- //===- llvm/Support/Parallel.h - Parallel algorithms ----------------------===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_SUPPORT_PARALLEL_H 
- #define LLVM_SUPPORT_PARALLEL_H 
-   
- #include "llvm/ADT/STLExtras.h" 
- #include "llvm/Config/llvm-config.h" 
- #include "llvm/Support/Error.h" 
- #include "llvm/Support/MathExtras.h" 
- #include "llvm/Support/Threading.h" 
-   
- #include <algorithm> 
- #include <condition_variable> 
- #include <functional> 
- #include <mutex> 
-   
- namespace llvm { 
-   
- namespace parallel { 
-   
- // Strategy for the default executor used by the parallel routines provided by 
- // this file. It defaults to using all hardware threads and should be 
- // initialized before the first use of parallel routines. 
- extern ThreadPoolStrategy strategy; 
-   
- #if LLVM_ENABLE_THREADS 
- #ifdef _WIN32 
- // Direct access to thread_local variables from a different DLL isn't 
- // possible with Windows Native TLS. 
- unsigned getThreadIndex(); 
- #else 
- // Don't access this directly, use the getThreadIndex wrapper. 
- extern thread_local unsigned threadIndex; 
-   
- inline unsigned getThreadIndex() { return threadIndex; } 
- #endif 
- #else 
- inline unsigned getThreadIndex() { return 0; } 
- #endif 
-   
- namespace detail { 
- class Latch { 
-   uint32_t Count; 
-   mutable std::mutex Mutex; 
-   mutable std::condition_variable Cond; 
-   
- public: 
-   explicit Latch(uint32_t Count = 0) : Count(Count) {} 
-   ~Latch() { 
-     // Ensure at least that sync() was called. 
-     assert(Count == 0); 
-   } 
-   
-   void inc() { 
-     std::lock_guard<std::mutex> lock(Mutex); 
-     ++Count; 
-   } 
-   
-   void dec() { 
-     std::lock_guard<std::mutex> lock(Mutex); 
-     if (--Count == 0) 
-       Cond.notify_all(); 
-   } 
-   
-   void sync() const { 
-     std::unique_lock<std::mutex> lock(Mutex); 
-     Cond.wait(lock, [&] { return Count == 0; }); 
-   } 
- }; 
- } // namespace detail 
-   
- class TaskGroup { 
-   detail::Latch L; 
-   bool Parallel; 
-   
- public: 
-   TaskGroup(); 
-   ~TaskGroup(); 
-   
-   // Spawn a task, but does not wait for it to finish. 
-   void spawn(std::function<void()> f); 
-   
-   // Similar to spawn, but execute the task immediately when ThreadsRequested == 
-   // 1. The difference is to give the following pattern a more intuitive order 
-   // when single threading is requested. 
-   // 
-   // for (size_t begin = 0, i = 0, taskSize = 0;;) { 
-   //   taskSize += ... 
-   //   bool done = ++i == end; 
-   //   if (done || taskSize >= taskSizeLimit) { 
-   //     tg.execute([=] { fn(begin, i); }); 
-   //     if (done) 
-   //       break; 
-   //     begin = i; 
-   //     taskSize = 0; 
-   //   } 
-   // } 
-   void execute(std::function<void()> f); 
-   
-   void sync() const { L.sync(); } 
- }; 
-   
- namespace detail { 
-   
- #if LLVM_ENABLE_THREADS 
- const ptrdiff_t MinParallelSize = 1024; 
-   
- /// Inclusive median. 
- template <class RandomAccessIterator, class Comparator> 
- RandomAccessIterator medianOf3(RandomAccessIterator Start, 
-                                RandomAccessIterator End, 
-                                const Comparator &Comp) { 
-   RandomAccessIterator Mid = Start + (std::distance(Start, End) / 2); 
-   return Comp(*Start, *(End - 1)) 
-              ? (Comp(*Mid, *(End - 1)) ? (Comp(*Start, *Mid) ? Mid : Start) 
-                                        : End - 1) 
-              : (Comp(*Mid, *Start) ? (Comp(*(End - 1), *Mid) ? Mid : End - 1) 
-                                    : Start); 
- } 
-   
- template <class RandomAccessIterator, class Comparator> 
- void parallel_quick_sort(RandomAccessIterator Start, RandomAccessIterator End, 
-                          const Comparator &Comp, TaskGroup &TG, size_t Depth) { 
-   // Do a sequential sort for small inputs. 
-   if (std::distance(Start, End) < detail::MinParallelSize || Depth == 0) { 
-     llvm::sort(Start, End, Comp); 
-     return; 
-   } 
-   
-   // Partition. 
-   auto Pivot = medianOf3(Start, End, Comp); 
-   // Move Pivot to End. 
-   std::swap(*(End - 1), *Pivot); 
-   Pivot = std::partition(Start, End - 1, [&Comp, End](decltype(*Start) V) { 
-     return Comp(V, *(End - 1)); 
-   }); 
-   // Move Pivot to middle of partition. 
-   std::swap(*Pivot, *(End - 1)); 
-   
-   // Recurse. 
-   TG.spawn([=, &Comp, &TG] { 
-     parallel_quick_sort(Start, Pivot, Comp, TG, Depth - 1); 
-   }); 
-   parallel_quick_sort(Pivot + 1, End, Comp, TG, Depth - 1); 
- } 
-   
- template <class RandomAccessIterator, class Comparator> 
- void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End, 
-                    const Comparator &Comp) { 
-   TaskGroup TG; 
-   parallel_quick_sort(Start, End, Comp, TG, 
-                       llvm::Log2_64(std::distance(Start, End)) + 1); 
- } 
-   
- // TaskGroup has a relatively high overhead, so we want to reduce 
- // the number of spawn() calls. We'll create up to 1024 tasks here. 
- // (Note that 1024 is an arbitrary number. This code probably needs 
- // improving to take the number of available cores into account.) 
- enum { MaxTasksPerGroup = 1024 }; 
-   
- template <class IterTy, class ResultTy, class ReduceFuncTy, 
-           class TransformFuncTy> 
- ResultTy parallel_transform_reduce(IterTy Begin, IterTy End, ResultTy Init, 
-                                    ReduceFuncTy Reduce, 
-                                    TransformFuncTy Transform) { 
-   // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling 
-   // overhead on large inputs. 
-   size_t NumInputs = std::distance(Begin, End); 
-   if (NumInputs == 0) 
-     return std::move(Init); 
-   size_t NumTasks = std::min(static_cast<size_t>(MaxTasksPerGroup), NumInputs); 
-   std::vector<ResultTy> Results(NumTasks, Init); 
-   { 
-     // Each task processes either TaskSize or TaskSize+1 inputs. Any inputs 
-     // remaining after dividing them equally amongst tasks are distributed as 
-     // one extra input over the first tasks. 
-     TaskGroup TG; 
-     size_t TaskSize = NumInputs / NumTasks; 
-     size_t RemainingInputs = NumInputs % NumTasks; 
-     IterTy TBegin = Begin; 
-     for (size_t TaskId = 0; TaskId < NumTasks; ++TaskId) { 
-       IterTy TEnd = TBegin + TaskSize + (TaskId < RemainingInputs ? 1 : 0); 
-       TG.spawn([=, &Transform, &Reduce, &Results] { 
-         // Reduce the result of transformation eagerly within each task. 
-         ResultTy R = Init; 
-         for (IterTy It = TBegin; It != TEnd; ++It) 
-           R = Reduce(R, Transform(*It)); 
-         Results[TaskId] = R; 
-       }); 
-       TBegin = TEnd; 
-     } 
-     assert(TBegin == End); 
-   } 
-   
-   // Do a final reduction. There are at most 1024 tasks, so this only adds 
-   // constant single-threaded overhead for large inputs. Hopefully most 
-   // reductions are cheaper than the transformation. 
-   ResultTy FinalResult = std::move(Results.front()); 
-   for (ResultTy &PartialResult : 
-        MutableArrayRef(Results.data() + 1, Results.size() - 1)) 
-     FinalResult = Reduce(FinalResult, std::move(PartialResult)); 
-   return std::move(FinalResult); 
- } 
-   
- #endif 
-   
- } // namespace detail 
- } // namespace parallel 
-   
- template <class RandomAccessIterator, 
-           class Comparator = std::less< 
-               typename std::iterator_traits<RandomAccessIterator>::value_type>> 
- void parallelSort(RandomAccessIterator Start, RandomAccessIterator End, 
-                   const Comparator &Comp = Comparator()) { 
- #if LLVM_ENABLE_THREADS 
-   if (parallel::strategy.ThreadsRequested != 1) { 
-     parallel::detail::parallel_sort(Start, End, Comp); 
-     return; 
-   } 
- #endif 
-   llvm::sort(Start, End, Comp); 
- } 
-   
- void parallelFor(size_t Begin, size_t End, function_ref<void(size_t)> Fn); 
-   
- template <class IterTy, class FuncTy> 
- void parallelForEach(IterTy Begin, IterTy End, FuncTy Fn) { 
-   parallelFor(0, End - Begin, [&](size_t I) { Fn(Begin[I]); }); 
- } 
-   
- template <class IterTy, class ResultTy, class ReduceFuncTy, 
-           class TransformFuncTy> 
- ResultTy parallelTransformReduce(IterTy Begin, IterTy End, ResultTy Init, 
-                                  ReduceFuncTy Reduce, 
-                                  TransformFuncTy Transform) { 
- #if LLVM_ENABLE_THREADS 
-   if (parallel::strategy.ThreadsRequested != 1) { 
-     return parallel::detail::parallel_transform_reduce(Begin, End, Init, Reduce, 
-                                                        Transform); 
-   } 
- #endif 
-   for (IterTy I = Begin; I != End; ++I) 
-     Init = Reduce(std::move(Init), Transform(*I)); 
-   return std::move(Init); 
- } 
-   
- // Range wrappers. 
- template <class RangeTy, 
-           class Comparator = std::less<decltype(*std::begin(RangeTy()))>> 
- void parallelSort(RangeTy &&R, const Comparator &Comp = Comparator()) { 
-   parallelSort(std::begin(R), std::end(R), Comp); 
- } 
-   
- template <class RangeTy, class FuncTy> 
- void parallelForEach(RangeTy &&R, FuncTy Fn) { 
-   parallelForEach(std::begin(R), std::end(R), Fn); 
- } 
-   
- template <class RangeTy, class ResultTy, class ReduceFuncTy, 
-           class TransformFuncTy> 
- ResultTy parallelTransformReduce(RangeTy &&R, ResultTy Init, 
-                                  ReduceFuncTy Reduce, 
-                                  TransformFuncTy Transform) { 
-   return parallelTransformReduce(std::begin(R), std::end(R), Init, Reduce, 
-                                  Transform); 
- } 
-   
- // Parallel for-each, but with error handling. 
- template <class RangeTy, class FuncTy> 
- Error parallelForEachError(RangeTy &&R, FuncTy Fn) { 
-   // The transform_reduce algorithm requires that the initial value be copyable. 
-   // Error objects are uncopyable. We only need to copy initial success values, 
-   // so work around this mismatch via the C API. The C API represents success 
-   // values with a null pointer. The joinErrors discards null values and joins 
-   // multiple errors into an ErrorList. 
-   return unwrap(parallelTransformReduce( 
-       std::begin(R), std::end(R), wrap(Error::success()), 
-       [](LLVMErrorRef Lhs, LLVMErrorRef Rhs) { 
-         return wrap(joinErrors(unwrap(Lhs), unwrap(Rhs))); 
-       }, 
-       [&Fn](auto &&V) { return wrap(Fn(V)); })); 
- } 
-   
- } // namespace llvm 
-   
- #endif // LLVM_SUPPORT_PARALLEL_H 
-