- //===- llvm/MC/MCInstrAnalysis.h - InstrDesc target hooks -------*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- // 
- // This file defines the MCInstrAnalysis class which the MCTargetDescs can 
- // derive from to give additional information to MC. 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_MC_MCINSTRANALYSIS_H 
- #define LLVM_MC_MCINSTRANALYSIS_H 
-   
- #include "llvm/ADT/ArrayRef.h" 
- #include "llvm/MC/MCInst.h" 
- #include "llvm/MC/MCInstrDesc.h" 
- #include "llvm/MC/MCInstrInfo.h" 
- #include <cstdint> 
- #include <vector> 
-   
- namespace llvm { 
-   
- class MCRegisterInfo; 
- class Triple; 
-   
- class MCInstrAnalysis { 
- protected: 
-   friend class Target; 
-   
-   const MCInstrInfo *Info; 
-   
- public: 
-   MCInstrAnalysis(const MCInstrInfo *Info) : Info(Info) {} 
-   virtual ~MCInstrAnalysis() = default; 
-   
-   virtual bool isBranch(const MCInst &Inst) const { 
-     return Info->get(Inst.getOpcode()).isBranch(); 
-   } 
-   
-   virtual bool isConditionalBranch(const MCInst &Inst) const { 
-     return Info->get(Inst.getOpcode()).isConditionalBranch(); 
-   } 
-   
-   virtual bool isUnconditionalBranch(const MCInst &Inst) const { 
-     return Info->get(Inst.getOpcode()).isUnconditionalBranch(); 
-   } 
-   
-   virtual bool isIndirectBranch(const MCInst &Inst) const { 
-     return Info->get(Inst.getOpcode()).isIndirectBranch(); 
-   } 
-   
-   virtual bool isCall(const MCInst &Inst) const { 
-     return Info->get(Inst.getOpcode()).isCall(); 
-   } 
-   
-   virtual bool isReturn(const MCInst &Inst) const { 
-     return Info->get(Inst.getOpcode()).isReturn(); 
-   } 
-   
-   virtual bool isTerminator(const MCInst &Inst) const { 
-     return Info->get(Inst.getOpcode()).isTerminator(); 
-   } 
-   
-   /// Returns true if at least one of the register writes performed by 
-   /// \param Inst implicitly clears the upper portion of all super-registers. 
-   /// 
-   /// Example: on X86-64, a write to EAX implicitly clears the upper half of 
-   /// RAX. Also (still on x86) an XMM write perfomed by an AVX 128-bit 
-   /// instruction implicitly clears the upper portion of the correspondent 
-   /// YMM register. 
-   /// 
-   /// This method also updates an APInt which is used as mask of register 
-   /// writes. There is one bit for every explicit/implicit write performed by 
-   /// the instruction. If a write implicitly clears its super-registers, then 
-   /// the corresponding bit is set (vic. the corresponding bit is cleared). 
-   /// 
-   /// The first bits in the APint are related to explicit writes. The remaining 
-   /// bits are related to implicit writes. The sequence of writes follows the 
-   /// machine operand sequence. For implicit writes, the sequence is defined by 
-   /// the MCInstrDesc. 
-   /// 
-   /// The assumption is that the bit-width of the APInt is correctly set by 
-   /// the caller. The default implementation conservatively assumes that none of 
-   /// the writes clears the upper portion of a super-register. 
-   virtual bool clearsSuperRegisters(const MCRegisterInfo &MRI, 
-                                     const MCInst &Inst, 
-                                     APInt &Writes) const; 
-   
-   /// Returns true if MI is a dependency breaking zero-idiom for the given 
-   /// subtarget. 
-   /// 
-   /// Mask is used to identify input operands that have their dependency 
-   /// broken. Each bit of the mask is associated with a specific input operand. 
-   /// Bits associated with explicit input operands are laid out first in the 
-   /// mask; implicit operands come after explicit operands. 
-   ///  
-   /// Dependencies are broken only for operands that have their corresponding bit 
-   /// set. Operands that have their bit cleared, or that don't have a 
-   /// corresponding bit in the mask don't have their dependency broken.  Note 
-   /// that Mask may not be big enough to describe all operands.  The assumption 
-   /// for operands that don't have a correspondent bit in the mask is that those 
-   /// are still data dependent. 
-   ///  
-   /// The only exception to the rule is for when Mask has all zeroes. 
-   /// A zero mask means: dependencies are broken for all explicit register 
-   /// operands. 
-   virtual bool isZeroIdiom(const MCInst &MI, APInt &Mask, 
-                            unsigned CPUID) const { 
-     return false; 
-   } 
-   
-   /// Returns true if MI is a dependency breaking instruction for the 
-   /// subtarget associated with CPUID . 
-   /// 
-   /// The value computed by a dependency breaking instruction is not dependent 
-   /// on the inputs. An example of dependency breaking instruction on X86 is 
-   /// `XOR %eax, %eax`. 
-   /// 
-   /// If MI is a dependency breaking instruction for subtarget CPUID, then Mask 
-   /// can be inspected to identify independent operands. 
-   /// 
-   /// Essentially, each bit of the mask corresponds to an input operand. 
-   /// Explicit operands are laid out first in the mask; implicit operands follow 
-   /// explicit operands. Bits are set for operands that are independent. 
-   /// 
-   /// Note that the number of bits in Mask may not be equivalent to the sum of 
-   /// explicit and implicit operands in MI. Operands that don't have a 
-   /// corresponding bit in Mask are assumed "not independente". 
-   /// 
-   /// The only exception is for when Mask is all zeroes. That means: explicit 
-   /// input operands of MI are independent. 
-   virtual bool isDependencyBreaking(const MCInst &MI, APInt &Mask, 
-                                     unsigned CPUID) const { 
-     return isZeroIdiom(MI, Mask, CPUID); 
-   } 
-   
-   /// Returns true if MI is a candidate for move elimination. 
-   /// 
-   /// Different subtargets may apply different constraints to optimizable 
-   /// register moves. For example, on most X86 subtargets, a candidate for move 
-   /// elimination cannot specify the same register for both source and 
-   /// destination. 
-   virtual bool isOptimizableRegisterMove(const MCInst &MI, 
-                                          unsigned CPUID) const { 
-     return false; 
-   } 
-   
-   /// Given a branch instruction try to get the address the branch 
-   /// targets. Return true on success, and the address in Target. 
-   virtual bool 
-   evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size, 
-                  uint64_t &Target) const; 
-   
-   /// Given an instruction tries to get the address of a memory operand. Returns 
-   /// the address on success. 
-   virtual std::optional<uint64_t> 
-   evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI, 
-                                uint64_t Addr, uint64_t Size) const; 
-   
-   /// Given an instruction with a memory operand that could require relocation, 
-   /// returns the offset within the instruction of that relocation. 
-   virtual std::optional<uint64_t> 
-   getMemoryOperandRelocationOffset(const MCInst &Inst, uint64_t Size) const; 
-   
-   /// Returns (PLT virtual address, GOT virtual address) pairs for PLT entries. 
-   virtual std::vector<std::pair<uint64_t, uint64_t>> 
-   findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents, 
-                  uint64_t GotPltSectionVA, const Triple &TargetTriple) const { 
-     return {}; 
-   } 
- }; 
-   
- } // end namespace llvm 
-   
- #endif // LLVM_MC_MCINSTRANALYSIS_H 
-