- //===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- // 
- // This file contains the declarations of classes that represent "derived 
- // types".  These are things like "arrays of x" or "structure of x, y, z" or 
- // "function returning x taking (y,z) as parameters", etc... 
- // 
- // The implementations of these classes live in the Type.cpp file. 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_IR_DERIVEDTYPES_H 
- #define LLVM_IR_DERIVEDTYPES_H 
-   
- #include "llvm/ADT/ArrayRef.h" 
- #include "llvm/ADT/STLExtras.h" 
- #include "llvm/ADT/StringRef.h" 
- #include "llvm/IR/Type.h" 
- #include "llvm/Support/Casting.h" 
- #include "llvm/Support/Compiler.h" 
- #include "llvm/Support/TypeSize.h" 
- #include <cassert> 
- #include <cstdint> 
-   
- namespace llvm { 
-   
- class Value; 
- class APInt; 
- class LLVMContext; 
-   
- /// Class to represent integer types. Note that this class is also used to 
- /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and 
- /// Int64Ty. 
- /// Integer representation type 
- class IntegerType : public Type { 
-   friend class LLVMContextImpl; 
-   
- protected: 
-   explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){ 
-     setSubclassData(NumBits); 
-   } 
-   
- public: 
-   /// This enum is just used to hold constants we need for IntegerType. 
-   enum { 
-     MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified 
-     MAX_INT_BITS = (1<<23)   ///< Maximum number of bits that can be specified 
-       ///< Note that bit width is stored in the Type classes SubclassData field 
-       ///< which has 24 bits. SelectionDAG type legalization can require a 
-       ///< power of 2 IntegerType, so limit to the largest representable power 
-       ///< of 2, 8388608. 
-   }; 
-   
-   /// This static method is the primary way of constructing an IntegerType. 
-   /// If an IntegerType with the same NumBits value was previously instantiated, 
-   /// that instance will be returned. Otherwise a new one will be created. Only 
-   /// one instance with a given NumBits value is ever created. 
-   /// Get or create an IntegerType instance. 
-   static IntegerType *get(LLVMContext &C, unsigned NumBits); 
-   
-   /// Returns type twice as wide the input type. 
-   IntegerType *getExtendedType() const { 
-     return Type::getIntNTy(getContext(), 2 * getScalarSizeInBits()); 
-   } 
-   
-   /// Get the number of bits in this IntegerType 
-   unsigned getBitWidth() const { return getSubclassData(); } 
-   
-   /// Return a bitmask with ones set for all of the bits that can be set by an 
-   /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc. 
-   uint64_t getBitMask() const { 
-     return ~uint64_t(0UL) >> (64-getBitWidth()); 
-   } 
-   
-   /// Return a uint64_t with just the most significant bit set (the sign bit, if 
-   /// the value is treated as a signed number). 
-   uint64_t getSignBit() const { 
-     return 1ULL << (getBitWidth()-1); 
-   } 
-   
-   /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc. 
-   /// @returns a bit mask with ones set for all the bits of this type. 
-   /// Get a bit mask for this type. 
-   APInt getMask() const; 
-   
-   /// Methods for support type inquiry through isa, cast, and dyn_cast. 
-   static bool classof(const Type *T) { 
-     return T->getTypeID() == IntegerTyID; 
-   } 
- }; 
-   
- unsigned Type::getIntegerBitWidth() const { 
-   return cast<IntegerType>(this)->getBitWidth(); 
- } 
-   
- /// Class to represent function types 
- /// 
- class FunctionType : public Type { 
-   FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs); 
-   
- public: 
-   FunctionType(const FunctionType &) = delete; 
-   FunctionType &operator=(const FunctionType &) = delete; 
-   
-   /// This static method is the primary way of constructing a FunctionType. 
-   static FunctionType *get(Type *Result, 
-                            ArrayRef<Type*> Params, bool isVarArg); 
-   
-   /// Create a FunctionType taking no parameters. 
-   static FunctionType *get(Type *Result, bool isVarArg); 
-   
-   /// Return true if the specified type is valid as a return type. 
-   static bool isValidReturnType(Type *RetTy); 
-   
-   /// Return true if the specified type is valid as an argument type. 
-   static bool isValidArgumentType(Type *ArgTy); 
-   
-   bool isVarArg() const { return getSubclassData()!=0; } 
-   Type *getReturnType() const { return ContainedTys[0]; } 
-   
-   using param_iterator = Type::subtype_iterator; 
-   
-   param_iterator param_begin() const { return ContainedTys + 1; } 
-   param_iterator param_end() const { return &ContainedTys[NumContainedTys]; } 
-   ArrayRef<Type *> params() const { 
-     return ArrayRef(param_begin(), param_end()); 
-   } 
-   
-   /// Parameter type accessors. 
-   Type *getParamType(unsigned i) const { return ContainedTys[i+1]; } 
-   
-   /// Return the number of fixed parameters this function type requires. 
-   /// This does not consider varargs. 
-   unsigned getNumParams() const { return NumContainedTys - 1; } 
-   
-   /// Methods for support type inquiry through isa, cast, and dyn_cast. 
-   static bool classof(const Type *T) { 
-     return T->getTypeID() == FunctionTyID; 
-   } 
- }; 
- static_assert(alignof(FunctionType) >= alignof(Type *), 
-               "Alignment sufficient for objects appended to FunctionType"); 
-   
- bool Type::isFunctionVarArg() const { 
-   return cast<FunctionType>(this)->isVarArg(); 
- } 
-   
- Type *Type::getFunctionParamType(unsigned i) const { 
-   return cast<FunctionType>(this)->getParamType(i); 
- } 
-   
- unsigned Type::getFunctionNumParams() const { 
-   return cast<FunctionType>(this)->getNumParams(); 
- } 
-   
- /// A handy container for a FunctionType+Callee-pointer pair, which can be 
- /// passed around as a single entity. This assists in replacing the use of 
- /// PointerType::getElementType() to access the function's type, since that's 
- /// slated for removal as part of the [opaque pointer types] project. 
- class FunctionCallee { 
- public: 
-   // Allow implicit conversion from types which have a getFunctionType member 
-   // (e.g. Function and InlineAsm). 
-   template <typename T, typename U = decltype(&T::getFunctionType)> 
-   FunctionCallee(T *Fn) 
-       : FnTy(Fn ? Fn->getFunctionType() : nullptr), Callee(Fn) {} 
-   
-   FunctionCallee(FunctionType *FnTy, Value *Callee) 
-       : FnTy(FnTy), Callee(Callee) { 
-     assert((FnTy == nullptr) == (Callee == nullptr)); 
-   } 
-   
-   FunctionCallee(std::nullptr_t) {} 
-   
-   FunctionCallee() = default; 
-   
-   FunctionType *getFunctionType() { return FnTy; } 
-   
-   Value *getCallee() { return Callee; } 
-   
-   explicit operator bool() { return Callee; } 
-   
- private: 
-   FunctionType *FnTy = nullptr; 
-   Value *Callee = nullptr; 
- }; 
-   
- /// Class to represent struct types. There are two different kinds of struct 
- /// types: Literal structs and Identified structs. 
- /// 
- /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must 
- /// always have a body when created.  You can get one of these by using one of 
- /// the StructType::get() forms. 
- /// 
- /// Identified structs (e.g. %foo or %42) may optionally have a name and are not 
- /// uniqued.  The names for identified structs are managed at the LLVMContext 
- /// level, so there can only be a single identified struct with a given name in 
- /// a particular LLVMContext.  Identified structs may also optionally be opaque 
- /// (have no body specified).  You get one of these by using one of the 
- /// StructType::create() forms. 
- /// 
- /// Independent of what kind of struct you have, the body of a struct type are 
- /// laid out in memory consecutively with the elements directly one after the 
- /// other (if the struct is packed) or (if not packed) with padding between the 
- /// elements as defined by DataLayout (which is required to match what the code 
- /// generator for a target expects). 
- /// 
- class StructType : public Type { 
-   StructType(LLVMContext &C) : Type(C, StructTyID) {} 
-   
-   enum { 
-     /// This is the contents of the SubClassData field. 
-     SCDB_HasBody = 1, 
-     SCDB_Packed = 2, 
-     SCDB_IsLiteral = 4, 
-     SCDB_IsSized = 8 
-   }; 
-   
-   /// For a named struct that actually has a name, this is a pointer to the 
-   /// symbol table entry (maintained by LLVMContext) for the struct. 
-   /// This is null if the type is an literal struct or if it is a identified 
-   /// type that has an empty name. 
-   void *SymbolTableEntry = nullptr; 
-   
- public: 
-   StructType(const StructType &) = delete; 
-   StructType &operator=(const StructType &) = delete; 
-   
-   /// This creates an identified struct. 
-   static StructType *create(LLVMContext &Context, StringRef Name); 
-   static StructType *create(LLVMContext &Context); 
-   
-   static StructType *create(ArrayRef<Type *> Elements, StringRef Name, 
-                             bool isPacked = false); 
-   static StructType *create(ArrayRef<Type *> Elements); 
-   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements, 
-                             StringRef Name, bool isPacked = false); 
-   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements); 
-   template <class... Tys> 
-   static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *> 
-   create(StringRef Name, Type *elt1, Tys *... elts) { 
-     assert(elt1 && "Cannot create a struct type with no elements with this"); 
-     return create(ArrayRef<Type *>({elt1, elts...}), Name); 
-   } 
-   
-   /// This static method is the primary way to create a literal StructType. 
-   static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements, 
-                          bool isPacked = false); 
-   
-   /// Create an empty structure type. 
-   static StructType *get(LLVMContext &Context, bool isPacked = false); 
-   
-   /// This static method is a convenience method for creating structure types by 
-   /// specifying the elements as arguments. Note that this method always returns 
-   /// a non-packed struct, and requires at least one element type. 
-   template <class... Tys> 
-   static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *> 
-   get(Type *elt1, Tys *... elts) { 
-     assert(elt1 && "Cannot create a struct type with no elements with this"); 
-     LLVMContext &Ctx = elt1->getContext(); 
-     return StructType::get(Ctx, ArrayRef<Type *>({elt1, elts...})); 
-   } 
-   
-   /// Return the type with the specified name, or null if there is none by that 
-   /// name. 
-   static StructType *getTypeByName(LLVMContext &C, StringRef Name); 
-   
-   bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; } 
-   
-   /// Return true if this type is uniqued by structural equivalence, false if it 
-   /// is a struct definition. 
-   bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; } 
-   
-   /// Return true if this is a type with an identity that has no body specified 
-   /// yet. These prints as 'opaque' in .ll files. 
-   bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; } 
-   
-   /// isSized - Return true if this is a sized type. 
-   bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const; 
-   
-   /// Returns true if this struct contains a scalable vector. 
-   bool containsScalableVectorType() const; 
-   
-   /// Return true if this is a named struct that has a non-empty name. 
-   bool hasName() const { return SymbolTableEntry != nullptr; } 
-   
-   /// Return the name for this struct type if it has an identity. 
-   /// This may return an empty string for an unnamed struct type.  Do not call 
-   /// this on an literal type. 
-   StringRef getName() const; 
-   
-   /// Change the name of this type to the specified name, or to a name with a 
-   /// suffix if there is a collision. Do not call this on an literal type. 
-   void setName(StringRef Name); 
-   
-   /// Specify a body for an opaque identified type. 
-   void setBody(ArrayRef<Type*> Elements, bool isPacked = false); 
-   
-   template <typename... Tys> 
-   std::enable_if_t<are_base_of<Type, Tys...>::value, void> 
-   setBody(Type *elt1, Tys *... elts) { 
-     assert(elt1 && "Cannot create a struct type with no elements with this"); 
-     setBody(ArrayRef<Type *>({elt1, elts...})); 
-   } 
-   
-   /// Return true if the specified type is valid as a element type. 
-   static bool isValidElementType(Type *ElemTy); 
-   
-   // Iterator access to the elements. 
-   using element_iterator = Type::subtype_iterator; 
-   
-   element_iterator element_begin() const { return ContainedTys; } 
-   element_iterator element_end() const { return &ContainedTys[NumContainedTys];} 
-   ArrayRef<Type *> elements() const { 
-     return ArrayRef(element_begin(), element_end()); 
-   } 
-   
-   /// Return true if this is layout identical to the specified struct. 
-   bool isLayoutIdentical(StructType *Other) const; 
-   
-   /// Random access to the elements 
-   unsigned getNumElements() const { return NumContainedTys; } 
-   Type *getElementType(unsigned N) const { 
-     assert(N < NumContainedTys && "Element number out of range!"); 
-     return ContainedTys[N]; 
-   } 
-   /// Given an index value into the type, return the type of the element. 
-   Type *getTypeAtIndex(const Value *V) const; 
-   Type *getTypeAtIndex(unsigned N) const { return getElementType(N); } 
-   bool indexValid(const Value *V) const; 
-   bool indexValid(unsigned Idx) const { return Idx < getNumElements(); } 
-   
-   /// Methods for support type inquiry through isa, cast, and dyn_cast. 
-   static bool classof(const Type *T) { 
-     return T->getTypeID() == StructTyID; 
-   } 
- }; 
-   
- StringRef Type::getStructName() const { 
-   return cast<StructType>(this)->getName(); 
- } 
-   
- unsigned Type::getStructNumElements() const { 
-   return cast<StructType>(this)->getNumElements(); 
- } 
-   
- Type *Type::getStructElementType(unsigned N) const { 
-   return cast<StructType>(this)->getElementType(N); 
- } 
-   
- /// Class to represent array types. 
- class ArrayType : public Type { 
-   /// The element type of the array. 
-   Type *ContainedType; 
-   /// Number of elements in the array. 
-   uint64_t NumElements; 
-   
-   ArrayType(Type *ElType, uint64_t NumEl); 
-   
- public: 
-   ArrayType(const ArrayType &) = delete; 
-   ArrayType &operator=(const ArrayType &) = delete; 
-   
-   uint64_t getNumElements() const { return NumElements; } 
-   Type *getElementType() const { return ContainedType; } 
-   
-   /// This static method is the primary way to construct an ArrayType 
-   static ArrayType *get(Type *ElementType, uint64_t NumElements); 
-   
-   /// Return true if the specified type is valid as a element type. 
-   static bool isValidElementType(Type *ElemTy); 
-   
-   /// Methods for support type inquiry through isa, cast, and dyn_cast. 
-   static bool classof(const Type *T) { 
-     return T->getTypeID() == ArrayTyID; 
-   } 
- }; 
-   
- uint64_t Type::getArrayNumElements() const { 
-   return cast<ArrayType>(this)->getNumElements(); 
- } 
-   
- /// Base class of all SIMD vector types 
- class VectorType : public Type { 
-   /// A fully specified VectorType is of the form <vscale x n x Ty>. 'n' is the 
-   /// minimum number of elements of type Ty contained within the vector, and 
-   /// 'vscale x' indicates that the total element count is an integer multiple 
-   /// of 'n', where the multiple is either guaranteed to be one, or is 
-   /// statically unknown at compile time. 
-   /// 
-   /// If the multiple is known to be 1, then the extra term is discarded in 
-   /// textual IR: 
-   /// 
-   /// <4 x i32>          - a vector containing 4 i32s 
-   /// <vscale x 4 x i32> - a vector containing an unknown integer multiple 
-   ///                      of 4 i32s 
-   
-   /// The element type of the vector. 
-   Type *ContainedType; 
-   
- protected: 
-   /// The element quantity of this vector. The meaning of this value depends 
-   /// on the type of vector: 
-   /// - For FixedVectorType = <ElementQuantity x ty>, there are 
-   ///   exactly ElementQuantity elements in this vector. 
-   /// - For ScalableVectorType = <vscale x ElementQuantity x ty>, 
-   ///   there are vscale * ElementQuantity elements in this vector, where 
-   ///   vscale is a runtime-constant integer greater than 0. 
-   const unsigned ElementQuantity; 
-   
-   VectorType(Type *ElType, unsigned EQ, Type::TypeID TID); 
-   
- public: 
-   VectorType(const VectorType &) = delete; 
-   VectorType &operator=(const VectorType &) = delete; 
-   
-   Type *getElementType() const { return ContainedType; } 
-   
-   /// This static method is the primary way to construct an VectorType. 
-   static VectorType *get(Type *ElementType, ElementCount EC); 
-   
-   static VectorType *get(Type *ElementType, unsigned NumElements, 
-                          bool Scalable) { 
-     return VectorType::get(ElementType, 
-                            ElementCount::get(NumElements, Scalable)); 
-   } 
-   
-   static VectorType *get(Type *ElementType, const VectorType *Other) { 
-     return VectorType::get(ElementType, Other->getElementCount()); 
-   } 
-   
-   /// This static method gets a VectorType with the same number of elements as 
-   /// the input type, and the element type is an integer type of the same width 
-   /// as the input element type. 
-   static VectorType *getInteger(VectorType *VTy) { 
-     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 
-     assert(EltBits && "Element size must be of a non-zero size"); 
-     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits); 
-     return VectorType::get(EltTy, VTy->getElementCount()); 
-   } 
-   
-   /// This static method is like getInteger except that the element types are 
-   /// twice as wide as the elements in the input type. 
-   static VectorType *getExtendedElementVectorType(VectorType *VTy) { 
-     assert(VTy->isIntOrIntVectorTy() && "VTy expected to be a vector of ints."); 
-     auto *EltTy = cast<IntegerType>(VTy->getElementType()); 
-     return VectorType::get(EltTy->getExtendedType(), VTy->getElementCount()); 
-   } 
-   
-   // This static method gets a VectorType with the same number of elements as 
-   // the input type, and the element type is an integer or float type which 
-   // is half as wide as the elements in the input type. 
-   static VectorType *getTruncatedElementVectorType(VectorType *VTy) { 
-     Type *EltTy; 
-     if (VTy->getElementType()->isFloatingPointTy()) { 
-       switch(VTy->getElementType()->getTypeID()) { 
-       case DoubleTyID: 
-         EltTy = Type::getFloatTy(VTy->getContext()); 
-         break; 
-       case FloatTyID: 
-         EltTy = Type::getHalfTy(VTy->getContext()); 
-         break; 
-       default: 
-         llvm_unreachable("Cannot create narrower fp vector element type"); 
-       } 
-     } else { 
-       unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 
-       assert((EltBits & 1) == 0 && 
-              "Cannot truncate vector element with odd bit-width"); 
-       EltTy = IntegerType::get(VTy->getContext(), EltBits / 2); 
-     } 
-     return VectorType::get(EltTy, VTy->getElementCount()); 
-   } 
-   
-   // This static method returns a VectorType with a smaller number of elements 
-   // of a larger type than the input element type. For example, a <16 x i8> 
-   // subdivided twice would return <4 x i32> 
-   static VectorType *getSubdividedVectorType(VectorType *VTy, int NumSubdivs) { 
-     for (int i = 0; i < NumSubdivs; ++i) { 
-       VTy = VectorType::getDoubleElementsVectorType(VTy); 
-       VTy = VectorType::getTruncatedElementVectorType(VTy); 
-     } 
-     return VTy; 
-   } 
-   
-   /// This static method returns a VectorType with half as many elements as the 
-   /// input type and the same element type. 
-   static VectorType *getHalfElementsVectorType(VectorType *VTy) { 
-     auto EltCnt = VTy->getElementCount(); 
-     assert(EltCnt.isKnownEven() && 
-            "Cannot halve vector with odd number of elements."); 
-     return VectorType::get(VTy->getElementType(), 
-                            EltCnt.divideCoefficientBy(2)); 
-   } 
-   
-   /// This static method returns a VectorType with twice as many elements as the 
-   /// input type and the same element type. 
-   static VectorType *getDoubleElementsVectorType(VectorType *VTy) { 
-     auto EltCnt = VTy->getElementCount(); 
-     assert((EltCnt.getKnownMinValue() * 2ull) <= UINT_MAX && 
-            "Too many elements in vector"); 
-     return VectorType::get(VTy->getElementType(), EltCnt * 2); 
-   } 
-   
-   /// Return true if the specified type is valid as a element type. 
-   static bool isValidElementType(Type *ElemTy); 
-   
-   /// Return an ElementCount instance to represent the (possibly scalable) 
-   /// number of elements in the vector. 
-   inline ElementCount getElementCount() const; 
-   
-   /// Methods for support type inquiry through isa, cast, and dyn_cast. 
-   static bool classof(const Type *T) { 
-     return T->getTypeID() == FixedVectorTyID || 
-            T->getTypeID() == ScalableVectorTyID; 
-   } 
- }; 
-   
- /// Class to represent fixed width SIMD vectors 
- class FixedVectorType : public VectorType { 
- protected: 
-   FixedVectorType(Type *ElTy, unsigned NumElts) 
-       : VectorType(ElTy, NumElts, FixedVectorTyID) {} 
-   
- public: 
-   static FixedVectorType *get(Type *ElementType, unsigned NumElts); 
-   
-   static FixedVectorType *get(Type *ElementType, const FixedVectorType *FVTy) { 
-     return get(ElementType, FVTy->getNumElements()); 
-   } 
-   
-   static FixedVectorType *getInteger(FixedVectorType *VTy) { 
-     return cast<FixedVectorType>(VectorType::getInteger(VTy)); 
-   } 
-   
-   static FixedVectorType *getExtendedElementVectorType(FixedVectorType *VTy) { 
-     return cast<FixedVectorType>(VectorType::getExtendedElementVectorType(VTy)); 
-   } 
-   
-   static FixedVectorType *getTruncatedElementVectorType(FixedVectorType *VTy) { 
-     return cast<FixedVectorType>( 
-         VectorType::getTruncatedElementVectorType(VTy)); 
-   } 
-   
-   static FixedVectorType *getSubdividedVectorType(FixedVectorType *VTy, 
-                                                   int NumSubdivs) { 
-     return cast<FixedVectorType>( 
-         VectorType::getSubdividedVectorType(VTy, NumSubdivs)); 
-   } 
-   
-   static FixedVectorType *getHalfElementsVectorType(FixedVectorType *VTy) { 
-     return cast<FixedVectorType>(VectorType::getHalfElementsVectorType(VTy)); 
-   } 
-   
-   static FixedVectorType *getDoubleElementsVectorType(FixedVectorType *VTy) { 
-     return cast<FixedVectorType>(VectorType::getDoubleElementsVectorType(VTy)); 
-   } 
-   
-   static bool classof(const Type *T) { 
-     return T->getTypeID() == FixedVectorTyID; 
-   } 
-   
-   unsigned getNumElements() const { return ElementQuantity; } 
- }; 
-   
- /// Class to represent scalable SIMD vectors 
- class ScalableVectorType : public VectorType { 
- protected: 
-   ScalableVectorType(Type *ElTy, unsigned MinNumElts) 
-       : VectorType(ElTy, MinNumElts, ScalableVectorTyID) {} 
-   
- public: 
-   static ScalableVectorType *get(Type *ElementType, unsigned MinNumElts); 
-   
-   static ScalableVectorType *get(Type *ElementType, 
-                                  const ScalableVectorType *SVTy) { 
-     return get(ElementType, SVTy->getMinNumElements()); 
-   } 
-   
-   static ScalableVectorType *getInteger(ScalableVectorType *VTy) { 
-     return cast<ScalableVectorType>(VectorType::getInteger(VTy)); 
-   } 
-   
-   static ScalableVectorType * 
-   getExtendedElementVectorType(ScalableVectorType *VTy) { 
-     return cast<ScalableVectorType>( 
-         VectorType::getExtendedElementVectorType(VTy)); 
-   } 
-   
-   static ScalableVectorType * 
-   getTruncatedElementVectorType(ScalableVectorType *VTy) { 
-     return cast<ScalableVectorType>( 
-         VectorType::getTruncatedElementVectorType(VTy)); 
-   } 
-   
-   static ScalableVectorType *getSubdividedVectorType(ScalableVectorType *VTy, 
-                                                      int NumSubdivs) { 
-     return cast<ScalableVectorType>( 
-         VectorType::getSubdividedVectorType(VTy, NumSubdivs)); 
-   } 
-   
-   static ScalableVectorType * 
-   getHalfElementsVectorType(ScalableVectorType *VTy) { 
-     return cast<ScalableVectorType>(VectorType::getHalfElementsVectorType(VTy)); 
-   } 
-   
-   static ScalableVectorType * 
-   getDoubleElementsVectorType(ScalableVectorType *VTy) { 
-     return cast<ScalableVectorType>( 
-         VectorType::getDoubleElementsVectorType(VTy)); 
-   } 
-   
-   /// Get the minimum number of elements in this vector. The actual number of 
-   /// elements in the vector is an integer multiple of this value. 
-   uint64_t getMinNumElements() const { return ElementQuantity; } 
-   
-   static bool classof(const Type *T) { 
-     return T->getTypeID() == ScalableVectorTyID; 
-   } 
- }; 
-   
- inline ElementCount VectorType::getElementCount() const { 
-   return ElementCount::get(ElementQuantity, isa<ScalableVectorType>(this)); 
- } 
-   
- /// Class to represent pointers. 
- class PointerType : public Type { 
-   explicit PointerType(Type *ElType, unsigned AddrSpace); 
-   explicit PointerType(LLVMContext &C, unsigned AddrSpace); 
-   
-   Type *PointeeTy; 
-   
- public: 
-   PointerType(const PointerType &) = delete; 
-   PointerType &operator=(const PointerType &) = delete; 
-   
-   /// This constructs a pointer to an object of the specified type in a numbered 
-   /// address space. 
-   static PointerType *get(Type *ElementType, unsigned AddressSpace); 
-   /// This constructs an opaque pointer to an object in a numbered address 
-   /// space. 
-   static PointerType *get(LLVMContext &C, unsigned AddressSpace); 
-   
-   /// This constructs a pointer to an object of the specified type in the 
-   /// default address space (address space zero). 
-   static PointerType *getUnqual(Type *ElementType) { 
-     return PointerType::get(ElementType, 0); 
-   } 
-   
-   /// This constructs an opaque pointer to an object in the 
-   /// default address space (address space zero). 
-   static PointerType *getUnqual(LLVMContext &C) { 
-     return PointerType::get(C, 0); 
-   } 
-   
-   /// This constructs a pointer type with the same pointee type as input 
-   /// PointerType (or opaque pointer if the input PointerType is opaque) and the 
-   /// given address space. This is only useful during the opaque pointer 
-   /// transition. 
-   /// TODO: remove after opaque pointer transition is complete. 
-   static PointerType *getWithSamePointeeType(PointerType *PT, 
-                                              unsigned AddressSpace) { 
-     if (PT->isOpaque()) 
-       return get(PT->getContext(), AddressSpace); 
-     return get(PT->PointeeTy, AddressSpace); 
-   } 
-   
-   bool isOpaque() const { return !PointeeTy; } 
-   
-   /// Return true if the specified type is valid as a element type. 
-   static bool isValidElementType(Type *ElemTy); 
-   
-   /// Return true if we can load or store from a pointer to this type. 
-   static bool isLoadableOrStorableType(Type *ElemTy); 
-   
-   /// Return the address space of the Pointer type. 
-   inline unsigned getAddressSpace() const { return getSubclassData(); } 
-   
-   /// Return true if either this is an opaque pointer type or if this pointee 
-   /// type matches Ty. Primarily used for checking if an instruction's pointer 
-   /// operands are valid types. Will be useless after non-opaque pointers are 
-   /// removed. 
-   bool isOpaqueOrPointeeTypeMatches(Type *Ty) { 
-     return isOpaque() || PointeeTy == Ty; 
-   } 
-   
-   /// Return true if both pointer types have the same element type. Two opaque 
-   /// pointers are considered to have the same element type, while an opaque 
-   /// and a non-opaque pointer have different element types. 
-   /// TODO: Remove after opaque pointer transition is complete. 
-   bool hasSameElementTypeAs(PointerType *Other) { 
-     return PointeeTy == Other->PointeeTy; 
-   } 
-   
-   /// Implement support type inquiry through isa, cast, and dyn_cast. 
-   static bool classof(const Type *T) { 
-     return T->getTypeID() == PointerTyID; 
-   } 
- }; 
-   
- Type *Type::getExtendedType() const { 
-   assert( 
-       isIntOrIntVectorTy() && 
-       "Original type expected to be a vector of integers or a scalar integer."); 
-   if (auto *VTy = dyn_cast<VectorType>(this)) 
-     return VectorType::getExtendedElementVectorType( 
-         const_cast<VectorType *>(VTy)); 
-   return cast<IntegerType>(this)->getExtendedType(); 
- } 
-   
- Type *Type::getWithNewType(Type *EltTy) const { 
-   if (auto *VTy = dyn_cast<VectorType>(this)) 
-     return VectorType::get(EltTy, VTy->getElementCount()); 
-   return EltTy; 
- } 
-   
- Type *Type::getWithNewBitWidth(unsigned NewBitWidth) const { 
-   assert( 
-       isIntOrIntVectorTy() && 
-       "Original type expected to be a vector of integers or a scalar integer."); 
-   return getWithNewType(getIntNTy(getContext(), NewBitWidth)); 
- } 
-   
- unsigned Type::getPointerAddressSpace() const { 
-   return cast<PointerType>(getScalarType())->getAddressSpace(); 
- } 
-   
- /// Class to represent target extensions types, which are generally 
- /// unintrospectable from target-independent optimizations. 
- /// 
- /// Target extension types have a string name, and optionally have type and/or 
- /// integer parameters. The exact meaning of any parameters is dependent on the 
- /// target. 
- class TargetExtType : public Type { 
-   TargetExtType(LLVMContext &C, StringRef Name, ArrayRef<Type *> Types, 
-                 ArrayRef<unsigned> Ints); 
-   
-   // These strings are ultimately owned by the context. 
-   StringRef Name; 
-   unsigned *IntParams; 
-   
- public: 
-   TargetExtType(const TargetExtType &) = delete; 
-   TargetExtType &operator=(const TargetExtType &) = delete; 
-   
-   /// Return a target extension type having the specified name and optional 
-   /// type and integer parameters. 
-   static TargetExtType *get(LLVMContext &Context, StringRef Name, 
-                             ArrayRef<Type *> Types = std::nullopt, 
-                             ArrayRef<unsigned> Ints = std::nullopt); 
-   
-   /// Return the name for this target extension type. Two distinct target 
-   /// extension types may have the same name if their type or integer parameters 
-   /// differ. 
-   StringRef getName() const { return Name; } 
-   
-   /// Return the type parameters for this particular target extension type. If 
-   /// there are no parameters, an empty array is returned. 
-   ArrayRef<Type *> type_params() const { 
-     return ArrayRef(type_param_begin(), type_param_end()); 
-   } 
-   
-   using type_param_iterator = Type::subtype_iterator; 
-   type_param_iterator type_param_begin() const { return ContainedTys; } 
-   type_param_iterator type_param_end() const { 
-     return &ContainedTys[NumContainedTys]; 
-   } 
-   
-   Type *getTypeParameter(unsigned i) const { return getContainedType(i); } 
-   unsigned getNumTypeParameters() const { return getNumContainedTypes(); } 
-   
-   /// Return the integer parameters for this particular target extension type. 
-   /// If there are no parameters, an empty array is returned. 
-   ArrayRef<unsigned> int_params() const { 
-     return ArrayRef(IntParams, getNumIntParameters()); 
-   } 
-   
-   unsigned getIntParameter(unsigned i) const { return IntParams[i]; } 
-   unsigned getNumIntParameters() const { return getSubclassData(); } 
-   
-   enum Property { 
-     /// zeroinitializer is valid for this target extension type. 
-     HasZeroInit = 1U << 0, 
-     /// This type may be used as the value type of a global variable. 
-     CanBeGlobal = 1U << 1, 
-   }; 
-   
-   /// Returns true if the target extension type contains the given property. 
-   bool hasProperty(Property Prop) const; 
-   
-   /// Returns an underlying layout type for the target extension type. This 
-   /// type can be used to query size and alignment information, if it is 
-   /// appropriate (although note that the layout type may also be void). It is 
-   /// not legal to bitcast between this type and the layout type, however. 
-   Type *getLayoutType() const; 
-   
-   /// Methods for support type inquiry through isa, cast, and dyn_cast. 
-   static bool classof(const Type *T) { return T->getTypeID() == TargetExtTyID; } 
- }; 
-   
- StringRef Type::getTargetExtName() const { 
-   return cast<TargetExtType>(this)->getName(); 
- } 
-   
- } // end namespace llvm 
-   
- #endif // LLVM_IR_DERIVEDTYPES_H 
-