- //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- // 
- // This file describes the target machine instruction set to the code generator. 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_CODEGEN_TARGETINSTRINFO_H 
- #define LLVM_CODEGEN_TARGETINSTRINFO_H 
-   
- #include "llvm/ADT/ArrayRef.h" 
- #include "llvm/ADT/DenseMap.h" 
- #include "llvm/ADT/DenseMapInfo.h" 
- #include "llvm/ADT/Uniformity.h" 
- #include "llvm/CodeGen/MIRFormatter.h" 
- #include "llvm/CodeGen/MachineBasicBlock.h" 
- #include "llvm/CodeGen/MachineFunction.h" 
- #include "llvm/CodeGen/MachineInstr.h" 
- #include "llvm/CodeGen/MachineInstrBuilder.h" 
- #include "llvm/CodeGen/MachineOperand.h" 
- #include "llvm/CodeGen/MachineOutliner.h" 
- #include "llvm/CodeGen/RegisterClassInfo.h" 
- #include "llvm/CodeGen/VirtRegMap.h" 
- #include "llvm/MC/MCInstrInfo.h" 
- #include "llvm/Support/BranchProbability.h" 
- #include "llvm/Support/ErrorHandling.h" 
- #include <cassert> 
- #include <cstddef> 
- #include <cstdint> 
- #include <utility> 
- #include <vector> 
-   
- namespace llvm { 
-   
- class DFAPacketizer; 
- class InstrItineraryData; 
- class LiveIntervals; 
- class LiveVariables; 
- class MachineLoop; 
- class MachineMemOperand; 
- class MachineRegisterInfo; 
- class MCAsmInfo; 
- class MCInst; 
- struct MCSchedModel; 
- class Module; 
- class ScheduleDAG; 
- class ScheduleDAGMI; 
- class ScheduleHazardRecognizer; 
- class SDNode; 
- class SelectionDAG; 
- class SMSchedule; 
- class SwingSchedulerDAG; 
- class RegScavenger; 
- class TargetRegisterClass; 
- class TargetRegisterInfo; 
- class TargetSchedModel; 
- class TargetSubtargetInfo; 
- enum class MachineCombinerPattern; 
-   
- template <class T> class SmallVectorImpl; 
-   
- using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>; 
-   
- struct DestSourcePair { 
-   const MachineOperand *Destination; 
-   const MachineOperand *Source; 
-   
-   DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src) 
-       : Destination(&Dest), Source(&Src) {} 
- }; 
-   
- /// Used to describe a register and immediate addition. 
- struct RegImmPair { 
-   Register Reg; 
-   int64_t Imm; 
-   
-   RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {} 
- }; 
-   
- /// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare. 
- /// It holds the register values, the scale value and the displacement. 
- struct ExtAddrMode { 
-   Register BaseReg; 
-   Register ScaledReg; 
-   int64_t Scale; 
-   int64_t Displacement; 
- }; 
-   
- //--------------------------------------------------------------------------- 
- /// 
- /// TargetInstrInfo - Interface to description of machine instruction set 
- /// 
- class TargetInstrInfo : public MCInstrInfo { 
- public: 
-   TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u, 
-                   unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u) 
-       : CallFrameSetupOpcode(CFSetupOpcode), 
-         CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode), 
-         ReturnOpcode(ReturnOpcode) {} 
-   TargetInstrInfo(const TargetInstrInfo &) = delete; 
-   TargetInstrInfo &operator=(const TargetInstrInfo &) = delete; 
-   virtual ~TargetInstrInfo(); 
-   
-   static bool isGenericOpcode(unsigned Opc) { 
-     return Opc <= TargetOpcode::GENERIC_OP_END; 
-   } 
-   
-   static bool isGenericAtomicRMWOpcode(unsigned Opc) { 
-     return Opc >= TargetOpcode::GENERIC_ATOMICRMW_OP_START && 
-            Opc <= TargetOpcode::GENERIC_ATOMICRMW_OP_END; 
-   } 
-   
-   /// Given a machine instruction descriptor, returns the register 
-   /// class constraint for OpNum, or NULL. 
-   virtual 
-   const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 
-                                          const TargetRegisterInfo *TRI, 
-                                          const MachineFunction &MF) const; 
-   
-   /// Return true if the instruction is trivially rematerializable, meaning it 
-   /// has no side effects and requires no operands that aren't always available. 
-   /// This means the only allowed uses are constants and unallocatable physical 
-   /// registers so that the instructions result is independent of the place 
-   /// in the function. 
-   bool isTriviallyReMaterializable(const MachineInstr &MI) const { 
-     return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF || 
-            (MI.getDesc().isRematerializable() && 
-             (isReallyTriviallyReMaterializable(MI) || 
-              isReallyTriviallyReMaterializableGeneric(MI))); 
-   } 
-   
-   /// Given \p MO is a PhysReg use return if it can be ignored for the purpose 
-   /// of instruction rematerialization or sinking. 
-   virtual bool isIgnorableUse(const MachineOperand &MO) const { 
-     return false; 
-   } 
-   
- protected: 
-   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is 
-   /// set, this hook lets the target specify whether the instruction is actually 
-   /// trivially rematerializable, taking into consideration its operands. This 
-   /// predicate must return false if the instruction has any side effects other 
-   /// than producing a value, or if it requres any address registers that are 
-   /// not always available. 
-   /// Requirements must be check as stated in isTriviallyReMaterializable() . 
-   virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const { 
-     return false; 
-   } 
-   
-   /// This method commutes the operands of the given machine instruction MI. 
-   /// The operands to be commuted are specified by their indices OpIdx1 and 
-   /// OpIdx2. 
-   /// 
-   /// If a target has any instructions that are commutable but require 
-   /// converting to different instructions or making non-trivial changes 
-   /// to commute them, this method can be overloaded to do that. 
-   /// The default implementation simply swaps the commutable operands. 
-   /// 
-   /// If NewMI is false, MI is modified in place and returned; otherwise, a 
-   /// new machine instruction is created and returned. 
-   /// 
-   /// Do not call this method for a non-commutable instruction. 
-   /// Even though the instruction is commutable, the method may still 
-   /// fail to commute the operands, null pointer is returned in such cases. 
-   virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI, 
-                                                unsigned OpIdx1, 
-                                                unsigned OpIdx2) const; 
-   
-   /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable 
-   /// operand indices to (ResultIdx1, ResultIdx2). 
-   /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be 
-   /// predefined to some indices or be undefined (designated by the special 
-   /// value 'CommuteAnyOperandIndex'). 
-   /// The predefined result indices cannot be re-defined. 
-   /// The function returns true iff after the result pair redefinition 
-   /// the fixed result pair is equal to or equivalent to the source pair of 
-   /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that 
-   /// the pairs (x,y) and (y,x) are equivalent. 
-   static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2, 
-                                    unsigned CommutableOpIdx1, 
-                                    unsigned CommutableOpIdx2); 
-   
- private: 
-   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is 
-   /// set and the target hook isReallyTriviallyReMaterializable returns false, 
-   /// this function does target-independent tests to determine if the 
-   /// instruction is really trivially rematerializable. 
-   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI) const; 
-   
- public: 
-   /// These methods return the opcode of the frame setup/destroy instructions 
-   /// if they exist (-1 otherwise).  Some targets use pseudo instructions in 
-   /// order to abstract away the difference between operating with a frame 
-   /// pointer and operating without, through the use of these two instructions. 
-   /// 
-   unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; } 
-   unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; } 
-   
-   /// Returns true if the argument is a frame pseudo instruction. 
-   bool isFrameInstr(const MachineInstr &I) const { 
-     return I.getOpcode() == getCallFrameSetupOpcode() || 
-            I.getOpcode() == getCallFrameDestroyOpcode(); 
-   } 
-   
-   /// Returns true if the argument is a frame setup pseudo instruction. 
-   bool isFrameSetup(const MachineInstr &I) const { 
-     return I.getOpcode() == getCallFrameSetupOpcode(); 
-   } 
-   
-   /// Returns size of the frame associated with the given frame instruction. 
-   /// For frame setup instruction this is frame that is set up space set up 
-   /// after the instruction. For frame destroy instruction this is the frame 
-   /// freed by the caller. 
-   /// Note, in some cases a call frame (or a part of it) may be prepared prior 
-   /// to the frame setup instruction. It occurs in the calls that involve 
-   /// inalloca arguments. This function reports only the size of the frame part 
-   /// that is set up between the frame setup and destroy pseudo instructions. 
-   int64_t getFrameSize(const MachineInstr &I) const { 
-     assert(isFrameInstr(I) && "Not a frame instruction"); 
-     assert(I.getOperand(0).getImm() >= 0); 
-     return I.getOperand(0).getImm(); 
-   } 
-   
-   /// Returns the total frame size, which is made up of the space set up inside 
-   /// the pair of frame start-stop instructions and the space that is set up 
-   /// prior to the pair. 
-   int64_t getFrameTotalSize(const MachineInstr &I) const { 
-     if (isFrameSetup(I)) { 
-       assert(I.getOperand(1).getImm() >= 0 && 
-              "Frame size must not be negative"); 
-       return getFrameSize(I) + I.getOperand(1).getImm(); 
-     } 
-     return getFrameSize(I); 
-   } 
-   
-   unsigned getCatchReturnOpcode() const { return CatchRetOpcode; } 
-   unsigned getReturnOpcode() const { return ReturnOpcode; } 
-   
-   /// Returns the actual stack pointer adjustment made by an instruction 
-   /// as part of a call sequence. By default, only call frame setup/destroy 
-   /// instructions adjust the stack, but targets may want to override this 
-   /// to enable more fine-grained adjustment, or adjust by a different value. 
-   virtual int getSPAdjust(const MachineInstr &MI) const; 
-   
-   /// Return true if the instruction is a "coalescable" extension instruction. 
-   /// That is, it's like a copy where it's legal for the source to overlap the 
-   /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's 
-   /// expected the pre-extension value is available as a subreg of the result 
-   /// register. This also returns the sub-register index in SubIdx. 
-   virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg, 
-                                      Register &DstReg, unsigned &SubIdx) const { 
-     return false; 
-   } 
-   
-   /// If the specified machine instruction is a direct 
-   /// load from a stack slot, return the virtual or physical register number of 
-   /// the destination along with the FrameIndex of the loaded stack slot.  If 
-   /// not, return 0.  This predicate must return 0 if the instruction has 
-   /// any side effects other than loading from the stack slot. 
-   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI, 
-                                        int &FrameIndex) const { 
-     return 0; 
-   } 
-   
-   /// Optional extension of isLoadFromStackSlot that returns the number of 
-   /// bytes loaded from the stack. This must be implemented if a backend 
-   /// supports partial stack slot spills/loads to further disambiguate 
-   /// what the load does. 
-   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI, 
-                                        int &FrameIndex, 
-                                        unsigned &MemBytes) const { 
-     MemBytes = 0; 
-     return isLoadFromStackSlot(MI, FrameIndex); 
-   } 
-   
-   /// Check for post-frame ptr elimination stack locations as well. 
-   /// This uses a heuristic so it isn't reliable for correctness. 
-   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI, 
-                                              int &FrameIndex) const { 
-     return 0; 
-   } 
-   
-   /// If the specified machine instruction has a load from a stack slot, 
-   /// return true along with the FrameIndices of the loaded stack slot and the 
-   /// machine mem operands containing the reference. 
-   /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for 
-   /// any instructions that loads from the stack.  This is just a hint, as some 
-   /// cases may be missed. 
-   virtual bool hasLoadFromStackSlot( 
-       const MachineInstr &MI, 
-       SmallVectorImpl<const MachineMemOperand *> &Accesses) const; 
-   
-   /// If the specified machine instruction is a direct 
-   /// store to a stack slot, return the virtual or physical register number of 
-   /// the source reg along with the FrameIndex of the loaded stack slot.  If 
-   /// not, return 0.  This predicate must return 0 if the instruction has 
-   /// any side effects other than storing to the stack slot. 
-   virtual unsigned isStoreToStackSlot(const MachineInstr &MI, 
-                                       int &FrameIndex) const { 
-     return 0; 
-   } 
-   
-   /// Optional extension of isStoreToStackSlot that returns the number of 
-   /// bytes stored to the stack. This must be implemented if a backend 
-   /// supports partial stack slot spills/loads to further disambiguate 
-   /// what the store does. 
-   virtual unsigned isStoreToStackSlot(const MachineInstr &MI, 
-                                       int &FrameIndex, 
-                                       unsigned &MemBytes) const { 
-     MemBytes = 0; 
-     return isStoreToStackSlot(MI, FrameIndex); 
-   } 
-   
-   /// Check for post-frame ptr elimination stack locations as well. 
-   /// This uses a heuristic, so it isn't reliable for correctness. 
-   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI, 
-                                             int &FrameIndex) const { 
-     return 0; 
-   } 
-   
-   /// If the specified machine instruction has a store to a stack slot, 
-   /// return true along with the FrameIndices of the loaded stack slot and the 
-   /// machine mem operands containing the reference. 
-   /// If not, return false.  Unlike isStoreToStackSlot, 
-   /// this returns true for any instructions that stores to the 
-   /// stack.  This is just a hint, as some cases may be missed. 
-   virtual bool hasStoreToStackSlot( 
-       const MachineInstr &MI, 
-       SmallVectorImpl<const MachineMemOperand *> &Accesses) const; 
-   
-   /// Return true if the specified machine instruction 
-   /// is a copy of one stack slot to another and has no other effect. 
-   /// Provide the identity of the two frame indices. 
-   virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex, 
-                                int &SrcFrameIndex) const { 
-     return false; 
-   } 
-   
-   /// Compute the size in bytes and offset within a stack slot of a spilled 
-   /// register or subregister. 
-   /// 
-   /// \param [out] Size in bytes of the spilled value. 
-   /// \param [out] Offset in bytes within the stack slot. 
-   /// \returns true if both Size and Offset are successfully computed. 
-   /// 
-   /// Not all subregisters have computable spill slots. For example, 
-   /// subregisters registers may not be byte-sized, and a pair of discontiguous 
-   /// subregisters has no single offset. 
-   /// 
-   /// Targets with nontrivial bigendian implementations may need to override 
-   /// this, particularly to support spilled vector registers. 
-   virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx, 
-                                  unsigned &Size, unsigned &Offset, 
-                                  const MachineFunction &MF) const; 
-   
-   /// Return true if the given instruction is terminator that is unspillable, 
-   /// according to isUnspillableTerminatorImpl. 
-   bool isUnspillableTerminator(const MachineInstr *MI) const { 
-     return MI->isTerminator() && isUnspillableTerminatorImpl(MI); 
-   } 
-   
-   /// Returns the size in bytes of the specified MachineInstr, or ~0U 
-   /// when this function is not implemented by a target. 
-   virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const { 
-     return ~0U; 
-   } 
-   
-   /// Return true if the instruction is as cheap as a move instruction. 
-   /// 
-   /// Targets for different archs need to override this, and different 
-   /// micro-architectures can also be finely tuned inside. 
-   virtual bool isAsCheapAsAMove(const MachineInstr &MI) const { 
-     return MI.isAsCheapAsAMove(); 
-   } 
-   
-   /// Return true if the instruction should be sunk by MachineSink. 
-   /// 
-   /// MachineSink determines on its own whether the instruction is safe to sink; 
-   /// this gives the target a hook to override the default behavior with regards 
-   /// to which instructions should be sunk. 
-   virtual bool shouldSink(const MachineInstr &MI) const { return true; } 
-   
-   /// Return false if the instruction should not be hoisted by MachineLICM. 
-   /// 
-   /// MachineLICM determines on its own whether the instruction is safe to 
-   /// hoist; this gives the target a hook to extend this assessment and prevent 
-   /// an instruction being hoisted from a given loop for target specific 
-   /// reasons. 
-   virtual bool shouldHoist(const MachineInstr &MI, 
-                            const MachineLoop *FromLoop) const { 
-     return true; 
-   } 
-   
-   /// Re-issue the specified 'original' instruction at the 
-   /// specific location targeting a new destination register. 
-   /// The register in Orig->getOperand(0).getReg() will be substituted by 
-   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with 
-   /// SubIdx. 
-   virtual void reMaterialize(MachineBasicBlock &MBB, 
-                              MachineBasicBlock::iterator MI, Register DestReg, 
-                              unsigned SubIdx, const MachineInstr &Orig, 
-                              const TargetRegisterInfo &TRI) const; 
-   
-   /// Clones instruction or the whole instruction bundle \p Orig and 
-   /// insert into \p MBB before \p InsertBefore. The target may update operands 
-   /// that are required to be unique. 
-   /// 
-   /// \p Orig must not return true for MachineInstr::isNotDuplicable(). 
-   virtual MachineInstr &duplicate(MachineBasicBlock &MBB, 
-                                   MachineBasicBlock::iterator InsertBefore, 
-                                   const MachineInstr &Orig) const; 
-   
-   /// This method must be implemented by targets that 
-   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target 
-   /// may be able to convert a two-address instruction into one or more true 
-   /// three-address instructions on demand.  This allows the X86 target (for 
-   /// example) to convert ADD and SHL instructions into LEA instructions if they 
-   /// would require register copies due to two-addressness. 
-   /// 
-   /// This method returns a null pointer if the transformation cannot be 
-   /// performed, otherwise it returns the last new instruction. 
-   /// 
-   /// If \p LIS is not nullptr, the LiveIntervals info should be updated for 
-   /// replacing \p MI with new instructions, even though this function does not 
-   /// remove MI. 
-   virtual MachineInstr *convertToThreeAddress(MachineInstr &MI, 
-                                               LiveVariables *LV, 
-                                               LiveIntervals *LIS) const { 
-     return nullptr; 
-   } 
-   
-   // This constant can be used as an input value of operand index passed to 
-   // the method findCommutedOpIndices() to tell the method that the 
-   // corresponding operand index is not pre-defined and that the method 
-   // can pick any commutable operand. 
-   static const unsigned CommuteAnyOperandIndex = ~0U; 
-   
-   /// This method commutes the operands of the given machine instruction MI. 
-   /// 
-   /// The operands to be commuted are specified by their indices OpIdx1 and 
-   /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value 
-   /// 'CommuteAnyOperandIndex', which means that the method is free to choose 
-   /// any arbitrarily chosen commutable operand. If both arguments are set to 
-   /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable 
-   /// operands; then commutes them if such operands could be found. 
-   /// 
-   /// If NewMI is false, MI is modified in place and returned; otherwise, a 
-   /// new machine instruction is created and returned. 
-   /// 
-   /// Do not call this method for a non-commutable instruction or 
-   /// for non-commuable operands. 
-   /// Even though the instruction is commutable, the method may still 
-   /// fail to commute the operands, null pointer is returned in such cases. 
-   MachineInstr * 
-   commuteInstruction(MachineInstr &MI, bool NewMI = false, 
-                      unsigned OpIdx1 = CommuteAnyOperandIndex, 
-                      unsigned OpIdx2 = CommuteAnyOperandIndex) const; 
-   
-   /// Returns true iff the routine could find two commutable operands in the 
-   /// given machine instruction. 
-   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. 
-   /// If any of the INPUT values is set to the special value 
-   /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable 
-   /// operand, then returns its index in the corresponding argument. 
-   /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method 
-   /// looks for 2 commutable operands. 
-   /// If INPUT values refer to some operands of MI, then the method simply 
-   /// returns true if the corresponding operands are commutable and returns 
-   /// false otherwise. 
-   /// 
-   /// For example, calling this method this way: 
-   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex; 
-   ///     findCommutedOpIndices(MI, Op1, Op2); 
-   /// can be interpreted as a query asking to find an operand that would be 
-   /// commutable with the operand#1. 
-   virtual bool findCommutedOpIndices(const MachineInstr &MI, 
-                                      unsigned &SrcOpIdx1, 
-                                      unsigned &SrcOpIdx2) const; 
-   
-   /// Returns true if the target has a preference on the operands order of 
-   /// the given machine instruction. And specify if \p Commute is required to 
-   /// get the desired operands order. 
-   virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const { 
-     return false; 
-   } 
-   
-   /// A pair composed of a register and a sub-register index. 
-   /// Used to give some type checking when modeling Reg:SubReg. 
-   struct RegSubRegPair { 
-     Register Reg; 
-     unsigned SubReg; 
-   
-     RegSubRegPair(Register Reg = Register(), unsigned SubReg = 0) 
-         : Reg(Reg), SubReg(SubReg) {} 
-   
-     bool operator==(const RegSubRegPair& P) const { 
-       return Reg == P.Reg && SubReg == P.SubReg; 
-     } 
-     bool operator!=(const RegSubRegPair& P) const { 
-       return !(*this == P); 
-     } 
-   }; 
-   
-   /// A pair composed of a pair of a register and a sub-register index, 
-   /// and another sub-register index. 
-   /// Used to give some type checking when modeling Reg:SubReg1, SubReg2. 
-   struct RegSubRegPairAndIdx : RegSubRegPair { 
-     unsigned SubIdx; 
-   
-     RegSubRegPairAndIdx(Register Reg = Register(), unsigned SubReg = 0, 
-                         unsigned SubIdx = 0) 
-         : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {} 
-   }; 
-   
-   /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI 
-   /// and \p DefIdx. 
-   /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of 
-   /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef 
-   /// flag are not added to this list. 
-   /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce 
-   /// two elements: 
-   /// - %1:sub1, sub0 
-   /// - %2<:0>, sub1 
-   /// 
-   /// \returns true if it is possible to build such an input sequence 
-   /// with the pair \p MI, \p DefIdx. False otherwise. 
-   /// 
-   /// \pre MI.isRegSequence() or MI.isRegSequenceLike(). 
-   /// 
-   /// \note The generic implementation does not provide any support for 
-   /// MI.isRegSequenceLike(). In other words, one has to override 
-   /// getRegSequenceLikeInputs for target specific instructions. 
-   bool 
-   getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx, 
-                        SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const; 
-   
-   /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI 
-   /// and \p DefIdx. 
-   /// \p [out] InputReg of the equivalent EXTRACT_SUBREG. 
-   /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce: 
-   /// - %1:sub1, sub0 
-   /// 
-   /// \returns true if it is possible to build such an input sequence 
-   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set. 
-   /// False otherwise. 
-   /// 
-   /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike(). 
-   /// 
-   /// \note The generic implementation does not provide any support for 
-   /// MI.isExtractSubregLike(). In other words, one has to override 
-   /// getExtractSubregLikeInputs for target specific instructions. 
-   bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx, 
-                               RegSubRegPairAndIdx &InputReg) const; 
-   
-   /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI 
-   /// and \p DefIdx. 
-   /// \p [out] BaseReg and \p [out] InsertedReg contain 
-   /// the equivalent inputs of INSERT_SUBREG. 
-   /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce: 
-   /// - BaseReg: %0:sub0 
-   /// - InsertedReg: %1:sub1, sub3 
-   /// 
-   /// \returns true if it is possible to build such an input sequence 
-   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set. 
-   /// False otherwise. 
-   /// 
-   /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike(). 
-   /// 
-   /// \note The generic implementation does not provide any support for 
-   /// MI.isInsertSubregLike(). In other words, one has to override 
-   /// getInsertSubregLikeInputs for target specific instructions. 
-   bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx, 
-                              RegSubRegPair &BaseReg, 
-                              RegSubRegPairAndIdx &InsertedReg) const; 
-   
-   /// Return true if two machine instructions would produce identical values. 
-   /// By default, this is only true when the two instructions 
-   /// are deemed identical except for defs. If this function is called when the 
-   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for 
-   /// aggressive checks. 
-   virtual bool produceSameValue(const MachineInstr &MI0, 
-                                 const MachineInstr &MI1, 
-                                 const MachineRegisterInfo *MRI = nullptr) const; 
-   
-   /// \returns true if a branch from an instruction with opcode \p BranchOpc 
-   ///  bytes is capable of jumping to a position \p BrOffset bytes away. 
-   virtual bool isBranchOffsetInRange(unsigned BranchOpc, 
-                                      int64_t BrOffset) const { 
-     llvm_unreachable("target did not implement"); 
-   } 
-   
-   /// \returns The block that branch instruction \p MI jumps to. 
-   virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const { 
-     llvm_unreachable("target did not implement"); 
-   } 
-   
-   /// Insert an unconditional indirect branch at the end of \p MBB to \p 
-   /// NewDestBB. Optionally, insert the clobbered register restoring in \p 
-   /// RestoreBB. \p BrOffset indicates the offset of \p NewDestBB relative to 
-   /// the offset of the position to insert the new branch. 
-   virtual void insertIndirectBranch(MachineBasicBlock &MBB, 
-                                     MachineBasicBlock &NewDestBB, 
-                                     MachineBasicBlock &RestoreBB, 
-                                     const DebugLoc &DL, int64_t BrOffset = 0, 
-                                     RegScavenger *RS = nullptr) const { 
-     llvm_unreachable("target did not implement"); 
-   } 
-   
-   /// Analyze the branching code at the end of MBB, returning 
-   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't 
-   /// implemented for a target).  Upon success, this returns false and returns 
-   /// with the following information in various cases: 
-   /// 
-   /// 1. If this block ends with no branches (it just falls through to its succ) 
-   ///    just return false, leaving TBB/FBB null. 
-   /// 2. If this block ends with only an unconditional branch, it sets TBB to be 
-   ///    the destination block. 
-   /// 3. If this block ends with a conditional branch and it falls through to a 
-   ///    successor block, it sets TBB to be the branch destination block and a 
-   ///    list of operands that evaluate the condition. These operands can be 
-   ///    passed to other TargetInstrInfo methods to create new branches. 
-   /// 4. If this block ends with a conditional branch followed by an 
-   ///    unconditional branch, it returns the 'true' destination in TBB, the 
-   ///    'false' destination in FBB, and a list of operands that evaluate the 
-   ///    condition.  These operands can be passed to other TargetInstrInfo 
-   ///    methods to create new branches. 
-   /// 
-   /// Note that removeBranch and insertBranch must be implemented to support 
-   /// cases where this method returns success. 
-   /// 
-   /// If AllowModify is true, then this routine is allowed to modify the basic 
-   /// block (e.g. delete instructions after the unconditional branch). 
-   /// 
-   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid 
-   /// before calling this function. 
-   virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 
-                              MachineBasicBlock *&FBB, 
-                              SmallVectorImpl<MachineOperand> &Cond, 
-                              bool AllowModify = false) const { 
-     return true; 
-   } 
-   
-   /// Represents a predicate at the MachineFunction level.  The control flow a 
-   /// MachineBranchPredicate represents is: 
-   /// 
-   ///  Reg = LHS `Predicate` RHS         == ConditionDef 
-   ///  if Reg then goto TrueDest else goto FalseDest 
-   /// 
-   struct MachineBranchPredicate { 
-     enum ComparePredicate { 
-       PRED_EQ,     // True if two values are equal 
-       PRED_NE,     // True if two values are not equal 
-       PRED_INVALID // Sentinel value 
-     }; 
-   
-     ComparePredicate Predicate = PRED_INVALID; 
-     MachineOperand LHS = MachineOperand::CreateImm(0); 
-     MachineOperand RHS = MachineOperand::CreateImm(0); 
-     MachineBasicBlock *TrueDest = nullptr; 
-     MachineBasicBlock *FalseDest = nullptr; 
-     MachineInstr *ConditionDef = nullptr; 
-   
-     /// SingleUseCondition is true if ConditionDef is dead except for the 
-     /// branch(es) at the end of the basic block. 
-     /// 
-     bool SingleUseCondition = false; 
-   
-     explicit MachineBranchPredicate() = default; 
-   }; 
-   
-   /// Analyze the branching code at the end of MBB and parse it into the 
-   /// MachineBranchPredicate structure if possible.  Returns false on success 
-   /// and true on failure. 
-   /// 
-   /// If AllowModify is true, then this routine is allowed to modify the basic 
-   /// block (e.g. delete instructions after the unconditional branch). 
-   /// 
-   virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB, 
-                                       MachineBranchPredicate &MBP, 
-                                       bool AllowModify = false) const { 
-     return true; 
-   } 
-   
-   /// Remove the branching code at the end of the specific MBB. 
-   /// This is only invoked in cases where analyzeBranch returns success. It 
-   /// returns the number of instructions that were removed. 
-   /// If \p BytesRemoved is non-null, report the change in code size from the 
-   /// removed instructions. 
-   virtual unsigned removeBranch(MachineBasicBlock &MBB, 
-                                 int *BytesRemoved = nullptr) const { 
-     llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!"); 
-   } 
-   
-   /// Insert branch code into the end of the specified MachineBasicBlock. The 
-   /// operands to this method are the same as those returned by analyzeBranch. 
-   /// This is only invoked in cases where analyzeBranch returns success. It 
-   /// returns the number of instructions inserted. If \p BytesAdded is non-null, 
-   /// report the change in code size from the added instructions. 
-   /// 
-   /// It is also invoked by tail merging to add unconditional branches in 
-   /// cases where analyzeBranch doesn't apply because there was no original 
-   /// branch to analyze.  At least this much must be implemented, else tail 
-   /// merging needs to be disabled. 
-   /// 
-   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid 
-   /// before calling this function. 
-   virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 
-                                 MachineBasicBlock *FBB, 
-                                 ArrayRef<MachineOperand> Cond, 
-                                 const DebugLoc &DL, 
-                                 int *BytesAdded = nullptr) const { 
-     llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!"); 
-   } 
-   
-   unsigned insertUnconditionalBranch(MachineBasicBlock &MBB, 
-                                      MachineBasicBlock *DestBB, 
-                                      const DebugLoc &DL, 
-                                      int *BytesAdded = nullptr) const { 
-     return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL, 
-                         BytesAdded); 
-   } 
-   
-   /// Object returned by analyzeLoopForPipelining. Allows software pipelining 
-   /// implementations to query attributes of the loop being pipelined and to 
-   /// apply target-specific updates to the loop once pipelining is complete. 
-   class PipelinerLoopInfo { 
-   public: 
-     virtual ~PipelinerLoopInfo(); 
-     /// Return true if the given instruction should not be pipelined and should 
-     /// be ignored. An example could be a loop comparison, or induction variable 
-     /// update with no users being pipelined. 
-     virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0; 
-   
-     /// Return true if the proposed schedule should used.  Otherwise return 
-     /// false to not pipeline the loop. This function should be used to ensure 
-     /// that pipelined loops meet target-specific quality heuristics. 
-     virtual bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) { 
-       return true; 
-     } 
-   
-     /// Create a condition to determine if the trip count of the loop is greater 
-     /// than TC, where TC is always one more than for the previous prologue or 
-     /// 0 if this is being called for the outermost prologue. 
-     /// 
-     /// If the trip count is statically known to be greater than TC, return 
-     /// true. If the trip count is statically known to be not greater than TC, 
-     /// return false. Otherwise return nullopt and fill out Cond with the test 
-     /// condition. 
-     /// 
-     /// Note: This hook is guaranteed to be called from the innermost to the 
-     /// outermost prologue of the loop being software pipelined. 
-     virtual std::optional<bool> 
-     createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB, 
-                                     SmallVectorImpl<MachineOperand> &Cond) = 0; 
-   
-     /// Modify the loop such that the trip count is 
-     /// OriginalTC + TripCountAdjust. 
-     virtual void adjustTripCount(int TripCountAdjust) = 0; 
-   
-     /// Called when the loop's preheader has been modified to NewPreheader. 
-     virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0; 
-   
-     /// Called when the loop is being removed. Any instructions in the preheader 
-     /// should be removed. 
-     /// 
-     /// Once this function is called, no other functions on this object are 
-     /// valid; the loop has been removed. 
-     virtual void disposed() = 0; 
-   }; 
-   
-   /// Analyze loop L, which must be a single-basic-block loop, and if the 
-   /// conditions can be understood enough produce a PipelinerLoopInfo object. 
-   virtual std::unique_ptr<PipelinerLoopInfo> 
-   analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 
-     return nullptr; 
-   } 
-   
-   /// Analyze the loop code, return true if it cannot be understood. Upon 
-   /// success, this function returns false and returns information about the 
-   /// induction variable and compare instruction used at the end. 
-   virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst, 
-                            MachineInstr *&CmpInst) const { 
-     return true; 
-   } 
-   
-   /// Generate code to reduce the loop iteration by one and check if the loop 
-   /// is finished.  Return the value/register of the new loop count.  We need 
-   /// this function when peeling off one or more iterations of a loop. This 
-   /// function assumes the nth iteration is peeled first. 
-   virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, 
-                                    MachineBasicBlock &PreHeader, 
-                                    MachineInstr *IndVar, MachineInstr &Cmp, 
-                                    SmallVectorImpl<MachineOperand> &Cond, 
-                                    SmallVectorImpl<MachineInstr *> &PrevInsts, 
-                                    unsigned Iter, unsigned MaxIter) const { 
-     llvm_unreachable("Target didn't implement ReduceLoopCount"); 
-   } 
-   
-   /// Delete the instruction OldInst and everything after it, replacing it with 
-   /// an unconditional branch to NewDest. This is used by the tail merging pass. 
-   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 
-                                        MachineBasicBlock *NewDest) const; 
-   
-   /// Return true if it's legal to split the given basic 
-   /// block at the specified instruction (i.e. instruction would be the start 
-   /// of a new basic block). 
-   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, 
-                                    MachineBasicBlock::iterator MBBI) const { 
-     return true; 
-   } 
-   
-   /// Return true if it's profitable to predicate 
-   /// instructions with accumulated instruction latency of "NumCycles" 
-   /// of the specified basic block, where the probability of the instructions 
-   /// being executed is given by Probability, and Confidence is a measure 
-   /// of our confidence that it will be properly predicted. 
-   virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 
-                                    unsigned ExtraPredCycles, 
-                                    BranchProbability Probability) const { 
-     return false; 
-   } 
-   
-   /// Second variant of isProfitableToIfCvt. This one 
-   /// checks for the case where two basic blocks from true and false path 
-   /// of a if-then-else (diamond) are predicated on mutually exclusive 
-   /// predicates, where the probability of the true path being taken is given 
-   /// by Probability, and Confidence is a measure of our confidence that it 
-   /// will be properly predicted. 
-   virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, 
-                                    unsigned ExtraTCycles, 
-                                    MachineBasicBlock &FMBB, unsigned NumFCycles, 
-                                    unsigned ExtraFCycles, 
-                                    BranchProbability Probability) const { 
-     return false; 
-   } 
-   
-   /// Return true if it's profitable for if-converter to duplicate instructions 
-   /// of specified accumulated instruction latencies in the specified MBB to 
-   /// enable if-conversion. 
-   /// The probability of the instructions being executed is given by 
-   /// Probability, and Confidence is a measure of our confidence that it 
-   /// will be properly predicted. 
-   virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, 
-                                          unsigned NumCycles, 
-                                          BranchProbability Probability) const { 
-     return false; 
-   } 
-   
-   /// Return the increase in code size needed to predicate a contiguous run of 
-   /// NumInsts instructions. 
-   virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF, 
-                                                     unsigned NumInsts) const { 
-     return 0; 
-   } 
-   
-   /// Return an estimate for the code size reduction (in bytes) which will be 
-   /// caused by removing the given branch instruction during if-conversion. 
-   virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const { 
-     return getInstSizeInBytes(MI); 
-   } 
-   
-   /// Return true if it's profitable to unpredicate 
-   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually 
-   /// exclusive predicates. 
-   /// e.g. 
-   ///   subeq  r0, r1, #1 
-   ///   addne  r0, r1, #1 
-   /// => 
-   ///   sub    r0, r1, #1 
-   ///   addne  r0, r1, #1 
-   /// 
-   /// This may be profitable is conditional instructions are always executed. 
-   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, 
-                                          MachineBasicBlock &FMBB) const { 
-     return false; 
-   } 
-   
-   /// Return true if it is possible to insert a select 
-   /// instruction that chooses between TrueReg and FalseReg based on the 
-   /// condition code in Cond. 
-   /// 
-   /// When successful, also return the latency in cycles from TrueReg, 
-   /// FalseReg, and Cond to the destination register. In most cases, a select 
-   /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1 
-   /// 
-   /// Some x86 implementations have 2-cycle cmov instructions. 
-   /// 
-   /// @param MBB         Block where select instruction would be inserted. 
-   /// @param Cond        Condition returned by analyzeBranch. 
-   /// @param DstReg      Virtual dest register that the result should write to. 
-   /// @param TrueReg     Virtual register to select when Cond is true. 
-   /// @param FalseReg    Virtual register to select when Cond is false. 
-   /// @param CondCycles  Latency from Cond+Branch to select output. 
-   /// @param TrueCycles  Latency from TrueReg to select output. 
-   /// @param FalseCycles Latency from FalseReg to select output. 
-   virtual bool canInsertSelect(const MachineBasicBlock &MBB, 
-                                ArrayRef<MachineOperand> Cond, Register DstReg, 
-                                Register TrueReg, Register FalseReg, 
-                                int &CondCycles, int &TrueCycles, 
-                                int &FalseCycles) const { 
-     return false; 
-   } 
-   
-   /// Insert a select instruction into MBB before I that will copy TrueReg to 
-   /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false. 
-   /// 
-   /// This function can only be called after canInsertSelect() returned true. 
-   /// The condition in Cond comes from analyzeBranch, and it can be assumed 
-   /// that the same flags or registers required by Cond are available at the 
-   /// insertion point. 
-   /// 
-   /// @param MBB      Block where select instruction should be inserted. 
-   /// @param I        Insertion point. 
-   /// @param DL       Source location for debugging. 
-   /// @param DstReg   Virtual register to be defined by select instruction. 
-   /// @param Cond     Condition as computed by analyzeBranch. 
-   /// @param TrueReg  Virtual register to copy when Cond is true. 
-   /// @param FalseReg Virtual register to copy when Cons is false. 
-   virtual void insertSelect(MachineBasicBlock &MBB, 
-                             MachineBasicBlock::iterator I, const DebugLoc &DL, 
-                             Register DstReg, ArrayRef<MachineOperand> Cond, 
-                             Register TrueReg, Register FalseReg) const { 
-     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!"); 
-   } 
-   
-   /// Analyze the given select instruction, returning true if 
-   /// it cannot be understood. It is assumed that MI->isSelect() is true. 
-   /// 
-   /// When successful, return the controlling condition and the operands that 
-   /// determine the true and false result values. 
-   /// 
-   ///   Result = SELECT Cond, TrueOp, FalseOp 
-   /// 
-   /// Some targets can optimize select instructions, for example by predicating 
-   /// the instruction defining one of the operands. Such targets should set 
-   /// Optimizable. 
-   /// 
-   /// @param         MI Select instruction to analyze. 
-   /// @param Cond    Condition controlling the select. 
-   /// @param TrueOp  Operand number of the value selected when Cond is true. 
-   /// @param FalseOp Operand number of the value selected when Cond is false. 
-   /// @param Optimizable Returned as true if MI is optimizable. 
-   /// @returns False on success. 
-   virtual bool analyzeSelect(const MachineInstr &MI, 
-                              SmallVectorImpl<MachineOperand> &Cond, 
-                              unsigned &TrueOp, unsigned &FalseOp, 
-                              bool &Optimizable) const { 
-     assert(MI.getDesc().isSelect() && "MI must be a select instruction"); 
-     return true; 
-   } 
-   
-   /// Given a select instruction that was understood by 
-   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by 
-   /// merging it with one of its operands. Returns NULL on failure. 
-   /// 
-   /// When successful, returns the new select instruction. The client is 
-   /// responsible for deleting MI. 
-   /// 
-   /// If both sides of the select can be optimized, PreferFalse is used to pick 
-   /// a side. 
-   /// 
-   /// @param MI          Optimizable select instruction. 
-   /// @param NewMIs     Set that record all MIs in the basic block up to \p 
-   /// MI. Has to be updated with any newly created MI or deleted ones. 
-   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp. 
-   /// @returns Optimized instruction or NULL. 
-   virtual MachineInstr *optimizeSelect(MachineInstr &MI, 
-                                        SmallPtrSetImpl<MachineInstr *> &NewMIs, 
-                                        bool PreferFalse = false) const { 
-     // This function must be implemented if Optimizable is ever set. 
-     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!"); 
-   } 
-   
-   /// Emit instructions to copy a pair of physical registers. 
-   /// 
-   /// This function should support copies within any legal register class as 
-   /// well as any cross-class copies created during instruction selection. 
-   /// 
-   /// The source and destination registers may overlap, which may require a 
-   /// careful implementation when multiple copy instructions are required for 
-   /// large registers. See for example the ARM target. 
-   virtual void copyPhysReg(MachineBasicBlock &MBB, 
-                            MachineBasicBlock::iterator MI, const DebugLoc &DL, 
-                            MCRegister DestReg, MCRegister SrcReg, 
-                            bool KillSrc) const { 
-     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!"); 
-   } 
-   
-   /// Allow targets to tell MachineVerifier whether a specific register 
-   /// MachineOperand can be used as part of PC-relative addressing. 
-   /// PC-relative addressing modes in many CISC architectures contain 
-   /// (non-PC) registers as offsets or scaling values, which inherently 
-   /// tags the corresponding MachineOperand with OPERAND_PCREL. 
-   /// 
-   /// @param MO The MachineOperand in question. MO.isReg() should always 
-   /// be true. 
-   /// @return Whether this operand is allowed to be used PC-relatively. 
-   virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const { 
-     return false; 
-   } 
-   
- protected: 
-   /// Target-dependent implementation for IsCopyInstr. 
-   /// If the specific machine instruction is a instruction that moves/copies 
-   /// value from one register to another register return destination and source 
-   /// registers as machine operands. 
-   virtual std::optional<DestSourcePair> 
-   isCopyInstrImpl(const MachineInstr &MI) const { 
-     return std::nullopt; 
-   } 
-   
-   /// Return true if the given terminator MI is not expected to spill. This 
-   /// sets the live interval as not spillable and adjusts phi node lowering to 
-   /// not introduce copies after the terminator. Use with care, these are 
-   /// currently used for hardware loop intrinsics in very controlled situations, 
-   /// created prior to registry allocation in loops that only have single phi 
-   /// users for the terminators value. They may run out of registers if not used 
-   /// carefully. 
-   virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const { 
-     return false; 
-   } 
-   
- public: 
-   /// If the specific machine instruction is a instruction that moves/copies 
-   /// value from one register to another register return destination and source 
-   /// registers as machine operands. 
-   /// For COPY-instruction the method naturally returns destination and source 
-   /// registers as machine operands, for all other instructions the method calls 
-   /// target-dependent implementation. 
-   std::optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const { 
-     if (MI.isCopy()) { 
-       return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 
-     } 
-     return isCopyInstrImpl(MI); 
-   } 
-   
-   /// If the specific machine instruction is an instruction that adds an 
-   /// immediate value and a physical register, and stores the result in 
-   /// the given physical register \c Reg, return a pair of the source 
-   /// register and the offset which has been added. 
-   virtual std::optional<RegImmPair> isAddImmediate(const MachineInstr &MI, 
-                                                    Register Reg) const { 
-     return std::nullopt; 
-   } 
-   
-   /// Returns true if MI is an instruction that defines Reg to have a constant 
-   /// value and the value is recorded in ImmVal. The ImmVal is a result that 
-   /// should be interpreted as modulo size of Reg. 
-   virtual bool getConstValDefinedInReg(const MachineInstr &MI, 
-                                        const Register Reg, 
-                                        int64_t &ImmVal) const { 
-     return false; 
-   } 
-   
-   /// Store the specified register of the given register class to the specified 
-   /// stack frame index. The store instruction is to be added to the given 
-   /// machine basic block before the specified machine instruction. If isKill 
-   /// is true, the register operand is the last use and must be marked kill. If 
-   /// \p SrcReg is being directly spilled as part of assigning a virtual 
-   /// register, \p VReg is the register being assigned. This additional register 
-   /// argument is needed for certain targets when invoked from RegAllocFast to 
-   /// map the spilled physical register to its virtual register. A null register 
-   /// can be passed elsewhere. 
-   virtual void storeRegToStackSlot(MachineBasicBlock &MBB, 
-                                    MachineBasicBlock::iterator MI, 
-                                    Register SrcReg, bool isKill, int FrameIndex, 
-                                    const TargetRegisterClass *RC, 
-                                    const TargetRegisterInfo *TRI, 
-                                    Register VReg) const { 
-     llvm_unreachable("Target didn't implement " 
-                      "TargetInstrInfo::storeRegToStackSlot!"); 
-   } 
-   
-   /// Load the specified register of the given register class from the specified 
-   /// stack frame index. The load instruction is to be added to the given 
-   /// machine basic block before the specified machine instruction. If \p 
-   /// DestReg is being directly reloaded as part of assigning a virtual 
-   /// register, \p VReg is the register being assigned. This additional register 
-   /// argument is needed for certain targets when invoked from RegAllocFast to 
-   /// map the loaded physical register to its virtual register. A null register 
-   /// can be passed elsewhere. 
-   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, 
-                                     MachineBasicBlock::iterator MI, 
-                                     Register DestReg, int FrameIndex, 
-                                     const TargetRegisterClass *RC, 
-                                     const TargetRegisterInfo *TRI, 
-                                     Register VReg) const { 
-     llvm_unreachable("Target didn't implement " 
-                      "TargetInstrInfo::loadRegFromStackSlot!"); 
-   } 
-   
-   /// This function is called for all pseudo instructions 
-   /// that remain after register allocation. Many pseudo instructions are 
-   /// created to help register allocation. This is the place to convert them 
-   /// into real instructions. The target can edit MI in place, or it can insert 
-   /// new instructions and erase MI. The function should return true if 
-   /// anything was changed. 
-   virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; } 
-   
-   /// Check whether the target can fold a load that feeds a subreg operand 
-   /// (or a subreg operand that feeds a store). 
-   /// For example, X86 may want to return true if it can fold 
-   /// movl (%esp), %eax 
-   /// subb, %al, ... 
-   /// Into: 
-   /// subb (%esp), ... 
-   /// 
-   /// Ideally, we'd like the target implementation of foldMemoryOperand() to 
-   /// reject subregs - but since this behavior used to be enforced in the 
-   /// target-independent code, moving this responsibility to the targets 
-   /// has the potential of causing nasty silent breakage in out-of-tree targets. 
-   virtual bool isSubregFoldable() const { return false; } 
-   
-   /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of 
-   /// operands which can't be folded into stack references. Operands outside 
-   /// of the range are most likely foldable but it is not guaranteed. 
-   /// These instructions are unique in that stack references for some operands 
-   /// have the same execution cost (e.g. none) as the unfolded register forms. 
-   /// The ranged return is guaranteed to include all operands which can't be 
-   /// folded at zero cost. 
-   virtual std::pair<unsigned, unsigned> 
-   getPatchpointUnfoldableRange(const MachineInstr &MI) const; 
-   
-   /// Attempt to fold a load or store of the specified stack 
-   /// slot into the specified machine instruction for the specified operand(s). 
-   /// If this is possible, a new instruction is returned with the specified 
-   /// operand folded, otherwise NULL is returned. 
-   /// The new instruction is inserted before MI, and the client is responsible 
-   /// for removing the old instruction. 
-   /// If VRM is passed, the assigned physregs can be inspected by target to 
-   /// decide on using an opcode (note that those assignments can still change). 
-   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, 
-                                   int FI, 
-                                   LiveIntervals *LIS = nullptr, 
-                                   VirtRegMap *VRM = nullptr) const; 
-   
-   /// Same as the previous version except it allows folding of any load and 
-   /// store from / to any address, not just from a specific stack slot. 
-   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, 
-                                   MachineInstr &LoadMI, 
-                                   LiveIntervals *LIS = nullptr) const; 
-   
-   /// Return true when there is potentially a faster code sequence 
-   /// for an instruction chain ending in \p Root. All potential patterns are 
-   /// returned in the \p Pattern vector. Pattern should be sorted in priority 
-   /// order since the pattern evaluator stops checking as soon as it finds a 
-   /// faster sequence. 
-   /// \param Root - Instruction that could be combined with one of its operands 
-   /// \param Patterns - Vector of possible combination patterns 
-   virtual bool 
-   getMachineCombinerPatterns(MachineInstr &Root, 
-                              SmallVectorImpl<MachineCombinerPattern> &Patterns, 
-                              bool DoRegPressureReduce) const; 
-   
-   /// Return true if target supports reassociation of instructions in machine 
-   /// combiner pass to reduce register pressure for a given BB. 
-   virtual bool 
-   shouldReduceRegisterPressure(const MachineBasicBlock *MBB, 
-                                const RegisterClassInfo *RegClassInfo) const { 
-     return false; 
-   } 
-   
-   /// Fix up the placeholder we may add in genAlternativeCodeSequence(). 
-   virtual void 
-   finalizeInsInstrs(MachineInstr &Root, MachineCombinerPattern &P, 
-                     SmallVectorImpl<MachineInstr *> &InsInstrs) const {} 
-   
-   /// Return true when a code sequence can improve throughput. It 
-   /// should be called only for instructions in loops. 
-   /// \param Pattern - combiner pattern 
-   virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const; 
-   
-   /// Return true if the input \P Inst is part of a chain of dependent ops 
-   /// that are suitable for reassociation, otherwise return false. 
-   /// If the instruction's operands must be commuted to have a previous 
-   /// instruction of the same type define the first source operand, \P Commuted 
-   /// will be set to true. 
-   bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const; 
-   
-   /// Return true when \P Inst is both associative and commutative. If \P Invert 
-   /// is true, then the inverse of \P Inst operation must be tested. 
-   virtual bool isAssociativeAndCommutative(const MachineInstr &Inst, 
-                                            bool Invert = false) const { 
-     return false; 
-   } 
-   
-   /// Return the inverse operation opcode if it exists for \P Opcode (e.g. add 
-   /// for sub and vice versa). 
-   virtual std::optional<unsigned> getInverseOpcode(unsigned Opcode) const { 
-     return std::nullopt; 
-   } 
-   
-   /// Return true when \P Opcode1 or its inversion is equal to \P Opcode2. 
-   bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const; 
-   
-   /// Return true when \P Inst has reassociable operands in the same \P MBB. 
-   virtual bool hasReassociableOperands(const MachineInstr &Inst, 
-                                        const MachineBasicBlock *MBB) const; 
-   
-   /// Return true when \P Inst has reassociable sibling. 
-   virtual bool hasReassociableSibling(const MachineInstr &Inst, 
-                                       bool &Commuted) const; 
-   
-   /// When getMachineCombinerPatterns() finds patterns, this function generates 
-   /// the instructions that could replace the original code sequence. The client 
-   /// has to decide whether the actual replacement is beneficial or not. 
-   /// \param Root - Instruction that could be combined with one of its operands 
-   /// \param Pattern - Combination pattern for Root 
-   /// \param InsInstrs - Vector of new instructions that implement P 
-   /// \param DelInstrs - Old instructions, including Root, that could be 
-   /// replaced by InsInstr 
-   /// \param InstIdxForVirtReg - map of virtual register to instruction in 
-   /// InsInstr that defines it 
-   virtual void genAlternativeCodeSequence( 
-       MachineInstr &Root, MachineCombinerPattern Pattern, 
-       SmallVectorImpl<MachineInstr *> &InsInstrs, 
-       SmallVectorImpl<MachineInstr *> &DelInstrs, 
-       DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const; 
-   
-   /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to 
-   /// reduce critical path length. 
-   void reassociateOps(MachineInstr &Root, MachineInstr &Prev, 
-                       MachineCombinerPattern Pattern, 
-                       SmallVectorImpl<MachineInstr *> &InsInstrs, 
-                       SmallVectorImpl<MachineInstr *> &DelInstrs, 
-                       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const; 
-   
-   /// Reassociation of some instructions requires inverse operations (e.g. 
-   /// (X + A) - Y => (X - Y) + A). This method returns a pair of new opcodes 
-   /// (new root opcode, new prev opcode) that must be used to reassociate \P 
-   /// Root and \P Prev accoring to \P Pattern. 
-   std::pair<unsigned, unsigned> 
-   getReassociationOpcodes(MachineCombinerPattern Pattern, 
-                           const MachineInstr &Root, 
-                           const MachineInstr &Prev) const; 
-   
-   /// The limit on resource length extension we accept in MachineCombiner Pass. 
-   virtual int getExtendResourceLenLimit() const { return 0; } 
-   
-   /// This is an architecture-specific helper function of reassociateOps. 
-   /// Set special operand attributes for new instructions after reassociation. 
-   virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, 
-                                      MachineInstr &NewMI1, 
-                                      MachineInstr &NewMI2) const {} 
-   
-   /// Return true when a target supports MachineCombiner. 
-   virtual bool useMachineCombiner() const { return false; } 
-   
-   /// Return true if the given SDNode can be copied during scheduling 
-   /// even if it has glue. 
-   virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; } 
-   
- protected: 
-   /// Target-dependent implementation for foldMemoryOperand. 
-   /// Target-independent code in foldMemoryOperand will 
-   /// take care of adding a MachineMemOperand to the newly created instruction. 
-   /// The instruction and any auxiliary instructions necessary will be inserted 
-   /// at InsertPt. 
-   virtual MachineInstr * 
-   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, 
-                         ArrayRef<unsigned> Ops, 
-                         MachineBasicBlock::iterator InsertPt, int FrameIndex, 
-                         LiveIntervals *LIS = nullptr, 
-                         VirtRegMap *VRM = nullptr) const { 
-     return nullptr; 
-   } 
-   
-   /// Target-dependent implementation for foldMemoryOperand. 
-   /// Target-independent code in foldMemoryOperand will 
-   /// take care of adding a MachineMemOperand to the newly created instruction. 
-   /// The instruction and any auxiliary instructions necessary will be inserted 
-   /// at InsertPt. 
-   virtual MachineInstr *foldMemoryOperandImpl( 
-       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 
-       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 
-       LiveIntervals *LIS = nullptr) const { 
-     return nullptr; 
-   } 
-   
-   /// Target-dependent implementation of getRegSequenceInputs. 
-   /// 
-   /// \returns true if it is possible to build the equivalent 
-   /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise. 
-   /// 
-   /// \pre MI.isRegSequenceLike(). 
-   /// 
-   /// \see TargetInstrInfo::getRegSequenceInputs. 
-   virtual bool getRegSequenceLikeInputs( 
-       const MachineInstr &MI, unsigned DefIdx, 
-       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 
-     return false; 
-   } 
-   
-   /// Target-dependent implementation of getExtractSubregInputs. 
-   /// 
-   /// \returns true if it is possible to build the equivalent 
-   /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. 
-   /// 
-   /// \pre MI.isExtractSubregLike(). 
-   /// 
-   /// \see TargetInstrInfo::getExtractSubregInputs. 
-   virtual bool getExtractSubregLikeInputs(const MachineInstr &MI, 
-                                           unsigned DefIdx, 
-                                           RegSubRegPairAndIdx &InputReg) const { 
-     return false; 
-   } 
-   
-   /// Target-dependent implementation of getInsertSubregInputs. 
-   /// 
-   /// \returns true if it is possible to build the equivalent 
-   /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. 
-   /// 
-   /// \pre MI.isInsertSubregLike(). 
-   /// 
-   /// \see TargetInstrInfo::getInsertSubregInputs. 
-   virtual bool 
-   getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, 
-                             RegSubRegPair &BaseReg, 
-                             RegSubRegPairAndIdx &InsertedReg) const { 
-     return false; 
-   } 
-   
- public: 
-   /// unfoldMemoryOperand - Separate a single instruction which folded a load or 
-   /// a store or a load and a store into two or more instruction. If this is 
-   /// possible, returns true as well as the new instructions by reference. 
-   virtual bool 
-   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg, 
-                       bool UnfoldLoad, bool UnfoldStore, 
-                       SmallVectorImpl<MachineInstr *> &NewMIs) const { 
-     return false; 
-   } 
-   
-   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 
-                                    SmallVectorImpl<SDNode *> &NewNodes) const { 
-     return false; 
-   } 
-   
-   /// Returns the opcode of the would be new 
-   /// instruction after load / store are unfolded from an instruction of the 
-   /// specified opcode. It returns zero if the specified unfolding is not 
-   /// possible. If LoadRegIndex is non-null, it is filled in with the operand 
-   /// index of the operand which will hold the register holding the loaded 
-   /// value. 
-   virtual unsigned 
-   getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, 
-                              unsigned *LoadRegIndex = nullptr) const { 
-     return 0; 
-   } 
-   
-   /// This is used by the pre-regalloc scheduler to determine if two loads are 
-   /// loading from the same base address. It should only return true if the base 
-   /// pointers are the same and the only differences between the two addresses 
-   /// are the offset. It also returns the offsets by reference. 
-   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 
-                                        int64_t &Offset1, 
-                                        int64_t &Offset2) const { 
-     return false; 
-   } 
-   
-   /// This is a used by the pre-regalloc scheduler to determine (in conjunction 
-   /// with areLoadsFromSameBasePtr) if two loads should be scheduled together. 
-   /// On some targets if two loads are loading from 
-   /// addresses in the same cache line, it's better if they are scheduled 
-   /// together. This function takes two integers that represent the load offsets 
-   /// from the common base address. It returns true if it decides it's desirable 
-   /// to schedule the two loads together. "NumLoads" is the number of loads that 
-   /// have already been scheduled after Load1. 
-   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 
-                                        int64_t Offset1, int64_t Offset2, 
-                                        unsigned NumLoads) const { 
-     return false; 
-   } 
-   
-   /// Get the base operand and byte offset of an instruction that reads/writes 
-   /// memory. This is a convenience function for callers that are only prepared 
-   /// to handle a single base operand. 
-   bool getMemOperandWithOffset(const MachineInstr &MI, 
-                                const MachineOperand *&BaseOp, int64_t &Offset, 
-                                bool &OffsetIsScalable, 
-                                const TargetRegisterInfo *TRI) const; 
-   
-   /// Get zero or more base operands and the byte offset of an instruction that 
-   /// reads/writes memory. Note that there may be zero base operands if the 
-   /// instruction accesses a constant address. 
-   /// It returns false if MI does not read/write memory. 
-   /// It returns false if base operands and offset could not be determined. 
-   /// It is not guaranteed to always recognize base operands and offsets in all 
-   /// cases. 
-   virtual bool getMemOperandsWithOffsetWidth( 
-       const MachineInstr &MI, SmallVectorImpl<const MachineOperand *> &BaseOps, 
-       int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 
-       const TargetRegisterInfo *TRI) const { 
-     return false; 
-   } 
-   
-   /// Return true if the instruction contains a base register and offset. If 
-   /// true, the function also sets the operand position in the instruction 
-   /// for the base register and offset. 
-   virtual bool getBaseAndOffsetPosition(const MachineInstr &MI, 
-                                         unsigned &BasePos, 
-                                         unsigned &OffsetPos) const { 
-     return false; 
-   } 
-   
-   /// Target dependent implementation to get the values constituting the address 
-   /// MachineInstr that is accessing memory. These values are returned as a 
-   /// struct ExtAddrMode which contains all relevant information to make up the 
-   /// address. 
-   virtual std::optional<ExtAddrMode> 
-   getAddrModeFromMemoryOp(const MachineInstr &MemI, 
-                           const TargetRegisterInfo *TRI) const { 
-     return std::nullopt; 
-   } 
-   
-   /// Returns true if MI's Def is NullValueReg, and the MI 
-   /// does not change the Zero value. i.e. cases such as rax = shr rax, X where 
-   /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this 
-   /// function can return true even if becomes zero. Specifically cases such as 
-   /// NullValueReg = shl NullValueReg, 63. 
-   virtual bool preservesZeroValueInReg(const MachineInstr *MI, 
-                                        const Register NullValueReg, 
-                                        const TargetRegisterInfo *TRI) const { 
-     return false; 
-   } 
-   
-   /// If the instruction is an increment of a constant value, return the amount. 
-   virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const { 
-     return false; 
-   } 
-   
-   /// Returns true if the two given memory operations should be scheduled 
-   /// adjacent. Note that you have to add: 
-   ///   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 
-   /// or 
-   ///   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 
-   /// to TargetPassConfig::createMachineScheduler() to have an effect. 
-   /// 
-   /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations. 
-   /// \p NumLoads is the number of loads that will be in the cluster if this 
-   /// hook returns true. 
-   /// \p NumBytes is the number of bytes that will be loaded from all the 
-   /// clustered loads if this hook returns true. 
-   virtual bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1, 
-                                    ArrayRef<const MachineOperand *> BaseOps2, 
-                                    unsigned NumLoads, unsigned NumBytes) const { 
-     llvm_unreachable("target did not implement shouldClusterMemOps()"); 
-   } 
-   
-   /// Reverses the branch condition of the specified condition list, 
-   /// returning false on success and true if it cannot be reversed. 
-   virtual bool 
-   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 
-     return true; 
-   } 
-   
-   /// Insert a noop into the instruction stream at the specified point. 
-   virtual void insertNoop(MachineBasicBlock &MBB, 
-                           MachineBasicBlock::iterator MI) const; 
-   
-   /// Insert noops into the instruction stream at the specified point. 
-   virtual void insertNoops(MachineBasicBlock &MBB, 
-                            MachineBasicBlock::iterator MI, 
-                            unsigned Quantity) const; 
-   
-   /// Return the noop instruction to use for a noop. 
-   virtual MCInst getNop() const; 
-   
-   /// Return true for post-incremented instructions. 
-   virtual bool isPostIncrement(const MachineInstr &MI) const { return false; } 
-   
-   /// Returns true if the instruction is already predicated. 
-   virtual bool isPredicated(const MachineInstr &MI) const { return false; } 
-   
-   /// Assumes the instruction is already predicated and returns true if the 
-   /// instruction can be predicated again. 
-   virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const { 
-     assert(isPredicated(MI) && "Instruction is not predicated"); 
-     return false; 
-   } 
-   
-   // Returns a MIRPrinter comment for this machine operand. 
-   virtual std::string 
-   createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op, 
-                           unsigned OpIdx, const TargetRegisterInfo *TRI) const; 
-   
-   /// Returns true if the instruction is a 
-   /// terminator instruction that has not been predicated. 
-   bool isUnpredicatedTerminator(const MachineInstr &MI) const; 
-   
-   /// Returns true if MI is an unconditional tail call. 
-   virtual bool isUnconditionalTailCall(const MachineInstr &MI) const { 
-     return false; 
-   } 
-   
-   /// Returns true if the tail call can be made conditional on BranchCond. 
-   virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond, 
-                                           const MachineInstr &TailCall) const { 
-     return false; 
-   } 
-   
-   /// Replace the conditional branch in MBB with a conditional tail call. 
-   virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB, 
-                                          SmallVectorImpl<MachineOperand> &Cond, 
-                                          const MachineInstr &TailCall) const { 
-     llvm_unreachable("Target didn't implement replaceBranchWithTailCall!"); 
-   } 
-   
-   /// Convert the instruction into a predicated instruction. 
-   /// It returns true if the operation was successful. 
-   virtual bool PredicateInstruction(MachineInstr &MI, 
-                                     ArrayRef<MachineOperand> Pred) const; 
-   
-   /// Returns true if the first specified predicate 
-   /// subsumes the second, e.g. GE subsumes GT. 
-   virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 
-                                  ArrayRef<MachineOperand> Pred2) const { 
-     return false; 
-   } 
-   
-   /// If the specified instruction defines any predicate 
-   /// or condition code register(s) used for predication, returns true as well 
-   /// as the definition predicate(s) by reference. 
-   /// SkipDead should be set to false at any point that dead 
-   /// predicate instructions should be considered as being defined. 
-   /// A dead predicate instruction is one that is guaranteed to be removed 
-   /// after a call to PredicateInstruction. 
-   virtual bool ClobbersPredicate(MachineInstr &MI, 
-                                  std::vector<MachineOperand> &Pred, 
-                                  bool SkipDead) const { 
-     return false; 
-   } 
-   
-   /// Return true if the specified instruction can be predicated. 
-   /// By default, this returns true for every instruction with a 
-   /// PredicateOperand. 
-   virtual bool isPredicable(const MachineInstr &MI) const { 
-     return MI.getDesc().isPredicable(); 
-   } 
-   
-   /// Return true if it's safe to move a machine 
-   /// instruction that defines the specified register class. 
-   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { 
-     return true; 
-   } 
-   
-   /// Test if the given instruction should be considered a scheduling boundary. 
-   /// This primarily includes labels and terminators. 
-   virtual bool isSchedulingBoundary(const MachineInstr &MI, 
-                                     const MachineBasicBlock *MBB, 
-                                     const MachineFunction &MF) const; 
-   
-   /// Measure the specified inline asm to determine an approximation of its 
-   /// length. 
-   virtual unsigned getInlineAsmLength( 
-     const char *Str, const MCAsmInfo &MAI, 
-     const TargetSubtargetInfo *STI = nullptr) const; 
-   
-   /// Allocate and return a hazard recognizer to use for this target when 
-   /// scheduling the machine instructions before register allocation. 
-   virtual ScheduleHazardRecognizer * 
-   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 
-                                const ScheduleDAG *DAG) const; 
-   
-   /// Allocate and return a hazard recognizer to use for this target when 
-   /// scheduling the machine instructions before register allocation. 
-   virtual ScheduleHazardRecognizer * 
-   CreateTargetMIHazardRecognizer(const InstrItineraryData *, 
-                                  const ScheduleDAGMI *DAG) const; 
-   
-   /// Allocate and return a hazard recognizer to use for this target when 
-   /// scheduling the machine instructions after register allocation. 
-   virtual ScheduleHazardRecognizer * 
-   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *, 
-                                      const ScheduleDAG *DAG) const; 
-   
-   /// Allocate and return a hazard recognizer to use for by non-scheduling 
-   /// passes. 
-   virtual ScheduleHazardRecognizer * 
-   CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { 
-     return nullptr; 
-   } 
-   
-   /// Provide a global flag for disabling the PreRA hazard recognizer that 
-   /// targets may choose to honor. 
-   bool usePreRAHazardRecognizer() const; 
-   
-   /// For a comparison instruction, return the source registers 
-   /// in SrcReg and SrcReg2 if having two register operands, and the value it 
-   /// compares against in CmpValue. Return true if the comparison instruction 
-   /// can be analyzed. 
-   virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, 
-                               Register &SrcReg2, int64_t &Mask, 
-                               int64_t &Value) const { 
-     return false; 
-   } 
-   
-   /// See if the comparison instruction can be converted 
-   /// into something more efficient. E.g., on ARM most instructions can set the 
-   /// flags register, obviating the need for a separate CMP. 
-   virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 
-                                     Register SrcReg2, int64_t Mask, 
-                                     int64_t Value, 
-                                     const MachineRegisterInfo *MRI) const { 
-     return false; 
-   } 
-   virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; } 
-   
-   /// Try to remove the load by folding it to a register operand at the use. 
-   /// We fold the load instructions if and only if the 
-   /// def and use are in the same BB. We only look at one load and see 
-   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register 
-   /// defined by the load we are trying to fold. DefMI returns the machine 
-   /// instruction that defines FoldAsLoadDefReg, and the function returns 
-   /// the machine instruction generated due to folding. 
-   virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI, 
-                                           const MachineRegisterInfo *MRI, 
-                                           Register &FoldAsLoadDefReg, 
-                                           MachineInstr *&DefMI) const { 
-     return nullptr; 
-   } 
-   
-   /// 'Reg' is known to be defined by a move immediate instruction, 
-   /// try to fold the immediate into the use instruction. 
-   /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true, 
-   /// then the caller may assume that DefMI has been erased from its parent 
-   /// block. The caller may assume that it will not be erased by this 
-   /// function otherwise. 
-   virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 
-                              Register Reg, MachineRegisterInfo *MRI) const { 
-     return false; 
-   } 
-   
-   /// Return the number of u-operations the given machine 
-   /// instruction will be decoded to on the target cpu. The itinerary's 
-   /// IssueWidth is the number of microops that can be dispatched each 
-   /// cycle. An instruction with zero microops takes no dispatch resources. 
-   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, 
-                                   const MachineInstr &MI) const; 
-   
-   /// Return true for pseudo instructions that don't consume any 
-   /// machine resources in their current form. These are common cases that the 
-   /// scheduler should consider free, rather than conservatively handling them 
-   /// as instructions with no itinerary. 
-   bool isZeroCost(unsigned Opcode) const { 
-     return Opcode <= TargetOpcode::COPY; 
-   } 
-   
-   virtual int getOperandLatency(const InstrItineraryData *ItinData, 
-                                 SDNode *DefNode, unsigned DefIdx, 
-                                 SDNode *UseNode, unsigned UseIdx) const; 
-   
-   /// Compute and return the use operand latency of a given pair of def and use. 
-   /// In most cases, the static scheduling itinerary was enough to determine the 
-   /// operand latency. But it may not be possible for instructions with variable 
-   /// number of defs / uses. 
-   /// 
-   /// This is a raw interface to the itinerary that may be directly overridden 
-   /// by a target. Use computeOperandLatency to get the best estimate of 
-   /// latency. 
-   virtual int getOperandLatency(const InstrItineraryData *ItinData, 
-                                 const MachineInstr &DefMI, unsigned DefIdx, 
-                                 const MachineInstr &UseMI, 
-                                 unsigned UseIdx) const; 
-   
-   /// Compute the instruction latency of a given instruction. 
-   /// If the instruction has higher cost when predicated, it's returned via 
-   /// PredCost. 
-   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, 
-                                    const MachineInstr &MI, 
-                                    unsigned *PredCost = nullptr) const; 
-   
-   virtual unsigned getPredicationCost(const MachineInstr &MI) const; 
-   
-   virtual int getInstrLatency(const InstrItineraryData *ItinData, 
-                               SDNode *Node) const; 
-   
-   /// Return the default expected latency for a def based on its opcode. 
-   unsigned defaultDefLatency(const MCSchedModel &SchedModel, 
-                              const MachineInstr &DefMI) const; 
-   
-   /// Return true if this opcode has high latency to its result. 
-   virtual bool isHighLatencyDef(int opc) const { return false; } 
-   
-   /// Compute operand latency between a def of 'Reg' 
-   /// and a use in the current loop. Return true if the target considered 
-   /// it 'high'. This is used by optimization passes such as machine LICM to 
-   /// determine whether it makes sense to hoist an instruction out even in a 
-   /// high register pressure situation. 
-   virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel, 
-                                      const MachineRegisterInfo *MRI, 
-                                      const MachineInstr &DefMI, unsigned DefIdx, 
-                                      const MachineInstr &UseMI, 
-                                      unsigned UseIdx) const { 
-     return false; 
-   } 
-   
-   /// Compute operand latency of a def of 'Reg'. Return true 
-   /// if the target considered it 'low'. 
-   virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel, 
-                                 const MachineInstr &DefMI, 
-                                 unsigned DefIdx) const; 
-   
-   /// Perform target-specific instruction verification. 
-   virtual bool verifyInstruction(const MachineInstr &MI, 
-                                  StringRef &ErrInfo) const { 
-     return true; 
-   } 
-   
-   /// Return the current execution domain and bit mask of 
-   /// possible domains for instruction. 
-   /// 
-   /// Some micro-architectures have multiple execution domains, and multiple 
-   /// opcodes that perform the same operation in different domains.  For 
-   /// example, the x86 architecture provides the por, orps, and orpd 
-   /// instructions that all do the same thing.  There is a latency penalty if a 
-   /// register is written in one domain and read in another. 
-   /// 
-   /// This function returns a pair (domain, mask) containing the execution 
-   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain 
-   /// function can be used to change the opcode to one of the domains in the 
-   /// bit mask.  Instructions whose execution domain can't be changed should 
-   /// return a 0 mask. 
-   /// 
-   /// The execution domain numbers don't have any special meaning except domain 
-   /// 0 is used for instructions that are not associated with any interesting 
-   /// execution domain. 
-   /// 
-   virtual std::pair<uint16_t, uint16_t> 
-   getExecutionDomain(const MachineInstr &MI) const { 
-     return std::make_pair(0, 0); 
-   } 
-   
-   /// Change the opcode of MI to execute in Domain. 
-   /// 
-   /// The bit (1 << Domain) must be set in the mask returned from 
-   /// getExecutionDomain(MI). 
-   virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {} 
-   
-   /// Returns the preferred minimum clearance 
-   /// before an instruction with an unwanted partial register update. 
-   /// 
-   /// Some instructions only write part of a register, and implicitly need to 
-   /// read the other parts of the register.  This may cause unwanted stalls 
-   /// preventing otherwise unrelated instructions from executing in parallel in 
-   /// an out-of-order CPU. 
-   /// 
-   /// For example, the x86 instruction cvtsi2ss writes its result to bits 
-   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so 
-   /// the instruction needs to wait for the old value of the register to become 
-   /// available: 
-   /// 
-   ///   addps %xmm1, %xmm0 
-   ///   movaps %xmm0, (%rax) 
-   ///   cvtsi2ss %rbx, %xmm0 
-   /// 
-   /// In the code above, the cvtsi2ss instruction needs to wait for the addps 
-   /// instruction before it can issue, even though the high bits of %xmm0 
-   /// probably aren't needed. 
-   /// 
-   /// This hook returns the preferred clearance before MI, measured in 
-   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N 
-   /// instructions before MI.  It should only return a positive value for 
-   /// unwanted dependencies.  If the old bits of the defined register have 
-   /// useful values, or if MI is determined to otherwise read the dependency, 
-   /// the hook should return 0. 
-   /// 
-   /// The unwanted dependency may be handled by: 
-   /// 
-   /// 1. Allocating the same register for an MI def and use.  That makes the 
-   ///    unwanted dependency identical to a required dependency. 
-   /// 
-   /// 2. Allocating a register for the def that has no defs in the previous N 
-   ///    instructions. 
-   /// 
-   /// 3. Calling breakPartialRegDependency() with the same arguments.  This 
-   ///    allows the target to insert a dependency breaking instruction. 
-   /// 
-   virtual unsigned 
-   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum, 
-                                const TargetRegisterInfo *TRI) const { 
-     // The default implementation returns 0 for no partial register dependency. 
-     return 0; 
-   } 
-   
-   /// Return the minimum clearance before an instruction that reads an 
-   /// unused register. 
-   /// 
-   /// For example, AVX instructions may copy part of a register operand into 
-   /// the unused high bits of the destination register. 
-   /// 
-   /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 
-   /// 
-   /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a 
-   /// false dependence on any previous write to %xmm0. 
-   /// 
-   /// This hook works similarly to getPartialRegUpdateClearance, except that it 
-   /// does not take an operand index. Instead sets \p OpNum to the index of the 
-   /// unused register. 
-   virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, 
-                                         const TargetRegisterInfo *TRI) const { 
-     // The default implementation returns 0 for no undef register dependency. 
-     return 0; 
-   } 
-   
-   /// Insert a dependency-breaking instruction 
-   /// before MI to eliminate an unwanted dependency on OpNum. 
-   /// 
-   /// If it wasn't possible to avoid a def in the last N instructions before MI 
-   /// (see getPartialRegUpdateClearance), this hook will be called to break the 
-   /// unwanted dependency. 
-   /// 
-   /// On x86, an xorps instruction can be used as a dependency breaker: 
-   /// 
-   ///   addps %xmm1, %xmm0 
-   ///   movaps %xmm0, (%rax) 
-   ///   xorps %xmm0, %xmm0 
-   ///   cvtsi2ss %rbx, %xmm0 
-   /// 
-   /// An <imp-kill> operand should be added to MI if an instruction was 
-   /// inserted.  This ties the instructions together in the post-ra scheduler. 
-   /// 
-   virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum, 
-                                          const TargetRegisterInfo *TRI) const {} 
-   
-   /// Create machine specific model for scheduling. 
-   virtual DFAPacketizer * 
-   CreateTargetScheduleState(const TargetSubtargetInfo &) const { 
-     return nullptr; 
-   } 
-   
-   /// Sometimes, it is possible for the target 
-   /// to tell, even without aliasing information, that two MIs access different 
-   /// memory addresses. This function returns true if two MIs access different 
-   /// memory addresses and false otherwise. 
-   /// 
-   /// Assumes any physical registers used to compute addresses have the same 
-   /// value for both instructions. (This is the most useful assumption for 
-   /// post-RA scheduling.) 
-   /// 
-   /// See also MachineInstr::mayAlias, which is implemented on top of this 
-   /// function. 
-   virtual bool 
-   areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, 
-                                   const MachineInstr &MIb) const { 
-     assert(MIa.mayLoadOrStore() && 
-            "MIa must load from or modify a memory location"); 
-     assert(MIb.mayLoadOrStore() && 
-            "MIb must load from or modify a memory location"); 
-     return false; 
-   } 
-   
-   /// Return the value to use for the MachineCSE's LookAheadLimit, 
-   /// which is a heuristic used for CSE'ing phys reg defs. 
-   virtual unsigned getMachineCSELookAheadLimit() const { 
-     // The default lookahead is small to prevent unprofitable quadratic 
-     // behavior. 
-     return 5; 
-   } 
-   
-   /// Return the maximal number of alias checks on memory operands. For 
-   /// instructions with more than one memory operands, the alias check on a 
-   /// single MachineInstr pair has quadratic overhead and results in 
-   /// unacceptable performance in the worst case. The limit here is to clamp 
-   /// that maximal checks performed. Usually, that's the product of memory 
-   /// operand numbers from that pair of MachineInstr to be checked. For 
-   /// instance, with two MachineInstrs with 4 and 5 memory operands 
-   /// correspondingly, a total of 20 checks are required. With this limit set to 
-   /// 16, their alias check is skipped. We choose to limit the product instead 
-   /// of the individual instruction as targets may have special MachineInstrs 
-   /// with a considerably high number of memory operands, such as `ldm` in ARM. 
-   /// Setting this limit per MachineInstr would result in either too high 
-   /// overhead or too rigid restriction. 
-   virtual unsigned getMemOperandAACheckLimit() const { return 16; } 
-   
-   /// Return an array that contains the ids of the target indices (used for the 
-   /// TargetIndex machine operand) and their names. 
-   /// 
-   /// MIR Serialization is able to serialize only the target indices that are 
-   /// defined by this method. 
-   virtual ArrayRef<std::pair<int, const char *>> 
-   getSerializableTargetIndices() const { 
-     return std::nullopt; 
-   } 
-   
-   /// Decompose the machine operand's target flags into two values - the direct 
-   /// target flag value and any of bit flags that are applied. 
-   virtual std::pair<unsigned, unsigned> 
-   decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const { 
-     return std::make_pair(0u, 0u); 
-   } 
-   
-   /// Return an array that contains the direct target flag values and their 
-   /// names. 
-   /// 
-   /// MIR Serialization is able to serialize only the target flags that are 
-   /// defined by this method. 
-   virtual ArrayRef<std::pair<unsigned, const char *>> 
-   getSerializableDirectMachineOperandTargetFlags() const { 
-     return std::nullopt; 
-   } 
-   
-   /// Return an array that contains the bitmask target flag values and their 
-   /// names. 
-   /// 
-   /// MIR Serialization is able to serialize only the target flags that are 
-   /// defined by this method. 
-   virtual ArrayRef<std::pair<unsigned, const char *>> 
-   getSerializableBitmaskMachineOperandTargetFlags() const { 
-     return std::nullopt; 
-   } 
-   
-   /// Return an array that contains the MMO target flag values and their 
-   /// names. 
-   /// 
-   /// MIR Serialization is able to serialize only the MMO target flags that are 
-   /// defined by this method. 
-   virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>> 
-   getSerializableMachineMemOperandTargetFlags() const { 
-     return std::nullopt; 
-   } 
-   
-   /// Determines whether \p Inst is a tail call instruction. Override this 
-   /// method on targets that do not properly set MCID::Return and MCID::Call on 
-   /// tail call instructions." 
-   virtual bool isTailCall(const MachineInstr &Inst) const { 
-     return Inst.isReturn() && Inst.isCall(); 
-   } 
-   
-   /// True if the instruction is bound to the top of its basic block and no 
-   /// other instructions shall be inserted before it. This can be implemented 
-   /// to prevent register allocator to insert spills before such instructions. 
-   virtual bool isBasicBlockPrologue(const MachineInstr &MI) const { 
-     return false; 
-   } 
-   
-   /// During PHI eleimination lets target to make necessary checks and 
-   /// insert the copy to the PHI destination register in a target specific 
-   /// manner. 
-   virtual MachineInstr *createPHIDestinationCopy( 
-       MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, 
-       const DebugLoc &DL, Register Src, Register Dst) const { 
-     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst) 
-         .addReg(Src); 
-   } 
-   
-   /// During PHI eleimination lets target to make necessary checks and 
-   /// insert the copy to the PHI destination register in a target specific 
-   /// manner. 
-   virtual MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB, 
-                                             MachineBasicBlock::iterator InsPt, 
-                                             const DebugLoc &DL, Register Src, 
-                                             unsigned SrcSubReg, 
-                                             Register Dst) const { 
-     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst) 
-         .addReg(Src, 0, SrcSubReg); 
-   } 
-   
-   /// Returns a \p outliner::OutlinedFunction struct containing target-specific 
-   /// information for a set of outlining candidates. 
-   virtual outliner::OutlinedFunction getOutliningCandidateInfo( 
-       std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 
-     llvm_unreachable( 
-         "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!"); 
-   } 
-   
-   /// Optional target hook to create the LLVM IR attributes for the outlined 
-   /// function. If overridden, the overriding function must call the default 
-   /// implementation. 
-   virtual void mergeOutliningCandidateAttributes( 
-       Function &F, std::vector<outliner::Candidate> &Candidates) const; 
-   
-   /// Returns how or if \p MI should be outlined. 
-   virtual outliner::InstrType 
-   getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const { 
-     llvm_unreachable( 
-         "Target didn't implement TargetInstrInfo::getOutliningType!"); 
-   } 
-   
-   /// Optional target hook that returns true if \p MBB is safe to outline from, 
-   /// and returns any target-specific information in \p Flags. 
-   virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, 
-                                       unsigned &Flags) const; 
-   
-   /// Insert a custom frame for outlined functions. 
-   virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, 
-                                   const outliner::OutlinedFunction &OF) const { 
-     llvm_unreachable( 
-         "Target didn't implement TargetInstrInfo::buildOutlinedFrame!"); 
-   } 
-   
-   /// Insert a call to an outlined function into the program. 
-   /// Returns an iterator to the spot where we inserted the call. This must be 
-   /// implemented by the target. 
-   virtual MachineBasicBlock::iterator 
-   insertOutlinedCall(Module &M, MachineBasicBlock &MBB, 
-                      MachineBasicBlock::iterator &It, MachineFunction &MF, 
-                      outliner::Candidate &C) const { 
-     llvm_unreachable( 
-         "Target didn't implement TargetInstrInfo::insertOutlinedCall!"); 
-   } 
-   
-   /// Return true if the function can safely be outlined from. 
-   /// A function \p MF is considered safe for outlining if an outlined function 
-   /// produced from instructions in F will produce a program which produces the 
-   /// same output for any set of given inputs. 
-   virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF, 
-                                            bool OutlineFromLinkOnceODRs) const { 
-     llvm_unreachable("Target didn't implement " 
-                      "TargetInstrInfo::isFunctionSafeToOutlineFrom!"); 
-   } 
-   
-   /// Return true if the function should be outlined from by default. 
-   virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const { 
-     return false; 
-   } 
-   
-   /// Produce the expression describing the \p MI loading a value into 
-   /// the physical register \p Reg. This hook should only be used with 
-   /// \p MIs belonging to VReg-less functions. 
-   virtual std::optional<ParamLoadedValue> 
-   describeLoadedValue(const MachineInstr &MI, Register Reg) const; 
-   
-   /// Given the generic extension instruction \p ExtMI, returns true if this 
-   /// extension is a likely candidate for being folded into an another 
-   /// instruction. 
-   virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI, 
-                                         MachineRegisterInfo &MRI) const { 
-     return false; 
-   } 
-   
-   /// Return MIR formatter to format/parse MIR operands.  Target can override 
-   /// this virtual function and return target specific MIR formatter. 
-   virtual const MIRFormatter *getMIRFormatter() const { 
-     if (!Formatter.get()) 
-       Formatter = std::make_unique<MIRFormatter>(); 
-     return Formatter.get(); 
-   } 
-   
-   /// Returns the target-specific default value for tail duplication. 
-   /// This value will be used if the tail-dup-placement-threshold argument is 
-   /// not provided. 
-   virtual unsigned getTailDuplicateSize(CodeGenOpt::Level OptLevel) const { 
-     return OptLevel >= CodeGenOpt::Aggressive ? 4 : 2; 
-   } 
-   
-   /// Returns the callee operand from the given \p MI. 
-   virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const { 
-     return MI.getOperand(0); 
-   } 
-   
-   /// Return the uniformity behavior of the given instruction. 
-   virtual InstructionUniformity 
-   getInstructionUniformity(const MachineInstr &MI) const { 
-     return InstructionUniformity::Default; 
-   } 
-   
-   /// Returns true if the given \p MI defines a TargetIndex operand that can be 
-   /// tracked by their offset, can have values, and can have debug info 
-   /// associated with it. If so, sets \p Index and \p Offset of the target index 
-   /// operand. 
-   virtual bool isExplicitTargetIndexDef(const MachineInstr &MI, int &Index, 
-                                         int64_t &Offset) const { 
-     return false; 
-   } 
-   
- private: 
-   mutable std::unique_ptr<MIRFormatter> Formatter; 
-   unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode; 
-   unsigned CatchRetOpcode; 
-   unsigned ReturnOpcode; 
- }; 
-   
- /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair. 
- template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> { 
-   using RegInfo = DenseMapInfo<unsigned>; 
-   
-   static inline TargetInstrInfo::RegSubRegPair getEmptyKey() { 
-     return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(), 
-                                           RegInfo::getEmptyKey()); 
-   } 
-   
-   static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() { 
-     return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(), 
-                                           RegInfo::getTombstoneKey()); 
-   } 
-   
-   /// Reuse getHashValue implementation from 
-   /// std::pair<unsigned, unsigned>. 
-   static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) { 
-     std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg); 
-     return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal); 
-   } 
-   
-   static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS, 
-                       const TargetInstrInfo::RegSubRegPair &RHS) { 
-     return RegInfo::isEqual(LHS.Reg, RHS.Reg) && 
-            RegInfo::isEqual(LHS.SubReg, RHS.SubReg); 
-   } 
- }; 
-   
- } // end namespace llvm 
-   
- #endif // LLVM_CODEGEN_TARGETINSTRINFO_H 
-