- //===- ReductionRules.h - Reduction Rules -----------------------*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- // 
- // Reduction Rules. 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_CODEGEN_PBQP_REDUCTIONRULES_H 
- #define LLVM_CODEGEN_PBQP_REDUCTIONRULES_H 
-   
- #include "Graph.h" 
- #include "Math.h" 
- #include "Solution.h" 
- #include <cassert> 
- #include <limits> 
-   
- namespace llvm { 
- namespace PBQP { 
-   
-   /// Reduce a node of degree one. 
-   /// 
-   /// Propagate costs from the given node, which must be of degree one, to its 
-   /// neighbor. Notify the problem domain. 
-   template <typename GraphT> 
-   void applyR1(GraphT &G, typename GraphT::NodeId NId) { 
-     using NodeId = typename GraphT::NodeId; 
-     using EdgeId = typename GraphT::EdgeId; 
-     using Vector = typename GraphT::Vector; 
-     using Matrix = typename GraphT::Matrix; 
-     using RawVector = typename GraphT::RawVector; 
-   
-     assert(G.getNodeDegree(NId) == 1 && 
-            "R1 applied to node with degree != 1."); 
-   
-     EdgeId EId = *G.adjEdgeIds(NId).begin(); 
-     NodeId MId = G.getEdgeOtherNodeId(EId, NId); 
-   
-     const Matrix &ECosts = G.getEdgeCosts(EId); 
-     const Vector &XCosts = G.getNodeCosts(NId); 
-     RawVector YCosts = G.getNodeCosts(MId); 
-   
-     // Duplicate a little to avoid transposing matrices. 
-     if (NId == G.getEdgeNode1Id(EId)) { 
-       for (unsigned j = 0; j < YCosts.getLength(); ++j) { 
-         PBQPNum Min = ECosts[0][j] + XCosts[0]; 
-         for (unsigned i = 1; i < XCosts.getLength(); ++i) { 
-           PBQPNum C = ECosts[i][j] + XCosts[i]; 
-           if (C < Min) 
-             Min = C; 
-         } 
-         YCosts[j] += Min; 
-       } 
-     } else { 
-       for (unsigned i = 0; i < YCosts.getLength(); ++i) { 
-         PBQPNum Min = ECosts[i][0] + XCosts[0]; 
-         for (unsigned j = 1; j < XCosts.getLength(); ++j) { 
-           PBQPNum C = ECosts[i][j] + XCosts[j]; 
-           if (C < Min) 
-             Min = C; 
-         } 
-         YCosts[i] += Min; 
-       } 
-     } 
-     G.setNodeCosts(MId, YCosts); 
-     G.disconnectEdge(EId, MId); 
-   } 
-   
-   template <typename GraphT> 
-   void applyR2(GraphT &G, typename GraphT::NodeId NId) { 
-     using NodeId = typename GraphT::NodeId; 
-     using EdgeId = typename GraphT::EdgeId; 
-     using Vector = typename GraphT::Vector; 
-     using Matrix = typename GraphT::Matrix; 
-     using RawMatrix = typename GraphT::RawMatrix; 
-   
-     assert(G.getNodeDegree(NId) == 2 && 
-            "R2 applied to node with degree != 2."); 
-   
-     const Vector &XCosts = G.getNodeCosts(NId); 
-   
-     typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin(); 
-     EdgeId YXEId = *AEItr, 
-            ZXEId = *(++AEItr); 
-   
-     NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId), 
-            ZNId = G.getEdgeOtherNodeId(ZXEId, NId); 
-   
-     bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId), 
-          FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId); 
-   
-     const Matrix *YXECosts = FlipEdge1 ? 
-       new Matrix(G.getEdgeCosts(YXEId).transpose()) : 
-       &G.getEdgeCosts(YXEId); 
-   
-     const Matrix *ZXECosts = FlipEdge2 ? 
-       new Matrix(G.getEdgeCosts(ZXEId).transpose()) : 
-       &G.getEdgeCosts(ZXEId); 
-   
-     unsigned XLen = XCosts.getLength(), 
-       YLen = YXECosts->getRows(), 
-       ZLen = ZXECosts->getRows(); 
-   
-     RawMatrix Delta(YLen, ZLen); 
-   
-     for (unsigned i = 0; i < YLen; ++i) { 
-       for (unsigned j = 0; j < ZLen; ++j) { 
-         PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0]; 
-         for (unsigned k = 1; k < XLen; ++k) { 
-           PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k]; 
-           if (C < Min) { 
-             Min = C; 
-           } 
-         } 
-         Delta[i][j] = Min; 
-       } 
-     } 
-   
-     if (FlipEdge1) 
-       delete YXECosts; 
-   
-     if (FlipEdge2) 
-       delete ZXECosts; 
-   
-     EdgeId YZEId = G.findEdge(YNId, ZNId); 
-   
-     if (YZEId == G.invalidEdgeId()) { 
-       YZEId = G.addEdge(YNId, ZNId, Delta); 
-     } else { 
-       const Matrix &YZECosts = G.getEdgeCosts(YZEId); 
-       if (YNId == G.getEdgeNode1Id(YZEId)) { 
-         G.updateEdgeCosts(YZEId, Delta + YZECosts); 
-       } else { 
-         G.updateEdgeCosts(YZEId, Delta.transpose() + YZECosts); 
-       } 
-     } 
-   
-     G.disconnectEdge(YXEId, YNId); 
-     G.disconnectEdge(ZXEId, ZNId); 
-   
-     // TODO: Try to normalize newly added/modified edge. 
-   } 
-   
- #ifndef NDEBUG 
-   // Does this Cost vector have any register options ? 
-   template <typename VectorT> 
-   bool hasRegisterOptions(const VectorT &V) { 
-     unsigned VL = V.getLength(); 
-   
-     // An empty or spill only cost vector does not provide any register option. 
-     if (VL <= 1) 
-       return false; 
-   
-     // If there are registers in the cost vector, but all of them have infinite 
-     // costs, then ... there is no available register. 
-     for (unsigned i = 1; i < VL; ++i) 
-       if (V[i] != std::numeric_limits<PBQP::PBQPNum>::infinity()) 
-         return true; 
-   
-     return false; 
-   } 
- #endif 
-   
-   // Find a solution to a fully reduced graph by backpropagation. 
-   // 
-   // Given a graph and a reduction order, pop each node from the reduction 
-   // order and greedily compute a minimum solution based on the node costs, and 
-   // the dependent costs due to previously solved nodes. 
-   // 
-   // Note - This does not return the graph to its original (pre-reduction) 
-   //        state: the existing solvers destructively alter the node and edge 
-   //        costs. Given that, the backpropagate function doesn't attempt to 
-   //        replace the edges either, but leaves the graph in its reduced 
-   //        state. 
-   template <typename GraphT, typename StackT> 
-   Solution backpropagate(GraphT& G, StackT stack) { 
-     using NodeId = GraphBase::NodeId; 
-     using Matrix = typename GraphT::Matrix; 
-     using RawVector = typename GraphT::RawVector; 
-   
-     Solution s; 
-   
-     while (!stack.empty()) { 
-       NodeId NId = stack.back(); 
-       stack.pop_back(); 
-   
-       RawVector v = G.getNodeCosts(NId); 
-   
- #if LLVM_ENABLE_ABI_BREAKING_CHECKS 
-       // Although a conservatively allocatable node can be allocated to a register, 
-       // spilling it may provide a lower cost solution. Assert here that spilling 
-       // is done by choice, not because there were no register available. 
-       if (G.getNodeMetadata(NId).wasConservativelyAllocatable()) 
-         assert(hasRegisterOptions(v) && "A conservatively allocatable node " 
-                                         "must have available register options"); 
- #endif 
-   
-       for (auto EId : G.adjEdgeIds(NId)) { 
-         const Matrix& edgeCosts = G.getEdgeCosts(EId); 
-         if (NId == G.getEdgeNode1Id(EId)) { 
-           NodeId mId = G.getEdgeNode2Id(EId); 
-           v += edgeCosts.getColAsVector(s.getSelection(mId)); 
-         } else { 
-           NodeId mId = G.getEdgeNode1Id(EId); 
-           v += edgeCosts.getRowAsVector(s.getSelection(mId)); 
-         } 
-       } 
-   
-       s.setSelection(NId, v.minIndex()); 
-     } 
-   
-     return s; 
-   } 
-   
- } // end namespace PBQP 
- } // end namespace llvm 
-   
- #endif // LLVM_CODEGEN_PBQP_REDUCTIONRULES_H 
-