- //===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- // 
- // This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), 
- // cast_if_present<X>(), and dyn_cast_if_present<X>() templates. 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_SUPPORT_CASTING_H 
- #define LLVM_SUPPORT_CASTING_H 
-   
- #include "llvm/Support/Compiler.h" 
- #include "llvm/Support/type_traits.h" 
- #include <cassert> 
- #include <memory> 
- #include <optional> 
- #include <type_traits> 
-   
- namespace llvm { 
-   
- //===----------------------------------------------------------------------===// 
- // simplify_type 
- //===----------------------------------------------------------------------===// 
-   
- /// Define a template that can be specialized by smart pointers to reflect the 
- /// fact that they are automatically dereferenced, and are not involved with the 
- /// template selection process...  the default implementation is a noop. 
- // TODO: rename this and/or replace it with other cast traits. 
- template <typename From> struct simplify_type { 
-   using SimpleType = From; // The real type this represents... 
-   
-   // An accessor to get the real value... 
-   static SimpleType &getSimplifiedValue(From &Val) { return Val; } 
- }; 
-   
- template <typename From> struct simplify_type<const From> { 
-   using NonConstSimpleType = typename simplify_type<From>::SimpleType; 
-   using SimpleType = typename add_const_past_pointer<NonConstSimpleType>::type; 
-   using RetType = 
-       typename add_lvalue_reference_if_not_pointer<SimpleType>::type; 
-   
-   static RetType getSimplifiedValue(const From &Val) { 
-     return simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val)); 
-   } 
- }; 
-   
- // TODO: add this namespace once everyone is switched to using the new 
- //       interface. 
- // namespace detail { 
-   
- //===----------------------------------------------------------------------===// 
- // isa_impl 
- //===----------------------------------------------------------------------===// 
-   
- // The core of the implementation of isa<X> is here; To and From should be 
- // the names of classes.  This template can be specialized to customize the 
- // implementation of isa<> without rewriting it from scratch. 
- template <typename To, typename From, typename Enabler = void> struct isa_impl { 
-   static inline bool doit(const From &Val) { return To::classof(&Val); } 
- }; 
-   
- // Always allow upcasts, and perform no dynamic check for them. 
- template <typename To, typename From> 
- struct isa_impl<To, From, std::enable_if_t<std::is_base_of<To, From>::value>> { 
-   static inline bool doit(const From &) { return true; } 
- }; 
-   
- template <typename To, typename From> struct isa_impl_cl { 
-   static inline bool doit(const From &Val) { 
-     return isa_impl<To, From>::doit(Val); 
-   } 
- }; 
-   
- template <typename To, typename From> struct isa_impl_cl<To, const From> { 
-   static inline bool doit(const From &Val) { 
-     return isa_impl<To, From>::doit(Val); 
-   } 
- }; 
-   
- template <typename To, typename From> 
- struct isa_impl_cl<To, const std::unique_ptr<From>> { 
-   static inline bool doit(const std::unique_ptr<From> &Val) { 
-     assert(Val && "isa<> used on a null pointer"); 
-     return isa_impl_cl<To, From>::doit(*Val); 
-   } 
- }; 
-   
- template <typename To, typename From> struct isa_impl_cl<To, From *> { 
-   static inline bool doit(const From *Val) { 
-     assert(Val && "isa<> used on a null pointer"); 
-     return isa_impl<To, From>::doit(*Val); 
-   } 
- }; 
-   
- template <typename To, typename From> struct isa_impl_cl<To, From *const> { 
-   static inline bool doit(const From *Val) { 
-     assert(Val && "isa<> used on a null pointer"); 
-     return isa_impl<To, From>::doit(*Val); 
-   } 
- }; 
-   
- template <typename To, typename From> struct isa_impl_cl<To, const From *> { 
-   static inline bool doit(const From *Val) { 
-     assert(Val && "isa<> used on a null pointer"); 
-     return isa_impl<To, From>::doit(*Val); 
-   } 
- }; 
-   
- template <typename To, typename From> 
- struct isa_impl_cl<To, const From *const> { 
-   static inline bool doit(const From *Val) { 
-     assert(Val && "isa<> used on a null pointer"); 
-     return isa_impl<To, From>::doit(*Val); 
-   } 
- }; 
-   
- template <typename To, typename From, typename SimpleFrom> 
- struct isa_impl_wrap { 
-   // When From != SimplifiedType, we can simplify the type some more by using 
-   // the simplify_type template. 
-   static bool doit(const From &Val) { 
-     return isa_impl_wrap<To, SimpleFrom, 
-                          typename simplify_type<SimpleFrom>::SimpleType>:: 
-         doit(simplify_type<const From>::getSimplifiedValue(Val)); 
-   } 
- }; 
-   
- template <typename To, typename FromTy> 
- struct isa_impl_wrap<To, FromTy, FromTy> { 
-   // When From == SimpleType, we are as simple as we are going to get. 
-   static bool doit(const FromTy &Val) { 
-     return isa_impl_cl<To, FromTy>::doit(Val); 
-   } 
- }; 
-   
- //===----------------------------------------------------------------------===// 
- // cast_retty + cast_retty_impl 
- //===----------------------------------------------------------------------===// 
-   
- template <class To, class From> struct cast_retty; 
-   
- // Calculate what type the 'cast' function should return, based on a requested 
- // type of To and a source type of From. 
- template <class To, class From> struct cast_retty_impl { 
-   using ret_type = To &; // Normal case, return Ty& 
- }; 
- template <class To, class From> struct cast_retty_impl<To, const From> { 
-   using ret_type = const To &; // Normal case, return Ty& 
- }; 
-   
- template <class To, class From> struct cast_retty_impl<To, From *> { 
-   using ret_type = To *; // Pointer arg case, return Ty* 
- }; 
-   
- template <class To, class From> struct cast_retty_impl<To, const From *> { 
-   using ret_type = const To *; // Constant pointer arg case, return const Ty* 
- }; 
-   
- template <class To, class From> struct cast_retty_impl<To, const From *const> { 
-   using ret_type = const To *; // Constant pointer arg case, return const Ty* 
- }; 
-   
- template <class To, class From> 
- struct cast_retty_impl<To, std::unique_ptr<From>> { 
- private: 
-   using PointerType = typename cast_retty_impl<To, From *>::ret_type; 
-   using ResultType = std::remove_pointer_t<PointerType>; 
-   
- public: 
-   using ret_type = std::unique_ptr<ResultType>; 
- }; 
-   
- template <class To, class From, class SimpleFrom> struct cast_retty_wrap { 
-   // When the simplified type and the from type are not the same, use the type 
-   // simplifier to reduce the type, then reuse cast_retty_impl to get the 
-   // resultant type. 
-   using ret_type = typename cast_retty<To, SimpleFrom>::ret_type; 
- }; 
-   
- template <class To, class FromTy> struct cast_retty_wrap<To, FromTy, FromTy> { 
-   // When the simplified type is equal to the from type, use it directly. 
-   using ret_type = typename cast_retty_impl<To, FromTy>::ret_type; 
- }; 
-   
- template <class To, class From> struct cast_retty { 
-   using ret_type = typename cast_retty_wrap< 
-       To, From, typename simplify_type<From>::SimpleType>::ret_type; 
- }; 
-   
- //===----------------------------------------------------------------------===// 
- // cast_convert_val 
- //===----------------------------------------------------------------------===// 
-   
- // Ensure the non-simple values are converted using the simplify_type template 
- // that may be specialized by smart pointers... 
- // 
- template <class To, class From, class SimpleFrom> struct cast_convert_val { 
-   // This is not a simple type, use the template to simplify it... 
-   static typename cast_retty<To, From>::ret_type doit(const From &Val) { 
-     return cast_convert_val<To, SimpleFrom, 
-                             typename simplify_type<SimpleFrom>::SimpleType>:: 
-         doit(simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val))); 
-   } 
- }; 
-   
- template <class To, class FromTy> struct cast_convert_val<To, FromTy, FromTy> { 
-   // If it's a reference, switch to a pointer to do the cast and then deref it. 
-   static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) { 
-     return *(std::remove_reference_t<typename cast_retty<To, FromTy>::ret_type> 
-                  *)&const_cast<FromTy &>(Val); 
-   } 
- }; 
-   
- template <class To, class FromTy> 
- struct cast_convert_val<To, FromTy *, FromTy *> { 
-   // If it's a pointer, we can use c-style casting directly. 
-   static typename cast_retty<To, FromTy *>::ret_type doit(const FromTy *Val) { 
-     return (typename cast_retty<To, FromTy *>::ret_type) const_cast<FromTy *>( 
-         Val); 
-   } 
- }; 
-   
- //===----------------------------------------------------------------------===// 
- // is_simple_type 
- //===----------------------------------------------------------------------===// 
-   
- template <class X> struct is_simple_type { 
-   static const bool value = 
-       std::is_same<X, typename simplify_type<X>::SimpleType>::value; 
- }; 
-   
- // } // namespace detail 
-   
- //===----------------------------------------------------------------------===// 
- // CastIsPossible 
- //===----------------------------------------------------------------------===// 
-   
- /// This struct provides a way to check if a given cast is possible. It provides 
- /// a static function called isPossible that is used to check if a cast can be 
- /// performed. It should be overridden like this: 
- /// 
- /// template<> struct CastIsPossible<foo, bar> { 
- ///   static inline bool isPossible(const bar &b) { 
- ///     return bar.isFoo(); 
- ///   } 
- /// }; 
- template <typename To, typename From, typename Enable = void> 
- struct CastIsPossible { 
-   static inline bool isPossible(const From &f) { 
-     return isa_impl_wrap< 
-         To, const From, 
-         typename simplify_type<const From>::SimpleType>::doit(f); 
-   } 
- }; 
-   
- // Needed for optional unwrapping. This could be implemented with isa_impl, but 
- // we want to implement things in the new method and move old implementations 
- // over. In fact, some of the isa_impl templates should be moved over to 
- // CastIsPossible. 
- template <typename To, typename From> 
- struct CastIsPossible<To, std::optional<From>> { 
-   static inline bool isPossible(const std::optional<From> &f) { 
-     assert(f && "CastIsPossible::isPossible called on a nullopt!"); 
-     return isa_impl_wrap< 
-         To, const From, 
-         typename simplify_type<const From>::SimpleType>::doit(*f); 
-   } 
- }; 
-   
- /// Upcasting (from derived to base) and casting from a type to itself should 
- /// always be possible. 
- template <typename To, typename From> 
- struct CastIsPossible<To, From, 
-                       std::enable_if_t<std::is_base_of<To, From>::value>> { 
-   static inline bool isPossible(const From &f) { return true; } 
- }; 
-   
- //===----------------------------------------------------------------------===// 
- // Cast traits 
- //===----------------------------------------------------------------------===// 
-   
- /// All of these cast traits are meant to be implementations for useful casts 
- /// that users may want to use that are outside the standard behavior. An 
- /// example of how to use a special cast called `CastTrait` is: 
- /// 
- /// template<> struct CastInfo<foo, bar> : public CastTrait<foo, bar> {}; 
- /// 
- /// Essentially, if your use case falls directly into one of the use cases 
- /// supported by a given cast trait, simply inherit your special CastInfo 
- /// directly from one of these to avoid having to reimplement the boilerplate 
- /// `isPossible/castFailed/doCast/doCastIfPossible`. A cast trait can also 
- /// provide a subset of those functions. 
-   
- /// This cast trait just provides castFailed for the specified `To` type to make 
- /// CastInfo specializations more declarative. In order to use this, the target 
- /// result type must be `To` and `To` must be constructible from `nullptr`. 
- template <typename To> struct NullableValueCastFailed { 
-   static To castFailed() { return To(nullptr); } 
- }; 
-   
- /// This cast trait just provides the default implementation of doCastIfPossible 
- /// to make CastInfo specializations more declarative. The `Derived` template 
- /// parameter *must* be provided for forwarding castFailed and doCast. 
- template <typename To, typename From, typename Derived> 
- struct DefaultDoCastIfPossible { 
-   static To doCastIfPossible(From f) { 
-     if (!Derived::isPossible(f)) 
-       return Derived::castFailed(); 
-     return Derived::doCast(f); 
-   } 
- }; 
-   
- namespace detail { 
- /// A helper to derive the type to use with `Self` for cast traits, when the 
- /// provided CRTP derived type is allowed to be void. 
- template <typename OptionalDerived, typename Default> 
- using SelfType = std::conditional_t<std::is_same<OptionalDerived, void>::value, 
-                                     Default, OptionalDerived>; 
- } // namespace detail 
-   
- /// This cast trait provides casting for the specific case of casting to a 
- /// value-typed object from a pointer-typed object. Note that `To` must be 
- /// nullable/constructible from a pointer to `From` to use this cast. 
- template <typename To, typename From, typename Derived = void> 
- struct ValueFromPointerCast 
-     : public CastIsPossible<To, From *>, 
-       public NullableValueCastFailed<To>, 
-       public DefaultDoCastIfPossible< 
-           To, From *, 
-           detail::SelfType<Derived, ValueFromPointerCast<To, From>>> { 
-   static inline To doCast(From *f) { return To(f); } 
- }; 
-   
- /// This cast trait provides std::unique_ptr casting. It has the semantics of 
- /// moving the contents of the input unique_ptr into the output unique_ptr 
- /// during the cast. It's also a good example of how to implement a move-only 
- /// cast. 
- template <typename To, typename From, typename Derived = void> 
- struct UniquePtrCast : public CastIsPossible<To, From *> { 
-   using Self = detail::SelfType<Derived, UniquePtrCast<To, From>>; 
-   using CastResultType = std::unique_ptr< 
-       std::remove_reference_t<typename cast_retty<To, From>::ret_type>>; 
-   
-   static inline CastResultType doCast(std::unique_ptr<From> &&f) { 
-     return CastResultType((typename CastResultType::element_type *)f.release()); 
-   } 
-   
-   static inline CastResultType castFailed() { return CastResultType(nullptr); } 
-   
-   static inline CastResultType doCastIfPossible(std::unique_ptr<From> &&f) { 
-     if (!Self::isPossible(f)) 
-       return castFailed(); 
-     return doCast(f); 
-   } 
- }; 
-   
- /// This cast trait provides std::optional<T> casting. This means that if you 
- /// have a value type, you can cast it to another value type and have dyn_cast 
- /// return an std::optional<T>. 
- template <typename To, typename From, typename Derived = void> 
- struct OptionalValueCast 
-     : public CastIsPossible<To, From>, 
-       public DefaultDoCastIfPossible< 
-           std::optional<To>, From, 
-           detail::SelfType<Derived, OptionalValueCast<To, From>>> { 
-   static inline std::optional<To> castFailed() { return std::optional<To>{}; } 
-   
-   static inline std::optional<To> doCast(const From &f) { return To(f); } 
- }; 
-   
- /// Provides a cast trait that strips `const` from types to make it easier to 
- /// implement a const-version of a non-const cast. It just removes boilerplate 
- /// and reduces the amount of code you as the user need to implement. You can 
- /// use it like this: 
- /// 
- /// template<> struct CastInfo<foo, bar> { 
- ///   ...verbose implementation... 
- /// }; 
- /// 
- /// template<> struct CastInfo<foo, const bar> : public 
- ///        ConstStrippingForwardingCast<foo, const bar, CastInfo<foo, bar>> {}; 
- /// 
- template <typename To, typename From, typename ForwardTo> 
- struct ConstStrippingForwardingCast { 
-   // Remove the pointer if it exists, then we can get rid of consts/volatiles. 
-   using DecayedFrom = std::remove_cv_t<std::remove_pointer_t<From>>; 
-   // Now if it's a pointer, add it back. Otherwise, we want a ref. 
-   using NonConstFrom = std::conditional_t<std::is_pointer<From>::value, 
-                                           DecayedFrom *, DecayedFrom &>; 
-   
-   static inline bool isPossible(const From &f) { 
-     return ForwardTo::isPossible(const_cast<NonConstFrom>(f)); 
-   } 
-   
-   static inline decltype(auto) castFailed() { return ForwardTo::castFailed(); } 
-   
-   static inline decltype(auto) doCast(const From &f) { 
-     return ForwardTo::doCast(const_cast<NonConstFrom>(f)); 
-   } 
-   
-   static inline decltype(auto) doCastIfPossible(const From &f) { 
-     return ForwardTo::doCastIfPossible(const_cast<NonConstFrom>(f)); 
-   } 
- }; 
-   
- /// Provides a cast trait that uses a defined pointer to pointer cast as a base 
- /// for reference-to-reference casts. Note that it does not provide castFailed 
- /// and doCastIfPossible because a pointer-to-pointer cast would likely just 
- /// return `nullptr` which could cause nullptr dereference. You can use it like 
- /// this: 
- /// 
- ///   template <> struct CastInfo<foo, bar *> { ... verbose implementation... }; 
- /// 
- ///   template <> 
- ///   struct CastInfo<foo, bar> 
- ///       : public ForwardToPointerCast<foo, bar, CastInfo<foo, bar *>> {}; 
- /// 
- template <typename To, typename From, typename ForwardTo> 
- struct ForwardToPointerCast { 
-   static inline bool isPossible(const From &f) { 
-     return ForwardTo::isPossible(&f); 
-   } 
-   
-   static inline decltype(auto) doCast(const From &f) { 
-     return *ForwardTo::doCast(&f); 
-   } 
- }; 
-   
- //===----------------------------------------------------------------------===// 
- // CastInfo 
- //===----------------------------------------------------------------------===// 
-   
- /// This struct provides a method for customizing the way a cast is performed. 
- /// It inherits from CastIsPossible, to support the case of declaring many 
- /// CastIsPossible specializations without having to specialize the full 
- /// CastInfo. 
- /// 
- /// In order to specialize different behaviors, specify different functions in 
- /// your CastInfo specialization. 
- /// For isa<> customization, provide: 
- /// 
- ///   `static bool isPossible(const From &f)` 
- /// 
- /// For cast<> customization, provide: 
- /// 
- ///  `static To doCast(const From &f)` 
- /// 
- /// For dyn_cast<> and the *_if_present<> variants' customization, provide: 
- /// 
- ///  `static To castFailed()` and `static To doCastIfPossible(const From &f)` 
- /// 
- /// Your specialization might look something like this: 
- /// 
- ///  template<> struct CastInfo<foo, bar> : public CastIsPossible<foo, bar> { 
- ///    static inline foo doCast(const bar &b) { 
- ///      return foo(const_cast<bar &>(b)); 
- ///    } 
- ///    static inline foo castFailed() { return foo(); } 
- ///    static inline foo doCastIfPossible(const bar &b) { 
- ///      if (!CastInfo<foo, bar>::isPossible(b)) 
- ///        return castFailed(); 
- ///      return doCast(b); 
- ///    } 
- ///  }; 
-   
- // The default implementations of CastInfo don't use cast traits for now because 
- // we need to specify types all over the place due to the current expected 
- // casting behavior and the way cast_retty works. New use cases can and should 
- // take advantage of the cast traits whenever possible! 
-   
- template <typename To, typename From, typename Enable = void> 
- struct CastInfo : public CastIsPossible<To, From> { 
-   using Self = CastInfo<To, From, Enable>; 
-   
-   using CastReturnType = typename cast_retty<To, From>::ret_type; 
-   
-   static inline CastReturnType doCast(const From &f) { 
-     return cast_convert_val< 
-         To, From, 
-         typename simplify_type<From>::SimpleType>::doit(const_cast<From &>(f)); 
-   } 
-   
-   // This assumes that you can construct the cast return type from `nullptr`. 
-   // This is largely to support legacy use cases - if you don't want this 
-   // behavior you should specialize CastInfo for your use case. 
-   static inline CastReturnType castFailed() { return CastReturnType(nullptr); } 
-   
-   static inline CastReturnType doCastIfPossible(const From &f) { 
-     if (!Self::isPossible(f)) 
-       return castFailed(); 
-     return doCast(f); 
-   } 
- }; 
-   
- /// This struct provides an overload for CastInfo where From has simplify_type 
- /// defined. This simply forwards to the appropriate CastInfo with the 
- /// simplified type/value, so you don't have to implement both. 
- template <typename To, typename From> 
- struct CastInfo<To, From, std::enable_if_t<!is_simple_type<From>::value>> { 
-   using Self = CastInfo<To, From>; 
-   using SimpleFrom = typename simplify_type<From>::SimpleType; 
-   using SimplifiedSelf = CastInfo<To, SimpleFrom>; 
-   
-   static inline bool isPossible(From &f) { 
-     return SimplifiedSelf::isPossible( 
-         simplify_type<From>::getSimplifiedValue(f)); 
-   } 
-   
-   static inline decltype(auto) doCast(From &f) { 
-     return SimplifiedSelf::doCast(simplify_type<From>::getSimplifiedValue(f)); 
-   } 
-   
-   static inline decltype(auto) castFailed() { 
-     return SimplifiedSelf::castFailed(); 
-   } 
-   
-   static inline decltype(auto) doCastIfPossible(From &f) { 
-     return SimplifiedSelf::doCastIfPossible( 
-         simplify_type<From>::getSimplifiedValue(f)); 
-   } 
- }; 
-   
- //===----------------------------------------------------------------------===// 
- // Pre-specialized CastInfo 
- //===----------------------------------------------------------------------===// 
-   
- /// Provide a CastInfo specialized for std::unique_ptr. 
- template <typename To, typename From> 
- struct CastInfo<To, std::unique_ptr<From>> : public UniquePtrCast<To, From> {}; 
-   
- /// Provide a CastInfo specialized for std::optional<From>. It's assumed that if 
- /// the input is std::optional<From> that the output can be std::optional<To>. 
- /// If that's not the case, specialize CastInfo for your use case. 
- template <typename To, typename From> 
- struct CastInfo<To, std::optional<From>> : public OptionalValueCast<To, From> { 
- }; 
-   
- /// isa<X> - Return true if the parameter to the template is an instance of one 
- /// of the template type arguments.  Used like this: 
- /// 
- ///  if (isa<Type>(myVal)) { ... } 
- ///  if (isa<Type0, Type1, Type2>(myVal)) { ... } 
- template <typename To, typename From> 
- [[nodiscard]] inline bool isa(const From &Val) { 
-   return CastInfo<To, const From>::isPossible(Val); 
- } 
-   
- template <typename First, typename Second, typename... Rest, typename From> 
- [[nodiscard]] inline bool isa(const From &Val) { 
-   return isa<First>(Val) || isa<Second, Rest...>(Val); 
- } 
-   
- /// cast<X> - Return the argument parameter cast to the specified type.  This 
- /// casting operator asserts that the type is correct, so it does not return 
- /// null on failure.  It does not allow a null argument (use cast_if_present for 
- /// that). It is typically used like this: 
- /// 
- ///  cast<Instruction>(myVal)->getParent() 
-   
- template <typename To, typename From> 
- [[nodiscard]] inline decltype(auto) cast(const From &Val) { 
-   assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!"); 
-   return CastInfo<To, const From>::doCast(Val); 
- } 
-   
- template <typename To, typename From> 
- [[nodiscard]] inline decltype(auto) cast(From &Val) { 
-   assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!"); 
-   return CastInfo<To, From>::doCast(Val); 
- } 
-   
- template <typename To, typename From> 
- [[nodiscard]] inline decltype(auto) cast(From *Val) { 
-   assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!"); 
-   return CastInfo<To, From *>::doCast(Val); 
- } 
-   
- template <typename To, typename From> 
- [[nodiscard]] inline decltype(auto) cast(std::unique_ptr<From> &&Val) { 
-   assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!"); 
-   return CastInfo<To, std::unique_ptr<From>>::doCast(std::move(Val)); 
- } 
-   
- //===----------------------------------------------------------------------===// 
- // ValueIsPresent 
- //===----------------------------------------------------------------------===// 
-   
- template <typename T> 
- constexpr bool IsNullable = 
-     std::is_pointer_v<T> || std::is_constructible_v<T, std::nullptr_t>; 
-   
- /// ValueIsPresent provides a way to check if a value is, well, present. For 
- /// pointers, this is the equivalent of checking against nullptr, for Optionals 
- /// this is the equivalent of checking hasValue(). It also provides a method for 
- /// unwrapping a value (think calling .value() on an optional). 
-   
- // Generic values can't *not* be present. 
- template <typename T, typename Enable = void> struct ValueIsPresent { 
-   using UnwrappedType = T; 
-   static inline bool isPresent(const T &t) { return true; } 
-   static inline decltype(auto) unwrapValue(T &t) { return t; } 
- }; 
-   
- // Optional provides its own way to check if something is present. 
- template <typename T> struct ValueIsPresent<std::optional<T>> { 
-   using UnwrappedType = T; 
-   static inline bool isPresent(const std::optional<T> &t) { 
-     return t.has_value(); 
-   } 
-   static inline decltype(auto) unwrapValue(std::optional<T> &t) { return *t; } 
- }; 
-   
- // If something is "nullable" then we just compare it to nullptr to see if it 
- // exists. 
- template <typename T> 
- struct ValueIsPresent<T, std::enable_if_t<IsNullable<T>>> { 
-   using UnwrappedType = T; 
-   static inline bool isPresent(const T &t) { return t != T(nullptr); } 
-   static inline decltype(auto) unwrapValue(T &t) { return t; } 
- }; 
-   
- namespace detail { 
- // Convenience function we can use to check if a value is present. Because of 
- // simplify_type, we have to call it on the simplified type for now. 
- template <typename T> inline bool isPresent(const T &t) { 
-   return ValueIsPresent<typename simplify_type<T>::SimpleType>::isPresent( 
-       simplify_type<T>::getSimplifiedValue(const_cast<T &>(t))); 
- } 
-   
- // Convenience function we can use to unwrap a value. 
- template <typename T> inline decltype(auto) unwrapValue(T &t) { 
-   return ValueIsPresent<T>::unwrapValue(t); 
- } 
- } // namespace detail 
-   
- /// dyn_cast<X> - Return the argument parameter cast to the specified type. This 
- /// casting operator returns null if the argument is of the wrong type, so it 
- /// can be used to test for a type as well as cast if successful. The value 
- /// passed in must be present, if not, use dyn_cast_if_present. This should be 
- /// used in the context of an if statement like this: 
- /// 
- ///  if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... } 
-   
- template <typename To, typename From> 
- [[nodiscard]] inline decltype(auto) dyn_cast(const From &Val) { 
-   assert(detail::isPresent(Val) && "dyn_cast on a non-existent value"); 
-   return CastInfo<To, const From>::doCastIfPossible(Val); 
- } 
-   
- template <typename To, typename From> 
- [[nodiscard]] inline decltype(auto) dyn_cast(From &Val) { 
-   assert(detail::isPresent(Val) && "dyn_cast on a non-existent value"); 
-   return CastInfo<To, From>::doCastIfPossible(Val); 
- } 
-   
- template <typename To, typename From> 
- [[nodiscard]] inline decltype(auto) dyn_cast(From *Val) { 
-   assert(detail::isPresent(Val) && "dyn_cast on a non-existent value"); 
-   return CastInfo<To, From *>::doCastIfPossible(Val); 
- } 
-   
- template <typename To, typename From> 
- [[nodiscard]] inline decltype(auto) dyn_cast(std::unique_ptr<From> &&Val) { 
-   assert(detail::isPresent(Val) && "dyn_cast on a non-existent value"); 
-   return CastInfo<To, std::unique_ptr<From>>::doCastIfPossible( 
-       std::forward<std::unique_ptr<From> &&>(Val)); 
- } 
-   
- /// isa_and_present<X> - Functionally identical to isa, except that a null value 
- /// is accepted. 
- template <typename... X, class Y> 
- [[nodiscard]] inline bool isa_and_present(const Y &Val) { 
-   if (!detail::isPresent(Val)) 
-     return false; 
-   return isa<X...>(Val); 
- } 
-   
- template <typename... X, class Y> 
- [[nodiscard]] inline bool isa_and_nonnull(const Y &Val) { 
-   return isa_and_present<X...>(Val); 
- } 
-   
- /// cast_if_present<X> - Functionally identical to cast, except that a null 
- /// value is accepted. 
- template <class X, class Y> 
- [[nodiscard]] inline auto cast_if_present(const Y &Val) { 
-   if (!detail::isPresent(Val)) 
-     return CastInfo<X, const Y>::castFailed(); 
-   assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"); 
-   return cast<X>(detail::unwrapValue(Val)); 
- } 
-   
- template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y &Val) { 
-   if (!detail::isPresent(Val)) 
-     return CastInfo<X, Y>::castFailed(); 
-   assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"); 
-   return cast<X>(detail::unwrapValue(Val)); 
- } 
-   
- template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y *Val) { 
-   if (!detail::isPresent(Val)) 
-     return CastInfo<X, Y *>::castFailed(); 
-   assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"); 
-   return cast<X>(detail::unwrapValue(Val)); 
- } 
-   
- template <class X, class Y> 
- [[nodiscard]] inline auto cast_if_present(std::unique_ptr<Y> &&Val) { 
-   if (!detail::isPresent(Val)) 
-     return UniquePtrCast<X, Y>::castFailed(); 
-   return UniquePtrCast<X, Y>::doCast(std::move(Val)); 
- } 
-   
- // Provide a forwarding from cast_or_null to cast_if_present for current 
- // users. This is deprecated and will be removed in a future patch, use 
- // cast_if_present instead. 
- template <class X, class Y> auto cast_or_null(const Y &Val) { 
-   return cast_if_present<X>(Val); 
- } 
-   
- template <class X, class Y> auto cast_or_null(Y &Val) { 
-   return cast_if_present<X>(Val); 
- } 
-   
- template <class X, class Y> auto cast_or_null(Y *Val) { 
-   return cast_if_present<X>(Val); 
- } 
-   
- template <class X, class Y> auto cast_or_null(std::unique_ptr<Y> &&Val) { 
-   return cast_if_present<X>(std::move(Val)); 
- } 
-   
- /// dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a 
- /// null (or none in the case of optionals) value is accepted. 
- template <class X, class Y> auto dyn_cast_if_present(const Y &Val) { 
-   if (!detail::isPresent(Val)) 
-     return CastInfo<X, const Y>::castFailed(); 
-   return CastInfo<X, const Y>::doCastIfPossible(detail::unwrapValue(Val)); 
- } 
-   
- template <class X, class Y> auto dyn_cast_if_present(Y &Val) { 
-   if (!detail::isPresent(Val)) 
-     return CastInfo<X, Y>::castFailed(); 
-   return CastInfo<X, Y>::doCastIfPossible(detail::unwrapValue(Val)); 
- } 
-   
- template <class X, class Y> auto dyn_cast_if_present(Y *Val) { 
-   if (!detail::isPresent(Val)) 
-     return CastInfo<X, Y *>::castFailed(); 
-   return CastInfo<X, Y *>::doCastIfPossible(detail::unwrapValue(Val)); 
- } 
-   
- // Forwards to dyn_cast_if_present to avoid breaking current users. This is 
- // deprecated and will be removed in a future patch, use 
- // cast_if_present instead. 
- template <class X, class Y> auto dyn_cast_or_null(const Y &Val) { 
-   return dyn_cast_if_present<X>(Val); 
- } 
-   
- template <class X, class Y> auto dyn_cast_or_null(Y &Val) { 
-   return dyn_cast_if_present<X>(Val); 
- } 
-   
- template <class X, class Y> auto dyn_cast_or_null(Y *Val) { 
-   return dyn_cast_if_present<X>(Val); 
- } 
-   
- /// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>, 
- /// taking ownership of the input pointer iff isa<X>(Val) is true.  If the 
- /// cast is successful, From refers to nullptr on exit and the casted value 
- /// is returned.  If the cast is unsuccessful, the function returns nullptr 
- /// and From is unchanged. 
- template <class X, class Y> 
- [[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType 
- unique_dyn_cast(std::unique_ptr<Y> &Val) { 
-   if (!isa<X>(Val)) 
-     return nullptr; 
-   return cast<X>(std::move(Val)); 
- } 
-   
- template <class X, class Y> 
- [[nodiscard]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) { 
-   return unique_dyn_cast<X, Y>(Val); 
- } 
-   
- // unique_dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, 
- // except that a null value is accepted. 
- template <class X, class Y> 
- [[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType 
- unique_dyn_cast_or_null(std::unique_ptr<Y> &Val) { 
-   if (!Val) 
-     return nullptr; 
-   return unique_dyn_cast<X, Y>(Val); 
- } 
-   
- template <class X, class Y> 
- [[nodiscard]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) { 
-   return unique_dyn_cast_or_null<X, Y>(Val); 
- } 
-   
- } // end namespace llvm 
-   
- #endif // LLVM_SUPPORT_CASTING_H 
-