- //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- // 
- // This file contains some functions that are useful for math stuff. 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_SUPPORT_MATHEXTRAS_H 
- #define LLVM_SUPPORT_MATHEXTRAS_H 
-   
- #include "llvm/ADT/bit.h" 
- #include "llvm/Support/Compiler.h" 
- #include <cassert> 
- #include <climits> 
- #include <cstdint> 
- #include <cstring> 
- #include <limits> 
- #include <type_traits> 
-   
- namespace llvm { 
-   
- /// The behavior an operation has on an input of 0. 
- enum ZeroBehavior { 
-   /// The returned value is undefined. 
-   ZB_Undefined, 
-   /// The returned value is numeric_limits<T>::max() 
-   ZB_Max 
- }; 
-   
- /// Mathematical constants. 
- namespace numbers { 
- // TODO: Track C++20 std::numbers. 
- // TODO: Favor using the hexadecimal FP constants (requires C++17). 
- constexpr double e          = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113 
-                  egamma     = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620 
-                  ln2        = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162 
-                  ln10       = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392 
-                  log2e      = 1.4426950408889634074, // (0x1.71547652b82feP+0) 
-                  log10e     = .43429448190325182765, // (0x1.bcb7b1526e50eP-2) 
-                  pi         = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796 
-                  inv_pi     = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541 
-                  sqrtpi     = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161 
-                  inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197 
-                  sqrt2      = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219 
-                  inv_sqrt2  = .70710678118654752440, // (0x1.6a09e667f3bcdP-1) 
-                  sqrt3      = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194 
-                  inv_sqrt3  = .57735026918962576451, // (0x1.279a74590331cP-1) 
-                  phi        = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622 
- constexpr float ef          = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113 
-                 egammaf     = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620 
-                 ln2f        = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162 
-                 ln10f       = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392 
-                 log2ef      = 1.44269504F, // (0x1.715476P+0) 
-                 log10ef     = .434294482F, // (0x1.bcb7b2P-2) 
-                 pif         = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796 
-                 inv_pif     = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541 
-                 sqrtpif     = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161 
-                 inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197 
-                 sqrt2f      = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193 
-                 inv_sqrt2f  = .707106781F, // (0x1.6a09e6P-1) 
-                 sqrt3f      = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194 
-                 inv_sqrt3f  = .577350269F, // (0x1.279a74P-1) 
-                 phif        = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622 
- } // namespace numbers 
-   
- /// Count number of 0's from the least significant bit to the most 
- ///   stopping at the first 1. 
- /// 
- /// Only unsigned integral types are allowed. 
- /// 
- /// Returns std::numeric_limits<T>::digits on an input of 0. 
- template <typename T> unsigned countTrailingZeros(T Val) { 
-   static_assert(std::is_unsigned_v<T>, 
-                 "Only unsigned integral types are allowed."); 
-   return llvm::countr_zero(Val); 
- } 
-   
- /// Count number of 0's from the most significant bit to the least 
- ///   stopping at the first 1. 
- /// 
- /// Only unsigned integral types are allowed. 
- /// 
- /// Returns std::numeric_limits<T>::digits on an input of 0. 
- template <typename T> unsigned countLeadingZeros(T Val) { 
-   static_assert(std::is_unsigned_v<T>, 
-                 "Only unsigned integral types are allowed."); 
-   return llvm::countl_zero(Val); 
- } 
-   
- /// Get the index of the first set bit starting from the least 
- ///   significant bit. 
- /// 
- /// Only unsigned integral types are allowed. 
- /// 
- /// \param ZB the behavior on an input of 0. 
- template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { 
-   if (ZB == ZB_Max && Val == 0) 
-     return std::numeric_limits<T>::max(); 
-   
-   return llvm::countr_zero(Val); 
- } 
-   
- /// Create a bitmask with the N right-most bits set to 1, and all other 
- /// bits set to 0.  Only unsigned types are allowed. 
- template <typename T> T maskTrailingOnes(unsigned N) { 
-   static_assert(std::is_unsigned<T>::value, "Invalid type!"); 
-   const unsigned Bits = CHAR_BIT * sizeof(T); 
-   assert(N <= Bits && "Invalid bit index"); 
-   return N == 0 ? 0 : (T(-1) >> (Bits - N)); 
- } 
-   
- /// Create a bitmask with the N left-most bits set to 1, and all other 
- /// bits set to 0.  Only unsigned types are allowed. 
- template <typename T> T maskLeadingOnes(unsigned N) { 
-   return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); 
- } 
-   
- /// Create a bitmask with the N right-most bits set to 0, and all other 
- /// bits set to 1.  Only unsigned types are allowed. 
- template <typename T> T maskTrailingZeros(unsigned N) { 
-   return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N); 
- } 
-   
- /// Create a bitmask with the N left-most bits set to 0, and all other 
- /// bits set to 1.  Only unsigned types are allowed. 
- template <typename T> T maskLeadingZeros(unsigned N) { 
-   return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); 
- } 
-   
- /// Get the index of the last set bit starting from the least 
- ///   significant bit. 
- /// 
- /// Only unsigned integral types are allowed. 
- /// 
- /// \param ZB the behavior on an input of 0. 
- template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { 
-   if (ZB == ZB_Max && Val == 0) 
-     return std::numeric_limits<T>::max(); 
-   
-   // Use ^ instead of - because both gcc and llvm can remove the associated ^ 
-   // in the __builtin_clz intrinsic on x86. 
-   return llvm::countl_zero(Val) ^ (std::numeric_limits<T>::digits - 1); 
- } 
-   
- /// Macro compressed bit reversal table for 256 bits. 
- /// 
- /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable 
- static const unsigned char BitReverseTable256[256] = { 
- #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 
- #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) 
- #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) 
-   R6(0), R6(2), R6(1), R6(3) 
- #undef R2 
- #undef R4 
- #undef R6 
- }; 
-   
- /// Reverse the bits in \p Val. 
- template <typename T> T reverseBits(T Val) { 
- #if __has_builtin(__builtin_bitreverse8) 
-   if constexpr (std::is_same_v<T, uint8_t>) 
-     return __builtin_bitreverse8(Val); 
- #endif 
- #if __has_builtin(__builtin_bitreverse16) 
-   if constexpr (std::is_same_v<T, uint16_t>) 
-     return __builtin_bitreverse16(Val); 
- #endif 
- #if __has_builtin(__builtin_bitreverse32) 
-   if constexpr (std::is_same_v<T, uint32_t>) 
-     return __builtin_bitreverse32(Val); 
- #endif 
- #if __has_builtin(__builtin_bitreverse64) 
-   if constexpr (std::is_same_v<T, uint64_t>) 
-     return __builtin_bitreverse64(Val); 
- #endif 
-   
-   unsigned char in[sizeof(Val)]; 
-   unsigned char out[sizeof(Val)]; 
-   std::memcpy(in, &Val, sizeof(Val)); 
-   for (unsigned i = 0; i < sizeof(Val); ++i) 
-     out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; 
-   std::memcpy(&Val, out, sizeof(Val)); 
-   return Val; 
- } 
-   
- // NOTE: The following support functions use the _32/_64 extensions instead of 
- // type overloading so that signed and unsigned integers can be used without 
- // ambiguity. 
-   
- /// Return the high 32 bits of a 64 bit value. 
- constexpr inline uint32_t Hi_32(uint64_t Value) { 
-   return static_cast<uint32_t>(Value >> 32); 
- } 
-   
- /// Return the low 32 bits of a 64 bit value. 
- constexpr inline uint32_t Lo_32(uint64_t Value) { 
-   return static_cast<uint32_t>(Value); 
- } 
-   
- /// Make a 64-bit integer from a high / low pair of 32-bit integers. 
- constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) { 
-   return ((uint64_t)High << 32) | (uint64_t)Low; 
- } 
-   
- /// Checks if an integer fits into the given bit width. 
- template <unsigned N> constexpr inline bool isInt(int64_t x) { 
-   if constexpr (N == 8) 
-     return static_cast<int8_t>(x) == x; 
-   if constexpr (N == 16) 
-     return static_cast<int16_t>(x) == x; 
-   if constexpr (N == 32) 
-     return static_cast<int32_t>(x) == x; 
-   if constexpr (N < 64) 
-     return -(INT64_C(1) << (N - 1)) <= x && x < (INT64_C(1) << (N - 1)); 
-   (void)x; // MSVC v19.25 warns that x is unused. 
-   return true; 
- } 
-   
- /// Checks if a signed integer is an N bit number shifted left by S. 
- template <unsigned N, unsigned S> 
- constexpr inline bool isShiftedInt(int64_t x) { 
-   static_assert( 
-       N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number."); 
-   static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); 
-   return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); 
- } 
-   
- /// Checks if an unsigned integer fits into the given bit width. 
- template <unsigned N> constexpr inline bool isUInt(uint64_t x) { 
-   static_assert(N > 0, "isUInt<0> doesn't make sense"); 
-   if constexpr (N == 8) 
-     return static_cast<uint8_t>(x) == x; 
-   if constexpr (N == 16) 
-     return static_cast<uint16_t>(x) == x; 
-   if constexpr (N == 32) 
-     return static_cast<uint32_t>(x) == x; 
-   if constexpr (N < 64) 
-     return x < (UINT64_C(1) << (N)); 
-   (void)x; // MSVC v19.25 warns that x is unused. 
-   return true; 
- } 
-   
- /// Checks if a unsigned integer is an N bit number shifted left by S. 
- template <unsigned N, unsigned S> 
- constexpr inline bool isShiftedUInt(uint64_t x) { 
-   static_assert( 
-       N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)"); 
-   static_assert(N + S <= 64, 
-                 "isShiftedUInt<N, S> with N + S > 64 is too wide."); 
-   // Per the two static_asserts above, S must be strictly less than 64.  So 
-   // 1 << S is not undefined behavior. 
-   return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); 
- } 
-   
- /// Gets the maximum value for a N-bit unsigned integer. 
- inline uint64_t maxUIntN(uint64_t N) { 
-   assert(N > 0 && N <= 64 && "integer width out of range"); 
-   
-   // uint64_t(1) << 64 is undefined behavior, so we can't do 
-   //   (uint64_t(1) << N) - 1 
-   // without checking first that N != 64.  But this works and doesn't have a 
-   // branch. 
-   return UINT64_MAX >> (64 - N); 
- } 
-   
- /// Gets the minimum value for a N-bit signed integer. 
- inline int64_t minIntN(int64_t N) { 
-   assert(N > 0 && N <= 64 && "integer width out of range"); 
-   
-   return UINT64_C(1) + ~(UINT64_C(1) << (N - 1)); 
- } 
-   
- /// Gets the maximum value for a N-bit signed integer. 
- inline int64_t maxIntN(int64_t N) { 
-   assert(N > 0 && N <= 64 && "integer width out of range"); 
-   
-   // This relies on two's complement wraparound when N == 64, so we convert to 
-   // int64_t only at the very end to avoid UB. 
-   return (UINT64_C(1) << (N - 1)) - 1; 
- } 
-   
- /// Checks if an unsigned integer fits into the given (dynamic) bit width. 
- inline bool isUIntN(unsigned N, uint64_t x) { 
-   return N >= 64 || x <= maxUIntN(N); 
- } 
-   
- /// Checks if an signed integer fits into the given (dynamic) bit width. 
- inline bool isIntN(unsigned N, int64_t x) { 
-   return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); 
- } 
-   
- /// Return true if the argument is a non-empty sequence of ones starting at the 
- /// least significant bit with the remainder zero (32 bit version). 
- /// Ex. isMask_32(0x0000FFFFU) == true. 
- constexpr inline bool isMask_32(uint32_t Value) { 
-   return Value && ((Value + 1) & Value) == 0; 
- } 
-   
- /// Return true if the argument is a non-empty sequence of ones starting at the 
- /// least significant bit with the remainder zero (64 bit version). 
- constexpr inline bool isMask_64(uint64_t Value) { 
-   return Value && ((Value + 1) & Value) == 0; 
- } 
-   
- /// Return true if the argument contains a non-empty sequence of ones with the 
- /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. 
- constexpr inline bool isShiftedMask_32(uint32_t Value) { 
-   return Value && isMask_32((Value - 1) | Value); 
- } 
-   
- /// Return true if the argument contains a non-empty sequence of ones with the 
- /// remainder zero (64 bit version.) 
- constexpr inline bool isShiftedMask_64(uint64_t Value) { 
-   return Value && isMask_64((Value - 1) | Value); 
- } 
-   
- /// Return true if the argument is a power of two > 0. 
- /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) 
- constexpr inline bool isPowerOf2_32(uint32_t Value) { 
-   return llvm::has_single_bit(Value); 
- } 
-   
- /// Return true if the argument is a power of two > 0 (64 bit edition.) 
- constexpr inline bool isPowerOf2_64(uint64_t Value) { 
-   return llvm::has_single_bit(Value); 
- } 
-   
- /// Count the number of ones from the most significant bit to the first 
- /// zero bit. 
- /// 
- /// Ex. countLeadingOnes(0xFF0FFF00) == 8. 
- /// Only unsigned integral types are allowed. 
- /// 
- /// Returns std::numeric_limits<T>::digits on an input of all ones. 
- template <typename T> unsigned countLeadingOnes(T Value) { 
-   static_assert(std::is_unsigned_v<T>, 
-                 "Only unsigned integral types are allowed."); 
-   return llvm::countl_one<T>(Value); 
- } 
-   
- /// Count the number of ones from the least significant bit to the first 
- /// zero bit. 
- /// 
- /// Ex. countTrailingOnes(0x00FF00FF) == 8. 
- /// Only unsigned integral types are allowed. 
- /// 
- /// Returns std::numeric_limits<T>::digits on an input of all ones. 
- template <typename T> unsigned countTrailingOnes(T Value) { 
-   static_assert(std::is_unsigned_v<T>, 
-                 "Only unsigned integral types are allowed."); 
-   return llvm::countr_one<T>(Value); 
- } 
-   
- /// Count the number of set bits in a value. 
- /// Ex. countPopulation(0xF000F000) = 8 
- /// Returns 0 if the word is zero. 
- template <typename T> 
- inline unsigned countPopulation(T Value) { 
-   static_assert(std::is_unsigned_v<T>, 
-                 "Only unsigned integral types are allowed."); 
-   return (unsigned)llvm::popcount(Value); 
- } 
-   
- /// Return true if the argument contains a non-empty sequence of ones with the 
- /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. 
- /// If true, \p MaskIdx will specify the index of the lowest set bit and \p 
- /// MaskLen is updated to specify the length of the mask, else neither are 
- /// updated. 
- inline bool isShiftedMask_32(uint32_t Value, unsigned &MaskIdx, 
-                              unsigned &MaskLen) { 
-   if (!isShiftedMask_32(Value)) 
-     return false; 
-   MaskIdx = llvm::countr_zero(Value); 
-   MaskLen = llvm::popcount(Value); 
-   return true; 
- } 
-   
- /// Return true if the argument contains a non-empty sequence of ones with the 
- /// remainder zero (64 bit version.) If true, \p MaskIdx will specify the index 
- /// of the lowest set bit and \p MaskLen is updated to specify the length of the 
- /// mask, else neither are updated. 
- inline bool isShiftedMask_64(uint64_t Value, unsigned &MaskIdx, 
-                              unsigned &MaskLen) { 
-   if (!isShiftedMask_64(Value)) 
-     return false; 
-   MaskIdx = llvm::countr_zero(Value); 
-   MaskLen = llvm::popcount(Value); 
-   return true; 
- } 
-   
- /// Compile time Log2. 
- /// Valid only for positive powers of two. 
- template <size_t kValue> constexpr inline size_t CTLog2() { 
-   static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue), 
-                 "Value is not a valid power of 2"); 
-   return 1 + CTLog2<kValue / 2>(); 
- } 
-   
- template <> constexpr inline size_t CTLog2<1>() { return 0; } 
-   
- /// Return the floor log base 2 of the specified value, -1 if the value is zero. 
- /// (32 bit edition.) 
- /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 
- inline unsigned Log2_32(uint32_t Value) { 
-   return 31 - llvm::countl_zero(Value); 
- } 
-   
- /// Return the floor log base 2 of the specified value, -1 if the value is zero. 
- /// (64 bit edition.) 
- inline unsigned Log2_64(uint64_t Value) { 
-   return 63 - llvm::countl_zero(Value); 
- } 
-   
- /// Return the ceil log base 2 of the specified value, 32 if the value is zero. 
- /// (32 bit edition). 
- /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 
- inline unsigned Log2_32_Ceil(uint32_t Value) { 
-   return 32 - llvm::countl_zero(Value - 1); 
- } 
-   
- /// Return the ceil log base 2 of the specified value, 64 if the value is zero. 
- /// (64 bit edition.) 
- inline unsigned Log2_64_Ceil(uint64_t Value) { 
-   return 64 - llvm::countl_zero(Value - 1); 
- } 
-   
- /// This function takes a 64-bit integer and returns the bit equivalent double. 
- inline double BitsToDouble(uint64_t Bits) { 
-   static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); 
-   return llvm::bit_cast<double>(Bits); 
- } 
-   
- /// This function takes a 32-bit integer and returns the bit equivalent float. 
- inline float BitsToFloat(uint32_t Bits) { 
-   static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); 
-   return llvm::bit_cast<float>(Bits); 
- } 
-   
- /// This function takes a double and returns the bit equivalent 64-bit integer. 
- /// Note that copying doubles around changes the bits of NaNs on some hosts, 
- /// notably x86, so this routine cannot be used if these bits are needed. 
- inline uint64_t DoubleToBits(double Double) { 
-   static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); 
-   return llvm::bit_cast<uint64_t>(Double); 
- } 
-   
- /// This function takes a float and returns the bit equivalent 32-bit integer. 
- /// Note that copying floats around changes the bits of NaNs on some hosts, 
- /// notably x86, so this routine cannot be used if these bits are needed. 
- inline uint32_t FloatToBits(float Float) { 
-   static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); 
-   return llvm::bit_cast<uint32_t>(Float); 
- } 
-   
- /// A and B are either alignments or offsets. Return the minimum alignment that 
- /// may be assumed after adding the two together. 
- constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) { 
-   // The largest power of 2 that divides both A and B. 
-   // 
-   // Replace "-Value" by "1+~Value" in the following commented code to avoid 
-   // MSVC warning C4146 
-   //    return (A | B) & -(A | B); 
-   return (A | B) & (1 + ~(A | B)); 
- } 
-   
- /// Returns the next power of two (in 64-bits) that is strictly greater than A. 
- /// Returns zero on overflow. 
- constexpr inline uint64_t NextPowerOf2(uint64_t A) { 
-   A |= (A >> 1); 
-   A |= (A >> 2); 
-   A |= (A >> 4); 
-   A |= (A >> 8); 
-   A |= (A >> 16); 
-   A |= (A >> 32); 
-   return A + 1; 
- } 
-   
- /// Returns the power of two which is less than or equal to the given value. 
- /// Essentially, it is a floor operation across the domain of powers of two. 
- inline uint64_t PowerOf2Floor(uint64_t A) { 
-   return llvm::bit_floor(A); 
- } 
-   
- /// Returns the power of two which is greater than or equal to the given value. 
- /// Essentially, it is a ceil operation across the domain of powers of two. 
- inline uint64_t PowerOf2Ceil(uint64_t A) { 
-   if (!A) 
-     return 0; 
-   return NextPowerOf2(A - 1); 
- } 
-   
- /// Returns the next integer (mod 2**64) that is greater than or equal to 
- /// \p Value and is a multiple of \p Align. \p Align must be non-zero. 
- /// 
- /// Examples: 
- /// \code 
- ///   alignTo(5, 8) = 8 
- ///   alignTo(17, 8) = 24 
- ///   alignTo(~0LL, 8) = 0 
- ///   alignTo(321, 255) = 510 
- /// \endcode 
- inline uint64_t alignTo(uint64_t Value, uint64_t Align) { 
-   assert(Align != 0u && "Align can't be 0."); 
-   return (Value + Align - 1) / Align * Align; 
- } 
-   
- inline uint64_t alignToPowerOf2(uint64_t Value, uint64_t Align) { 
-   assert(Align != 0 && (Align & (Align - 1)) == 0 && 
-          "Align must be a power of 2"); 
-   return (Value + Align - 1) & -Align; 
- } 
-   
- /// If non-zero \p Skew is specified, the return value will be a minimal integer 
- /// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for 
- /// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p 
- /// Skew mod \p A'. \p Align must be non-zero. 
- /// 
- /// Examples: 
- /// \code 
- ///   alignTo(5, 8, 7) = 7 
- ///   alignTo(17, 8, 1) = 17 
- ///   alignTo(~0LL, 8, 3) = 3 
- ///   alignTo(321, 255, 42) = 552 
- /// \endcode 
- inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew) { 
-   assert(Align != 0u && "Align can't be 0."); 
-   Skew %= Align; 
-   return alignTo(Value - Skew, Align) + Skew; 
- } 
-   
- /// Returns the next integer (mod 2**64) that is greater than or equal to 
- /// \p Value and is a multiple of \c Align. \c Align must be non-zero. 
- template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) { 
-   static_assert(Align != 0u, "Align must be non-zero"); 
-   return (Value + Align - 1) / Align * Align; 
- } 
-   
- /// Returns the integer ceil(Numerator / Denominator). 
- inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { 
-   return alignTo(Numerator, Denominator) / Denominator; 
- } 
-   
- /// Returns the integer nearest(Numerator / Denominator). 
- inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) { 
-   return (Numerator + (Denominator / 2)) / Denominator; 
- } 
-   
- /// Returns the largest uint64_t less than or equal to \p Value and is 
- /// \p Skew mod \p Align. \p Align must be non-zero 
- inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { 
-   assert(Align != 0u && "Align can't be 0."); 
-   Skew %= Align; 
-   return (Value - Skew) / Align * Align + Skew; 
- } 
-   
- /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. 
- /// Requires 0 < B <= 32. 
- template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) { 
-   static_assert(B > 0, "Bit width can't be 0."); 
-   static_assert(B <= 32, "Bit width out of range."); 
-   return int32_t(X << (32 - B)) >> (32 - B); 
- } 
-   
- /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. 
- /// Requires 0 < B <= 32. 
- inline int32_t SignExtend32(uint32_t X, unsigned B) { 
-   assert(B > 0 && "Bit width can't be 0."); 
-   assert(B <= 32 && "Bit width out of range."); 
-   return int32_t(X << (32 - B)) >> (32 - B); 
- } 
-   
- /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. 
- /// Requires 0 < B <= 64. 
- template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) { 
-   static_assert(B > 0, "Bit width can't be 0."); 
-   static_assert(B <= 64, "Bit width out of range."); 
-   return int64_t(x << (64 - B)) >> (64 - B); 
- } 
-   
- /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. 
- /// Requires 0 < B <= 64. 
- inline int64_t SignExtend64(uint64_t X, unsigned B) { 
-   assert(B > 0 && "Bit width can't be 0."); 
-   assert(B <= 64 && "Bit width out of range."); 
-   return int64_t(X << (64 - B)) >> (64 - B); 
- } 
-   
- /// Subtract two unsigned integers, X and Y, of type T and return the absolute 
- /// value of the result. 
- template <typename T> 
- std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) { 
-   return X > Y ? (X - Y) : (Y - X); 
- } 
-   
- /// Add two unsigned integers, X and Y, of type T.  Clamp the result to the 
- /// maximum representable value of T on overflow.  ResultOverflowed indicates if 
- /// the result is larger than the maximum representable value of type T. 
- template <typename T> 
- std::enable_if_t<std::is_unsigned<T>::value, T> 
- SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { 
-   bool Dummy; 
-   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; 
-   // Hacker's Delight, p. 29 
-   T Z = X + Y; 
-   Overflowed = (Z < X || Z < Y); 
-   if (Overflowed) 
-     return std::numeric_limits<T>::max(); 
-   else 
-     return Z; 
- } 
-   
- /// Add multiple unsigned integers of type T.  Clamp the result to the 
- /// maximum representable value of T on overflow. 
- template <class T, class... Ts> 
- std::enable_if_t<std::is_unsigned_v<T>, T> SaturatingAdd(T X, T Y, T Z, 
-                                                          Ts... Args) { 
-   bool Overflowed = false; 
-   T XY = SaturatingAdd(X, Y, &Overflowed); 
-   if (Overflowed) 
-     return SaturatingAdd(std::numeric_limits<T>::max(), T(1), Args...); 
-   return SaturatingAdd(XY, Z, Args...); 
- } 
-   
- /// Multiply two unsigned integers, X and Y, of type T.  Clamp the result to the 
- /// maximum representable value of T on overflow.  ResultOverflowed indicates if 
- /// the result is larger than the maximum representable value of type T. 
- template <typename T> 
- std::enable_if_t<std::is_unsigned<T>::value, T> 
- SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { 
-   bool Dummy; 
-   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; 
-   
-   // Hacker's Delight, p. 30 has a different algorithm, but we don't use that 
-   // because it fails for uint16_t (where multiplication can have undefined 
-   // behavior due to promotion to int), and requires a division in addition 
-   // to the multiplication. 
-   
-   Overflowed = false; 
-   
-   // Log2(Z) would be either Log2Z or Log2Z + 1. 
-   // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z 
-   // will necessarily be less than Log2Max as desired. 
-   int Log2Z = Log2_64(X) + Log2_64(Y); 
-   const T Max = std::numeric_limits<T>::max(); 
-   int Log2Max = Log2_64(Max); 
-   if (Log2Z < Log2Max) { 
-     return X * Y; 
-   } 
-   if (Log2Z > Log2Max) { 
-     Overflowed = true; 
-     return Max; 
-   } 
-   
-   // We're going to use the top bit, and maybe overflow one 
-   // bit past it. Multiply all but the bottom bit then add 
-   // that on at the end. 
-   T Z = (X >> 1) * Y; 
-   if (Z & ~(Max >> 1)) { 
-     Overflowed = true; 
-     return Max; 
-   } 
-   Z <<= 1; 
-   if (X & 1) 
-     return SaturatingAdd(Z, Y, ResultOverflowed); 
-   
-   return Z; 
- } 
-   
- /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to 
- /// the product. Clamp the result to the maximum representable value of T on 
- /// overflow. ResultOverflowed indicates if the result is larger than the 
- /// maximum representable value of type T. 
- template <typename T> 
- std::enable_if_t<std::is_unsigned<T>::value, T> 
- SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { 
-   bool Dummy; 
-   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; 
-   
-   T Product = SaturatingMultiply(X, Y, &Overflowed); 
-   if (Overflowed) 
-     return Product; 
-   
-   return SaturatingAdd(A, Product, &Overflowed); 
- } 
-   
- /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. 
- extern const float huge_valf; 
-   
-   
- /// Add two signed integers, computing the two's complement truncated result, 
- /// returning true if overflow occurred. 
- template <typename T> 
- std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) { 
- #if __has_builtin(__builtin_add_overflow) 
-   return __builtin_add_overflow(X, Y, &Result); 
- #else 
-   // Perform the unsigned addition. 
-   using U = std::make_unsigned_t<T>; 
-   const U UX = static_cast<U>(X); 
-   const U UY = static_cast<U>(Y); 
-   const U UResult = UX + UY; 
-   
-   // Convert to signed. 
-   Result = static_cast<T>(UResult); 
-   
-   // Adding two positive numbers should result in a positive number. 
-   if (X > 0 && Y > 0) 
-     return Result <= 0; 
-   // Adding two negatives should result in a negative number. 
-   if (X < 0 && Y < 0) 
-     return Result >= 0; 
-   return false; 
- #endif 
- } 
-   
- /// Subtract two signed integers, computing the two's complement truncated 
- /// result, returning true if an overflow ocurred. 
- template <typename T> 
- std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) { 
- #if __has_builtin(__builtin_sub_overflow) 
-   return __builtin_sub_overflow(X, Y, &Result); 
- #else 
-   // Perform the unsigned addition. 
-   using U = std::make_unsigned_t<T>; 
-   const U UX = static_cast<U>(X); 
-   const U UY = static_cast<U>(Y); 
-   const U UResult = UX - UY; 
-   
-   // Convert to signed. 
-   Result = static_cast<T>(UResult); 
-   
-   // Subtracting a positive number from a negative results in a negative number. 
-   if (X <= 0 && Y > 0) 
-     return Result >= 0; 
-   // Subtracting a negative number from a positive results in a positive number. 
-   if (X >= 0 && Y < 0) 
-     return Result <= 0; 
-   return false; 
- #endif 
- } 
-   
- /// Multiply two signed integers, computing the two's complement truncated 
- /// result, returning true if an overflow ocurred. 
- template <typename T> 
- std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) { 
-   // Perform the unsigned multiplication on absolute values. 
-   using U = std::make_unsigned_t<T>; 
-   const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X); 
-   const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y); 
-   const U UResult = UX * UY; 
-   
-   // Convert to signed. 
-   const bool IsNegative = (X < 0) ^ (Y < 0); 
-   Result = IsNegative ? (0 - UResult) : UResult; 
-   
-   // If any of the args was 0, result is 0 and no overflow occurs. 
-   if (UX == 0 || UY == 0) 
-     return false; 
-   
-   // UX and UY are in [1, 2^n], where n is the number of digits. 
-   // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for 
-   // positive) divided by an argument compares to the other. 
-   if (IsNegative) 
-     return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY; 
-   else 
-     return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY; 
- } 
-   
- } // End llvm namespace 
-   
- #endif 
-