//===- LexicalScopes.cpp - Collecting lexical scope info --------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file implements LexicalScopes analysis.
 
//
 
// This pass collects lexical scope information and maps machine instructions
 
// to respective lexical scopes.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CODEGEN_LEXICALSCOPES_H
 
#define LLVM_CODEGEN_LEXICALSCOPES_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/SmallPtrSet.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/IR/DebugInfoMetadata.h"
 
#include <cassert>
 
#include <unordered_map>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
class MachineBasicBlock;
 
class MachineFunction;
 
class MachineInstr;
 
class MDNode;
 
 
 
//===----------------------------------------------------------------------===//
 
/// InsnRange - This is used to track range of instructions with identical
 
/// lexical scope.
 
///
 
using InsnRange = std::pair<const MachineInstr *, const MachineInstr *>;
 
 
 
//===----------------------------------------------------------------------===//
 
/// LexicalScope - This class is used to track scope information.
 
///
 
class LexicalScope {
 
public:
 
  LexicalScope(LexicalScope *P, const DILocalScope *D, const DILocation *I,
 
               bool A)
 
      : Parent(P), Desc(D), InlinedAtLocation(I), AbstractScope(A) {
 
    assert(D);
 
    assert(D->getSubprogram()->getUnit()->getEmissionKind() !=
 
           DICompileUnit::NoDebug &&
 
           "Don't build lexical scopes for non-debug locations");
 
    assert(D->isResolved() && "Expected resolved node");
 
    assert((!I || I->isResolved()) && "Expected resolved node");
 
    if (Parent)
 
      Parent->addChild(this);
 
  }
 
 
 
  // Accessors.
 
  LexicalScope *getParent() const { return Parent; }
 
  const MDNode *getDesc() const { return Desc; }
 
  const DILocation *getInlinedAt() const { return InlinedAtLocation; }
 
  const DILocalScope *getScopeNode() const { return Desc; }
 
  bool isAbstractScope() const { return AbstractScope; }
 
  SmallVectorImpl<LexicalScope *> &getChildren() { return Children; }
 
  SmallVectorImpl<InsnRange> &getRanges() { return Ranges; }
 
 
 
  /// addChild - Add a child scope.
 
  void addChild(LexicalScope *S) { Children.push_back(S); }
 
 
 
  /// openInsnRange - This scope covers instruction range starting from MI.
 
  void openInsnRange(const MachineInstr *MI) {
 
    if (!FirstInsn)
 
      FirstInsn = MI;
 
 
 
    if (Parent)
 
      Parent->openInsnRange(MI);
 
  }
 
 
 
  /// extendInsnRange - Extend the current instruction range covered by
 
  /// this scope.
 
  void extendInsnRange(const MachineInstr *MI) {
 
    assert(FirstInsn && "MI Range is not open!");
 
    LastInsn = MI;
 
    if (Parent)
 
      Parent->extendInsnRange(MI);
 
  }
 
 
 
  /// closeInsnRange - Create a range based on FirstInsn and LastInsn collected
 
  /// until now. This is used when a new scope is encountered while walking
 
  /// machine instructions.
 
  void closeInsnRange(LexicalScope *NewScope = nullptr) {
 
    assert(LastInsn && "Last insn missing!");
 
    Ranges.push_back(InsnRange(FirstInsn, LastInsn));
 
    FirstInsn = nullptr;
 
    LastInsn = nullptr;
 
    // If Parent dominates NewScope then do not close Parent's instruction
 
    // range.
 
    if (Parent && (!NewScope || !Parent->dominates(NewScope)))
 
      Parent->closeInsnRange(NewScope);
 
  }
 
 
 
  /// dominates - Return true if current scope dominates given lexical scope.
 
  bool dominates(const LexicalScope *S) const {
 
    if (S == this)
 
      return true;
 
    if (DFSIn < S->getDFSIn() && DFSOut > S->getDFSOut())
 
      return true;
 
    return false;
 
  }
 
 
 
  // Depth First Search support to walk and manipulate LexicalScope hierarchy.
 
  unsigned getDFSOut() const { return DFSOut; }
 
  void setDFSOut(unsigned O) { DFSOut = O; }
 
  unsigned getDFSIn() const { return DFSIn; }
 
  void setDFSIn(unsigned I) { DFSIn = I; }
 
 
 
  /// dump - print lexical scope.
 
  void dump(unsigned Indent = 0) const;
 
 
 
private:
 
  LexicalScope *Parent;                        // Parent to this scope.
 
  const DILocalScope *Desc;                    // Debug info descriptor.
 
  const DILocation *InlinedAtLocation;         // Location at which this
 
                                               // scope is inlined.
 
  bool AbstractScope;                          // Abstract Scope
 
  SmallVector<LexicalScope *, 4> Children;     // Scopes defined in scope.
 
                                               // Contents not owned.
 
  SmallVector<InsnRange, 4> Ranges;
 
 
 
  const MachineInstr *LastInsn = nullptr;  // Last instruction of this scope.
 
  const MachineInstr *FirstInsn = nullptr; // First instruction of this scope.
 
  unsigned DFSIn = 0; // In & Out Depth use to determine scope nesting.
 
  unsigned DFSOut = 0;
 
};
 
 
 
//===----------------------------------------------------------------------===//
 
/// LexicalScopes -  This class provides interface to collect and use lexical
 
/// scoping information from machine instruction.
 
///
 
class LexicalScopes {
 
public:
 
  LexicalScopes() = default;
 
 
 
  /// initialize - Scan machine function and constuct lexical scope nest, resets
 
  /// the instance if necessary.
 
  void initialize(const MachineFunction &);
 
 
 
  /// releaseMemory - release memory.
 
  void reset();
 
 
 
  /// empty - Return true if there is any lexical scope information available.
 
  bool empty() { return CurrentFnLexicalScope == nullptr; }
 
 
 
  /// getCurrentFunctionScope - Return lexical scope for the current function.
 
  LexicalScope *getCurrentFunctionScope() const {
 
    return CurrentFnLexicalScope;
 
  }
 
 
 
  /// getMachineBasicBlocks - Populate given set using machine basic blocks
 
  /// which have machine instructions that belong to lexical scope identified by
 
  /// DebugLoc.
 
  void getMachineBasicBlocks(const DILocation *DL,
 
                             SmallPtrSetImpl<const MachineBasicBlock *> &MBBs);
 
 
 
  /// Return true if DebugLoc's lexical scope dominates at least one machine
 
  /// instruction's lexical scope in a given machine basic block.
 
  bool dominates(const DILocation *DL, MachineBasicBlock *MBB);
 
 
 
  /// findLexicalScope - Find lexical scope, either regular or inlined, for the
 
  /// given DebugLoc. Return NULL if not found.
 
  LexicalScope *findLexicalScope(const DILocation *DL);
 
 
 
  /// getAbstractScopesList - Return a reference to list of abstract scopes.
 
  ArrayRef<LexicalScope *> getAbstractScopesList() const {
 
    return AbstractScopesList;
 
  }
 
 
 
  /// findAbstractScope - Find an abstract scope or return null.
 
  LexicalScope *findAbstractScope(const DILocalScope *N) {
 
    auto I = AbstractScopeMap.find(N);
 
    return I != AbstractScopeMap.end() ? &I->second : nullptr;
 
  }
 
 
 
  /// findInlinedScope - Find an inlined scope for the given scope/inlined-at.
 
  LexicalScope *findInlinedScope(const DILocalScope *N, const DILocation *IA) {
 
    auto I = InlinedLexicalScopeMap.find(std::make_pair(N, IA));
 
    return I != InlinedLexicalScopeMap.end() ? &I->second : nullptr;
 
  }
 
 
 
  /// findLexicalScope - Find regular lexical scope or return null.
 
  LexicalScope *findLexicalScope(const DILocalScope *N) {
 
    auto I = LexicalScopeMap.find(N);
 
    return I != LexicalScopeMap.end() ? &I->second : nullptr;
 
  }
 
 
 
  /// getOrCreateAbstractScope - Find or create an abstract lexical scope.
 
  LexicalScope *getOrCreateAbstractScope(const DILocalScope *Scope);
 
 
 
private:
 
  /// getOrCreateLexicalScope - Find lexical scope for the given Scope/IA. If
 
  /// not available then create new lexical scope.
 
  LexicalScope *getOrCreateLexicalScope(const DILocalScope *Scope,
 
                                        const DILocation *IA = nullptr);
 
  LexicalScope *getOrCreateLexicalScope(const DILocation *DL) {
 
    return DL ? getOrCreateLexicalScope(DL->getScope(), DL->getInlinedAt())
 
              : nullptr;
 
  }
 
 
 
  /// getOrCreateRegularScope - Find or create a regular lexical scope.
 
  LexicalScope *getOrCreateRegularScope(const DILocalScope *Scope);
 
 
 
  /// getOrCreateInlinedScope - Find or create an inlined lexical scope.
 
  LexicalScope *getOrCreateInlinedScope(const DILocalScope *Scope,
 
                                        const DILocation *InlinedAt);
 
 
 
  /// extractLexicalScopes - Extract instruction ranges for each lexical scopes
 
  /// for the given machine function.
 
  void extractLexicalScopes(SmallVectorImpl<InsnRange> &MIRanges,
 
                            DenseMap<const MachineInstr *, LexicalScope *> &M);
 
  void constructScopeNest(LexicalScope *Scope);
 
  void
 
  assignInstructionRanges(SmallVectorImpl<InsnRange> &MIRanges,
 
                          DenseMap<const MachineInstr *, LexicalScope *> &M);
 
 
 
  const MachineFunction *MF = nullptr;
 
 
 
  /// LexicalScopeMap - Tracks the scopes in the current function.
 
  // Use an unordered_map to ensure value pointer validity over insertion.
 
  std::unordered_map<const DILocalScope *, LexicalScope> LexicalScopeMap;
 
 
 
  /// InlinedLexicalScopeMap - Tracks inlined function scopes in current
 
  /// function.
 
  std::unordered_map<std::pair<const DILocalScope *, const DILocation *>,
 
                     LexicalScope,
 
                     pair_hash<const DILocalScope *, const DILocation *>>
 
      InlinedLexicalScopeMap;
 
 
 
  /// AbstractScopeMap - These scopes are  not included LexicalScopeMap.
 
  // Use an unordered_map to ensure value pointer validity over insertion.
 
  std::unordered_map<const DILocalScope *, LexicalScope> AbstractScopeMap;
 
 
 
  /// AbstractScopesList - Tracks abstract scopes constructed while processing
 
  /// a function.
 
  SmallVector<LexicalScope *, 4> AbstractScopesList;
 
 
 
  /// CurrentFnLexicalScope - Top level scope for the current function.
 
  ///
 
  LexicalScope *CurrentFnLexicalScope = nullptr;
 
 
 
  /// Map a location to the set of basic blocks it dominates. This is a cache
 
  /// for \ref LexicalScopes::getMachineBasicBlocks results.
 
  using BlockSetT = SmallPtrSet<const MachineBasicBlock *, 4>;
 
  DenseMap<const DILocation *, std::unique_ptr<BlockSetT>> DominatedBlocks;
 
};
 
 
 
} // end namespace llvm
 
 
 
#endif // LLVM_CODEGEN_LEXICALSCOPES_H