//===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines the abstract interface that implements execution support
 
// for LLVM.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
 
#define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
 
 
 
#include "llvm-c/ExecutionEngine.h"
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/StringMap.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/ExecutionEngine/JITSymbol.h"
 
#include "llvm/IR/DataLayout.h"
 
#include "llvm/IR/Module.h"
 
#include "llvm/Object/Binary.h"
 
#include "llvm/Support/CBindingWrapping.h"
 
#include "llvm/Support/CodeGen.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include "llvm/Support/Mutex.h"
 
#include "llvm/Target/TargetMachine.h"
 
#include "llvm/Target/TargetOptions.h"
 
#include <algorithm>
 
#include <cstdint>
 
#include <functional>
 
#include <map>
 
#include <memory>
 
#include <optional>
 
#include <string>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
class Constant;
 
class Function;
 
struct GenericValue;
 
class GlobalValue;
 
class GlobalVariable;
 
class JITEventListener;
 
class MCJITMemoryManager;
 
class ObjectCache;
 
class RTDyldMemoryManager;
 
class Triple;
 
class Type;
 
 
 
namespace object {
 
 
 
class Archive;
 
class ObjectFile;
 
 
 
} // end namespace object
 
 
 
/// Helper class for helping synchronize access to the global address map
 
/// table.  Access to this class should be serialized under a mutex.
 
class ExecutionEngineState {
 
public:
 
  using GlobalAddressMapTy = StringMap<uint64_t>;
 
 
 
private:
 
  /// GlobalAddressMap - A mapping between LLVM global symbol names values and
 
  /// their actualized version...
 
  GlobalAddressMapTy GlobalAddressMap;
 
 
 
  /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
 
  /// used to convert raw addresses into the LLVM global value that is emitted
 
  /// at the address.  This map is not computed unless getGlobalValueAtAddress
 
  /// is called at some point.
 
  std::map<uint64_t, std::string> GlobalAddressReverseMap;
 
 
 
public:
 
  GlobalAddressMapTy &getGlobalAddressMap() {
 
    return GlobalAddressMap;
 
  }
 
 
 
  std::map<uint64_t, std::string> &getGlobalAddressReverseMap() {
 
    return GlobalAddressReverseMap;
 
  }
 
 
 
  /// Erase an entry from the mapping table.
 
  ///
 
  /// \returns The address that \p ToUnmap was happed to.
 
  uint64_t RemoveMapping(StringRef Name);
 
};
 
 
 
using FunctionCreator = std::function<void *(const std::string &)>;
 
 
 
/// Abstract interface for implementation execution of LLVM modules,
 
/// designed to support both interpreter and just-in-time (JIT) compiler
 
/// implementations.
 
class ExecutionEngine {
 
  /// The state object holding the global address mapping, which must be
 
  /// accessed synchronously.
 
  //
 
  // FIXME: There is no particular need the entire map needs to be
 
  // synchronized.  Wouldn't a reader-writer design be better here?
 
  ExecutionEngineState EEState;
 
 
 
  /// The target data for the platform for which execution is being performed.
 
  ///
 
  /// Note: the DataLayout is LLVMContext specific because it has an
 
  /// internal cache based on type pointers. It makes unsafe to reuse the
 
  /// ExecutionEngine across context, we don't enforce this rule but undefined
 
  /// behavior can occurs if the user tries to do it.
 
  const DataLayout DL;
 
 
 
  /// Whether lazy JIT compilation is enabled.
 
  bool CompilingLazily;
 
 
 
  /// Whether JIT compilation of external global variables is allowed.
 
  bool GVCompilationDisabled;
 
 
 
  /// Whether the JIT should perform lookups of external symbols (e.g.,
 
  /// using dlsym).
 
  bool SymbolSearchingDisabled;
 
 
 
  /// Whether the JIT should verify IR modules during compilation.
 
  bool VerifyModules;
 
 
 
  friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
 
 
 
protected:
 
  /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
 
  /// optimize for the case where there is only one module.
 
  SmallVector<std::unique_ptr<Module>, 1> Modules;
 
 
 
  /// getMemoryforGV - Allocate memory for a global variable.
 
  virtual char *getMemoryForGV(const GlobalVariable *GV);
 
 
 
  static ExecutionEngine *(*MCJITCtor)(
 
      std::unique_ptr<Module> M, std::string *ErrorStr,
 
      std::shared_ptr<MCJITMemoryManager> MM,
 
      std::shared_ptr<LegacyJITSymbolResolver> SR,
 
      std::unique_ptr<TargetMachine> TM);
 
 
 
  static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M,
 
                                        std::string *ErrorStr);
 
 
 
  /// LazyFunctionCreator - If an unknown function is needed, this function
 
  /// pointer is invoked to create it.  If this returns null, the JIT will
 
  /// abort.
 
  FunctionCreator LazyFunctionCreator;
 
 
 
  /// getMangledName - Get mangled name.
 
  std::string getMangledName(const GlobalValue *GV);
 
 
 
  std::string ErrMsg;
 
 
 
public:
 
  /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must
 
  /// be held while changing the internal state of any of those classes.
 
  sys::Mutex lock;
 
 
 
  //===--------------------------------------------------------------------===//
 
  //  ExecutionEngine Startup
 
  //===--------------------------------------------------------------------===//
 
 
 
  virtual ~ExecutionEngine();
 
 
 
  /// Add a Module to the list of modules that we can JIT from.
 
  virtual void addModule(std::unique_ptr<Module> M) {
 
    Modules.push_back(std::move(M));
 
  }
 
 
 
  /// addObjectFile - Add an ObjectFile to the execution engine.
 
  ///
 
  /// This method is only supported by MCJIT.  MCJIT will immediately load the
 
  /// object into memory and adds its symbols to the list used to resolve
 
  /// external symbols while preparing other objects for execution.
 
  ///
 
  /// Objects added using this function will not be made executable until
 
  /// needed by another object.
 
  ///
 
  /// MCJIT will take ownership of the ObjectFile.
 
  virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O);
 
  virtual void addObjectFile(object::OwningBinary<object::ObjectFile> O);
 
 
 
  /// addArchive - Add an Archive to the execution engine.
 
  ///
 
  /// This method is only supported by MCJIT.  MCJIT will use the archive to
 
  /// resolve external symbols in objects it is loading.  If a symbol is found
 
  /// in the Archive the contained object file will be extracted (in memory)
 
  /// and loaded for possible execution.
 
  virtual void addArchive(object::OwningBinary<object::Archive> A);
 
 
 
  //===--------------------------------------------------------------------===//
 
 
 
  const DataLayout &getDataLayout() const { return DL; }
 
 
 
  /// removeModule - Removes a Module from the list of modules, but does not
 
  /// free the module's memory. Returns true if M is found, in which case the
 
  /// caller assumes responsibility for deleting the module.
 
  //
 
  // FIXME: This stealth ownership transfer is horrible. This will probably be
 
  //        fixed by deleting ExecutionEngine.
 
  virtual bool removeModule(Module *M);
 
 
 
  /// FindFunctionNamed - Search all of the active modules to find the function that
 
  /// defines FnName.  This is very slow operation and shouldn't be used for
 
  /// general code.
 
  virtual Function *FindFunctionNamed(StringRef FnName);
 
 
 
  /// FindGlobalVariableNamed - Search all of the active modules to find the global variable
 
  /// that defines Name.  This is very slow operation and shouldn't be used for
 
  /// general code.
 
  virtual GlobalVariable *FindGlobalVariableNamed(StringRef Name, bool AllowInternal = false);
 
 
 
  /// runFunction - Execute the specified function with the specified arguments,
 
  /// and return the result.
 
  ///
 
  /// For MCJIT execution engines, clients are encouraged to use the
 
  /// "GetFunctionAddress" method (rather than runFunction) and cast the
 
  /// returned uint64_t to the desired function pointer type. However, for
 
  /// backwards compatibility MCJIT's implementation can execute 'main-like'
 
  /// function (i.e. those returning void or int, and taking either no
 
  /// arguments or (int, char*[])).
 
  virtual GenericValue runFunction(Function *F,
 
                                   ArrayRef<GenericValue> ArgValues) = 0;
 
 
 
  /// getPointerToNamedFunction - This method returns the address of the
 
  /// specified function by using the dlsym function call.  As such it is only
 
  /// useful for resolving library symbols, not code generated symbols.
 
  ///
 
  /// If AbortOnFailure is false and no function with the given name is
 
  /// found, this function silently returns a null pointer. Otherwise,
 
  /// it prints a message to stderr and aborts.
 
  ///
 
  /// This function is deprecated for the MCJIT execution engine.
 
  virtual void *getPointerToNamedFunction(StringRef Name,
 
                                          bool AbortOnFailure = true) = 0;
 
 
 
  /// mapSectionAddress - map a section to its target address space value.
 
  /// Map the address of a JIT section as returned from the memory manager
 
  /// to the address in the target process as the running code will see it.
 
  /// This is the address which will be used for relocation resolution.
 
  virtual void mapSectionAddress(const void *LocalAddress,
 
                                 uint64_t TargetAddress) {
 
    llvm_unreachable("Re-mapping of section addresses not supported with this "
 
                     "EE!");
 
  }
 
 
 
  /// generateCodeForModule - Run code generation for the specified module and
 
  /// load it into memory.
 
  ///
 
  /// When this function has completed, all code and data for the specified
 
  /// module, and any module on which this module depends, will be generated
 
  /// and loaded into memory, but relocations will not yet have been applied
 
  /// and all memory will be readable and writable but not executable.
 
  ///
 
  /// This function is primarily useful when generating code for an external
 
  /// target, allowing the client an opportunity to remap section addresses
 
  /// before relocations are applied.  Clients that intend to execute code
 
  /// locally can use the getFunctionAddress call, which will generate code
 
  /// and apply final preparations all in one step.
 
  ///
 
  /// This method has no effect for the interpeter.
 
  virtual void generateCodeForModule(Module *M) {}
 
 
 
  /// finalizeObject - ensure the module is fully processed and is usable.
 
  ///
 
  /// It is the user-level function for completing the process of making the
 
  /// object usable for execution.  It should be called after sections within an
 
  /// object have been relocated using mapSectionAddress.  When this method is
 
  /// called the MCJIT execution engine will reapply relocations for a loaded
 
  /// object.  This method has no effect for the interpeter.
 
  ///
 
  /// Returns true on success, false on failure. Error messages can be retrieved
 
  /// by calling getError();
 
  virtual void finalizeObject() {}
 
 
 
  /// Returns true if an error has been recorded.
 
  bool hasError() const { return !ErrMsg.empty(); }
 
 
 
  /// Clear the error message.
 
  void clearErrorMessage() { ErrMsg.clear(); }
 
 
 
  /// Returns the most recent error message.
 
  const std::string &getErrorMessage() const { return ErrMsg; }
 
 
 
  /// runStaticConstructorsDestructors - This method is used to execute all of
 
  /// the static constructors or destructors for a program.
 
  ///
 
  /// \param isDtors - Run the destructors instead of constructors.
 
  virtual void runStaticConstructorsDestructors(bool isDtors);
 
 
 
  /// This method is used to execute all of the static constructors or
 
  /// destructors for a particular module.
 
  ///
 
  /// \param isDtors - Run the destructors instead of constructors.
 
  void runStaticConstructorsDestructors(Module &module, bool isDtors);
 
 
 
 
 
  /// runFunctionAsMain - This is a helper function which wraps runFunction to
 
  /// handle the common task of starting up main with the specified argc, argv,
 
  /// and envp parameters.
 
  int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
 
                        const char * const * envp);
 
 
 
 
 
  /// addGlobalMapping - Tell the execution engine that the specified global is
 
  /// at the specified location.  This is used internally as functions are JIT'd
 
  /// and as global variables are laid out in memory.  It can and should also be
 
  /// used by clients of the EE that want to have an LLVM global overlay
 
  /// existing data in memory. Values to be mapped should be named, and have
 
  /// external or weak linkage. Mappings are automatically removed when their
 
  /// GlobalValue is destroyed.
 
  void addGlobalMapping(const GlobalValue *GV, void *Addr);
 
  void addGlobalMapping(StringRef Name, uint64_t Addr);
 
 
 
  /// clearAllGlobalMappings - Clear all global mappings and start over again,
 
  /// for use in dynamic compilation scenarios to move globals.
 
  void clearAllGlobalMappings();
 
 
 
  /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
 
  /// particular module, because it has been removed from the JIT.
 
  void clearGlobalMappingsFromModule(Module *M);
 
 
 
  /// updateGlobalMapping - Replace an existing mapping for GV with a new
 
  /// address.  This updates both maps as required.  If "Addr" is null, the
 
  /// entry for the global is removed from the mappings.  This returns the old
 
  /// value of the pointer, or null if it was not in the map.
 
  uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr);
 
  uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr);
 
 
 
  /// getAddressToGlobalIfAvailable - This returns the address of the specified
 
  /// global symbol.
 
  uint64_t getAddressToGlobalIfAvailable(StringRef S);
 
 
 
  /// getPointerToGlobalIfAvailable - This returns the address of the specified
 
  /// global value if it is has already been codegen'd, otherwise it returns
 
  /// null.
 
  void *getPointerToGlobalIfAvailable(StringRef S);
 
  void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
 
 
 
  /// getPointerToGlobal - This returns the address of the specified global
 
  /// value. This may involve code generation if it's a function.
 
  ///
 
  /// This function is deprecated for the MCJIT execution engine.  Use
 
  /// getGlobalValueAddress instead.
 
  void *getPointerToGlobal(const GlobalValue *GV);
 
 
 
  /// getPointerToFunction - The different EE's represent function bodies in
 
  /// different ways.  They should each implement this to say what a function
 
  /// pointer should look like.  When F is destroyed, the ExecutionEngine will
 
  /// remove its global mapping and free any machine code.  Be sure no threads
 
  /// are running inside F when that happens.
 
  ///
 
  /// This function is deprecated for the MCJIT execution engine.  Use
 
  /// getFunctionAddress instead.
 
  virtual void *getPointerToFunction(Function *F) = 0;
 
 
 
  /// getPointerToFunctionOrStub - If the specified function has been
 
  /// code-gen'd, return a pointer to the function.  If not, compile it, or use
 
  /// a stub to implement lazy compilation if available.  See
 
  /// getPointerToFunction for the requirements on destroying F.
 
  ///
 
  /// This function is deprecated for the MCJIT execution engine.  Use
 
  /// getFunctionAddress instead.
 
  virtual void *getPointerToFunctionOrStub(Function *F) {
 
    // Default implementation, just codegen the function.
 
    return getPointerToFunction(F);
 
  }
 
 
 
  /// getGlobalValueAddress - Return the address of the specified global
 
  /// value. This may involve code generation.
 
  ///
 
  /// This function should not be called with the interpreter engine.
 
  virtual uint64_t getGlobalValueAddress(const std::string &Name) {
 
    // Default implementation for the interpreter.  MCJIT will override this.
 
    // JIT and interpreter clients should use getPointerToGlobal instead.
 
    return 0;
 
  }
 
 
 
  /// getFunctionAddress - Return the address of the specified function.
 
  /// This may involve code generation.
 
  virtual uint64_t getFunctionAddress(const std::string &Name) {
 
    // Default implementation for the interpreter.  MCJIT will override this.
 
    // Interpreter clients should use getPointerToFunction instead.
 
    return 0;
 
  }
 
 
 
  /// getGlobalValueAtAddress - Return the LLVM global value object that starts
 
  /// at the specified address.
 
  ///
 
  const GlobalValue *getGlobalValueAtAddress(void *Addr);
 
 
 
  /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
 
  /// Ptr is the address of the memory at which to store Val, cast to
 
  /// GenericValue *.  It is not a pointer to a GenericValue containing the
 
  /// address at which to store Val.
 
  void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
 
                          Type *Ty);
 
 
 
  void InitializeMemory(const Constant *Init, void *Addr);
 
 
 
  /// getOrEmitGlobalVariable - Return the address of the specified global
 
  /// variable, possibly emitting it to memory if needed.  This is used by the
 
  /// Emitter.
 
  ///
 
  /// This function is deprecated for the MCJIT execution engine.  Use
 
  /// getGlobalValueAddress instead.
 
  virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
 
    return getPointerToGlobal((const GlobalValue *)GV);
 
  }
 
 
 
  /// Registers a listener to be called back on various events within
 
  /// the JIT.  See JITEventListener.h for more details.  Does not
 
  /// take ownership of the argument.  The argument may be NULL, in
 
  /// which case these functions do nothing.
 
  virtual void RegisterJITEventListener(JITEventListener *) {}
 
  virtual void UnregisterJITEventListener(JITEventListener *) {}
 
 
 
  /// Sets the pre-compiled object cache.  The ownership of the ObjectCache is
 
  /// not changed.  Supported by MCJIT but not the interpreter.
 
  virtual void setObjectCache(ObjectCache *) {
 
    llvm_unreachable("No support for an object cache");
 
  }
 
 
 
  /// setProcessAllSections (MCJIT Only): By default, only sections that are
 
  /// "required for execution" are passed to the RTDyldMemoryManager, and other
 
  /// sections are discarded. Passing 'true' to this method will cause
 
  /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless
 
  /// of whether they are "required to execute" in the usual sense.
 
  ///
 
  /// Rationale: Some MCJIT clients want to be able to inspect metadata
 
  /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze
 
  /// performance. Passing these sections to the memory manager allows the
 
  /// client to make policy about the relevant sections, rather than having
 
  /// MCJIT do it.
 
  virtual void setProcessAllSections(bool ProcessAllSections) {
 
    llvm_unreachable("No support for ProcessAllSections option");
 
  }
 
 
 
  /// Return the target machine (if available).
 
  virtual TargetMachine *getTargetMachine() { return nullptr; }
 
 
 
  /// DisableLazyCompilation - When lazy compilation is off (the default), the
 
  /// JIT will eagerly compile every function reachable from the argument to
 
  /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
 
  /// compile the one function and emit stubs to compile the rest when they're
 
  /// first called.  If lazy compilation is turned off again while some lazy
 
  /// stubs are still around, and one of those stubs is called, the program will
 
  /// abort.
 
  ///
 
  /// In order to safely compile lazily in a threaded program, the user must
 
  /// ensure that 1) only one thread at a time can call any particular lazy
 
  /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
 
  /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
 
  /// lazy stub.  See http://llvm.org/PR5184 for details.
 
  void DisableLazyCompilation(bool Disabled = true) {
 
    CompilingLazily = !Disabled;
 
  }
 
  bool isCompilingLazily() const {
 
    return CompilingLazily;
 
  }
 
 
 
  /// DisableGVCompilation - If called, the JIT will abort if it's asked to
 
  /// allocate space and populate a GlobalVariable that is not internal to
 
  /// the module.
 
  void DisableGVCompilation(bool Disabled = true) {
 
    GVCompilationDisabled = Disabled;
 
  }
 
  bool isGVCompilationDisabled() const {
 
    return GVCompilationDisabled;
 
  }
 
 
 
  /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
 
  /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
 
  /// resolve symbols in a custom way.
 
  void DisableSymbolSearching(bool Disabled = true) {
 
    SymbolSearchingDisabled = Disabled;
 
  }
 
  bool isSymbolSearchingDisabled() const {
 
    return SymbolSearchingDisabled;
 
  }
 
 
 
  /// Enable/Disable IR module verification.
 
  ///
 
  /// Note: Module verification is enabled by default in Debug builds, and
 
  /// disabled by default in Release. Use this method to override the default.
 
  void setVerifyModules(bool Verify) {
 
    VerifyModules = Verify;
 
  }
 
  bool getVerifyModules() const {
 
    return VerifyModules;
 
  }
 
 
 
  /// InstallLazyFunctionCreator - If an unknown function is needed, the
 
  /// specified function pointer is invoked to create it.  If it returns null,
 
  /// the JIT will abort.
 
  void InstallLazyFunctionCreator(FunctionCreator C) {
 
    LazyFunctionCreator = std::move(C);
 
  }
 
 
 
protected:
 
  ExecutionEngine(DataLayout DL) : DL(std::move(DL)) {}
 
  explicit ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M);
 
  explicit ExecutionEngine(std::unique_ptr<Module> M);
 
 
 
  void emitGlobals();
 
 
 
  void emitGlobalVariable(const GlobalVariable *GV);
 
 
 
  GenericValue getConstantValue(const Constant *C);
 
  void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
 
                           Type *Ty);
 
 
 
private:
 
  void Init(std::unique_ptr<Module> M);
 
};
 
 
 
namespace EngineKind {
 
 
 
  // These are actually bitmasks that get or-ed together.
 
  enum Kind {
 
    JIT         = 0x1,
 
    Interpreter = 0x2
 
  };
 
  const static Kind Either = (Kind)(JIT | Interpreter);
 
 
 
} // end namespace EngineKind
 
 
 
/// Builder class for ExecutionEngines. Use this by stack-allocating a builder,
 
/// chaining the various set* methods, and terminating it with a .create()
 
/// call.
 
class EngineBuilder {
 
private:
 
  std::unique_ptr<Module> M;
 
  EngineKind::Kind WhichEngine;
 
  std::string *ErrorStr;
 
  CodeGenOpt::Level OptLevel;
 
  std::shared_ptr<MCJITMemoryManager> MemMgr;
 
  std::shared_ptr<LegacyJITSymbolResolver> Resolver;
 
  TargetOptions Options;
 
  std::optional<Reloc::Model> RelocModel;
 
  std::optional<CodeModel::Model> CMModel;
 
  std::string MArch;
 
  std::string MCPU;
 
  SmallVector<std::string, 4> MAttrs;
 
  bool VerifyModules;
 
  bool EmulatedTLS = true;
 
 
 
public:
 
  /// Default constructor for EngineBuilder.
 
  EngineBuilder();
 
 
 
  /// Constructor for EngineBuilder.
 
  EngineBuilder(std::unique_ptr<Module> M);
 
 
 
  // Out-of-line since we don't have the def'n of RTDyldMemoryManager here.
 
  ~EngineBuilder();
 
 
 
  /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
 
  /// or whichever engine works.  This option defaults to EngineKind::Either.
 
  EngineBuilder &setEngineKind(EngineKind::Kind w) {
 
    WhichEngine = w;
 
    return *this;
 
  }
 
 
 
  /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
 
  /// clients to customize their memory allocation policies for the MCJIT. This
 
  /// is only appropriate for the MCJIT; setting this and configuring the builder
 
  /// to create anything other than MCJIT will cause a runtime error. If create()
 
  /// is called and is successful, the created engine takes ownership of the
 
  /// memory manager. This option defaults to NULL.
 
  EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
 
 
 
  EngineBuilder&
 
  setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
 
 
 
  EngineBuilder &setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR);
 
 
 
  /// setErrorStr - Set the error string to write to on error.  This option
 
  /// defaults to NULL.
 
  EngineBuilder &setErrorStr(std::string *e) {
 
    ErrorStr = e;
 
    return *this;
 
  }
 
 
 
  /// setOptLevel - Set the optimization level for the JIT.  This option
 
  /// defaults to CodeGenOpt::Default.
 
  EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
 
    OptLevel = l;
 
    return *this;
 
  }
 
 
 
  /// setTargetOptions - Set the target options that the ExecutionEngine
 
  /// target is using. Defaults to TargetOptions().
 
  EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
 
    Options = Opts;
 
    return *this;
 
  }
 
 
 
  /// setRelocationModel - Set the relocation model that the ExecutionEngine
 
  /// target is using. Defaults to target specific default "Reloc::Default".
 
  EngineBuilder &setRelocationModel(Reloc::Model RM) {
 
    RelocModel = RM;
 
    return *this;
 
  }
 
 
 
  /// setCodeModel - Set the CodeModel that the ExecutionEngine target
 
  /// data is using. Defaults to target specific default
 
  /// "CodeModel::JITDefault".
 
  EngineBuilder &setCodeModel(CodeModel::Model M) {
 
    CMModel = M;
 
    return *this;
 
  }
 
 
 
  /// setMArch - Override the architecture set by the Module's triple.
 
  EngineBuilder &setMArch(StringRef march) {
 
    MArch.assign(march.begin(), march.end());
 
    return *this;
 
  }
 
 
 
  /// setMCPU - Target a specific cpu type.
 
  EngineBuilder &setMCPU(StringRef mcpu) {
 
    MCPU.assign(mcpu.begin(), mcpu.end());
 
    return *this;
 
  }
 
 
 
  /// setVerifyModules - Set whether the JIT implementation should verify
 
  /// IR modules during compilation.
 
  EngineBuilder &setVerifyModules(bool Verify) {
 
    VerifyModules = Verify;
 
    return *this;
 
  }
 
 
 
  /// setMAttrs - Set cpu-specific attributes.
 
  template<typename StringSequence>
 
  EngineBuilder &setMAttrs(const StringSequence &mattrs) {
 
    MAttrs.clear();
 
    MAttrs.append(mattrs.begin(), mattrs.end());
 
    return *this;
 
  }
 
 
 
  void setEmulatedTLS(bool EmulatedTLS) {
 
    this->EmulatedTLS = EmulatedTLS;
 
  }
 
 
 
  TargetMachine *selectTarget();
 
 
 
  /// selectTarget - Pick a target either via -march or by guessing the native
 
  /// arch.  Add any CPU features specified via -mcpu or -mattr.
 
  TargetMachine *selectTarget(const Triple &TargetTriple,
 
                              StringRef MArch,
 
                              StringRef MCPU,
 
                              const SmallVectorImpl<std::string>& MAttrs);
 
 
 
  ExecutionEngine *create() {
 
    return create(selectTarget());
 
  }
 
 
 
  ExecutionEngine *create(TargetMachine *TM);
 
};
 
 
 
// Create wrappers for C Binding types (see CBindingWrapping.h).
 
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef)
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H