//===- llvm/Module.h - C++ class to represent a VM module -------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
/// @file
 
/// Module.h This file contains the declarations for the Module class.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_IR_MODULE_H
 
#define LLVM_IR_MODULE_H
 
 
 
#include "llvm-c/Types.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/StringMap.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/ADT/iterator_range.h"
 
#include "llvm/IR/Attributes.h"
 
#include "llvm/IR/Comdat.h"
 
#include "llvm/IR/DataLayout.h"
 
#include "llvm/IR/Function.h"
 
#include "llvm/IR/GlobalAlias.h"
 
#include "llvm/IR/GlobalIFunc.h"
 
#include "llvm/IR/GlobalVariable.h"
 
#include "llvm/IR/Metadata.h"
 
#include "llvm/IR/ProfileSummary.h"
 
#include "llvm/IR/SymbolTableListTraits.h"
 
#include "llvm/Support/CBindingWrapping.h"
 
#include "llvm/Support/CodeGen.h"
 
#include <cstddef>
 
#include <cstdint>
 
#include <iterator>
 
#include <memory>
 
#include <optional>
 
#include <string>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
class Error;
 
class FunctionType;
 
class GVMaterializer;
 
class LLVMContext;
 
class MemoryBuffer;
 
class ModuleSummaryIndex;
 
class RandomNumberGenerator;
 
class StructType;
 
class VersionTuple;
 
 
 
/// A Module instance is used to store all the information related to an
 
/// LLVM module. Modules are the top level container of all other LLVM
 
/// Intermediate Representation (IR) objects. Each module directly contains a
 
/// list of globals variables, a list of functions, a list of libraries (or
 
/// other modules) this module depends on, a symbol table, and various data
 
/// about the target's characteristics.
 
///
 
/// A module maintains a GlobalList object that is used to hold all
 
/// constant references to global variables in the module.  When a global
 
/// variable is destroyed, it should have no entries in the GlobalList.
 
/// The main container class for the LLVM Intermediate Representation.
 
class LLVM_EXTERNAL_VISIBILITY Module {
 
  /// @name Types And Enumerations
 
  /// @{
 
public:
 
  /// The type for the list of global variables.
 
  using GlobalListType = SymbolTableList<GlobalVariable>;
 
  /// The type for the list of functions.
 
  using FunctionListType = SymbolTableList<Function>;
 
  /// The type for the list of aliases.
 
  using AliasListType = SymbolTableList<GlobalAlias>;
 
  /// The type for the list of ifuncs.
 
  using IFuncListType = SymbolTableList<GlobalIFunc>;
 
  /// The type for the list of named metadata.
 
  using NamedMDListType = ilist<NamedMDNode>;
 
  /// The type of the comdat "symbol" table.
 
  using ComdatSymTabType = StringMap<Comdat>;
 
  /// The type for mapping names to named metadata.
 
  using NamedMDSymTabType = StringMap<NamedMDNode *>;
 
 
 
  /// The Global Variable iterator.
 
  using global_iterator = GlobalListType::iterator;
 
  /// The Global Variable constant iterator.
 
  using const_global_iterator = GlobalListType::const_iterator;
 
 
 
  /// The Function iterators.
 
  using iterator = FunctionListType::iterator;
 
  /// The Function constant iterator
 
  using const_iterator = FunctionListType::const_iterator;
 
 
 
  /// The Function reverse iterator.
 
  using reverse_iterator = FunctionListType::reverse_iterator;
 
  /// The Function constant reverse iterator.
 
  using const_reverse_iterator = FunctionListType::const_reverse_iterator;
 
 
 
  /// The Global Alias iterators.
 
  using alias_iterator = AliasListType::iterator;
 
  /// The Global Alias constant iterator
 
  using const_alias_iterator = AliasListType::const_iterator;
 
 
 
  /// The Global IFunc iterators.
 
  using ifunc_iterator = IFuncListType::iterator;
 
  /// The Global IFunc constant iterator
 
  using const_ifunc_iterator = IFuncListType::const_iterator;
 
 
 
  /// The named metadata iterators.
 
  using named_metadata_iterator = NamedMDListType::iterator;
 
  /// The named metadata constant iterators.
 
  using const_named_metadata_iterator = NamedMDListType::const_iterator;
 
 
 
  /// This enumeration defines the supported behaviors of module flags.
 
  enum ModFlagBehavior {
 
    /// Emits an error if two values disagree, otherwise the resulting value is
 
    /// that of the operands.
 
    Error = 1,
 
 
 
    /// Emits a warning if two values disagree. The result value will be the
 
    /// operand for the flag from the first module being linked.
 
    Warning = 2,
 
 
 
    /// Adds a requirement that another module flag be present and have a
 
    /// specified value after linking is performed. The value must be a metadata
 
    /// pair, where the first element of the pair is the ID of the module flag
 
    /// to be restricted, and the second element of the pair is the value the
 
    /// module flag should be restricted to. This behavior can be used to
 
    /// restrict the allowable results (via triggering of an error) of linking
 
    /// IDs with the **Override** behavior.
 
    Require = 3,
 
 
 
    /// Uses the specified value, regardless of the behavior or value of the
 
    /// other module. If both modules specify **Override**, but the values
 
    /// differ, an error will be emitted.
 
    Override = 4,
 
 
 
    /// Appends the two values, which are required to be metadata nodes.
 
    Append = 5,
 
 
 
    /// Appends the two values, which are required to be metadata
 
    /// nodes. However, duplicate entries in the second list are dropped
 
    /// during the append operation.
 
    AppendUnique = 6,
 
 
 
    /// Takes the max of the two values, which are required to be integers.
 
    Max = 7,
 
 
 
    /// Takes the min of the two values, which are required to be integers.
 
    Min = 8,
 
 
 
    // Markers:
 
    ModFlagBehaviorFirstVal = Error,
 
    ModFlagBehaviorLastVal = Min
 
  };
 
 
 
  /// Checks if Metadata represents a valid ModFlagBehavior, and stores the
 
  /// converted result in MFB.
 
  static bool isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB);
 
 
 
  /// Check if the given module flag metadata represents a valid module flag,
 
  /// and store the flag behavior, the key string and the value metadata.
 
  static bool isValidModuleFlag(const MDNode &ModFlag, ModFlagBehavior &MFB,
 
                                MDString *&Key, Metadata *&Val);
 
 
 
  struct ModuleFlagEntry {
 
    ModFlagBehavior Behavior;
 
    MDString *Key;
 
    Metadata *Val;
 
 
 
    ModuleFlagEntry(ModFlagBehavior B, MDString *K, Metadata *V)
 
        : Behavior(B), Key(K), Val(V) {}
 
  };
 
 
 
/// @}
 
/// @name Member Variables
 
/// @{
 
private:
 
  LLVMContext &Context;           ///< The LLVMContext from which types and
 
                                  ///< constants are allocated.
 
  GlobalListType GlobalList;      ///< The Global Variables in the module
 
  FunctionListType FunctionList;  ///< The Functions in the module
 
  AliasListType AliasList;        ///< The Aliases in the module
 
  IFuncListType IFuncList;        ///< The IFuncs in the module
 
  NamedMDListType NamedMDList;    ///< The named metadata in the module
 
  std::string GlobalScopeAsm;     ///< Inline Asm at global scope.
 
  std::unique_ptr<ValueSymbolTable> ValSymTab; ///< Symbol table for values
 
  ComdatSymTabType ComdatSymTab;  ///< Symbol table for COMDATs
 
  std::unique_ptr<MemoryBuffer>
 
  OwnedMemoryBuffer;              ///< Memory buffer directly owned by this
 
                                  ///< module, for legacy clients only.
 
  std::unique_ptr<GVMaterializer>
 
  Materializer;                   ///< Used to materialize GlobalValues
 
  std::string ModuleID;           ///< Human readable identifier for the module
 
  std::string SourceFileName;     ///< Original source file name for module,
 
                                  ///< recorded in bitcode.
 
  std::string TargetTriple;       ///< Platform target triple Module compiled on
 
                                  ///< Format: (arch)(sub)-(vendor)-(sys0-(abi)
 
  NamedMDSymTabType NamedMDSymTab;  ///< NamedMDNode names.
 
  DataLayout DL;                  ///< DataLayout associated with the module
 
  StringMap<unsigned>
 
      CurrentIntrinsicIds; ///< Keep track of the current unique id count for
 
                           ///< the specified intrinsic basename.
 
  DenseMap<std::pair<Intrinsic::ID, const FunctionType *>, unsigned>
 
      UniquedIntrinsicNames; ///< Keep track of uniqued names of intrinsics
 
                             ///< based on unnamed types. The combination of
 
                             ///< ID and FunctionType maps to the extension that
 
                             ///< is used to make the intrinsic name unique.
 
 
 
  friend class Constant;
 
 
 
/// @}
 
/// @name Constructors
 
/// @{
 
public:
 
  /// The Module constructor. Note that there is no default constructor. You
 
  /// must provide a name for the module upon construction.
 
  explicit Module(StringRef ModuleID, LLVMContext& C);
 
  /// The module destructor. This will dropAllReferences.
 
  ~Module();
 
 
 
/// @}
 
/// @name Module Level Accessors
 
/// @{
 
 
 
  /// Get the module identifier which is, essentially, the name of the module.
 
  /// @returns the module identifier as a string
 
  const std::string &getModuleIdentifier() const { return ModuleID; }
 
 
 
  /// Returns the number of non-debug IR instructions in the module.
 
  /// This is equivalent to the sum of the IR instruction counts of each
 
  /// function contained in the module.
 
  unsigned getInstructionCount() const;
 
 
 
  /// Get the module's original source file name. When compiling from
 
  /// bitcode, this is taken from a bitcode record where it was recorded.
 
  /// For other compiles it is the same as the ModuleID, which would
 
  /// contain the source file name.
 
  const std::string &getSourceFileName() const { return SourceFileName; }
 
 
 
  /// Get a short "name" for the module.
 
  ///
 
  /// This is useful for debugging or logging. It is essentially a convenience
 
  /// wrapper around getModuleIdentifier().
 
  StringRef getName() const { return ModuleID; }
 
 
 
  /// Get the data layout string for the module's target platform. This is
 
  /// equivalent to getDataLayout()->getStringRepresentation().
 
  const std::string &getDataLayoutStr() const {
 
    return DL.getStringRepresentation();
 
  }
 
 
 
  /// Get the data layout for the module's target platform.
 
  const DataLayout &getDataLayout() const;
 
 
 
  /// Get the target triple which is a string describing the target host.
 
  /// @returns a string containing the target triple.
 
  const std::string &getTargetTriple() const { return TargetTriple; }
 
 
 
  /// Get the global data context.
 
  /// @returns LLVMContext - a container for LLVM's global information
 
  LLVMContext &getContext() const { return Context; }
 
 
 
  /// Get any module-scope inline assembly blocks.
 
  /// @returns a string containing the module-scope inline assembly blocks.
 
  const std::string &getModuleInlineAsm() const { return GlobalScopeAsm; }
 
 
 
  /// Get a RandomNumberGenerator salted for use with this module. The
 
  /// RNG can be seeded via -rng-seed=<uint64> and is salted with the
 
  /// ModuleID and the provided pass salt. The returned RNG should not
 
  /// be shared across threads or passes.
 
  ///
 
  /// A unique RNG per pass ensures a reproducible random stream even
 
  /// when other randomness consuming passes are added or removed. In
 
  /// addition, the random stream will be reproducible across LLVM
 
  /// versions when the pass does not change.
 
  std::unique_ptr<RandomNumberGenerator> createRNG(const StringRef Name) const;
 
 
 
  /// Return true if size-info optimization remark is enabled, false
 
  /// otherwise.
 
  bool shouldEmitInstrCountChangedRemark() {
 
    return getContext().getDiagHandlerPtr()->isAnalysisRemarkEnabled(
 
        "size-info");
 
  }
 
 
 
  /// @}
 
  /// @name Module Level Mutators
 
  /// @{
 
 
 
  /// Set the module identifier.
 
  void setModuleIdentifier(StringRef ID) { ModuleID = std::string(ID); }
 
 
 
  /// Set the module's original source file name.
 
  void setSourceFileName(StringRef Name) { SourceFileName = std::string(Name); }
 
 
 
  /// Set the data layout
 
  void setDataLayout(StringRef Desc);
 
  void setDataLayout(const DataLayout &Other);
 
 
 
  /// Set the target triple.
 
  void setTargetTriple(StringRef T) { TargetTriple = std::string(T); }
 
 
 
  /// Set the module-scope inline assembly blocks.
 
  /// A trailing newline is added if the input doesn't have one.
 
  void setModuleInlineAsm(StringRef Asm) {
 
    GlobalScopeAsm = std::string(Asm);
 
    if (!GlobalScopeAsm.empty() && GlobalScopeAsm.back() != '\n')
 
      GlobalScopeAsm += '\n';
 
  }
 
 
 
  /// Append to the module-scope inline assembly blocks.
 
  /// A trailing newline is added if the input doesn't have one.
 
  void appendModuleInlineAsm(StringRef Asm) {
 
    GlobalScopeAsm += Asm;
 
    if (!GlobalScopeAsm.empty() && GlobalScopeAsm.back() != '\n')
 
      GlobalScopeAsm += '\n';
 
  }
 
 
 
/// @}
 
/// @name Generic Value Accessors
 
/// @{
 
 
 
  /// Return the global value in the module with the specified name, of
 
  /// arbitrary type. This method returns null if a global with the specified
 
  /// name is not found.
 
  GlobalValue *getNamedValue(StringRef Name) const;
 
 
 
  /// Return the number of global values in the module.
 
  unsigned getNumNamedValues() const;
 
 
 
  /// Return a unique non-zero ID for the specified metadata kind. This ID is
 
  /// uniqued across modules in the current LLVMContext.
 
  unsigned getMDKindID(StringRef Name) const;
 
 
 
  /// Populate client supplied SmallVector with the name for custom metadata IDs
 
  /// registered in this LLVMContext.
 
  void getMDKindNames(SmallVectorImpl<StringRef> &Result) const;
 
 
 
  /// Populate client supplied SmallVector with the bundle tags registered in
 
  /// this LLVMContext.  The bundle tags are ordered by increasing bundle IDs.
 
  /// \see LLVMContext::getOperandBundleTagID
 
  void getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const;
 
 
 
  std::vector<StructType *> getIdentifiedStructTypes() const;
 
 
 
  /// Return a unique name for an intrinsic whose mangling is based on an
 
  /// unnamed type. The Proto represents the function prototype.
 
  std::string getUniqueIntrinsicName(StringRef BaseName, Intrinsic::ID Id,
 
                                     const FunctionType *Proto);
 
 
 
/// @}
 
/// @name Function Accessors
 
/// @{
 
 
 
  /// Look up the specified function in the module symbol table. Four
 
  /// possibilities:
 
  ///   1. If it does not exist, add a prototype for the function and return it.
 
  ///   2. Otherwise, if the existing function has the correct prototype, return
 
  ///      the existing function.
 
  ///   3. Finally, the function exists but has the wrong prototype: return the
 
  ///      function with a constantexpr cast to the right prototype.
 
  ///
 
  /// In all cases, the returned value is a FunctionCallee wrapper around the
 
  /// 'FunctionType *T' passed in, as well as a 'Value*' either of the Function or
 
  /// the bitcast to the function.
 
  ///
 
  /// Note: For library calls getOrInsertLibFunc() should be used instead.
 
  FunctionCallee getOrInsertFunction(StringRef Name, FunctionType *T,
 
                                     AttributeList AttributeList);
 
 
 
  FunctionCallee getOrInsertFunction(StringRef Name, FunctionType *T);
 
 
 
  /// Look up the specified function in the module symbol table. If it does not
 
  /// exist, add a prototype for the function and return it. This function
 
  /// guarantees to return a constant of pointer to the specified function type
 
  /// or a ConstantExpr BitCast of that type if the named function has a
 
  /// different type. This version of the method takes a list of
 
  /// function arguments, which makes it easier for clients to use.
 
  template <typename... ArgsTy>
 
  FunctionCallee getOrInsertFunction(StringRef Name,
 
                                     AttributeList AttributeList, Type *RetTy,
 
                                     ArgsTy... Args) {
 
    SmallVector<Type*, sizeof...(ArgsTy)> ArgTys{Args...};
 
    return getOrInsertFunction(Name,
 
                               FunctionType::get(RetTy, ArgTys, false),
 
                               AttributeList);
 
  }
 
 
 
  /// Same as above, but without the attributes.
 
  template <typename... ArgsTy>
 
  FunctionCallee getOrInsertFunction(StringRef Name, Type *RetTy,
 
                                     ArgsTy... Args) {
 
    return getOrInsertFunction(Name, AttributeList{}, RetTy, Args...);
 
  }
 
 
 
  // Avoid an incorrect ordering that'd otherwise compile incorrectly.
 
  template <typename... ArgsTy>
 
  FunctionCallee
 
  getOrInsertFunction(StringRef Name, AttributeList AttributeList,
 
                      FunctionType *Invalid, ArgsTy... Args) = delete;
 
 
 
  /// Look up the specified function in the module symbol table. If it does not
 
  /// exist, return null.
 
  Function *getFunction(StringRef Name) const;
 
 
 
/// @}
 
/// @name Global Variable Accessors
 
/// @{
 
 
 
  /// Look up the specified global variable in the module symbol table. If it
 
  /// does not exist, return null. If AllowInternal is set to true, this
 
  /// function will return types that have InternalLinkage. By default, these
 
  /// types are not returned.
 
  GlobalVariable *getGlobalVariable(StringRef Name) const {
 
    return getGlobalVariable(Name, false);
 
  }
 
 
 
  GlobalVariable *getGlobalVariable(StringRef Name, bool AllowInternal) const;
 
 
 
  GlobalVariable *getGlobalVariable(StringRef Name,
 
                                    bool AllowInternal = false) {
 
    return static_cast<const Module *>(this)->getGlobalVariable(Name,
 
                                                                AllowInternal);
 
  }
 
 
 
  /// Return the global variable in the module with the specified name, of
 
  /// arbitrary type. This method returns null if a global with the specified
 
  /// name is not found.
 
  const GlobalVariable *getNamedGlobal(StringRef Name) const {
 
    return getGlobalVariable(Name, true);
 
  }
 
  GlobalVariable *getNamedGlobal(StringRef Name) {
 
    return const_cast<GlobalVariable *>(
 
                       static_cast<const Module *>(this)->getNamedGlobal(Name));
 
  }
 
 
 
  /// Look up the specified global in the module symbol table.
 
  /// If it does not exist, invoke a callback to create a declaration of the
 
  /// global and return it. The global is constantexpr casted to the expected
 
  /// type if necessary.
 
  Constant *
 
  getOrInsertGlobal(StringRef Name, Type *Ty,
 
                    function_ref<GlobalVariable *()> CreateGlobalCallback);
 
 
 
  /// Look up the specified global in the module symbol table. If required, this
 
  /// overload constructs the global variable using its constructor's defaults.
 
  Constant *getOrInsertGlobal(StringRef Name, Type *Ty);
 
 
 
/// @}
 
/// @name Global Alias Accessors
 
/// @{
 
 
 
  /// Return the global alias in the module with the specified name, of
 
  /// arbitrary type. This method returns null if a global with the specified
 
  /// name is not found.
 
  GlobalAlias *getNamedAlias(StringRef Name) const;
 
 
 
/// @}
 
/// @name Global IFunc Accessors
 
/// @{
 
 
 
  /// Return the global ifunc in the module with the specified name, of
 
  /// arbitrary type. This method returns null if a global with the specified
 
  /// name is not found.
 
  GlobalIFunc *getNamedIFunc(StringRef Name) const;
 
 
 
/// @}
 
/// @name Named Metadata Accessors
 
/// @{
 
 
 
  /// Return the first NamedMDNode in the module with the specified name. This
 
  /// method returns null if a NamedMDNode with the specified name is not found.
 
  NamedMDNode *getNamedMetadata(const Twine &Name) const;
 
 
 
  /// Return the named MDNode in the module with the specified name. This method
 
  /// returns a new NamedMDNode if a NamedMDNode with the specified name is not
 
  /// found.
 
  NamedMDNode *getOrInsertNamedMetadata(StringRef Name);
 
 
 
  /// Remove the given NamedMDNode from this module and delete it.
 
  void eraseNamedMetadata(NamedMDNode *NMD);
 
 
 
/// @}
 
/// @name Comdat Accessors
 
/// @{
 
 
 
  /// Return the Comdat in the module with the specified name. It is created
 
  /// if it didn't already exist.
 
  Comdat *getOrInsertComdat(StringRef Name);
 
 
 
/// @}
 
/// @name Module Flags Accessors
 
/// @{
 
 
 
  /// Returns the module flags in the provided vector.
 
  void getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const;
 
 
 
  /// Return the corresponding value if Key appears in module flags, otherwise
 
  /// return null.
 
  Metadata *getModuleFlag(StringRef Key) const;
 
 
 
  /// Returns the NamedMDNode in the module that represents module-level flags.
 
  /// This method returns null if there are no module-level flags.
 
  NamedMDNode *getModuleFlagsMetadata() const;
 
 
 
  /// Returns the NamedMDNode in the module that represents module-level flags.
 
  /// If module-level flags aren't found, it creates the named metadata that
 
  /// contains them.
 
  NamedMDNode *getOrInsertModuleFlagsMetadata();
 
 
 
  /// Add a module-level flag to the module-level flags metadata. It will create
 
  /// the module-level flags named metadata if it doesn't already exist.
 
  void addModuleFlag(ModFlagBehavior Behavior, StringRef Key, Metadata *Val);
 
  void addModuleFlag(ModFlagBehavior Behavior, StringRef Key, Constant *Val);
 
  void addModuleFlag(ModFlagBehavior Behavior, StringRef Key, uint32_t Val);
 
  void addModuleFlag(MDNode *Node);
 
  /// Like addModuleFlag but replaces the old module flag if it already exists.
 
  void setModuleFlag(ModFlagBehavior Behavior, StringRef Key, Metadata *Val);
 
 
 
  /// @}
 
  /// @name Materialization
 
  /// @{
 
 
 
  /// Sets the GVMaterializer to GVM. This module must not yet have a
 
  /// Materializer. To reset the materializer for a module that already has one,
 
  /// call materializeAll first. Destroying this module will destroy
 
  /// its materializer without materializing any more GlobalValues. Without
 
  /// destroying the Module, there is no way to detach or destroy a materializer
 
  /// without materializing all the GVs it controls, to avoid leaving orphan
 
  /// unmaterialized GVs.
 
  void setMaterializer(GVMaterializer *GVM);
 
  /// Retrieves the GVMaterializer, if any, for this Module.
 
  GVMaterializer *getMaterializer() const { return Materializer.get(); }
 
  bool isMaterialized() const { return !getMaterializer(); }
 
 
 
  /// Make sure the GlobalValue is fully read.
 
  llvm::Error materialize(GlobalValue *GV);
 
 
 
  /// Make sure all GlobalValues in this Module are fully read and clear the
 
  /// Materializer.
 
  llvm::Error materializeAll();
 
 
 
  llvm::Error materializeMetadata();
 
 
 
/// @}
 
/// @name Direct access to the globals list, functions list, and symbol table
 
/// @{
 
 
 
  /// Get the Module's list of global variables (constant).
 
  const GlobalListType   &getGlobalList() const       { return GlobalList; }
 
  /// Get the Module's list of global variables.
 
  GlobalListType         &getGlobalList()             { return GlobalList; }
 
 
 
  static GlobalListType Module::*getSublistAccess(GlobalVariable*) {
 
    return &Module::GlobalList;
 
  }
 
 
 
  /// Get the Module's list of functions (constant).
 
  const FunctionListType &getFunctionList() const     { return FunctionList; }
 
  /// Get the Module's list of functions.
 
  FunctionListType       &getFunctionList()           { return FunctionList; }
 
  static FunctionListType Module::*getSublistAccess(Function*) {
 
    return &Module::FunctionList;
 
  }
 
 
 
  /// Get the Module's list of aliases (constant).
 
  const AliasListType    &getAliasList() const        { return AliasList; }
 
  /// Get the Module's list of aliases.
 
  AliasListType          &getAliasList()              { return AliasList; }
 
 
 
  static AliasListType Module::*getSublistAccess(GlobalAlias*) {
 
    return &Module::AliasList;
 
  }
 
 
 
  /// Get the Module's list of ifuncs (constant).
 
  const IFuncListType    &getIFuncList() const        { return IFuncList; }
 
  /// Get the Module's list of ifuncs.
 
  IFuncListType          &getIFuncList()              { return IFuncList; }
 
 
 
  static IFuncListType Module::*getSublistAccess(GlobalIFunc*) {
 
    return &Module::IFuncList;
 
  }
 
 
 
  /// Get the Module's list of named metadata (constant).
 
  const NamedMDListType  &getNamedMDList() const      { return NamedMDList; }
 
  /// Get the Module's list of named metadata.
 
  NamedMDListType        &getNamedMDList()            { return NamedMDList; }
 
 
 
  static NamedMDListType Module::*getSublistAccess(NamedMDNode*) {
 
    return &Module::NamedMDList;
 
  }
 
 
 
  /// Get the symbol table of global variable and function identifiers
 
  const ValueSymbolTable &getValueSymbolTable() const { return *ValSymTab; }
 
  /// Get the Module's symbol table of global variable and function identifiers.
 
  ValueSymbolTable       &getValueSymbolTable()       { return *ValSymTab; }
 
 
 
  /// Get the Module's symbol table for COMDATs (constant).
 
  const ComdatSymTabType &getComdatSymbolTable() const { return ComdatSymTab; }
 
  /// Get the Module's symbol table for COMDATs.
 
  ComdatSymTabType &getComdatSymbolTable() { return ComdatSymTab; }
 
 
 
/// @}
 
/// @name Global Variable Iteration
 
/// @{
 
 
 
  global_iterator       global_begin()       { return GlobalList.begin(); }
 
  const_global_iterator global_begin() const { return GlobalList.begin(); }
 
  global_iterator       global_end  ()       { return GlobalList.end(); }
 
  const_global_iterator global_end  () const { return GlobalList.end(); }
 
  size_t                global_size () const { return GlobalList.size(); }
 
  bool                  global_empty() const { return GlobalList.empty(); }
 
 
 
  iterator_range<global_iterator> globals() {
 
    return make_range(global_begin(), global_end());
 
  }
 
  iterator_range<const_global_iterator> globals() const {
 
    return make_range(global_begin(), global_end());
 
  }
 
 
 
/// @}
 
/// @name Function Iteration
 
/// @{
 
 
 
  iterator                begin()       { return FunctionList.begin(); }
 
  const_iterator          begin() const { return FunctionList.begin(); }
 
  iterator                end  ()       { return FunctionList.end();   }
 
  const_iterator          end  () const { return FunctionList.end();   }
 
  reverse_iterator        rbegin()      { return FunctionList.rbegin(); }
 
  const_reverse_iterator  rbegin() const{ return FunctionList.rbegin(); }
 
  reverse_iterator        rend()        { return FunctionList.rend(); }
 
  const_reverse_iterator  rend() const  { return FunctionList.rend(); }
 
  size_t                  size() const  { return FunctionList.size(); }
 
  bool                    empty() const { return FunctionList.empty(); }
 
 
 
  iterator_range<iterator> functions() {
 
    return make_range(begin(), end());
 
  }
 
  iterator_range<const_iterator> functions() const {
 
    return make_range(begin(), end());
 
  }
 
 
 
/// @}
 
/// @name Alias Iteration
 
/// @{
 
 
 
  alias_iterator       alias_begin()            { return AliasList.begin(); }
 
  const_alias_iterator alias_begin() const      { return AliasList.begin(); }
 
  alias_iterator       alias_end  ()            { return AliasList.end();   }
 
  const_alias_iterator alias_end  () const      { return AliasList.end();   }
 
  size_t               alias_size () const      { return AliasList.size();  }
 
  bool                 alias_empty() const      { return AliasList.empty(); }
 
 
 
  iterator_range<alias_iterator> aliases() {
 
    return make_range(alias_begin(), alias_end());
 
  }
 
  iterator_range<const_alias_iterator> aliases() const {
 
    return make_range(alias_begin(), alias_end());
 
  }
 
 
 
/// @}
 
/// @name IFunc Iteration
 
/// @{
 
 
 
  ifunc_iterator       ifunc_begin()            { return IFuncList.begin(); }
 
  const_ifunc_iterator ifunc_begin() const      { return IFuncList.begin(); }
 
  ifunc_iterator       ifunc_end  ()            { return IFuncList.end();   }
 
  const_ifunc_iterator ifunc_end  () const      { return IFuncList.end();   }
 
  size_t               ifunc_size () const      { return IFuncList.size();  }
 
  bool                 ifunc_empty() const      { return IFuncList.empty(); }
 
 
 
  iterator_range<ifunc_iterator> ifuncs() {
 
    return make_range(ifunc_begin(), ifunc_end());
 
  }
 
  iterator_range<const_ifunc_iterator> ifuncs() const {
 
    return make_range(ifunc_begin(), ifunc_end());
 
  }
 
 
 
  /// @}
 
  /// @name Convenience iterators
 
  /// @{
 
 
 
  using global_object_iterator =
 
      concat_iterator<GlobalObject, iterator, global_iterator>;
 
  using const_global_object_iterator =
 
      concat_iterator<const GlobalObject, const_iterator,
 
                      const_global_iterator>;
 
 
 
  iterator_range<global_object_iterator> global_objects();
 
  iterator_range<const_global_object_iterator> global_objects() const;
 
 
 
  using global_value_iterator =
 
      concat_iterator<GlobalValue, iterator, global_iterator, alias_iterator,
 
                      ifunc_iterator>;
 
  using const_global_value_iterator =
 
      concat_iterator<const GlobalValue, const_iterator, const_global_iterator,
 
                      const_alias_iterator, const_ifunc_iterator>;
 
 
 
  iterator_range<global_value_iterator> global_values();
 
  iterator_range<const_global_value_iterator> global_values() const;
 
 
 
  /// @}
 
  /// @name Named Metadata Iteration
 
  /// @{
 
 
 
  named_metadata_iterator named_metadata_begin() { return NamedMDList.begin(); }
 
  const_named_metadata_iterator named_metadata_begin() const {
 
    return NamedMDList.begin();
 
  }
 
 
 
  named_metadata_iterator named_metadata_end() { return NamedMDList.end(); }
 
  const_named_metadata_iterator named_metadata_end() const {
 
    return NamedMDList.end();
 
  }
 
 
 
  size_t named_metadata_size() const { return NamedMDList.size();  }
 
  bool named_metadata_empty() const { return NamedMDList.empty(); }
 
 
 
  iterator_range<named_metadata_iterator> named_metadata() {
 
    return make_range(named_metadata_begin(), named_metadata_end());
 
  }
 
  iterator_range<const_named_metadata_iterator> named_metadata() const {
 
    return make_range(named_metadata_begin(), named_metadata_end());
 
  }
 
 
 
  /// An iterator for DICompileUnits that skips those marked NoDebug.
 
  class debug_compile_units_iterator {
 
    NamedMDNode *CUs;
 
    unsigned Idx;
 
 
 
    void SkipNoDebugCUs();
 
 
 
  public:
 
    using iterator_category = std::input_iterator_tag;
 
    using value_type = DICompileUnit *;
 
    using difference_type = std::ptrdiff_t;
 
    using pointer = value_type *;
 
    using reference = value_type &;
 
 
 
    explicit debug_compile_units_iterator(NamedMDNode *CUs, unsigned Idx)
 
        : CUs(CUs), Idx(Idx) {
 
      SkipNoDebugCUs();
 
    }
 
 
 
    debug_compile_units_iterator &operator++() {
 
      ++Idx;
 
      SkipNoDebugCUs();
 
      return *this;
 
    }
 
 
 
    debug_compile_units_iterator operator++(int) {
 
      debug_compile_units_iterator T(*this);
 
      ++Idx;
 
      return T;
 
    }
 
 
 
    bool operator==(const debug_compile_units_iterator &I) const {
 
      return Idx == I.Idx;
 
    }
 
 
 
    bool operator!=(const debug_compile_units_iterator &I) const {
 
      return Idx != I.Idx;
 
    }
 
 
 
    DICompileUnit *operator*() const;
 
    DICompileUnit *operator->() const;
 
  };
 
 
 
  debug_compile_units_iterator debug_compile_units_begin() const {
 
    auto *CUs = getNamedMetadata("llvm.dbg.cu");
 
    return debug_compile_units_iterator(CUs, 0);
 
  }
 
 
 
  debug_compile_units_iterator debug_compile_units_end() const {
 
    auto *CUs = getNamedMetadata("llvm.dbg.cu");
 
    return debug_compile_units_iterator(CUs, CUs ? CUs->getNumOperands() : 0);
 
  }
 
 
 
  /// Return an iterator for all DICompileUnits listed in this Module's
 
  /// llvm.dbg.cu named metadata node and aren't explicitly marked as
 
  /// NoDebug.
 
  iterator_range<debug_compile_units_iterator> debug_compile_units() const {
 
    auto *CUs = getNamedMetadata("llvm.dbg.cu");
 
    return make_range(
 
        debug_compile_units_iterator(CUs, 0),
 
        debug_compile_units_iterator(CUs, CUs ? CUs->getNumOperands() : 0));
 
  }
 
/// @}
 
 
 
  /// Destroy ConstantArrays in LLVMContext if they are not used.
 
  /// ConstantArrays constructed during linking can cause quadratic memory
 
  /// explosion. Releasing all unused constants can cause a 20% LTO compile-time
 
  /// slowdown for a large application.
 
  ///
 
  /// NOTE: Constants are currently owned by LLVMContext. This can then only
 
  /// be called where all uses of the LLVMContext are understood.
 
  void dropTriviallyDeadConstantArrays();
 
 
 
/// @name Utility functions for printing and dumping Module objects
 
/// @{
 
 
 
  /// Print the module to an output stream with an optional
 
  /// AssemblyAnnotationWriter.  If \c ShouldPreserveUseListOrder, then include
 
  /// uselistorder directives so that use-lists can be recreated when reading
 
  /// the assembly.
 
  void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW,
 
             bool ShouldPreserveUseListOrder = false,
 
             bool IsForDebug = false) const;
 
 
 
  /// Dump the module to stderr (for debugging).
 
  void dump() const;
 
 
 
  /// This function causes all the subinstructions to "let go" of all references
 
  /// that they are maintaining.  This allows one to 'delete' a whole class at
 
  /// a time, even though there may be circular references... first all
 
  /// references are dropped, and all use counts go to zero.  Then everything
 
  /// is delete'd for real.  Note that no operations are valid on an object
 
  /// that has "dropped all references", except operator delete.
 
  void dropAllReferences();
 
 
 
/// @}
 
/// @name Utility functions for querying Debug information.
 
/// @{
 
 
 
  /// Returns the Number of Register ParametersDwarf Version by checking
 
  /// module flags.
 
  unsigned getNumberRegisterParameters() const;
 
 
 
  /// Returns the Dwarf Version by checking module flags.
 
  unsigned getDwarfVersion() const;
 
 
 
  /// Returns the DWARF format by checking module flags.
 
  bool isDwarf64() const;
 
 
 
  /// Returns the CodeView Version by checking module flags.
 
  /// Returns zero if not present in module.
 
  unsigned getCodeViewFlag() const;
 
 
 
/// @}
 
/// @name Utility functions for querying and setting PIC level
 
/// @{
 
 
 
  /// Returns the PIC level (small or large model)
 
  PICLevel::Level getPICLevel() const;
 
 
 
  /// Set the PIC level (small or large model)
 
  void setPICLevel(PICLevel::Level PL);
 
/// @}
 
 
 
/// @}
 
/// @name Utility functions for querying and setting PIE level
 
/// @{
 
 
 
  /// Returns the PIE level (small or large model)
 
  PIELevel::Level getPIELevel() const;
 
 
 
  /// Set the PIE level (small or large model)
 
  void setPIELevel(PIELevel::Level PL);
 
/// @}
 
 
 
  /// @}
 
  /// @name Utility function for querying and setting code model
 
  /// @{
 
 
 
  /// Returns the code model (tiny, small, kernel, medium or large model)
 
  std::optional<CodeModel::Model> getCodeModel() const;
 
 
 
  /// Set the code model (tiny, small, kernel, medium or large)
 
  void setCodeModel(CodeModel::Model CL);
 
  /// @}
 
 
 
  /// @name Utility functions for querying and setting PGO summary
 
  /// @{
 
 
 
  /// Attach profile summary metadata to this module.
 
  void setProfileSummary(Metadata *M, ProfileSummary::Kind Kind);
 
 
 
  /// Returns profile summary metadata. When IsCS is true, use the context
 
  /// sensitive profile summary.
 
  Metadata *getProfileSummary(bool IsCS) const;
 
  /// @}
 
 
 
  /// Returns whether semantic interposition is to be respected.
 
  bool getSemanticInterposition() const;
 
 
 
  /// Set whether semantic interposition is to be respected.
 
  void setSemanticInterposition(bool);
 
 
 
  /// Returns true if PLT should be avoided for RTLib calls.
 
  bool getRtLibUseGOT() const;
 
 
 
  /// Set that PLT should be avoid for RTLib calls.
 
  void setRtLibUseGOT();
 
 
 
  /// Get/set whether synthesized functions should get the uwtable attribute.
 
  UWTableKind getUwtable() const;
 
  void setUwtable(UWTableKind Kind);
 
 
 
  /// Get/set whether synthesized functions should get the "frame-pointer"
 
  /// attribute.
 
  FramePointerKind getFramePointer() const;
 
  void setFramePointer(FramePointerKind Kind);
 
 
 
  /// Get/set what kind of stack protector guard to use.
 
  StringRef getStackProtectorGuard() const;
 
  void setStackProtectorGuard(StringRef Kind);
 
 
 
  /// Get/set which register to use as the stack protector guard register. The
 
  /// empty string is equivalent to "global". Other values may be "tls" or
 
  /// "sysreg".
 
  StringRef getStackProtectorGuardReg() const;
 
  void setStackProtectorGuardReg(StringRef Reg);
 
 
 
  /// Get/set a symbol to use as the stack protector guard.
 
  StringRef getStackProtectorGuardSymbol() const;
 
  void setStackProtectorGuardSymbol(StringRef Symbol);
 
 
 
  /// Get/set what offset from the stack protector to use.
 
  int getStackProtectorGuardOffset() const;
 
  void setStackProtectorGuardOffset(int Offset);
 
 
 
  /// Get/set the stack alignment overridden from the default.
 
  unsigned getOverrideStackAlignment() const;
 
  void setOverrideStackAlignment(unsigned Align);
 
 
 
  /// @name Utility functions for querying and setting the build SDK version
 
  /// @{
 
 
 
  /// Attach a build SDK version metadata to this module.
 
  void setSDKVersion(const VersionTuple &V);
 
 
 
  /// Get the build SDK version metadata.
 
  ///
 
  /// An empty version is returned if no such metadata is attached.
 
  VersionTuple getSDKVersion() const;
 
  /// @}
 
 
 
  /// Take ownership of the given memory buffer.
 
  void setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB);
 
 
 
  /// Set the partial sample profile ratio in the profile summary module flag,
 
  /// if applicable.
 
  void setPartialSampleProfileRatio(const ModuleSummaryIndex &Index);
 
 
 
  /// Get the target variant triple which is a string describing a variant of
 
  /// the target host platform. For example, Mac Catalyst can be a variant
 
  /// target triple for a macOS target.
 
  /// @returns a string containing the target variant triple.
 
  StringRef getDarwinTargetVariantTriple() const;
 
 
 
  /// Set the target variant triple which is a string describing a variant of
 
  /// the target host platform.
 
  void setDarwinTargetVariantTriple(StringRef T);
 
 
 
  /// Get the target variant version build SDK version metadata.
 
  ///
 
  /// An empty version is returned if no such metadata is attached.
 
  VersionTuple getDarwinTargetVariantSDKVersion() const;
 
 
 
  /// Set the target variant version build SDK version metadata.
 
  void setDarwinTargetVariantSDKVersion(VersionTuple Version);
 
};
 
 
 
/// Given "llvm.used" or "llvm.compiler.used" as a global name, collect the
 
/// initializer elements of that global in a SmallVector and return the global
 
/// itself.
 
GlobalVariable *collectUsedGlobalVariables(const Module &M,
 
                                           SmallVectorImpl<GlobalValue *> &Vec,
 
                                           bool CompilerUsed);
 
 
 
/// An raw_ostream inserter for modules.
 
inline raw_ostream &operator<<(raw_ostream &O, const Module &M) {
 
  M.print(O, nullptr);
 
  return O;
 
}
 
 
 
// Create wrappers for C Binding types (see CBindingWrapping.h).
 
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(Module, LLVMModuleRef)
 
 
 
/* LLVMModuleProviderRef exists for historical reasons, but now just holds a
 
 * Module.
 
 */
 
inline Module *unwrap(LLVMModuleProviderRef MP) {
 
  return reinterpret_cast<Module*>(MP);
 
}
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_IR_MODULE_H