//===- RegAllocPBQP.h -------------------------------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines the PBQPBuilder interface, for classes which build PBQP
 
// instances to represent register allocation problems, and the RegAllocPBQP
 
// interface.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CODEGEN_REGALLOCPBQP_H
 
#define LLVM_CODEGEN_REGALLOCPBQP_H
 
 
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/Hashing.h"
 
#include "llvm/CodeGen/PBQP/CostAllocator.h"
 
#include "llvm/CodeGen/PBQP/Graph.h"
 
#include "llvm/CodeGen/PBQP/Math.h"
 
#include "llvm/CodeGen/PBQP/ReductionRules.h"
 
#include "llvm/CodeGen/PBQP/Solution.h"
 
#include "llvm/CodeGen/Register.h"
 
#include "llvm/MC/MCRegister.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <cstddef>
 
#include <limits>
 
#include <memory>
 
#include <set>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
class FunctionPass;
 
class LiveIntervals;
 
class MachineBlockFrequencyInfo;
 
class MachineFunction;
 
class raw_ostream;
 
 
 
namespace PBQP {
 
namespace RegAlloc {
 
 
 
/// Spill option index.
 
inline unsigned getSpillOptionIdx() { return 0; }
 
 
 
/// Metadata to speed allocatability test.
 
///
 
/// Keeps track of the number of infinities in each row and column.
 
class MatrixMetadata {
 
public:
 
  MatrixMetadata(const Matrix& M)
 
    : UnsafeRows(new bool[M.getRows() - 1]()),
 
      UnsafeCols(new bool[M.getCols() - 1]()) {
 
    unsigned* ColCounts = new unsigned[M.getCols() - 1]();
 
 
 
    for (unsigned i = 1; i < M.getRows(); ++i) {
 
      unsigned RowCount = 0;
 
      for (unsigned j = 1; j < M.getCols(); ++j) {
 
        if (M[i][j] == std::numeric_limits<PBQPNum>::infinity()) {
 
          ++RowCount;
 
          ++ColCounts[j - 1];
 
          UnsafeRows[i - 1] = true;
 
          UnsafeCols[j - 1] = true;
 
        }
 
      }
 
      WorstRow = std::max(WorstRow, RowCount);
 
    }
 
    unsigned WorstColCountForCurRow =
 
      *std::max_element(ColCounts, ColCounts + M.getCols() - 1);
 
    WorstCol = std::max(WorstCol, WorstColCountForCurRow);
 
    delete[] ColCounts;
 
  }
 
 
 
  MatrixMetadata(const MatrixMetadata &) = delete;
 
  MatrixMetadata &operator=(const MatrixMetadata &) = delete;
 
 
 
  unsigned getWorstRow() const { return WorstRow; }
 
  unsigned getWorstCol() const { return WorstCol; }
 
  const bool* getUnsafeRows() const { return UnsafeRows.get(); }
 
  const bool* getUnsafeCols() const { return UnsafeCols.get(); }
 
 
 
private:
 
  unsigned WorstRow = 0;
 
  unsigned WorstCol = 0;
 
  std::unique_ptr<bool[]> UnsafeRows;
 
  std::unique_ptr<bool[]> UnsafeCols;
 
};
 
 
 
/// Holds a vector of the allowed physical regs for a vreg.
 
class AllowedRegVector {
 
  friend hash_code hash_value(const AllowedRegVector &);
 
 
 
public:
 
  AllowedRegVector() = default;
 
  AllowedRegVector(AllowedRegVector &&) = default;
 
 
 
  AllowedRegVector(const std::vector<MCRegister> &OptVec)
 
      : NumOpts(OptVec.size()), Opts(new MCRegister[NumOpts]) {
 
    std::copy(OptVec.begin(), OptVec.end(), Opts.get());
 
  }
 
 
 
  unsigned size() const { return NumOpts; }
 
  MCRegister operator[](size_t I) const { return Opts[I]; }
 
 
 
  bool operator==(const AllowedRegVector &Other) const {
 
    if (NumOpts != Other.NumOpts)
 
      return false;
 
    return std::equal(Opts.get(), Opts.get() + NumOpts, Other.Opts.get());
 
  }
 
 
 
  bool operator!=(const AllowedRegVector &Other) const {
 
    return !(*this == Other);
 
  }
 
 
 
private:
 
  unsigned NumOpts = 0;
 
  std::unique_ptr<MCRegister[]> Opts;
 
};
 
 
 
inline hash_code hash_value(const AllowedRegVector &OptRegs) {
 
  MCRegister *OStart = OptRegs.Opts.get();
 
  MCRegister *OEnd = OptRegs.Opts.get() + OptRegs.NumOpts;
 
  return hash_combine(OptRegs.NumOpts,
 
                      hash_combine_range(OStart, OEnd));
 
}
 
 
 
/// Holds graph-level metadata relevant to PBQP RA problems.
 
class GraphMetadata {
 
private:
 
  using AllowedRegVecPool = ValuePool<AllowedRegVector>;
 
 
 
public:
 
  using AllowedRegVecRef = AllowedRegVecPool::PoolRef;
 
 
 
  GraphMetadata(MachineFunction &MF,
 
                LiveIntervals &LIS,
 
                MachineBlockFrequencyInfo &MBFI)
 
    : MF(MF), LIS(LIS), MBFI(MBFI) {}
 
 
 
  MachineFunction &MF;
 
  LiveIntervals &LIS;
 
  MachineBlockFrequencyInfo &MBFI;
 
 
 
  void setNodeIdForVReg(Register VReg, GraphBase::NodeId NId) {
 
    VRegToNodeId[VReg.id()] = NId;
 
  }
 
 
 
  GraphBase::NodeId getNodeIdForVReg(Register VReg) const {
 
    auto VRegItr = VRegToNodeId.find(VReg);
 
    if (VRegItr == VRegToNodeId.end())
 
      return GraphBase::invalidNodeId();
 
    return VRegItr->second;
 
  }
 
 
 
  AllowedRegVecRef getAllowedRegs(AllowedRegVector Allowed) {
 
    return AllowedRegVecs.getValue(std::move(Allowed));
 
  }
 
 
 
private:
 
  DenseMap<Register, GraphBase::NodeId> VRegToNodeId;
 
  AllowedRegVecPool AllowedRegVecs;
 
};
 
 
 
/// Holds solver state and other metadata relevant to each PBQP RA node.
 
class NodeMetadata {
 
public:
 
  using AllowedRegVector = RegAlloc::AllowedRegVector;
 
 
 
  // The node's reduction state. The order in this enum is important,
 
  // as it is assumed nodes can only progress up (i.e. towards being
 
  // optimally reducible) when reducing the graph.
 
  using ReductionState = enum {
 
    Unprocessed,
 
    NotProvablyAllocatable,
 
    ConservativelyAllocatable,
 
    OptimallyReducible
 
  };
 
 
 
  NodeMetadata() = default;
 
 
 
  NodeMetadata(const NodeMetadata &Other)
 
      : RS(Other.RS), NumOpts(Other.NumOpts), DeniedOpts(Other.DeniedOpts),
 
        OptUnsafeEdges(new unsigned[NumOpts]), VReg(Other.VReg),
 
        AllowedRegs(Other.AllowedRegs)
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
        ,
 
        everConservativelyAllocatable(Other.everConservativelyAllocatable)
 
#endif
 
  {
 
    if (NumOpts > 0) {
 
      std::copy(&Other.OptUnsafeEdges[0], &Other.OptUnsafeEdges[NumOpts],
 
                &OptUnsafeEdges[0]);
 
    }
 
  }
 
 
 
  NodeMetadata(NodeMetadata &&) = default;
 
  NodeMetadata& operator=(NodeMetadata &&) = default;
 
 
 
  void setVReg(Register VReg) { this->VReg = VReg; }
 
  Register getVReg() const { return VReg; }
 
 
 
  void setAllowedRegs(GraphMetadata::AllowedRegVecRef AllowedRegs) {
 
    this->AllowedRegs = std::move(AllowedRegs);
 
  }
 
  const AllowedRegVector& getAllowedRegs() const { return *AllowedRegs; }
 
 
 
  void setup(const Vector& Costs) {
 
    NumOpts = Costs.getLength() - 1;
 
    OptUnsafeEdges = std::unique_ptr<unsigned[]>(new unsigned[NumOpts]());
 
  }
 
 
 
  ReductionState getReductionState() const { return RS; }
 
  void setReductionState(ReductionState RS) {
 
    assert(RS >= this->RS && "A node's reduction state can not be downgraded");
 
    this->RS = RS;
 
 
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    // Remember this state to assert later that a non-infinite register
 
    // option was available.
 
    if (RS == ConservativelyAllocatable)
 
      everConservativelyAllocatable = true;
 
#endif
 
  }
 
 
 
  void handleAddEdge(const MatrixMetadata& MD, bool Transpose) {
 
    DeniedOpts += Transpose ? MD.getWorstRow() : MD.getWorstCol();
 
    const bool* UnsafeOpts =
 
      Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
 
    for (unsigned i = 0; i < NumOpts; ++i)
 
      OptUnsafeEdges[i] += UnsafeOpts[i];
 
  }
 
 
 
  void handleRemoveEdge(const MatrixMetadata& MD, bool Transpose) {
 
    DeniedOpts -= Transpose ? MD.getWorstRow() : MD.getWorstCol();
 
    const bool* UnsafeOpts =
 
      Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
 
    for (unsigned i = 0; i < NumOpts; ++i)
 
      OptUnsafeEdges[i] -= UnsafeOpts[i];
 
  }
 
 
 
  bool isConservativelyAllocatable() const {
 
    return (DeniedOpts < NumOpts) ||
 
      (std::find(&OptUnsafeEdges[0], &OptUnsafeEdges[NumOpts], 0) !=
 
       &OptUnsafeEdges[NumOpts]);
 
  }
 
 
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
  bool wasConservativelyAllocatable() const {
 
    return everConservativelyAllocatable;
 
  }
 
#endif
 
 
 
private:
 
  ReductionState RS = Unprocessed;
 
  unsigned NumOpts = 0;
 
  unsigned DeniedOpts = 0;
 
  std::unique_ptr<unsigned[]> OptUnsafeEdges;
 
  Register VReg;
 
  GraphMetadata::AllowedRegVecRef AllowedRegs;
 
 
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
  bool everConservativelyAllocatable = false;
 
#endif
 
};
 
 
 
class RegAllocSolverImpl {
 
private:
 
  using RAMatrix = MDMatrix<MatrixMetadata>;
 
 
 
public:
 
  using RawVector = PBQP::Vector;
 
  using RawMatrix = PBQP::Matrix;
 
  using Vector = PBQP::Vector;
 
  using Matrix = RAMatrix;
 
  using CostAllocator = PBQP::PoolCostAllocator<Vector, Matrix>;
 
 
 
  using NodeId = GraphBase::NodeId;
 
  using EdgeId = GraphBase::EdgeId;
 
 
 
  using NodeMetadata = RegAlloc::NodeMetadata;
 
  struct EdgeMetadata {};
 
  using GraphMetadata = RegAlloc::GraphMetadata;
 
 
 
  using Graph = PBQP::Graph<RegAllocSolverImpl>;
 
 
 
  RegAllocSolverImpl(Graph &G) : G(G) {}
 
 
 
  Solution solve() {
 
    G.setSolver(*this);
 
    Solution S;
 
    setup();
 
    S = backpropagate(G, reduce());
 
    G.unsetSolver();
 
    return S;
 
  }
 
 
 
  void handleAddNode(NodeId NId) {
 
    assert(G.getNodeCosts(NId).getLength() > 1 &&
 
           "PBQP Graph should not contain single or zero-option nodes");
 
    G.getNodeMetadata(NId).setup(G.getNodeCosts(NId));
 
  }
 
 
 
  void handleRemoveNode(NodeId NId) {}
 
  void handleSetNodeCosts(NodeId NId, const Vector& newCosts) {}
 
 
 
  void handleAddEdge(EdgeId EId) {
 
    handleReconnectEdge(EId, G.getEdgeNode1Id(EId));
 
    handleReconnectEdge(EId, G.getEdgeNode2Id(EId));
 
  }
 
 
 
  void handleDisconnectEdge(EdgeId EId, NodeId NId) {
 
    NodeMetadata& NMd = G.getNodeMetadata(NId);
 
    const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
 
    NMd.handleRemoveEdge(MMd, NId == G.getEdgeNode2Id(EId));
 
    promote(NId, NMd);
 
  }
 
 
 
  void handleReconnectEdge(EdgeId EId, NodeId NId) {
 
    NodeMetadata& NMd = G.getNodeMetadata(NId);
 
    const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
 
    NMd.handleAddEdge(MMd, NId == G.getEdgeNode2Id(EId));
 
  }
 
 
 
  void handleUpdateCosts(EdgeId EId, const Matrix& NewCosts) {
 
    NodeId N1Id = G.getEdgeNode1Id(EId);
 
    NodeId N2Id = G.getEdgeNode2Id(EId);
 
    NodeMetadata& N1Md = G.getNodeMetadata(N1Id);
 
    NodeMetadata& N2Md = G.getNodeMetadata(N2Id);
 
    bool Transpose = N1Id != G.getEdgeNode1Id(EId);
 
 
 
    // Metadata are computed incrementally. First, update them
 
    // by removing the old cost.
 
    const MatrixMetadata& OldMMd = G.getEdgeCosts(EId).getMetadata();
 
    N1Md.handleRemoveEdge(OldMMd, Transpose);
 
    N2Md.handleRemoveEdge(OldMMd, !Transpose);
 
 
 
    // And update now the metadata with the new cost.
 
    const MatrixMetadata& MMd = NewCosts.getMetadata();
 
    N1Md.handleAddEdge(MMd, Transpose);
 
    N2Md.handleAddEdge(MMd, !Transpose);
 
 
 
    // As the metadata may have changed with the update, the nodes may have
 
    // become ConservativelyAllocatable or OptimallyReducible.
 
    promote(N1Id, N1Md);
 
    promote(N2Id, N2Md);
 
  }
 
 
 
private:
 
  void promote(NodeId NId, NodeMetadata& NMd) {
 
    if (G.getNodeDegree(NId) == 3) {
 
      // This node is becoming optimally reducible.
 
      moveToOptimallyReducibleNodes(NId);
 
    } else if (NMd.getReductionState() ==
 
               NodeMetadata::NotProvablyAllocatable &&
 
               NMd.isConservativelyAllocatable()) {
 
      // This node just became conservatively allocatable.
 
      moveToConservativelyAllocatableNodes(NId);
 
    }
 
  }
 
 
 
  void removeFromCurrentSet(NodeId NId) {
 
    switch (G.getNodeMetadata(NId).getReductionState()) {
 
    case NodeMetadata::Unprocessed: break;
 
    case NodeMetadata::OptimallyReducible:
 
      assert(OptimallyReducibleNodes.find(NId) !=
 
             OptimallyReducibleNodes.end() &&
 
             "Node not in optimally reducible set.");
 
      OptimallyReducibleNodes.erase(NId);
 
      break;
 
    case NodeMetadata::ConservativelyAllocatable:
 
      assert(ConservativelyAllocatableNodes.find(NId) !=
 
             ConservativelyAllocatableNodes.end() &&
 
             "Node not in conservatively allocatable set.");
 
      ConservativelyAllocatableNodes.erase(NId);
 
      break;
 
    case NodeMetadata::NotProvablyAllocatable:
 
      assert(NotProvablyAllocatableNodes.find(NId) !=
 
             NotProvablyAllocatableNodes.end() &&
 
             "Node not in not-provably-allocatable set.");
 
      NotProvablyAllocatableNodes.erase(NId);
 
      break;
 
    }
 
  }
 
 
 
  void moveToOptimallyReducibleNodes(NodeId NId) {
 
    removeFromCurrentSet(NId);
 
    OptimallyReducibleNodes.insert(NId);
 
    G.getNodeMetadata(NId).setReductionState(
 
      NodeMetadata::OptimallyReducible);
 
  }
 
 
 
  void moveToConservativelyAllocatableNodes(NodeId NId) {
 
    removeFromCurrentSet(NId);
 
    ConservativelyAllocatableNodes.insert(NId);
 
    G.getNodeMetadata(NId).setReductionState(
 
      NodeMetadata::ConservativelyAllocatable);
 
  }
 
 
 
  void moveToNotProvablyAllocatableNodes(NodeId NId) {
 
    removeFromCurrentSet(NId);
 
    NotProvablyAllocatableNodes.insert(NId);
 
    G.getNodeMetadata(NId).setReductionState(
 
      NodeMetadata::NotProvablyAllocatable);
 
  }
 
 
 
  void setup() {
 
    // Set up worklists.
 
    for (auto NId : G.nodeIds()) {
 
      if (G.getNodeDegree(NId) < 3)
 
        moveToOptimallyReducibleNodes(NId);
 
      else if (G.getNodeMetadata(NId).isConservativelyAllocatable())
 
        moveToConservativelyAllocatableNodes(NId);
 
      else
 
        moveToNotProvablyAllocatableNodes(NId);
 
    }
 
  }
 
 
 
  // Compute a reduction order for the graph by iteratively applying PBQP
 
  // reduction rules. Locally optimal rules are applied whenever possible (R0,
 
  // R1, R2). If no locally-optimal rules apply then any conservatively
 
  // allocatable node is reduced. Finally, if no conservatively allocatable
 
  // node exists then the node with the lowest spill-cost:degree ratio is
 
  // selected.
 
  std::vector<GraphBase::NodeId> reduce() {
 
    assert(!G.empty() && "Cannot reduce empty graph.");
 
 
 
    using NodeId = GraphBase::NodeId;
 
    std::vector<NodeId> NodeStack;
 
 
 
    // Consume worklists.
 
    while (true) {
 
      if (!OptimallyReducibleNodes.empty()) {
 
        NodeSet::iterator NItr = OptimallyReducibleNodes.begin();
 
        NodeId NId = *NItr;
 
        OptimallyReducibleNodes.erase(NItr);
 
        NodeStack.push_back(NId);
 
        switch (G.getNodeDegree(NId)) {
 
        case 0:
 
          break;
 
        case 1:
 
          applyR1(G, NId);
 
          break;
 
        case 2:
 
          applyR2(G, NId);
 
          break;
 
        default: llvm_unreachable("Not an optimally reducible node.");
 
        }
 
      } else if (!ConservativelyAllocatableNodes.empty()) {
 
        // Conservatively allocatable nodes will never spill. For now just
 
        // take the first node in the set and push it on the stack. When we
 
        // start optimizing more heavily for register preferencing, it may
 
        // would be better to push nodes with lower 'expected' or worst-case
 
        // register costs first (since early nodes are the most
 
        // constrained).
 
        NodeSet::iterator NItr = ConservativelyAllocatableNodes.begin();
 
        NodeId NId = *NItr;
 
        ConservativelyAllocatableNodes.erase(NItr);
 
        NodeStack.push_back(NId);
 
        G.disconnectAllNeighborsFromNode(NId);
 
      } else if (!NotProvablyAllocatableNodes.empty()) {
 
        NodeSet::iterator NItr =
 
          std::min_element(NotProvablyAllocatableNodes.begin(),
 
                           NotProvablyAllocatableNodes.end(),
 
                           SpillCostComparator(G));
 
        NodeId NId = *NItr;
 
        NotProvablyAllocatableNodes.erase(NItr);
 
        NodeStack.push_back(NId);
 
        G.disconnectAllNeighborsFromNode(NId);
 
      } else
 
        break;
 
    }
 
 
 
    return NodeStack;
 
  }
 
 
 
  class SpillCostComparator {
 
  public:
 
    SpillCostComparator(const Graph& G) : G(G) {}
 
 
 
    bool operator()(NodeId N1Id, NodeId N2Id) {
 
      PBQPNum N1SC = G.getNodeCosts(N1Id)[0];
 
      PBQPNum N2SC = G.getNodeCosts(N2Id)[0];
 
      if (N1SC == N2SC)
 
        return G.getNodeDegree(N1Id) < G.getNodeDegree(N2Id);
 
      return N1SC < N2SC;
 
    }
 
 
 
  private:
 
    const Graph& G;
 
  };
 
 
 
  Graph& G;
 
  using NodeSet = std::set<NodeId>;
 
  NodeSet OptimallyReducibleNodes;
 
  NodeSet ConservativelyAllocatableNodes;
 
  NodeSet NotProvablyAllocatableNodes;
 
};
 
 
 
class PBQPRAGraph : public PBQP::Graph<RegAllocSolverImpl> {
 
private:
 
  using BaseT = PBQP::Graph<RegAllocSolverImpl>;
 
 
 
public:
 
  PBQPRAGraph(GraphMetadata Metadata) : BaseT(std::move(Metadata)) {}
 
 
 
  /// Dump this graph to dbgs().
 
  void dump() const;
 
 
 
  /// Dump this graph to an output stream.
 
  /// @param OS Output stream to print on.
 
  void dump(raw_ostream &OS) const;
 
 
 
  /// Print a representation of this graph in DOT format.
 
  /// @param OS Output stream to print on.
 
  void printDot(raw_ostream &OS) const;
 
};
 
 
 
inline Solution solve(PBQPRAGraph& G) {
 
  if (G.empty())
 
    return Solution();
 
  RegAllocSolverImpl RegAllocSolver(G);
 
  return RegAllocSolver.solve();
 
}
 
 
 
} // end namespace RegAlloc
 
} // end namespace PBQP
 
 
 
/// Create a PBQP register allocator instance.
 
FunctionPass *
 
createPBQPRegisterAllocator(char *customPassID = nullptr);
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_CODEGEN_REGALLOCPBQP_H