Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Blame | Last modification | View Log | Download | RSS feed

  1. //===- LowerTypeTests.h - type metadata lowering pass -----------*- C++ -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file defines parts of the type test lowering pass implementation that
  10. // may be usefully unit tested.
  11. //
  12. //===----------------------------------------------------------------------===//
  13.  
  14. #ifndef LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
  15. #define LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
  16.  
  17. #include "llvm/ADT/SmallVector.h"
  18. #include "llvm/IR/PassManager.h"
  19. #include <cstdint>
  20. #include <cstring>
  21. #include <limits>
  22. #include <set>
  23. #include <vector>
  24.  
  25. namespace llvm {
  26.  
  27. class Module;
  28. class ModuleSummaryIndex;
  29. class raw_ostream;
  30.  
  31. namespace lowertypetests {
  32.  
  33. struct BitSetInfo {
  34.   // The indices of the set bits in the bitset.
  35.   std::set<uint64_t> Bits;
  36.  
  37.   // The byte offset into the combined global represented by the bitset.
  38.   uint64_t ByteOffset;
  39.  
  40.   // The size of the bitset in bits.
  41.   uint64_t BitSize;
  42.  
  43.   // Log2 alignment of the bit set relative to the combined global.
  44.   // For example, a log2 alignment of 3 means that bits in the bitset
  45.   // represent addresses 8 bytes apart.
  46.   unsigned AlignLog2;
  47.  
  48.   bool isSingleOffset() const {
  49.     return Bits.size() == 1;
  50.   }
  51.  
  52.   bool isAllOnes() const {
  53.     return Bits.size() == BitSize;
  54.   }
  55.  
  56.   bool containsGlobalOffset(uint64_t Offset) const;
  57.  
  58.   void print(raw_ostream &OS) const;
  59. };
  60.  
  61. struct BitSetBuilder {
  62.   SmallVector<uint64_t, 16> Offsets;
  63.   uint64_t Min = std::numeric_limits<uint64_t>::max();
  64.   uint64_t Max = 0;
  65.  
  66.   BitSetBuilder() = default;
  67.  
  68.   void addOffset(uint64_t Offset) {
  69.     if (Min > Offset)
  70.       Min = Offset;
  71.     if (Max < Offset)
  72.       Max = Offset;
  73.  
  74.     Offsets.push_back(Offset);
  75.   }
  76.  
  77.   BitSetInfo build();
  78. };
  79.  
  80. /// This class implements a layout algorithm for globals referenced by bit sets
  81. /// that tries to keep members of small bit sets together. This can
  82. /// significantly reduce bit set sizes in many cases.
  83. ///
  84. /// It works by assembling fragments of layout from sets of referenced globals.
  85. /// Each set of referenced globals causes the algorithm to create a new
  86. /// fragment, which is assembled by appending each referenced global in the set
  87. /// into the fragment. If a referenced global has already been referenced by an
  88. /// fragment created earlier, we instead delete that fragment and append its
  89. /// contents into the fragment we are assembling.
  90. ///
  91. /// By starting with the smallest fragments, we minimize the size of the
  92. /// fragments that are copied into larger fragments. This is most intuitively
  93. /// thought about when considering the case where the globals are virtual tables
  94. /// and the bit sets represent their derived classes: in a single inheritance
  95. /// hierarchy, the optimum layout would involve a depth-first search of the
  96. /// class hierarchy (and in fact the computed layout ends up looking a lot like
  97. /// a DFS), but a naive DFS would not work well in the presence of multiple
  98. /// inheritance. This aspect of the algorithm ends up fitting smaller
  99. /// hierarchies inside larger ones where that would be beneficial.
  100. ///
  101. /// For example, consider this class hierarchy:
  102. ///
  103. /// A       B
  104. ///   \   / | \
  105. ///     C   D   E
  106. ///
  107. /// We have five bit sets: bsA (A, C), bsB (B, C, D, E), bsC (C), bsD (D) and
  108. /// bsE (E). If we laid out our objects by DFS traversing B followed by A, our
  109. /// layout would be {B, C, D, E, A}. This is optimal for bsB as it needs to
  110. /// cover the only 4 objects in its hierarchy, but not for bsA as it needs to
  111. /// cover 5 objects, i.e. the entire layout. Our algorithm proceeds as follows:
  112. ///
  113. /// Add bsC, fragments {{C}}
  114. /// Add bsD, fragments {{C}, {D}}
  115. /// Add bsE, fragments {{C}, {D}, {E}}
  116. /// Add bsA, fragments {{A, C}, {D}, {E}}
  117. /// Add bsB, fragments {{B, A, C, D, E}}
  118. ///
  119. /// This layout is optimal for bsA, as it now only needs to cover two (i.e. 3
  120. /// fewer) objects, at the cost of bsB needing to cover 1 more object.
  121. ///
  122. /// The bit set lowering pass assigns an object index to each object that needs
  123. /// to be laid out, and calls addFragment for each bit set passing the object
  124. /// indices of its referenced globals. It then assembles a layout from the
  125. /// computed layout in the Fragments field.
  126. struct GlobalLayoutBuilder {
  127.   /// The computed layout. Each element of this vector contains a fragment of
  128.   /// layout (which may be empty) consisting of object indices.
  129.   std::vector<std::vector<uint64_t>> Fragments;
  130.  
  131.   /// Mapping from object index to fragment index.
  132.   std::vector<uint64_t> FragmentMap;
  133.  
  134.   GlobalLayoutBuilder(uint64_t NumObjects)
  135.       : Fragments(1), FragmentMap(NumObjects) {}
  136.  
  137.   /// Add F to the layout while trying to keep its indices contiguous.
  138.   /// If a previously seen fragment uses any of F's indices, that
  139.   /// fragment will be laid out inside F.
  140.   void addFragment(const std::set<uint64_t> &F);
  141. };
  142.  
  143. /// This class is used to build a byte array containing overlapping bit sets. By
  144. /// loading from indexed offsets into the byte array and applying a mask, a
  145. /// program can test bits from the bit set with a relatively short instruction
  146. /// sequence. For example, suppose we have 15 bit sets to lay out:
  147. ///
  148. /// A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
  149. /// F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
  150. /// L (4 bits), M (3 bits), N (2 bits), O (1 bit)
  151. ///
  152. /// These bits can be laid out in a 16-byte array like this:
  153. ///
  154. ///       Byte Offset
  155. ///     0123456789ABCDEF
  156. /// Bit
  157. ///   7 HHHHHHHHHIIIIIII
  158. ///   6 GGGGGGGGGGJJJJJJ
  159. ///   5 FFFFFFFFFFFKKKKK
  160. ///   4 EEEEEEEEEEEELLLL
  161. ///   3 DDDDDDDDDDDDDMMM
  162. ///   2 CCCCCCCCCCCCCCNN
  163. ///   1 BBBBBBBBBBBBBBBO
  164. ///   0 AAAAAAAAAAAAAAAA
  165. ///
  166. /// For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
  167. /// test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
  168. /// in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
  169. ///
  170. /// This is a byte array, rather than (say) a 2-byte array or a 4-byte array,
  171. /// because for one thing it gives us better packing (the more bins there are,
  172. /// the less evenly they will be filled), and for another, the instruction
  173. /// sequences can be slightly shorter, both on x86 and ARM.
  174. struct ByteArrayBuilder {
  175.   /// The byte array built so far.
  176.   std::vector<uint8_t> Bytes;
  177.  
  178.   enum { BitsPerByte = 8 };
  179.  
  180.   /// The number of bytes allocated so far for each of the bits.
  181.   uint64_t BitAllocs[BitsPerByte];
  182.  
  183.   ByteArrayBuilder() {
  184.     memset(BitAllocs, 0, sizeof(BitAllocs));
  185.   }
  186.  
  187.   /// Allocate BitSize bits in the byte array where Bits contains the bits to
  188.   /// set. AllocByteOffset is set to the offset within the byte array and
  189.   /// AllocMask is set to the bitmask for those bits. This uses the LPT (Longest
  190.   /// Processing Time) multiprocessor scheduling algorithm to lay out the bits
  191.   /// efficiently; the pass allocates bit sets in decreasing size order.
  192.   void allocate(const std::set<uint64_t> &Bits, uint64_t BitSize,
  193.                 uint64_t &AllocByteOffset, uint8_t &AllocMask);
  194. };
  195.  
  196. bool isJumpTableCanonical(Function *F);
  197.  
  198. } // end namespace lowertypetests
  199.  
  200. class LowerTypeTestsPass : public PassInfoMixin<LowerTypeTestsPass> {
  201.   bool UseCommandLine = false;
  202.  
  203.   ModuleSummaryIndex *ExportSummary = nullptr;
  204.   const ModuleSummaryIndex *ImportSummary = nullptr;
  205.   bool DropTypeTests = true;
  206.  
  207. public:
  208.   LowerTypeTestsPass() : UseCommandLine(true) {}
  209.   LowerTypeTestsPass(ModuleSummaryIndex *ExportSummary,
  210.                      const ModuleSummaryIndex *ImportSummary,
  211.                      bool DropTypeTests = false)
  212.       : ExportSummary(ExportSummary), ImportSummary(ImportSummary),
  213.         DropTypeTests(DropTypeTests) {}
  214.   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
  215. };
  216.  
  217. } // end namespace llvm
  218.  
  219. #endif // LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
  220.