- //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- /// \file 
- /// 
- /// This header defines various interfaces for pass management in LLVM. There 
- /// is no "pass" interface in LLVM per se. Instead, an instance of any class 
- /// which supports a method to 'run' it over a unit of IR can be used as 
- /// a pass. A pass manager is generally a tool to collect a sequence of passes 
- /// which run over a particular IR construct, and run each of them in sequence 
- /// over each such construct in the containing IR construct. As there is no 
- /// containing IR construct for a Module, a manager for passes over modules 
- /// forms the base case which runs its managed passes in sequence over the 
- /// single module provided. 
- /// 
- /// The core IR library provides managers for running passes over 
- /// modules and functions. 
- /// 
- /// * FunctionPassManager can run over a Module, runs each pass over 
- ///   a Function. 
- /// * ModulePassManager must be directly run, runs each pass over the Module. 
- /// 
- /// Note that the implementations of the pass managers use concept-based 
- /// polymorphism as outlined in the "Value Semantics and Concept-based 
- /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base 
- /// Class of Evil") by Sean Parent: 
- /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations 
- /// * http://www.youtube.com/watch?v=_BpMYeUFXv8 
- /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil 
- /// 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_IR_PASSMANAGER_H 
- #define LLVM_IR_PASSMANAGER_H 
-   
- #include "llvm/ADT/DenseMap.h" 
- #include "llvm/ADT/STLExtras.h" 
- #include "llvm/ADT/SmallPtrSet.h" 
- #include "llvm/ADT/StringRef.h" 
- #include "llvm/ADT/TinyPtrVector.h" 
- #include "llvm/IR/Function.h" 
- #include "llvm/IR/Module.h" 
- #include "llvm/IR/PassInstrumentation.h" 
- #include "llvm/IR/PassManagerInternal.h" 
- #include "llvm/Support/TimeProfiler.h" 
- #include "llvm/Support/TypeName.h" 
- #include <cassert> 
- #include <cstring> 
- #include <iterator> 
- #include <list> 
- #include <memory> 
- #include <tuple> 
- #include <type_traits> 
- #include <utility> 
- #include <vector> 
-   
- namespace llvm { 
-   
- /// A special type used by analysis passes to provide an address that 
- /// identifies that particular analysis pass type. 
- /// 
- /// Analysis passes should have a static data member of this type and derive 
- /// from the \c AnalysisInfoMixin to get a static ID method used to identify 
- /// the analysis in the pass management infrastructure. 
- struct alignas(8) AnalysisKey {}; 
-   
- /// A special type used to provide an address that identifies a set of related 
- /// analyses.  These sets are primarily used below to mark sets of analyses as 
- /// preserved. 
- /// 
- /// For example, a transformation can indicate that it preserves the CFG of a 
- /// function by preserving the appropriate AnalysisSetKey.  An analysis that 
- /// depends only on the CFG can then check if that AnalysisSetKey is preserved; 
- /// if it is, the analysis knows that it itself is preserved. 
- struct alignas(8) AnalysisSetKey {}; 
-   
- /// This templated class represents "all analyses that operate over \<a 
- /// particular IR unit\>" (e.g. a Function or a Module) in instances of 
- /// PreservedAnalysis. 
- /// 
- /// This lets a transformation say e.g. "I preserved all function analyses". 
- /// 
- /// Note that you must provide an explicit instantiation declaration and 
- /// definition for this template in order to get the correct behavior on 
- /// Windows. Otherwise, the address of SetKey will not be stable. 
- template <typename IRUnitT> class AllAnalysesOn { 
- public: 
-   static AnalysisSetKey *ID() { return &SetKey; } 
-   
- private: 
-   static AnalysisSetKey SetKey; 
- }; 
-   
- template <typename IRUnitT> AnalysisSetKey AllAnalysesOn<IRUnitT>::SetKey; 
-   
- extern template class AllAnalysesOn<Module>; 
- extern template class AllAnalysesOn<Function>; 
-   
- /// Represents analyses that only rely on functions' control flow. 
- /// 
- /// This can be used with \c PreservedAnalyses to mark the CFG as preserved and 
- /// to query whether it has been preserved. 
- /// 
- /// The CFG of a function is defined as the set of basic blocks and the edges 
- /// between them. Changing the set of basic blocks in a function is enough to 
- /// mutate the CFG. Mutating the condition of a branch or argument of an 
- /// invoked function does not mutate the CFG, but changing the successor labels 
- /// of those instructions does. 
- class CFGAnalyses { 
- public: 
-   static AnalysisSetKey *ID() { return &SetKey; } 
-   
- private: 
-   static AnalysisSetKey SetKey; 
- }; 
-   
- /// A set of analyses that are preserved following a run of a transformation 
- /// pass. 
- /// 
- /// Transformation passes build and return these objects to communicate which 
- /// analyses are still valid after the transformation. For most passes this is 
- /// fairly simple: if they don't change anything all analyses are preserved, 
- /// otherwise only a short list of analyses that have been explicitly updated 
- /// are preserved. 
- /// 
- /// This class also lets transformation passes mark abstract *sets* of analyses 
- /// as preserved. A transformation that (say) does not alter the CFG can 
- /// indicate such by marking a particular AnalysisSetKey as preserved, and 
- /// then analyses can query whether that AnalysisSetKey is preserved. 
- /// 
- /// Finally, this class can represent an "abandoned" analysis, which is 
- /// not preserved even if it would be covered by some abstract set of analyses. 
- /// 
- /// Given a `PreservedAnalyses` object, an analysis will typically want to 
- /// figure out whether it is preserved. In the example below, MyAnalysisType is 
- /// preserved if it's not abandoned, and (a) it's explicitly marked as 
- /// preserved, (b), the set AllAnalysesOn<MyIRUnit> is preserved, or (c) both 
- /// AnalysisSetA and AnalysisSetB are preserved. 
- /// 
- /// ``` 
- ///   auto PAC = PA.getChecker<MyAnalysisType>(); 
- ///   if (PAC.preserved() || PAC.preservedSet<AllAnalysesOn<MyIRUnit>>() || 
- ///       (PAC.preservedSet<AnalysisSetA>() && 
- ///        PAC.preservedSet<AnalysisSetB>())) { 
- ///     // The analysis has been successfully preserved ... 
- ///   } 
- /// ``` 
- class PreservedAnalyses { 
- public: 
-   /// Convenience factory function for the empty preserved set. 
-   static PreservedAnalyses none() { return PreservedAnalyses(); } 
-   
-   /// Construct a special preserved set that preserves all passes. 
-   static PreservedAnalyses all() { 
-     PreservedAnalyses PA; 
-     PA.PreservedIDs.insert(&AllAnalysesKey); 
-     return PA; 
-   } 
-   
-   /// Construct a preserved analyses object with a single preserved set. 
-   template <typename AnalysisSetT> 
-   static PreservedAnalyses allInSet() { 
-     PreservedAnalyses PA; 
-     PA.preserveSet<AnalysisSetT>(); 
-     return PA; 
-   } 
-   
-   /// Mark an analysis as preserved. 
-   template <typename AnalysisT> void preserve() { preserve(AnalysisT::ID()); } 
-   
-   /// Given an analysis's ID, mark the analysis as preserved, adding it 
-   /// to the set. 
-   void preserve(AnalysisKey *ID) { 
-     // Clear this ID from the explicit not-preserved set if present. 
-     NotPreservedAnalysisIDs.erase(ID); 
-   
-     // If we're not already preserving all analyses (other than those in 
-     // NotPreservedAnalysisIDs). 
-     if (!areAllPreserved()) 
-       PreservedIDs.insert(ID); 
-   } 
-   
-   /// Mark an analysis set as preserved. 
-   template <typename AnalysisSetT> void preserveSet() { 
-     preserveSet(AnalysisSetT::ID()); 
-   } 
-   
-   /// Mark an analysis set as preserved using its ID. 
-   void preserveSet(AnalysisSetKey *ID) { 
-     // If we're not already in the saturated 'all' state, add this set. 
-     if (!areAllPreserved()) 
-       PreservedIDs.insert(ID); 
-   } 
-   
-   /// Mark an analysis as abandoned. 
-   /// 
-   /// An abandoned analysis is not preserved, even if it is nominally covered 
-   /// by some other set or was previously explicitly marked as preserved. 
-   /// 
-   /// Note that you can only abandon a specific analysis, not a *set* of 
-   /// analyses. 
-   template <typename AnalysisT> void abandon() { abandon(AnalysisT::ID()); } 
-   
-   /// Mark an analysis as abandoned using its ID. 
-   /// 
-   /// An abandoned analysis is not preserved, even if it is nominally covered 
-   /// by some other set or was previously explicitly marked as preserved. 
-   /// 
-   /// Note that you can only abandon a specific analysis, not a *set* of 
-   /// analyses. 
-   void abandon(AnalysisKey *ID) { 
-     PreservedIDs.erase(ID); 
-     NotPreservedAnalysisIDs.insert(ID); 
-   } 
-   
-   /// Intersect this set with another in place. 
-   /// 
-   /// This is a mutating operation on this preserved set, removing all 
-   /// preserved passes which are not also preserved in the argument. 
-   void intersect(const PreservedAnalyses &Arg) { 
-     if (Arg.areAllPreserved()) 
-       return; 
-     if (areAllPreserved()) { 
-       *this = Arg; 
-       return; 
-     } 
-     // The intersection requires the *union* of the explicitly not-preserved 
-     // IDs and the *intersection* of the preserved IDs. 
-     for (auto *ID : Arg.NotPreservedAnalysisIDs) { 
-       PreservedIDs.erase(ID); 
-       NotPreservedAnalysisIDs.insert(ID); 
-     } 
-     for (auto *ID : PreservedIDs) 
-       if (!Arg.PreservedIDs.count(ID)) 
-         PreservedIDs.erase(ID); 
-   } 
-   
-   /// Intersect this set with a temporary other set in place. 
-   /// 
-   /// This is a mutating operation on this preserved set, removing all 
-   /// preserved passes which are not also preserved in the argument. 
-   void intersect(PreservedAnalyses &&Arg) { 
-     if (Arg.areAllPreserved()) 
-       return; 
-     if (areAllPreserved()) { 
-       *this = std::move(Arg); 
-       return; 
-     } 
-     // The intersection requires the *union* of the explicitly not-preserved 
-     // IDs and the *intersection* of the preserved IDs. 
-     for (auto *ID : Arg.NotPreservedAnalysisIDs) { 
-       PreservedIDs.erase(ID); 
-       NotPreservedAnalysisIDs.insert(ID); 
-     } 
-     for (auto *ID : PreservedIDs) 
-       if (!Arg.PreservedIDs.count(ID)) 
-         PreservedIDs.erase(ID); 
-   } 
-   
-   /// A checker object that makes it easy to query for whether an analysis or 
-   /// some set covering it is preserved. 
-   class PreservedAnalysisChecker { 
-     friend class PreservedAnalyses; 
-   
-     const PreservedAnalyses &PA; 
-     AnalysisKey *const ID; 
-     const bool IsAbandoned; 
-   
-     /// A PreservedAnalysisChecker is tied to a particular Analysis because 
-     /// `preserved()` and `preservedSet()` both return false if the Analysis 
-     /// was abandoned. 
-     PreservedAnalysisChecker(const PreservedAnalyses &PA, AnalysisKey *ID) 
-         : PA(PA), ID(ID), IsAbandoned(PA.NotPreservedAnalysisIDs.count(ID)) {} 
-   
-   public: 
-     /// Returns true if the checker's analysis was not abandoned and either 
-     ///  - the analysis is explicitly preserved or 
-     ///  - all analyses are preserved. 
-     bool preserved() { 
-       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) || 
-                               PA.PreservedIDs.count(ID)); 
-     } 
-   
-     /// Return true if the checker's analysis was not abandoned, i.e. it was not 
-     /// explicitly invalidated. Even if the analysis is not explicitly 
-     /// preserved, if the analysis is known stateless, then it is preserved. 
-     bool preservedWhenStateless() { 
-       return !IsAbandoned; 
-     } 
-   
-     /// Returns true if the checker's analysis was not abandoned and either 
-     ///  - \p AnalysisSetT is explicitly preserved or 
-     ///  - all analyses are preserved. 
-     template <typename AnalysisSetT> bool preservedSet() { 
-       AnalysisSetKey *SetID = AnalysisSetT::ID(); 
-       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) || 
-                               PA.PreservedIDs.count(SetID)); 
-     } 
-   }; 
-   
-   /// Build a checker for this `PreservedAnalyses` and the specified analysis 
-   /// type. 
-   /// 
-   /// You can use the returned object to query whether an analysis was 
-   /// preserved. See the example in the comment on `PreservedAnalysis`. 
-   template <typename AnalysisT> PreservedAnalysisChecker getChecker() const { 
-     return PreservedAnalysisChecker(*this, AnalysisT::ID()); 
-   } 
-   
-   /// Build a checker for this `PreservedAnalyses` and the specified analysis 
-   /// ID. 
-   /// 
-   /// You can use the returned object to query whether an analysis was 
-   /// preserved. See the example in the comment on `PreservedAnalysis`. 
-   PreservedAnalysisChecker getChecker(AnalysisKey *ID) const { 
-     return PreservedAnalysisChecker(*this, ID); 
-   } 
-   
-   /// Test whether all analyses are preserved (and none are abandoned). 
-   /// 
-   /// This is used primarily to optimize for the common case of a transformation 
-   /// which makes no changes to the IR. 
-   bool areAllPreserved() const { 
-     return NotPreservedAnalysisIDs.empty() && 
-            PreservedIDs.count(&AllAnalysesKey); 
-   } 
-   
-   /// Directly test whether a set of analyses is preserved. 
-   /// 
-   /// This is only true when no analyses have been explicitly abandoned. 
-   template <typename AnalysisSetT> bool allAnalysesInSetPreserved() const { 
-     return allAnalysesInSetPreserved(AnalysisSetT::ID()); 
-   } 
-   
-   /// Directly test whether a set of analyses is preserved. 
-   /// 
-   /// This is only true when no analyses have been explicitly abandoned. 
-   bool allAnalysesInSetPreserved(AnalysisSetKey *SetID) const { 
-     return NotPreservedAnalysisIDs.empty() && 
-            (PreservedIDs.count(&AllAnalysesKey) || PreservedIDs.count(SetID)); 
-   } 
-   
- private: 
-   /// A special key used to indicate all analyses. 
-   static AnalysisSetKey AllAnalysesKey; 
-   
-   /// The IDs of analyses and analysis sets that are preserved. 
-   SmallPtrSet<void *, 2> PreservedIDs; 
-   
-   /// The IDs of explicitly not-preserved analyses. 
-   /// 
-   /// If an analysis in this set is covered by a set in `PreservedIDs`, we 
-   /// consider it not-preserved. That is, `NotPreservedAnalysisIDs` always 
-   /// "wins" over analysis sets in `PreservedIDs`. 
-   /// 
-   /// Also, a given ID should never occur both here and in `PreservedIDs`. 
-   SmallPtrSet<AnalysisKey *, 2> NotPreservedAnalysisIDs; 
- }; 
-   
- // Forward declare the analysis manager template. 
- template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager; 
-   
- /// A CRTP mix-in to automatically provide informational APIs needed for 
- /// passes. 
- /// 
- /// This provides some boilerplate for types that are passes. 
- template <typename DerivedT> struct PassInfoMixin { 
-   /// Gets the name of the pass we are mixed into. 
-   static StringRef name() { 
-     static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value, 
-                   "Must pass the derived type as the template argument!"); 
-     StringRef Name = getTypeName<DerivedT>(); 
-     Name.consume_front("llvm::"); 
-     return Name; 
-   } 
-   
-   void printPipeline(raw_ostream &OS, 
-                      function_ref<StringRef(StringRef)> MapClassName2PassName) { 
-     StringRef ClassName = DerivedT::name(); 
-     auto PassName = MapClassName2PassName(ClassName); 
-     OS << PassName; 
-   } 
- }; 
-   
- /// A CRTP mix-in that provides informational APIs needed for analysis passes. 
- /// 
- /// This provides some boilerplate for types that are analysis passes. It 
- /// automatically mixes in \c PassInfoMixin. 
- template <typename DerivedT> 
- struct AnalysisInfoMixin : PassInfoMixin<DerivedT> { 
-   /// Returns an opaque, unique ID for this analysis type. 
-   /// 
-   /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus 
-   /// suitable for use in sets, maps, and other data structures that use the low 
-   /// bits of pointers. 
-   /// 
-   /// Note that this requires the derived type provide a static \c AnalysisKey 
-   /// member called \c Key. 
-   /// 
-   /// FIXME: The only reason the mixin type itself can't declare the Key value 
-   /// is that some compilers cannot correctly unique a templated static variable 
-   /// so it has the same addresses in each instantiation. The only currently 
-   /// known platform with this limitation is Windows DLL builds, specifically 
-   /// building each part of LLVM as a DLL. If we ever remove that build 
-   /// configuration, this mixin can provide the static key as well. 
-   static AnalysisKey *ID() { 
-     static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value, 
-                   "Must pass the derived type as the template argument!"); 
-     return &DerivedT::Key; 
-   } 
- }; 
-   
- namespace detail { 
-   
- /// Actual unpacker of extra arguments in getAnalysisResult, 
- /// passes only those tuple arguments that are mentioned in index_sequence. 
- template <typename PassT, typename IRUnitT, typename AnalysisManagerT, 
-           typename... ArgTs, size_t... Ns> 
- typename PassT::Result 
- getAnalysisResultUnpackTuple(AnalysisManagerT &AM, IRUnitT &IR, 
-                              std::tuple<ArgTs...> Args, 
-                              std::index_sequence<Ns...>) { 
-   (void)Args; 
-   return AM.template getResult<PassT>(IR, std::get<Ns>(Args)...); 
- } 
-   
- /// Helper for *partial* unpacking of extra arguments in getAnalysisResult. 
- /// 
- /// Arguments passed in tuple come from PassManager, so they might have extra 
- /// arguments after those AnalysisManager's ExtraArgTs ones that we need to 
- /// pass to getResult. 
- template <typename PassT, typename IRUnitT, typename... AnalysisArgTs, 
-           typename... MainArgTs> 
- typename PassT::Result 
- getAnalysisResult(AnalysisManager<IRUnitT, AnalysisArgTs...> &AM, IRUnitT &IR, 
-                   std::tuple<MainArgTs...> Args) { 
-   return (getAnalysisResultUnpackTuple< 
-           PassT, IRUnitT>)(AM, IR, Args, 
-                            std::index_sequence_for<AnalysisArgTs...>{}); 
- } 
-   
- } // namespace detail 
-   
- // Forward declare the pass instrumentation analysis explicitly queried in 
- // generic PassManager code. 
- // FIXME: figure out a way to move PassInstrumentationAnalysis into its own 
- // header. 
- class PassInstrumentationAnalysis; 
-   
- /// Manages a sequence of passes over a particular unit of IR. 
- /// 
- /// A pass manager contains a sequence of passes to run over a particular unit 
- /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of 
- /// IR, and when run over some given IR will run each of its contained passes in 
- /// sequence. Pass managers are the primary and most basic building block of a 
- /// pass pipeline. 
- /// 
- /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT> 
- /// argument. The pass manager will propagate that analysis manager to each 
- /// pass it runs, and will call the analysis manager's invalidation routine with 
- /// the PreservedAnalyses of each pass it runs. 
- template <typename IRUnitT, 
-           typename AnalysisManagerT = AnalysisManager<IRUnitT>, 
-           typename... ExtraArgTs> 
- class PassManager : public PassInfoMixin< 
-                         PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> { 
- public: 
-   /// Construct a pass manager. 
-   explicit PassManager() = default; 
-   
-   // FIXME: These are equivalent to the default move constructor/move 
-   // assignment. However, using = default triggers linker errors due to the 
-   // explicit instantiations below. Find away to use the default and remove the 
-   // duplicated code here. 
-   PassManager(PassManager &&Arg) : Passes(std::move(Arg.Passes)) {} 
-   
-   PassManager &operator=(PassManager &&RHS) { 
-     Passes = std::move(RHS.Passes); 
-     return *this; 
-   } 
-   
-   void printPipeline(raw_ostream &OS, 
-                      function_ref<StringRef(StringRef)> MapClassName2PassName) { 
-     for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) { 
-       auto *P = Passes[Idx].get(); 
-       P->printPipeline(OS, MapClassName2PassName); 
-       if (Idx + 1 < Size) 
-         OS << ","; 
-     } 
-   } 
-   
-   /// Run all of the passes in this manager over the given unit of IR. 
-   /// ExtraArgs are passed to each pass. 
-   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, 
-                         ExtraArgTs... ExtraArgs) { 
-     PreservedAnalyses PA = PreservedAnalyses::all(); 
-   
-     // Request PassInstrumentation from analysis manager, will use it to run 
-     // instrumenting callbacks for the passes later. 
-     // Here we use std::tuple wrapper over getResult which helps to extract 
-     // AnalysisManager's arguments out of the whole ExtraArgs set. 
-     PassInstrumentation PI = 
-         detail::getAnalysisResult<PassInstrumentationAnalysis>( 
-             AM, IR, std::tuple<ExtraArgTs...>(ExtraArgs...)); 
-   
-     for (auto &Pass : Passes) { 
-       // Check the PassInstrumentation's BeforePass callbacks before running the 
-       // pass, skip its execution completely if asked to (callback returns 
-       // false). 
-       if (!PI.runBeforePass<IRUnitT>(*Pass, IR)) 
-         continue; 
-   
-       PreservedAnalyses PassPA = Pass->run(IR, AM, ExtraArgs...); 
-   
-       // Call onto PassInstrumentation's AfterPass callbacks immediately after 
-       // running the pass. 
-       PI.runAfterPass<IRUnitT>(*Pass, IR, PassPA); 
-   
-       // Update the analysis manager as each pass runs and potentially 
-       // invalidates analyses. 
-       AM.invalidate(IR, PassPA); 
-   
-       // Finally, intersect the preserved analyses to compute the aggregate 
-       // preserved set for this pass manager. 
-       PA.intersect(std::move(PassPA)); 
-     } 
-   
-     // Invalidation was handled after each pass in the above loop for the 
-     // current unit of IR. Therefore, the remaining analysis results in the 
-     // AnalysisManager are preserved. We mark this with a set so that we don't 
-     // need to inspect each one individually. 
-     PA.preserveSet<AllAnalysesOn<IRUnitT>>(); 
-   
-     return PA; 
-   } 
-   
-   template <typename PassT> 
-   LLVM_ATTRIBUTE_MINSIZE 
-       std::enable_if_t<!std::is_same<PassT, PassManager>::value> 
-       addPass(PassT &&Pass) { 
-     using PassModelT = 
-         detail::PassModel<IRUnitT, PassT, PreservedAnalyses, AnalysisManagerT, 
-                           ExtraArgTs...>; 
-     // Do not use make_unique or emplace_back, they cause too many template 
-     // instantiations, causing terrible compile times. 
-     Passes.push_back(std::unique_ptr<PassConceptT>( 
-         new PassModelT(std::forward<PassT>(Pass)))); 
-   } 
-   
-   /// When adding a pass manager pass that has the same type as this pass 
-   /// manager, simply move the passes over. This is because we don't have use 
-   /// cases rely on executing nested pass managers. Doing this could reduce 
-   /// implementation complexity and avoid potential invalidation issues that may 
-   /// happen with nested pass managers of the same type. 
-   template <typename PassT> 
-   LLVM_ATTRIBUTE_MINSIZE 
-       std::enable_if_t<std::is_same<PassT, PassManager>::value> 
-       addPass(PassT &&Pass) { 
-     for (auto &P : Pass.Passes) 
-       Passes.push_back(std::move(P)); 
-   } 
-   
-   /// Returns if the pass manager contains any passes. 
-   bool isEmpty() const { return Passes.empty(); } 
-   
-   static bool isRequired() { return true; } 
-   
- protected: 
-   using PassConceptT = 
-       detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>; 
-   
-   std::vector<std::unique_ptr<PassConceptT>> Passes; 
- }; 
-   
- extern template class PassManager<Module>; 
-   
- /// Convenience typedef for a pass manager over modules. 
- using ModulePassManager = PassManager<Module>; 
-   
- extern template class PassManager<Function>; 
-   
- /// Convenience typedef for a pass manager over functions. 
- using FunctionPassManager = PassManager<Function>; 
-   
- /// Pseudo-analysis pass that exposes the \c PassInstrumentation to pass 
- /// managers. Goes before AnalysisManager definition to provide its 
- /// internals (e.g PassInstrumentationAnalysis::ID) for use there if needed. 
- /// FIXME: figure out a way to move PassInstrumentationAnalysis into its own 
- /// header. 
- class PassInstrumentationAnalysis 
-     : public AnalysisInfoMixin<PassInstrumentationAnalysis> { 
-   friend AnalysisInfoMixin<PassInstrumentationAnalysis>; 
-   static AnalysisKey Key; 
-   
-   PassInstrumentationCallbacks *Callbacks; 
-   
- public: 
-   /// PassInstrumentationCallbacks object is shared, owned by something else, 
-   /// not this analysis. 
-   PassInstrumentationAnalysis(PassInstrumentationCallbacks *Callbacks = nullptr) 
-       : Callbacks(Callbacks) {} 
-   
-   using Result = PassInstrumentation; 
-   
-   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs> 
-   Result run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) { 
-     return PassInstrumentation(Callbacks); 
-   } 
- }; 
-   
- /// A container for analyses that lazily runs them and caches their 
- /// results. 
- /// 
- /// This class can manage analyses for any IR unit where the address of the IR 
- /// unit sufficies as its identity. 
- template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager { 
- public: 
-   class Invalidator; 
-   
- private: 
-   // Now that we've defined our invalidator, we can define the concept types. 
-   using ResultConceptT = 
-       detail::AnalysisResultConcept<IRUnitT, PreservedAnalyses, Invalidator>; 
-   using PassConceptT = 
-       detail::AnalysisPassConcept<IRUnitT, PreservedAnalyses, Invalidator, 
-                                   ExtraArgTs...>; 
-   
-   /// List of analysis pass IDs and associated concept pointers. 
-   /// 
-   /// Requires iterators to be valid across appending new entries and arbitrary 
-   /// erases. Provides the analysis ID to enable finding iterators to a given 
-   /// entry in maps below, and provides the storage for the actual result 
-   /// concept. 
-   using AnalysisResultListT = 
-       std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>; 
-   
-   /// Map type from IRUnitT pointer to our custom list type. 
-   using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>; 
-   
-   /// Map type from a pair of analysis ID and IRUnitT pointer to an 
-   /// iterator into a particular result list (which is where the actual analysis 
-   /// result is stored). 
-   using AnalysisResultMapT = 
-       DenseMap<std::pair<AnalysisKey *, IRUnitT *>, 
-                typename AnalysisResultListT::iterator>; 
-   
- public: 
-   /// API to communicate dependencies between analyses during invalidation. 
-   /// 
-   /// When an analysis result embeds handles to other analysis results, it 
-   /// needs to be invalidated both when its own information isn't preserved and 
-   /// when any of its embedded analysis results end up invalidated. We pass an 
-   /// \c Invalidator object as an argument to \c invalidate() in order to let 
-   /// the analysis results themselves define the dependency graph on the fly. 
-   /// This lets us avoid building an explicit representation of the 
-   /// dependencies between analysis results. 
-   class Invalidator { 
-   public: 
-     /// Trigger the invalidation of some other analysis pass if not already 
-     /// handled and return whether it was in fact invalidated. 
-     /// 
-     /// This is expected to be called from within a given analysis result's \c 
-     /// invalidate method to trigger a depth-first walk of all inter-analysis 
-     /// dependencies. The same \p IR unit and \p PA passed to that result's \c 
-     /// invalidate method should in turn be provided to this routine. 
-     /// 
-     /// The first time this is called for a given analysis pass, it will call 
-     /// the corresponding result's \c invalidate method.  Subsequent calls will 
-     /// use a cache of the results of that initial call.  It is an error to form 
-     /// cyclic dependencies between analysis results. 
-     /// 
-     /// This returns true if the given analysis's result is invalid. Any 
-     /// dependecies on it will become invalid as a result. 
-     template <typename PassT> 
-     bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) { 
-       using ResultModelT = 
-           detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result, 
-                                       PreservedAnalyses, Invalidator>; 
-   
-       return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA); 
-     } 
-   
-     /// A type-erased variant of the above invalidate method with the same core 
-     /// API other than passing an analysis ID rather than an analysis type 
-     /// parameter. 
-     /// 
-     /// This is sadly less efficient than the above routine, which leverages 
-     /// the type parameter to avoid the type erasure overhead. 
-     bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) { 
-       return invalidateImpl<>(ID, IR, PA); 
-     } 
-   
-   private: 
-     friend class AnalysisManager; 
-   
-     template <typename ResultT = ResultConceptT> 
-     bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR, 
-                         const PreservedAnalyses &PA) { 
-       // If we've already visited this pass, return true if it was invalidated 
-       // and false otherwise. 
-       auto IMapI = IsResultInvalidated.find(ID); 
-       if (IMapI != IsResultInvalidated.end()) 
-         return IMapI->second; 
-   
-       // Otherwise look up the result object. 
-       auto RI = Results.find({ID, &IR}); 
-       assert(RI != Results.end() && 
-              "Trying to invalidate a dependent result that isn't in the " 
-              "manager's cache is always an error, likely due to a stale result " 
-              "handle!"); 
-   
-       auto &Result = static_cast<ResultT &>(*RI->second->second); 
-   
-       // Insert into the map whether the result should be invalidated and return 
-       // that. Note that we cannot reuse IMapI and must do a fresh insert here, 
-       // as calling invalidate could (recursively) insert things into the map, 
-       // making any iterator or reference invalid. 
-       bool Inserted; 
-       std::tie(IMapI, Inserted) = 
-           IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)}); 
-       (void)Inserted; 
-       assert(Inserted && "Should not have already inserted this ID, likely " 
-                          "indicates a dependency cycle!"); 
-       return IMapI->second; 
-     } 
-   
-     Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated, 
-                 const AnalysisResultMapT &Results) 
-         : IsResultInvalidated(IsResultInvalidated), Results(Results) {} 
-   
-     SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated; 
-     const AnalysisResultMapT &Results; 
-   }; 
-   
-   /// Construct an empty analysis manager. 
-   AnalysisManager(); 
-   AnalysisManager(AnalysisManager &&); 
-   AnalysisManager &operator=(AnalysisManager &&); 
-   
-   /// Returns true if the analysis manager has an empty results cache. 
-   bool empty() const { 
-     assert(AnalysisResults.empty() == AnalysisResultLists.empty() && 
-            "The storage and index of analysis results disagree on how many " 
-            "there are!"); 
-     return AnalysisResults.empty(); 
-   } 
-   
-   /// Clear any cached analysis results for a single unit of IR. 
-   /// 
-   /// This doesn't invalidate, but instead simply deletes, the relevant results. 
-   /// It is useful when the IR is being removed and we want to clear out all the 
-   /// memory pinned for it. 
-   void clear(IRUnitT &IR, llvm::StringRef Name); 
-   
-   /// Clear all analysis results cached by this AnalysisManager. 
-   /// 
-   /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply 
-   /// deletes them.  This lets you clean up the AnalysisManager when the set of 
-   /// IR units itself has potentially changed, and thus we can't even look up a 
-   /// a result and invalidate/clear it directly. 
-   void clear() { 
-     AnalysisResults.clear(); 
-     AnalysisResultLists.clear(); 
-   } 
-   
-   /// Get the result of an analysis pass for a given IR unit. 
-   /// 
-   /// Runs the analysis if a cached result is not available. 
-   template <typename PassT> 
-   typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) { 
-     assert(AnalysisPasses.count(PassT::ID()) && 
-            "This analysis pass was not registered prior to being queried"); 
-     ResultConceptT &ResultConcept = 
-         getResultImpl(PassT::ID(), IR, ExtraArgs...); 
-   
-     using ResultModelT = 
-         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result, 
-                                     PreservedAnalyses, Invalidator>; 
-   
-     return static_cast<ResultModelT &>(ResultConcept).Result; 
-   } 
-   
-   /// Get the cached result of an analysis pass for a given IR unit. 
-   /// 
-   /// This method never runs the analysis. 
-   /// 
-   /// \returns null if there is no cached result. 
-   template <typename PassT> 
-   typename PassT::Result *getCachedResult(IRUnitT &IR) const { 
-     assert(AnalysisPasses.count(PassT::ID()) && 
-            "This analysis pass was not registered prior to being queried"); 
-   
-     ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR); 
-     if (!ResultConcept) 
-       return nullptr; 
-   
-     using ResultModelT = 
-         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result, 
-                                     PreservedAnalyses, Invalidator>; 
-   
-     return &static_cast<ResultModelT *>(ResultConcept)->Result; 
-   } 
-   
-   /// Verify that the given Result cannot be invalidated, assert otherwise. 
-   template <typename PassT> 
-   void verifyNotInvalidated(IRUnitT &IR, typename PassT::Result *Result) const { 
-     PreservedAnalyses PA = PreservedAnalyses::none(); 
-     SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated; 
-     Invalidator Inv(IsResultInvalidated, AnalysisResults); 
-     assert(!Result->invalidate(IR, PA, Inv) && 
-            "Cached result cannot be invalidated"); 
-   } 
-   
-   /// Register an analysis pass with the manager. 
-   /// 
-   /// The parameter is a callable whose result is an analysis pass. This allows 
-   /// passing in a lambda to construct the analysis. 
-   /// 
-   /// The analysis type to register is the type returned by calling the \c 
-   /// PassBuilder argument. If that type has already been registered, then the 
-   /// argument will not be called and this function will return false. 
-   /// Otherwise, we register the analysis returned by calling \c PassBuilder(), 
-   /// and this function returns true. 
-   /// 
-   /// (Note: Although the return value of this function indicates whether or not 
-   /// an analysis was previously registered, there intentionally isn't a way to 
-   /// query this directly.  Instead, you should just register all the analyses 
-   /// you might want and let this class run them lazily.  This idiom lets us 
-   /// minimize the number of times we have to look up analyses in our 
-   /// hashtable.) 
-   template <typename PassBuilderT> 
-   bool registerPass(PassBuilderT &&PassBuilder) { 
-     using PassT = decltype(PassBuilder()); 
-     using PassModelT = 
-         detail::AnalysisPassModel<IRUnitT, PassT, PreservedAnalyses, 
-                                   Invalidator, ExtraArgTs...>; 
-   
-     auto &PassPtr = AnalysisPasses[PassT::ID()]; 
-     if (PassPtr) 
-       // Already registered this pass type! 
-       return false; 
-   
-     // Construct a new model around the instance returned by the builder. 
-     PassPtr.reset(new PassModelT(PassBuilder())); 
-     return true; 
-   } 
-   
-   /// Invalidate cached analyses for an IR unit. 
-   /// 
-   /// Walk through all of the analyses pertaining to this unit of IR and 
-   /// invalidate them, unless they are preserved by the PreservedAnalyses set. 
-   void invalidate(IRUnitT &IR, const PreservedAnalyses &PA); 
-   
- private: 
-   /// Look up a registered analysis pass. 
-   PassConceptT &lookUpPass(AnalysisKey *ID) { 
-     typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID); 
-     assert(PI != AnalysisPasses.end() && 
-            "Analysis passes must be registered prior to being queried!"); 
-     return *PI->second; 
-   } 
-   
-   /// Look up a registered analysis pass. 
-   const PassConceptT &lookUpPass(AnalysisKey *ID) const { 
-     typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID); 
-     assert(PI != AnalysisPasses.end() && 
-            "Analysis passes must be registered prior to being queried!"); 
-     return *PI->second; 
-   } 
-   
-   /// Get an analysis result, running the pass if necessary. 
-   ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR, 
-                                 ExtraArgTs... ExtraArgs); 
-   
-   /// Get a cached analysis result or return null. 
-   ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const { 
-     typename AnalysisResultMapT::const_iterator RI = 
-         AnalysisResults.find({ID, &IR}); 
-     return RI == AnalysisResults.end() ? nullptr : &*RI->second->second; 
-   } 
-   
-   /// Map type from analysis pass ID to pass concept pointer. 
-   using AnalysisPassMapT = 
-       DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>; 
-   
-   /// Collection of analysis passes, indexed by ID. 
-   AnalysisPassMapT AnalysisPasses; 
-   
-   /// Map from IR unit to a list of analysis results. 
-   /// 
-   /// Provides linear time removal of all analysis results for a IR unit and 
-   /// the ultimate storage for a particular cached analysis result. 
-   AnalysisResultListMapT AnalysisResultLists; 
-   
-   /// Map from an analysis ID and IR unit to a particular cached 
-   /// analysis result. 
-   AnalysisResultMapT AnalysisResults; 
- }; 
-   
- extern template class AnalysisManager<Module>; 
-   
- /// Convenience typedef for the Module analysis manager. 
- using ModuleAnalysisManager = AnalysisManager<Module>; 
-   
- extern template class AnalysisManager<Function>; 
-   
- /// Convenience typedef for the Function analysis manager. 
- using FunctionAnalysisManager = AnalysisManager<Function>; 
-   
- /// An analysis over an "outer" IR unit that provides access to an 
- /// analysis manager over an "inner" IR unit.  The inner unit must be contained 
- /// in the outer unit. 
- /// 
- /// For example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is 
- /// an analysis over Modules (the "outer" unit) that provides access to a 
- /// Function analysis manager.  The FunctionAnalysisManager is the "inner" 
- /// manager being proxied, and Functions are the "inner" unit.  The inner/outer 
- /// relationship is valid because each Function is contained in one Module. 
- /// 
- /// If you're (transitively) within a pass manager for an IR unit U that 
- /// contains IR unit V, you should never use an analysis manager over V, except 
- /// via one of these proxies. 
- /// 
- /// Note that the proxy's result is a move-only RAII object.  The validity of 
- /// the analyses in the inner analysis manager is tied to its lifetime. 
- template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs> 
- class InnerAnalysisManagerProxy 
-     : public AnalysisInfoMixin< 
-           InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> { 
- public: 
-   class Result { 
-   public: 
-     explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {} 
-   
-     Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) { 
-       // We have to null out the analysis manager in the moved-from state 
-       // because we are taking ownership of the responsibilty to clear the 
-       // analysis state. 
-       Arg.InnerAM = nullptr; 
-     } 
-   
-     ~Result() { 
-       // InnerAM is cleared in a moved from state where there is nothing to do. 
-       if (!InnerAM) 
-         return; 
-   
-       // Clear out the analysis manager if we're being destroyed -- it means we 
-       // didn't even see an invalidate call when we got invalidated. 
-       InnerAM->clear(); 
-     } 
-   
-     Result &operator=(Result &&RHS) { 
-       InnerAM = RHS.InnerAM; 
-       // We have to null out the analysis manager in the moved-from state 
-       // because we are taking ownership of the responsibilty to clear the 
-       // analysis state. 
-       RHS.InnerAM = nullptr; 
-       return *this; 
-     } 
-   
-     /// Accessor for the analysis manager. 
-     AnalysisManagerT &getManager() { return *InnerAM; } 
-   
-     /// Handler for invalidation of the outer IR unit, \c IRUnitT. 
-     /// 
-     /// If the proxy analysis itself is not preserved, we assume that the set of 
-     /// inner IR objects contained in IRUnit may have changed.  In this case, 
-     /// we have to call \c clear() on the inner analysis manager, as it may now 
-     /// have stale pointers to its inner IR objects. 
-     /// 
-     /// Regardless of whether the proxy analysis is marked as preserved, all of 
-     /// the analyses in the inner analysis manager are potentially invalidated 
-     /// based on the set of preserved analyses. 
-     bool invalidate( 
-         IRUnitT &IR, const PreservedAnalyses &PA, 
-         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv); 
-   
-   private: 
-     AnalysisManagerT *InnerAM; 
-   }; 
-   
-   explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM) 
-       : InnerAM(&InnerAM) {} 
-   
-   /// Run the analysis pass and create our proxy result object. 
-   /// 
-   /// This doesn't do any interesting work; it is primarily used to insert our 
-   /// proxy result object into the outer analysis cache so that we can proxy 
-   /// invalidation to the inner analysis manager. 
-   Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM, 
-              ExtraArgTs...) { 
-     return Result(*InnerAM); 
-   } 
-   
- private: 
-   friend AnalysisInfoMixin< 
-       InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>; 
-   
-   static AnalysisKey Key; 
-   
-   AnalysisManagerT *InnerAM; 
- }; 
-   
- template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs> 
- AnalysisKey 
-     InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key; 
-   
- /// Provide the \c FunctionAnalysisManager to \c Module proxy. 
- using FunctionAnalysisManagerModuleProxy = 
-     InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>; 
-   
- /// Specialization of the invalidate method for the \c 
- /// FunctionAnalysisManagerModuleProxy's result. 
- template <> 
- bool FunctionAnalysisManagerModuleProxy::Result::invalidate( 
-     Module &M, const PreservedAnalyses &PA, 
-     ModuleAnalysisManager::Invalidator &Inv); 
-   
- // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern 
- // template. 
- extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager, 
-                                                 Module>; 
-   
- /// An analysis over an "inner" IR unit that provides access to an 
- /// analysis manager over a "outer" IR unit.  The inner unit must be contained 
- /// in the outer unit. 
- /// 
- /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an 
- /// analysis over Functions (the "inner" unit) which provides access to a Module 
- /// analysis manager.  The ModuleAnalysisManager is the "outer" manager being 
- /// proxied, and Modules are the "outer" IR unit.  The inner/outer relationship 
- /// is valid because each Function is contained in one Module. 
- /// 
- /// This proxy only exposes the const interface of the outer analysis manager, 
- /// to indicate that you cannot cause an outer analysis to run from within an 
- /// inner pass.  Instead, you must rely on the \c getCachedResult API.  This is 
- /// due to keeping potential future concurrency in mind. To give an example, 
- /// running a module analysis before any function passes may give a different 
- /// result than running it in a function pass. Both may be valid, but it would 
- /// produce non-deterministic results. GlobalsAA is a good analysis example, 
- /// because the cached information has the mod/ref info for all memory for each 
- /// function at the time the analysis was computed. The information is still 
- /// valid after a function transformation, but it may be *different* if 
- /// recomputed after that transform. GlobalsAA is never invalidated. 
-   
- /// 
- /// This proxy doesn't manage invalidation in any way -- that is handled by the 
- /// recursive return path of each layer of the pass manager.  A consequence of 
- /// this is the outer analyses may be stale.  We invalidate the outer analyses 
- /// only when we're done running passes over the inner IR units. 
- template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs> 
- class OuterAnalysisManagerProxy 
-     : public AnalysisInfoMixin< 
-           OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> { 
- public: 
-   /// Result proxy object for \c OuterAnalysisManagerProxy. 
-   class Result { 
-   public: 
-     explicit Result(const AnalysisManagerT &OuterAM) : OuterAM(&OuterAM) {} 
-   
-     /// Get a cached analysis. If the analysis can be invalidated, this will 
-     /// assert. 
-     template <typename PassT, typename IRUnitTParam> 
-     typename PassT::Result *getCachedResult(IRUnitTParam &IR) const { 
-       typename PassT::Result *Res = 
-           OuterAM->template getCachedResult<PassT>(IR); 
-       if (Res) 
-         OuterAM->template verifyNotInvalidated<PassT>(IR, Res); 
-       return Res; 
-     } 
-   
-     /// Method provided for unit testing, not intended for general use. 
-     template <typename PassT, typename IRUnitTParam> 
-     bool cachedResultExists(IRUnitTParam &IR) const { 
-       typename PassT::Result *Res = 
-           OuterAM->template getCachedResult<PassT>(IR); 
-       return Res != nullptr; 
-     } 
-   
-     /// When invalidation occurs, remove any registered invalidation events. 
-     bool invalidate( 
-         IRUnitT &IRUnit, const PreservedAnalyses &PA, 
-         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) { 
-       // Loop over the set of registered outer invalidation mappings and if any 
-       // of them map to an analysis that is now invalid, clear it out. 
-       SmallVector<AnalysisKey *, 4> DeadKeys; 
-       for (auto &KeyValuePair : OuterAnalysisInvalidationMap) { 
-         AnalysisKey *OuterID = KeyValuePair.first; 
-         auto &InnerIDs = KeyValuePair.second; 
-         llvm::erase_if(InnerIDs, [&](AnalysisKey *InnerID) { 
-           return Inv.invalidate(InnerID, IRUnit, PA); 
-         }); 
-         if (InnerIDs.empty()) 
-           DeadKeys.push_back(OuterID); 
-       } 
-   
-       for (auto *OuterID : DeadKeys) 
-         OuterAnalysisInvalidationMap.erase(OuterID); 
-   
-       // The proxy itself remains valid regardless of anything else. 
-       return false; 
-     } 
-   
-     /// Register a deferred invalidation event for when the outer analysis 
-     /// manager processes its invalidations. 
-     template <typename OuterAnalysisT, typename InvalidatedAnalysisT> 
-     void registerOuterAnalysisInvalidation() { 
-       AnalysisKey *OuterID = OuterAnalysisT::ID(); 
-       AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID(); 
-   
-       auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID]; 
-       // Note, this is a linear scan. If we end up with large numbers of 
-       // analyses that all trigger invalidation on the same outer analysis, 
-       // this entire system should be changed to some other deterministic 
-       // data structure such as a `SetVector` of a pair of pointers. 
-       if (!llvm::is_contained(InvalidatedIDList, InvalidatedID)) 
-         InvalidatedIDList.push_back(InvalidatedID); 
-     } 
-   
-     /// Access the map from outer analyses to deferred invalidation requiring 
-     /// analyses. 
-     const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> & 
-     getOuterInvalidations() const { 
-       return OuterAnalysisInvalidationMap; 
-     } 
-   
-   private: 
-     const AnalysisManagerT *OuterAM; 
-   
-     /// A map from an outer analysis ID to the set of this IR-unit's analyses 
-     /// which need to be invalidated. 
-     SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> 
-         OuterAnalysisInvalidationMap; 
-   }; 
-   
-   OuterAnalysisManagerProxy(const AnalysisManagerT &OuterAM) 
-       : OuterAM(&OuterAM) {} 
-   
-   /// Run the analysis pass and create our proxy result object. 
-   /// Nothing to see here, it just forwards the \c OuterAM reference into the 
-   /// result. 
-   Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &, 
-              ExtraArgTs...) { 
-     return Result(*OuterAM); 
-   } 
-   
- private: 
-   friend AnalysisInfoMixin< 
-       OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>; 
-   
-   static AnalysisKey Key; 
-   
-   const AnalysisManagerT *OuterAM; 
- }; 
-   
- template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs> 
- AnalysisKey 
-     OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key; 
-   
- extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 
-                                                 Function>; 
- /// Provide the \c ModuleAnalysisManager to \c Function proxy. 
- using ModuleAnalysisManagerFunctionProxy = 
-     OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>; 
-   
- /// Trivial adaptor that maps from a module to its functions. 
- /// 
- /// Designed to allow composition of a FunctionPass(Manager) and 
- /// a ModulePassManager, by running the FunctionPass(Manager) over every 
- /// function in the module. 
- /// 
- /// Function passes run within this adaptor can rely on having exclusive access 
- /// to the function they are run over. They should not read or modify any other 
- /// functions! Other threads or systems may be manipulating other functions in 
- /// the module, and so their state should never be relied on. 
- /// FIXME: Make the above true for all of LLVM's actual passes, some still 
- /// violate this principle. 
- /// 
- /// Function passes can also read the module containing the function, but they 
- /// should not modify that module outside of the use lists of various globals. 
- /// For example, a function pass is not permitted to add functions to the 
- /// module. 
- /// FIXME: Make the above true for all of LLVM's actual passes, some still 
- /// violate this principle. 
- /// 
- /// Note that although function passes can access module analyses, module 
- /// analyses are not invalidated while the function passes are running, so they 
- /// may be stale.  Function analyses will not be stale. 
- class ModuleToFunctionPassAdaptor 
-     : public PassInfoMixin<ModuleToFunctionPassAdaptor> { 
- public: 
-   using PassConceptT = detail::PassConcept<Function, FunctionAnalysisManager>; 
-   
-   explicit ModuleToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass, 
-                                        bool EagerlyInvalidate) 
-       : Pass(std::move(Pass)), EagerlyInvalidate(EagerlyInvalidate) {} 
-   
-   /// Runs the function pass across every function in the module. 
-   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM); 
-   void printPipeline(raw_ostream &OS, 
-                      function_ref<StringRef(StringRef)> MapClassName2PassName); 
-   
-   static bool isRequired() { return true; } 
-   
- private: 
-   std::unique_ptr<PassConceptT> Pass; 
-   bool EagerlyInvalidate; 
- }; 
-   
- /// A function to deduce a function pass type and wrap it in the 
- /// templated adaptor. 
- template <typename FunctionPassT> 
- ModuleToFunctionPassAdaptor 
- createModuleToFunctionPassAdaptor(FunctionPassT &&Pass, 
-                                   bool EagerlyInvalidate = false) { 
-   using PassModelT = 
-       detail::PassModel<Function, FunctionPassT, PreservedAnalyses, 
-                         FunctionAnalysisManager>; 
-   // Do not use make_unique, it causes too many template instantiations, 
-   // causing terrible compile times. 
-   return ModuleToFunctionPassAdaptor( 
-       std::unique_ptr<ModuleToFunctionPassAdaptor::PassConceptT>( 
-           new PassModelT(std::forward<FunctionPassT>(Pass))), 
-       EagerlyInvalidate); 
- } 
-   
- /// A utility pass template to force an analysis result to be available. 
- /// 
- /// If there are extra arguments at the pass's run level there may also be 
- /// extra arguments to the analysis manager's \c getResult routine. We can't 
- /// guess how to effectively map the arguments from one to the other, and so 
- /// this specialization just ignores them. 
- /// 
- /// Specific patterns of run-method extra arguments and analysis manager extra 
- /// arguments will have to be defined as appropriate specializations. 
- template <typename AnalysisT, typename IRUnitT, 
-           typename AnalysisManagerT = AnalysisManager<IRUnitT>, 
-           typename... ExtraArgTs> 
- struct RequireAnalysisPass 
-     : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT, 
-                                         ExtraArgTs...>> { 
-   /// Run this pass over some unit of IR. 
-   /// 
-   /// This pass can be run over any unit of IR and use any analysis manager 
-   /// provided they satisfy the basic API requirements. When this pass is 
-   /// created, these methods can be instantiated to satisfy whatever the 
-   /// context requires. 
-   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, 
-                         ExtraArgTs &&... Args) { 
-     (void)AM.template getResult<AnalysisT>(Arg, 
-                                            std::forward<ExtraArgTs>(Args)...); 
-   
-     return PreservedAnalyses::all(); 
-   } 
-   void printPipeline(raw_ostream &OS, 
-                      function_ref<StringRef(StringRef)> MapClassName2PassName) { 
-     auto ClassName = AnalysisT::name(); 
-     auto PassName = MapClassName2PassName(ClassName); 
-     OS << "require<" << PassName << ">"; 
-   } 
-   static bool isRequired() { return true; } 
- }; 
-   
- /// A no-op pass template which simply forces a specific analysis result 
- /// to be invalidated. 
- template <typename AnalysisT> 
- struct InvalidateAnalysisPass 
-     : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> { 
-   /// Run this pass over some unit of IR. 
-   /// 
-   /// This pass can be run over any unit of IR and use any analysis manager, 
-   /// provided they satisfy the basic API requirements. When this pass is 
-   /// created, these methods can be instantiated to satisfy whatever the 
-   /// context requires. 
-   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs> 
-   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) { 
-     auto PA = PreservedAnalyses::all(); 
-     PA.abandon<AnalysisT>(); 
-     return PA; 
-   } 
-   void printPipeline(raw_ostream &OS, 
-                      function_ref<StringRef(StringRef)> MapClassName2PassName) { 
-     auto ClassName = AnalysisT::name(); 
-     auto PassName = MapClassName2PassName(ClassName); 
-     OS << "invalidate<" << PassName << ">"; 
-   } 
- }; 
-   
- /// A utility pass that does nothing, but preserves no analyses. 
- /// 
- /// Because this preserves no analyses, any analysis passes queried after this 
- /// pass runs will recompute fresh results. 
- struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> { 
-   /// Run this pass over some unit of IR. 
-   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs> 
-   PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) { 
-     return PreservedAnalyses::none(); 
-   } 
- }; 
-   
- /// A utility pass template that simply runs another pass multiple times. 
- /// 
- /// This can be useful when debugging or testing passes. It also serves as an 
- /// example of how to extend the pass manager in ways beyond composition. 
- template <typename PassT> 
- class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> { 
- public: 
-   RepeatedPass(int Count, PassT &&P) 
-       : Count(Count), P(std::forward<PassT>(P)) {} 
-   
-   template <typename IRUnitT, typename AnalysisManagerT, typename... Ts> 
-   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, Ts &&... Args) { 
-   
-     // Request PassInstrumentation from analysis manager, will use it to run 
-     // instrumenting callbacks for the passes later. 
-     // Here we use std::tuple wrapper over getResult which helps to extract 
-     // AnalysisManager's arguments out of the whole Args set. 
-     PassInstrumentation PI = 
-         detail::getAnalysisResult<PassInstrumentationAnalysis>( 
-             AM, IR, std::tuple<Ts...>(Args...)); 
-   
-     auto PA = PreservedAnalyses::all(); 
-     for (int i = 0; i < Count; ++i) { 
-       // Check the PassInstrumentation's BeforePass callbacks before running the 
-       // pass, skip its execution completely if asked to (callback returns 
-       // false). 
-       if (!PI.runBeforePass<IRUnitT>(P, IR)) 
-         continue; 
-       PreservedAnalyses IterPA = P.run(IR, AM, std::forward<Ts>(Args)...); 
-       PA.intersect(IterPA); 
-       PI.runAfterPass(P, IR, IterPA); 
-     } 
-     return PA; 
-   } 
-   
-   void printPipeline(raw_ostream &OS, 
-                      function_ref<StringRef(StringRef)> MapClassName2PassName) { 
-     OS << "repeat<" << Count << ">("; 
-     P.printPipeline(OS, MapClassName2PassName); 
-     OS << ")"; 
-   } 
-   
- private: 
-   int Count; 
-   PassT P; 
- }; 
-   
- template <typename PassT> 
- RepeatedPass<PassT> createRepeatedPass(int Count, PassT &&P) { 
-   return RepeatedPass<PassT>(Count, std::forward<PassT>(P)); 
- } 
-   
- } // end namespace llvm 
-   
- #endif // LLVM_IR_PASSMANAGER_H 
-