- /// Since samples may be missing from blocks, we can fill in the gaps by setting 
- /// the weights of all the blocks in the same equivalence class to the same 
- /// weight. To compute the concept of equivalence, we use dominance and loop 
- /// information. Two blocks B1 and B2 are in the same equivalence class if B1 
- /// dominates B2, B2 post-dominates B1 and both are in the same loop. 
- /// 
- /// \param F The function to query. 
- template <typename BT> 
- void SampleProfileLoaderBaseImpl<BT>::findEquivalenceClasses(FunctionT &F) { 
-   SmallVector<BasicBlockT *, 8> DominatedBBs; 
-   LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 
-   // Find equivalence sets based on dominance and post-dominance information. 
-   for (auto &BB : F) { 
-     BasicBlockT *BB1 = &BB; 
-   
-     // Compute BB1's equivalence class once. 
-     if (EquivalenceClass.count(BB1)) { 
-       LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 
-       continue; 
-     } 
-   
-     // By default, blocks are in their own equivalence class. 
-     EquivalenceClass[BB1] = BB1; 
-   
-     // Traverse all the blocks dominated by BB1. We are looking for 
-     // every basic block BB2 such that: 
-     // 
-     // 1- BB1 dominates BB2. 
-     // 2- BB2 post-dominates BB1. 
-     // 3- BB1 and BB2 are in the same loop nest. 
-     // 
-     // If all those conditions hold, it means that BB2 is executed 
-     // as many times as BB1, so they are placed in the same equivalence 
-     // class by making BB2's equivalence class be BB1. 
-     DominatedBBs.clear(); 
-     DT->getDescendants(BB1, DominatedBBs); 
-     findEquivalencesFor(BB1, DominatedBBs, &*PDT); 
-   
-     LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 
-   } 
-   
-   // Assign weights to equivalence classes. 
-   // 
-   // All the basic blocks in the same equivalence class will execute 
-   // the same number of times. Since we know that the head block in 
-   // each equivalence class has the largest weight, assign that weight 
-   // to all the blocks in that equivalence class. 
-   LLVM_DEBUG( 
-       dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 
-   for (auto &BI : F) { 
-     const BasicBlockT *BB = &BI; 
-     const BasicBlockT *EquivBB = EquivalenceClass[BB]; 
-     if (BB != EquivBB) 
-       BlockWeights[BB] = BlockWeights[EquivBB]; 
-     LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 
-   } 
- } 
-   
- /// Visit the given edge to decide if it has a valid weight. 
- /// 
- /// If \p E has not been visited before, we copy to \p UnknownEdge 
- /// and increment the count of unknown edges. 
- /// 
- /// \param E  Edge to visit. 
- /// \param NumUnknownEdges  Current number of unknown edges. 
- /// \param UnknownEdge  Set if E has not been visited before. 
- /// 
- /// \returns E's weight, if known. Otherwise, return 0. 
- template <typename BT> 
- uint64_t SampleProfileLoaderBaseImpl<BT>::visitEdge(Edge E, 
-                                                     unsigned *NumUnknownEdges, 
-                                                     Edge *UnknownEdge) { 
-   if (!VisitedEdges.count(E)) { 
-     (*NumUnknownEdges)++; 
-     *UnknownEdge = E; 
-     return 0; 
-   } 
-   
-   return EdgeWeights[E]; 
- } 
-   
- /// Propagate weights through incoming/outgoing edges. 
- /// 
- /// If the weight of a basic block is known, and there is only one edge 
- /// with an unknown weight, we can calculate the weight of that edge. 
- /// 
- /// Similarly, if all the edges have a known count, we can calculate the 
- /// count of the basic block, if needed. 
- /// 
- /// \param F  Function to process. 
- /// \param UpdateBlockCount  Whether we should update basic block counts that 
- ///                          has already been annotated. 
- /// 
- /// \returns  True if new weights were assigned to edges or blocks. 
- template <typename BT> 
- bool SampleProfileLoaderBaseImpl<BT>::propagateThroughEdges( 
-     FunctionT &F, bool UpdateBlockCount) { 
-   bool Changed = false; 
-   LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 
-   for (const auto &BI : F) { 
-     const BasicBlockT *BB = &BI; 
-     const BasicBlockT *EC = EquivalenceClass[BB]; 
-   
-     // Visit all the predecessor and successor edges to determine 
-     // which ones have a weight assigned already. Note that it doesn't 
-     // matter that we only keep track of a single unknown edge. The 
-     // only case we are interested in handling is when only a single 
-     // edge is unknown (see setEdgeOrBlockWeight). 
-     for (unsigned i = 0; i < 2; i++) { 
-       uint64_t TotalWeight = 0; 
-       unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 
-       Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 
-   
-       if (i == 0) { 
-         // First, visit all predecessor edges. 
-         NumTotalEdges = Predecessors[BB].size(); 
-         for (auto *Pred : Predecessors[BB]) { 
-           Edge E = std::make_pair(Pred, BB); 
-           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 
-           if (E.first == E.second) 
-             SelfReferentialEdge = E; 
-         } 
-         if (NumTotalEdges == 1) { 
-           SingleEdge = std::make_pair(Predecessors[BB][0], BB); 
-         } 
-       } else { 
-         // On the second round, visit all successor edges. 
-         NumTotalEdges = Successors[BB].size(); 
-         for (auto *Succ : Successors[BB]) { 
-           Edge E = std::make_pair(BB, Succ); 
-           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 
-         } 
-         if (NumTotalEdges == 1) { 
-           SingleEdge = std::make_pair(BB, Successors[BB][0]); 
-         } 
-       } 
-   
-       // After visiting all the edges, there are three cases that we 
-       // can handle immediately: 
-       // 
-       // - All the edge weights are known (i.e., NumUnknownEdges == 0). 
-       //   In this case, we simply check that the sum of all the edges 
-       //   is the same as BB's weight. If not, we change BB's weight 
-       //   to match. Additionally, if BB had not been visited before, 
-       //   we mark it visited. 
-       // 
-       // - Only one edge is unknown and BB has already been visited. 
-       //   In this case, we can compute the weight of the edge by 
-       //   subtracting the total block weight from all the known 
-       //   edge weights. If the edges weight more than BB, then the 
-       //   edge of the last remaining edge is set to zero. 
-       // 
-       // - There exists a self-referential edge and the weight of BB is 
-       //   known. In this case, this edge can be based on BB's weight. 
-       //   We add up all the other known edges and set the weight on 
-       //   the self-referential edge as we did in the previous case. 
-       // 
-       // In any other case, we must continue iterating. Eventually, 
-       // all edges will get a weight, or iteration will stop when 
-       // it reaches SampleProfileMaxPropagateIterations. 
-       if (NumUnknownEdges <= 1) { 
-         uint64_t &BBWeight = BlockWeights[EC]; 
-         if (NumUnknownEdges == 0) { 
-           if (!VisitedBlocks.count(EC)) { 
-             // If we already know the weight of all edges, the weight of the 
-             // basic block can be computed. It should be no larger than the sum 
-             // of all edge weights. 
-             if (TotalWeight > BBWeight) { 
-               BBWeight = TotalWeight; 
-               Changed = true; 
-               LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 
-                                 << " known. Set weight for block: "; 
-                          printBlockWeight(dbgs(), BB);); 
-             } 
-           } else if (NumTotalEdges == 1 && 
-                      EdgeWeights[SingleEdge] < BlockWeights[EC]) { 
-             // If there is only one edge for the visited basic block, use the 
-             // block weight to adjust edge weight if edge weight is smaller. 
-             EdgeWeights[SingleEdge] = BlockWeights[EC]; 
-             Changed = true; 
-           } 
-         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 
-           // If there is a single unknown edge and the block has been 
-           // visited, then we can compute E's weight. 
-           if (BBWeight >= TotalWeight) 
-             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 
-           else 
-             EdgeWeights[UnknownEdge] = 0; 
-           const BasicBlockT *OtherEC; 
-           if (i == 0) 
-             OtherEC = EquivalenceClass[UnknownEdge.first]; 
-           else 
-             OtherEC = EquivalenceClass[UnknownEdge.second]; 
-           // Edge weights should never exceed the BB weights it connects. 
-           if (VisitedBlocks.count(OtherEC) && 
-               EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 
-             EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 
-           VisitedEdges.insert(UnknownEdge); 
-           Changed = true; 
-           LLVM_DEBUG(dbgs() << "Set weight for edge: "; 
-                      printEdgeWeight(dbgs(), UnknownEdge)); 
-         } 
-       } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 
-         // If a block Weights 0, all its in/out edges should weight 0. 
-         if (i == 0) { 
-           for (auto *Pred : Predecessors[BB]) { 
-             Edge E = std::make_pair(Pred, BB); 
-             EdgeWeights[E] = 0; 
-             VisitedEdges.insert(E); 
-           } 
-         } else { 
-           for (auto *Succ : Successors[BB]) { 
-             Edge E = std::make_pair(BB, Succ); 
-             EdgeWeights[E] = 0; 
-             VisitedEdges.insert(E); 
-           } 
-         } 
-       } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 
-         uint64_t &BBWeight = BlockWeights[BB]; 
-         // We have a self-referential edge and the weight of BB is known. 
-         if (BBWeight >= TotalWeight) 
-           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 
-         else 
-           EdgeWeights[SelfReferentialEdge] = 0; 
-         VisitedEdges.insert(SelfReferentialEdge); 
-         Changed = true; 
-         LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 
-                    printEdgeWeight(dbgs(), SelfReferentialEdge)); 
-       } 
-       if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 
-         BlockWeights[EC] = TotalWeight; 
-         VisitedBlocks.insert(EC); 
-         Changed = true; 
-       } 
-     } 
-   } 
-   
-   return Changed; 
- } 
-   
- /// Build in/out edge lists for each basic block in the CFG. 
- /// 
- /// We are interested in unique edges. If a block B1 has multiple 
- /// edges to another block B2, we only add a single B1->B2 edge. 
- template <typename BT> 
- void SampleProfileLoaderBaseImpl<BT>::buildEdges(FunctionT &F) { 
-   for (auto &BI : F) { 
-     BasicBlockT *B1 = &BI; 
-   
-     // Add predecessors for B1. 
-     SmallPtrSet<BasicBlockT *, 16> Visited; 
-     if (!Predecessors[B1].empty()) 
-       llvm_unreachable("Found a stale predecessors list in a basic block."); 
-     for (auto *B2 : getPredecessors(B1)) 
-       if (Visited.insert(B2).second) 
-         Predecessors[B1].push_back(B2); 
-   
-     // Add successors for B1. 
-     Visited.clear(); 
-     if (!Successors[B1].empty()) 
-       llvm_unreachable("Found a stale successors list in a basic block."); 
-     for (auto *B2 : getSuccessors(B1)) 
-       if (Visited.insert(B2).second) 
-         Successors[B1].push_back(B2); 
-   } 
- } 
-   
- /// Propagate weights into edges 
- /// 
- /// The following rules are applied to every block BB in the CFG: 
- /// 
- /// - If BB has a single predecessor/successor, then the weight 
- ///   of that edge is the weight of the block. 
- /// 
- /// - If all incoming or outgoing edges are known except one, and the 
- ///   weight of the block is already known, the weight of the unknown 
- ///   edge will be the weight of the block minus the sum of all the known 
- ///   edges. If the sum of all the known edges is larger than BB's weight, 
- ///   we set the unknown edge weight to zero. 
- /// 
- /// - If there is a self-referential edge, and the weight of the block is 
- ///   known, the weight for that edge is set to the weight of the block 
- ///   minus the weight of the other incoming edges to that block (if 
- ///   known). 
- template <typename BT> 
- void SampleProfileLoaderBaseImpl<BT>::propagateWeights(FunctionT &F) { 
-   // Flow-based profile inference is only usable with BasicBlock instantiation 
-   // of SampleProfileLoaderBaseImpl. 
-   if (SampleProfileUseProfi) { 
-     // Prepare block sample counts for inference. 
-     BlockWeightMap SampleBlockWeights; 
-     for (const auto &BI : F) { 
-       ErrorOr<uint64_t> Weight = getBlockWeight(&BI); 
-       if (Weight) 
-         SampleBlockWeights[&BI] = Weight.get(); 
-     } 
-     // Fill in BlockWeights and EdgeWeights using an inference algorithm. 
-     applyProfi(F, Successors, SampleBlockWeights, BlockWeights, EdgeWeights); 
-   } else { 
-     bool Changed = true; 
-     unsigned I = 0; 
-   
-     // If BB weight is larger than its corresponding loop's header BB weight, 
-     // use the BB weight to replace the loop header BB weight. 
-     for (auto &BI : F) { 
-       BasicBlockT *BB = &BI; 
-       LoopT *L = LI->getLoopFor(BB); 
-       if (!L) { 
-         continue; 
-       } 
-       BasicBlockT *Header = L->getHeader(); 
-       if (Header && BlockWeights[BB] > BlockWeights[Header]) { 
-         BlockWeights[Header] = BlockWeights[BB]; 
-       } 
-     } 
-   
-     // Propagate until we converge or we go past the iteration limit. 
-     while (Changed && I++ < SampleProfileMaxPropagateIterations) { 
-       Changed = propagateThroughEdges(F, false); 
-     } 
-   
-     // The first propagation propagates BB counts from annotated BBs to unknown 
-     // BBs. The 2nd propagation pass resets edges weights, and use all BB 
-     // weights to propagate edge weights. 
-     VisitedEdges.clear(); 
-     Changed = true; 
-     while (Changed && I++ < SampleProfileMaxPropagateIterations) { 
-       Changed = propagateThroughEdges(F, false); 
-     } 
-   
-     // The 3rd propagation pass allows adjust annotated BB weights that are 
-     // obviously wrong. 
-     Changed = true; 
-     while (Changed && I++ < SampleProfileMaxPropagateIterations) { 
-       Changed = propagateThroughEdges(F, true); 
-     } 
-   } 
- } 
-   
- template <typename BT> 
- void SampleProfileLoaderBaseImpl<BT>::applyProfi( 
-     FunctionT &F, BlockEdgeMap &Successors, BlockWeightMap &SampleBlockWeights, 
-     BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights) { 
-   auto Infer = SampleProfileInference<BT>(F, Successors, SampleBlockWeights); 
-   Infer.apply(BlockWeights, EdgeWeights); 
- } 
-   
- /// Generate branch weight metadata for all branches in \p F. 
- /// 
- /// Branch weights are computed out of instruction samples using a 
- /// propagation heuristic. Propagation proceeds in 3 phases: 
- /// 
- /// 1- Assignment of block weights. All the basic blocks in the function 
- ///    are initial assigned the same weight as their most frequently 
- ///    executed instruction. 
- /// 
- /// 2- Creation of equivalence classes. Since samples may be missing from 
- ///    blocks, we can fill in the gaps by setting the weights of all the 
- ///    blocks in the same equivalence class to the same weight. To compute 
- ///    the concept of equivalence, we use dominance and loop information. 
- ///    Two blocks B1 and B2 are in the same equivalence class if B1 
- ///    dominates B2, B2 post-dominates B1 and both are in the same loop. 
- /// 
- /// 3- Propagation of block weights into edges. This uses a simple 
- ///    propagation heuristic. The following rules are applied to every 
- ///    block BB in the CFG: 
- /// 
- ///    - If BB has a single predecessor/successor, then the weight 
- ///      of that edge is the weight of the block. 
- /// 
- ///    - If all the edges are known except one, and the weight of the 
- ///      block is already known, the weight of the unknown edge will 
- ///      be the weight of the block minus the sum of all the known 
- ///      edges. If the sum of all the known edges is larger than BB's weight, 
- ///      we set the unknown edge weight to zero. 
- /// 
- ///    - If there is a self-referential edge, and the weight of the block is 
- ///      known, the weight for that edge is set to the weight of the block 
- ///      minus the weight of the other incoming edges to that block (if 
- ///      known). 
- /// 
- /// Since this propagation is not guaranteed to finalize for every CFG, we 
- /// only allow it to proceed for a limited number of iterations (controlled 
- /// by -sample-profile-max-propagate-iterations). 
- /// 
- /// FIXME: Try to replace this propagation heuristic with a scheme 
- /// that is guaranteed to finalize. A work-list approach similar to 
- /// the standard value propagation algorithm used by SSA-CCP might 
- /// work here. 
- /// 
- /// \param F The function to query. 
- /// 
- /// \returns true if \p F was modified. Returns false, otherwise. 
- template <typename BT> 
- bool SampleProfileLoaderBaseImpl<BT>::computeAndPropagateWeights( 
-     FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 
-   bool Changed = (InlinedGUIDs.size() != 0); 
-   
-   // Compute basic block weights. 
-   Changed |= computeBlockWeights(F); 
-   
-   if (Changed) { 
-     // Initialize propagation. 
-     initWeightPropagation(F, InlinedGUIDs); 
-   
-     // Propagate weights to all edges. 
-     propagateWeights(F); 
-   
-     // Post-process propagated weights. 
-     finalizeWeightPropagation(F, InlinedGUIDs); 
-   } 
-   
-   return Changed; 
- } 
-   
- template <typename BT> 
- void SampleProfileLoaderBaseImpl<BT>::initWeightPropagation( 
-     FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 
-   // Add an entry count to the function using the samples gathered at the 
-   // function entry. 
-   // Sets the GUIDs that are inlined in the profiled binary. This is used 
-   // for ThinLink to make correct liveness analysis, and also make the IR 
-   // match the profiled binary before annotation. 
-   getFunction(F).setEntryCount( 
-       ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 
-       &InlinedGUIDs); 
-   
-   if (!SampleProfileUseProfi) { 
-     // Compute dominance and loop info needed for propagation. 
-     computeDominanceAndLoopInfo(F); 
-   
-     // Find equivalence classes. 
-     findEquivalenceClasses(F); 
-   } 
-   
-   // Before propagation starts, build, for each block, a list of 
-   // unique predecessors and successors. This is necessary to handle 
-   // identical edges in multiway branches. Since we visit all blocks and all 
-   // edges of the CFG, it is cleaner to build these lists once at the start 
-   // of the pass. 
-   buildEdges(F); 
- } 
-   
- template <typename BT> 
- void SampleProfileLoaderBaseImpl<BT>::finalizeWeightPropagation( 
-     FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 
-   // If we utilize a flow-based count inference, then we trust the computed 
-   // counts and set the entry count as computed by the algorithm. This is 
-   // primarily done to sync the counts produced by profi and BFI inference, 
-   // which uses the entry count for mass propagation. 
-   // If profi produces a zero-value for the entry count, we fallback to 
-   // Samples->getHeadSamples() + 1 to avoid functions with zero count. 
-   if (SampleProfileUseProfi) { 
-     const BasicBlockT *EntryBB = getEntryBB(&F); 
-     ErrorOr<uint64_t> EntryWeight = getBlockWeight(EntryBB); 
-     if (BlockWeights[EntryBB] > 0) { 
-       getFunction(F).setEntryCount( 
-           ProfileCount(BlockWeights[EntryBB], Function::PCT_Real), 
-           &InlinedGUIDs); 
-     } 
-   } 
- } 
-   
- template <typename BT> 
- void SampleProfileLoaderBaseImpl<BT>::emitCoverageRemarks(FunctionT &F) { 
-   // If coverage checking was requested, compute it now. 
-   const Function &Func = getFunction(F); 
-   if (SampleProfileRecordCoverage) { 
-     unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 
-     unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 
-     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 
-     if (Coverage < SampleProfileRecordCoverage) { 
-       Func.getContext().diagnose(DiagnosticInfoSampleProfile( 
-           Func.getSubprogram()->getFilename(), getFunctionLoc(F), 
-           Twine(Used) + " of " + Twine(Total) + " available profile records (" + 
-               Twine(Coverage) + "%) were applied", 
-           DS_Warning)); 
-     } 
-   } 
-   
-   if (SampleProfileSampleCoverage) { 
-     uint64_t Used = CoverageTracker.getTotalUsedSamples(); 
-     uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 
-     unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 
-     if (Coverage < SampleProfileSampleCoverage) { 
-       Func.getContext().diagnose(DiagnosticInfoSampleProfile( 
-           Func.getSubprogram()->getFilename(), getFunctionLoc(F), 
-           Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 
-               Twine(Coverage) + "%) were applied", 
-           DS_Warning)); 
-     } 
-   } 
- } 
-   
- /// Get the line number for the function header. 
- /// 
- /// This looks up function \p F in the current compilation unit and 
- /// retrieves the line number where the function is defined. This is 
- /// line 0 for all the samples read from the profile file. Every line 
- /// number is relative to this line. 
- /// 
- /// \param F  Function object to query. 
- /// 
- /// \returns the line number where \p F is defined. If it returns 0, 
- ///          it means that there is no debug information available for \p F. 
- template <typename BT> 
- unsigned SampleProfileLoaderBaseImpl<BT>::getFunctionLoc(FunctionT &F) { 
-   const Function &Func = getFunction(F); 
-   if (DISubprogram *S = Func.getSubprogram()) 
-     return S->getLine(); 
-   
-   if (NoWarnSampleUnused) 
-     return 0; 
-   
-   // If the start of \p F is missing, emit a diagnostic to inform the user 
-   // about the missed opportunity. 
-   Func.getContext().diagnose(DiagnosticInfoSampleProfile( 
-       "No debug information found in function " + Func.getName() + 
-           ": Function profile not used", 
-       DS_Warning)); 
-   return 0; 
- } 
-   
- template <typename BT> 
- void SampleProfileLoaderBaseImpl<BT>::computeDominanceAndLoopInfo( 
-     FunctionT &F) { 
-   DT.reset(new DominatorTree); 
-   DT->recalculate(F); 
-   
-   PDT.reset(new PostDominatorTree(F)); 
-   
-   LI.reset(new LoopInfo); 
-   LI->analyze(*DT); 
- } 
-   
- #undef DEBUG_TYPE 
-   
- } // namespace llvm 
- #endif // LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H 
-