//===- BitstreamReader.h - Low-level bitstream reader interface -*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This header defines the BitstreamReader class.  This class can be used to
 
// read an arbitrary bitstream, regardless of its contents.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_BITSTREAM_BITSTREAMREADER_H
 
#define LLVM_BITSTREAM_BITSTREAMREADER_H
 
 
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/Bitstream/BitCodes.h"
 
#include "llvm/Support/Endian.h"
 
#include "llvm/Support/Error.h"
 
#include "llvm/Support/MemoryBufferRef.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <climits>
 
#include <cstddef>
 
#include <cstdint>
 
#include <memory>
 
#include <optional>
 
#include <string>
 
#include <utility>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
/// This class maintains the abbreviations read from a block info block.
 
class BitstreamBlockInfo {
 
public:
 
  /// This contains information emitted to BLOCKINFO_BLOCK blocks. These
 
  /// describe abbreviations that all blocks of the specified ID inherit.
 
  struct BlockInfo {
 
    unsigned BlockID = 0;
 
    std::vector<std::shared_ptr<BitCodeAbbrev>> Abbrevs;
 
    std::string Name;
 
    std::vector<std::pair<unsigned, std::string>> RecordNames;
 
  };
 
 
 
private:
 
  std::vector<BlockInfo> BlockInfoRecords;
 
 
 
public:
 
  /// If there is block info for the specified ID, return it, otherwise return
 
  /// null.
 
  const BlockInfo *getBlockInfo(unsigned BlockID) const {
 
    // Common case, the most recent entry matches BlockID.
 
    if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID)
 
      return &BlockInfoRecords.back();
 
 
 
    for (const BlockInfo &BI : BlockInfoRecords)
 
      if (BI.BlockID == BlockID)
 
        return &BI;
 
    return nullptr;
 
  }
 
 
 
  BlockInfo &getOrCreateBlockInfo(unsigned BlockID) {
 
    if (const BlockInfo *BI = getBlockInfo(BlockID))
 
      return *const_cast<BlockInfo*>(BI);
 
 
 
    // Otherwise, add a new record.
 
    BlockInfoRecords.emplace_back();
 
    BlockInfoRecords.back().BlockID = BlockID;
 
    return BlockInfoRecords.back();
 
  }
 
};
 
 
 
/// This represents a position within a bitstream. There may be multiple
 
/// independent cursors reading within one bitstream, each maintaining their
 
/// own local state.
 
class SimpleBitstreamCursor {
 
  ArrayRef<uint8_t> BitcodeBytes;
 
  size_t NextChar = 0;
 
 
 
public:
 
  /// This is the current data we have pulled from the stream but have not
 
  /// returned to the client. This is specifically and intentionally defined to
 
  /// follow the word size of the host machine for efficiency. We use word_t in
 
  /// places that are aware of this to make it perfectly explicit what is going
 
  /// on.
 
  using word_t = size_t;
 
 
 
private:
 
  word_t CurWord = 0;
 
 
 
  /// This is the number of bits in CurWord that are valid. This is always from
 
  /// [0...bits_of(size_t)-1] inclusive.
 
  unsigned BitsInCurWord = 0;
 
 
 
public:
 
  SimpleBitstreamCursor() = default;
 
  explicit SimpleBitstreamCursor(ArrayRef<uint8_t> BitcodeBytes)
 
      : BitcodeBytes(BitcodeBytes) {}
 
  explicit SimpleBitstreamCursor(StringRef BitcodeBytes)
 
      : BitcodeBytes(arrayRefFromStringRef(BitcodeBytes)) {}
 
  explicit SimpleBitstreamCursor(MemoryBufferRef BitcodeBytes)
 
      : SimpleBitstreamCursor(BitcodeBytes.getBuffer()) {}
 
 
 
  bool canSkipToPos(size_t pos) const {
 
    // pos can be skipped to if it is a valid address or one byte past the end.
 
    return pos <= BitcodeBytes.size();
 
  }
 
 
 
  bool AtEndOfStream() {
 
    return BitsInCurWord == 0 && BitcodeBytes.size() <= NextChar;
 
  }
 
 
 
  /// Return the bit # of the bit we are reading.
 
  uint64_t GetCurrentBitNo() const {
 
    return NextChar*CHAR_BIT - BitsInCurWord;
 
  }
 
 
 
  // Return the byte # of the current bit.
 
  uint64_t getCurrentByteNo() const { return GetCurrentBitNo() / 8; }
 
 
 
  ArrayRef<uint8_t> getBitcodeBytes() const { return BitcodeBytes; }
 
 
 
  /// Reset the stream to the specified bit number.
 
  Error JumpToBit(uint64_t BitNo) {
 
    size_t ByteNo = size_t(BitNo/8) & ~(sizeof(word_t)-1);
 
    unsigned WordBitNo = unsigned(BitNo & (sizeof(word_t)*8-1));
 
    assert(canSkipToPos(ByteNo) && "Invalid location");
 
 
 
    // Move the cursor to the right word.
 
    NextChar = ByteNo;
 
    BitsInCurWord = 0;
 
 
 
    // Skip over any bits that are already consumed.
 
    if (WordBitNo) {
 
      if (Expected<word_t> Res = Read(WordBitNo))
 
        return Error::success();
 
      else
 
        return Res.takeError();
 
    }
 
 
 
    return Error::success();
 
  }
 
 
 
  /// Get a pointer into the bitstream at the specified byte offset.
 
  const uint8_t *getPointerToByte(uint64_t ByteNo, uint64_t NumBytes) {
 
    return BitcodeBytes.data() + ByteNo;
 
  }
 
 
 
  /// Get a pointer into the bitstream at the specified bit offset.
 
  ///
 
  /// The bit offset must be on a byte boundary.
 
  const uint8_t *getPointerToBit(uint64_t BitNo, uint64_t NumBytes) {
 
    assert(!(BitNo % 8) && "Expected bit on byte boundary");
 
    return getPointerToByte(BitNo / 8, NumBytes);
 
  }
 
 
 
  Error fillCurWord() {
 
    if (NextChar >= BitcodeBytes.size())
 
      return createStringError(std::errc::io_error,
 
                               "Unexpected end of file reading %u of %u bytes",
 
                               NextChar, BitcodeBytes.size());
 
 
 
    // Read the next word from the stream.
 
    const uint8_t *NextCharPtr = BitcodeBytes.data() + NextChar;
 
    unsigned BytesRead;
 
    if (BitcodeBytes.size() >= NextChar + sizeof(word_t)) {
 
      BytesRead = sizeof(word_t);
 
      CurWord =
 
          support::endian::read<word_t, support::little, support::unaligned>(
 
              NextCharPtr);
 
    } else {
 
      // Short read.
 
      BytesRead = BitcodeBytes.size() - NextChar;
 
      CurWord = 0;
 
      for (unsigned B = 0; B != BytesRead; ++B)
 
        CurWord |= uint64_t(NextCharPtr[B]) << (B * 8);
 
    }
 
    NextChar += BytesRead;
 
    BitsInCurWord = BytesRead * 8;
 
    return Error::success();
 
  }
 
 
 
  Expected<word_t> Read(unsigned NumBits) {
 
    static const unsigned BitsInWord = sizeof(word_t) * 8;
 
 
 
    assert(NumBits && NumBits <= BitsInWord &&
 
           "Cannot return zero or more than BitsInWord bits!");
 
 
 
    static const unsigned Mask = sizeof(word_t) > 4 ? 0x3f : 0x1f;
 
 
 
    // If the field is fully contained by CurWord, return it quickly.
 
    if (BitsInCurWord >= NumBits) {
 
      word_t R = CurWord & (~word_t(0) >> (BitsInWord - NumBits));
 
 
 
      // Use a mask to avoid undefined behavior.
 
      CurWord >>= (NumBits & Mask);
 
 
 
      BitsInCurWord -= NumBits;
 
      return R;
 
    }
 
 
 
    word_t R = BitsInCurWord ? CurWord : 0;
 
    unsigned BitsLeft = NumBits - BitsInCurWord;
 
 
 
    if (Error fillResult = fillCurWord())
 
      return std::move(fillResult);
 
 
 
    // If we run out of data, abort.
 
    if (BitsLeft > BitsInCurWord)
 
      return createStringError(std::errc::io_error,
 
                               "Unexpected end of file reading %u of %u bits",
 
                               BitsInCurWord, BitsLeft);
 
 
 
    word_t R2 = CurWord & (~word_t(0) >> (BitsInWord - BitsLeft));
 
 
 
    // Use a mask to avoid undefined behavior.
 
    CurWord >>= (BitsLeft & Mask);
 
 
 
    BitsInCurWord -= BitsLeft;
 
 
 
    R |= R2 << (NumBits - BitsLeft);
 
 
 
    return R;
 
  }
 
 
 
  Expected<uint32_t> ReadVBR(const unsigned NumBits) {
 
    Expected<unsigned> MaybeRead = Read(NumBits);
 
    if (!MaybeRead)
 
      return MaybeRead;
 
    uint32_t Piece = MaybeRead.get();
 
 
 
    assert(NumBits <= 32 && NumBits >= 1 && "Invalid NumBits value");
 
    const uint32_t MaskBitOrder = (NumBits - 1);
 
    const uint32_t Mask = 1UL << MaskBitOrder;
 
 
 
    if ((Piece & Mask) == 0)
 
      return Piece;
 
 
 
    uint32_t Result = 0;
 
    unsigned NextBit = 0;
 
    while (true) {
 
      Result |= (Piece & (Mask - 1)) << NextBit;
 
 
 
      if ((Piece & Mask) == 0)
 
        return Result;
 
 
 
      NextBit += NumBits-1;
 
      if (NextBit >= 32)
 
        return createStringError(std::errc::illegal_byte_sequence,
 
                                 "Unterminated VBR");
 
 
 
      MaybeRead = Read(NumBits);
 
      if (!MaybeRead)
 
        return MaybeRead;
 
      Piece = MaybeRead.get();
 
    }
 
  }
 
 
 
  // Read a VBR that may have a value up to 64-bits in size. The chunk size of
 
  // the VBR must still be <= 32 bits though.
 
  Expected<uint64_t> ReadVBR64(const unsigned NumBits) {
 
    Expected<uint64_t> MaybeRead = Read(NumBits);
 
    if (!MaybeRead)
 
      return MaybeRead;
 
    uint32_t Piece = MaybeRead.get();
 
    assert(NumBits <= 32 && NumBits >= 1 && "Invalid NumBits value");
 
    const uint32_t MaskBitOrder = (NumBits - 1);
 
    const uint32_t Mask = 1UL << MaskBitOrder;
 
 
 
    if ((Piece & Mask) == 0)
 
      return uint64_t(Piece);
 
 
 
    uint64_t Result = 0;
 
    unsigned NextBit = 0;
 
    while (true) {
 
      Result |= uint64_t(Piece & (Mask - 1)) << NextBit;
 
 
 
      if ((Piece & Mask) == 0)
 
        return Result;
 
 
 
      NextBit += NumBits-1;
 
      if (NextBit >= 64)
 
        return createStringError(std::errc::illegal_byte_sequence,
 
                                 "Unterminated VBR");
 
 
 
      MaybeRead = Read(NumBits);
 
      if (!MaybeRead)
 
        return MaybeRead;
 
      Piece = MaybeRead.get();
 
    }
 
  }
 
 
 
  void SkipToFourByteBoundary() {
 
    // If word_t is 64-bits and if we've read less than 32 bits, just dump
 
    // the bits we have up to the next 32-bit boundary.
 
    if (sizeof(word_t) > 4 &&
 
        BitsInCurWord >= 32) {
 
      CurWord >>= BitsInCurWord-32;
 
      BitsInCurWord = 32;
 
      return;
 
    }
 
 
 
    BitsInCurWord = 0;
 
  }
 
 
 
  /// Return the size of the stream in bytes.
 
  size_t SizeInBytes() const { return BitcodeBytes.size(); }
 
 
 
  /// Skip to the end of the file.
 
  void skipToEnd() { NextChar = BitcodeBytes.size(); }
 
 
 
  /// Check whether a reservation of Size elements is plausible.
 
  bool isSizePlausible(size_t Size) const {
 
    // Don't allow reserving more elements than the number of bits, assuming
 
    // at least one bit is needed to encode an element.
 
    return Size < BitcodeBytes.size() * 8;
 
  }
 
};
 
 
 
/// When advancing through a bitstream cursor, each advance can discover a few
 
/// different kinds of entries:
 
struct BitstreamEntry {
 
  enum {
 
    Error,    // Malformed bitcode was found.
 
    EndBlock, // We've reached the end of the current block, (or the end of the
 
              // file, which is treated like a series of EndBlock records.
 
    SubBlock, // This is the start of a new subblock of a specific ID.
 
    Record    // This is a record with a specific AbbrevID.
 
  } Kind;
 
 
 
  unsigned ID;
 
 
 
  static BitstreamEntry getError() {
 
    BitstreamEntry E; E.Kind = Error; return E;
 
  }
 
 
 
  static BitstreamEntry getEndBlock() {
 
    BitstreamEntry E; E.Kind = EndBlock; return E;
 
  }
 
 
 
  static BitstreamEntry getSubBlock(unsigned ID) {
 
    BitstreamEntry E; E.Kind = SubBlock; E.ID = ID; return E;
 
  }
 
 
 
  static BitstreamEntry getRecord(unsigned AbbrevID) {
 
    BitstreamEntry E; E.Kind = Record; E.ID = AbbrevID; return E;
 
  }
 
};
 
 
 
/// This represents a position within a bitcode file, implemented on top of a
 
/// SimpleBitstreamCursor.
 
///
 
/// Unlike iterators, BitstreamCursors are heavy-weight objects that should not
 
/// be passed by value.
 
class BitstreamCursor : SimpleBitstreamCursor {
 
  // This is the declared size of code values used for the current block, in
 
  // bits.
 
  unsigned CurCodeSize = 2;
 
 
 
  /// Abbrevs installed at in this block.
 
  std::vector<std::shared_ptr<BitCodeAbbrev>> CurAbbrevs;
 
 
 
  struct Block {
 
    unsigned PrevCodeSize;
 
    std::vector<std::shared_ptr<BitCodeAbbrev>> PrevAbbrevs;
 
 
 
    explicit Block(unsigned PCS) : PrevCodeSize(PCS) {}
 
  };
 
 
 
  /// This tracks the codesize of parent blocks.
 
  SmallVector<Block, 8> BlockScope;
 
 
 
  BitstreamBlockInfo *BlockInfo = nullptr;
 
 
 
public:
 
  static const size_t MaxChunkSize = 32;
 
 
 
  BitstreamCursor() = default;
 
  explicit BitstreamCursor(ArrayRef<uint8_t> BitcodeBytes)
 
      : SimpleBitstreamCursor(BitcodeBytes) {}
 
  explicit BitstreamCursor(StringRef BitcodeBytes)
 
      : SimpleBitstreamCursor(BitcodeBytes) {}
 
  explicit BitstreamCursor(MemoryBufferRef BitcodeBytes)
 
      : SimpleBitstreamCursor(BitcodeBytes) {}
 
 
 
  using SimpleBitstreamCursor::AtEndOfStream;
 
  using SimpleBitstreamCursor::canSkipToPos;
 
  using SimpleBitstreamCursor::fillCurWord;
 
  using SimpleBitstreamCursor::getBitcodeBytes;
 
  using SimpleBitstreamCursor::GetCurrentBitNo;
 
  using SimpleBitstreamCursor::getCurrentByteNo;
 
  using SimpleBitstreamCursor::getPointerToByte;
 
  using SimpleBitstreamCursor::JumpToBit;
 
  using SimpleBitstreamCursor::Read;
 
  using SimpleBitstreamCursor::ReadVBR;
 
  using SimpleBitstreamCursor::ReadVBR64;
 
  using SimpleBitstreamCursor::SizeInBytes;
 
  using SimpleBitstreamCursor::skipToEnd;
 
 
 
  /// Return the number of bits used to encode an abbrev #.
 
  unsigned getAbbrevIDWidth() const { return CurCodeSize; }
 
 
 
  /// Flags that modify the behavior of advance().
 
  enum {
 
    /// If this flag is used, the advance() method does not automatically pop
 
    /// the block scope when the end of a block is reached.
 
    AF_DontPopBlockAtEnd = 1,
 
 
 
    /// If this flag is used, abbrev entries are returned just like normal
 
    /// records.
 
    AF_DontAutoprocessAbbrevs = 2
 
  };
 
 
 
  /// Advance the current bitstream, returning the next entry in the stream.
 
  Expected<BitstreamEntry> advance(unsigned Flags = 0) {
 
    while (true) {
 
      if (AtEndOfStream())
 
        return BitstreamEntry::getError();
 
 
 
      Expected<unsigned> MaybeCode = ReadCode();
 
      if (!MaybeCode)
 
        return MaybeCode.takeError();
 
      unsigned Code = MaybeCode.get();
 
 
 
      if (Code == bitc::END_BLOCK) {
 
        // Pop the end of the block unless Flags tells us not to.
 
        if (!(Flags & AF_DontPopBlockAtEnd) && ReadBlockEnd())
 
          return BitstreamEntry::getError();
 
        return BitstreamEntry::getEndBlock();
 
      }
 
 
 
      if (Code == bitc::ENTER_SUBBLOCK) {
 
        if (Expected<unsigned> MaybeSubBlock = ReadSubBlockID())
 
          return BitstreamEntry::getSubBlock(MaybeSubBlock.get());
 
        else
 
          return MaybeSubBlock.takeError();
 
      }
 
 
 
      if (Code == bitc::DEFINE_ABBREV &&
 
          !(Flags & AF_DontAutoprocessAbbrevs)) {
 
        // We read and accumulate abbrev's, the client can't do anything with
 
        // them anyway.
 
        if (Error Err = ReadAbbrevRecord())
 
          return std::move(Err);
 
        continue;
 
      }
 
 
 
      return BitstreamEntry::getRecord(Code);
 
    }
 
  }
 
 
 
  /// This is a convenience function for clients that don't expect any
 
  /// subblocks. This just skips over them automatically.
 
  Expected<BitstreamEntry> advanceSkippingSubblocks(unsigned Flags = 0) {
 
    while (true) {
 
      // If we found a normal entry, return it.
 
      Expected<BitstreamEntry> MaybeEntry = advance(Flags);
 
      if (!MaybeEntry)
 
        return MaybeEntry;
 
      BitstreamEntry Entry = MaybeEntry.get();
 
 
 
      if (Entry.Kind != BitstreamEntry::SubBlock)
 
        return Entry;
 
 
 
      // If we found a sub-block, just skip over it and check the next entry.
 
      if (Error Err = SkipBlock())
 
        return std::move(Err);
 
    }
 
  }
 
 
 
  Expected<unsigned> ReadCode() { return Read(CurCodeSize); }
 
 
 
  // Block header:
 
  //    [ENTER_SUBBLOCK, blockid, newcodelen, <align4bytes>, blocklen]
 
 
 
  /// Having read the ENTER_SUBBLOCK code, read the BlockID for the block.
 
  Expected<unsigned> ReadSubBlockID() { return ReadVBR(bitc::BlockIDWidth); }
 
 
 
  /// Having read the ENTER_SUBBLOCK abbrevid and a BlockID, skip over the body
 
  /// of this block.
 
  Error SkipBlock() {
 
    // Read and ignore the codelen value.
 
    if (Expected<uint32_t> Res = ReadVBR(bitc::CodeLenWidth))
 
      ; // Since we are skipping this block, we don't care what code widths are
 
        // used inside of it.
 
    else
 
      return Res.takeError();
 
 
 
    SkipToFourByteBoundary();
 
    Expected<unsigned> MaybeNum = Read(bitc::BlockSizeWidth);
 
    if (!MaybeNum)
 
      return MaybeNum.takeError();
 
    size_t NumFourBytes = MaybeNum.get();
 
 
 
    // Check that the block wasn't partially defined, and that the offset isn't
 
    // bogus.
 
    size_t SkipTo = GetCurrentBitNo() + NumFourBytes * 4 * 8;
 
    if (AtEndOfStream())
 
      return createStringError(std::errc::illegal_byte_sequence,
 
                               "can't skip block: already at end of stream");
 
    if (!canSkipToPos(SkipTo / 8))
 
      return createStringError(std::errc::illegal_byte_sequence,
 
                               "can't skip to bit %zu from %" PRIu64, SkipTo,
 
                               GetCurrentBitNo());
 
 
 
    if (Error Res = JumpToBit(SkipTo))
 
      return Res;
 
 
 
    return Error::success();
 
  }
 
 
 
  /// Having read the ENTER_SUBBLOCK abbrevid, and enter the block.
 
  Error EnterSubBlock(unsigned BlockID, unsigned *NumWordsP = nullptr);
 
 
 
  bool ReadBlockEnd() {
 
    if (BlockScope.empty()) return true;
 
 
 
    // Block tail:
 
    //    [END_BLOCK, <align4bytes>]
 
    SkipToFourByteBoundary();
 
 
 
    popBlockScope();
 
    return false;
 
  }
 
 
 
private:
 
  void popBlockScope() {
 
    CurCodeSize = BlockScope.back().PrevCodeSize;
 
 
 
    CurAbbrevs = std::move(BlockScope.back().PrevAbbrevs);
 
    BlockScope.pop_back();
 
  }
 
 
 
  //===--------------------------------------------------------------------===//
 
  // Record Processing
 
  //===--------------------------------------------------------------------===//
 
 
 
public:
 
  /// Return the abbreviation for the specified AbbrevId.
 
  Expected<const BitCodeAbbrev *> getAbbrev(unsigned AbbrevID) {
 
    unsigned AbbrevNo = AbbrevID - bitc::FIRST_APPLICATION_ABBREV;
 
    if (AbbrevNo >= CurAbbrevs.size())
 
      return createStringError(
 
          std::errc::illegal_byte_sequence, "Invalid abbrev number");
 
    return CurAbbrevs[AbbrevNo].get();
 
  }
 
 
 
  /// Read the current record and discard it, returning the code for the record.
 
  Expected<unsigned> skipRecord(unsigned AbbrevID);
 
 
 
  Expected<unsigned> readRecord(unsigned AbbrevID,
 
                                SmallVectorImpl<uint64_t> &Vals,
 
                                StringRef *Blob = nullptr);
 
 
 
  //===--------------------------------------------------------------------===//
 
  // Abbrev Processing
 
  //===--------------------------------------------------------------------===//
 
  Error ReadAbbrevRecord();
 
 
 
  /// Read and return a block info block from the bitstream. If an error was
 
  /// encountered, return std::nullopt.
 
  ///
 
  /// \param ReadBlockInfoNames Whether to read block/record name information in
 
  /// the BlockInfo block. Only llvm-bcanalyzer uses this.
 
  Expected<std::optional<BitstreamBlockInfo>>
 
  ReadBlockInfoBlock(bool ReadBlockInfoNames = false);
 
 
 
  /// Set the block info to be used by this BitstreamCursor to interpret
 
  /// abbreviated records.
 
  void setBlockInfo(BitstreamBlockInfo *BI) { BlockInfo = BI; }
 
};
 
 
 
} // end llvm namespace
 
 
 
#endif // LLVM_BITSTREAM_BITSTREAMREADER_H