//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
/// \file
 
/// This file provides helpers for the implementation of
 
/// a TargetTransformInfo-conforming class.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
 
#define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H
 
 
 
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 
#include "llvm/Analysis/TargetTransformInfo.h"
 
#include "llvm/Analysis/VectorUtils.h"
 
#include "llvm/IR/DataLayout.h"
 
#include "llvm/IR/GetElementPtrTypeIterator.h"
 
#include "llvm/IR/IntrinsicInst.h"
 
#include "llvm/IR/Operator.h"
 
#include "llvm/IR/PatternMatch.h"
 
#include <optional>
 
#include <utility>
 
 
 
namespace llvm {
 
 
 
class Function;
 
 
 
/// Base class for use as a mix-in that aids implementing
 
/// a TargetTransformInfo-compatible class.
 
class TargetTransformInfoImplBase {
 
protected:
 
  typedef TargetTransformInfo TTI;
 
 
 
  const DataLayout &DL;
 
 
 
  explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {}
 
 
 
public:
 
  // Provide value semantics. MSVC requires that we spell all of these out.
 
  TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg) = default;
 
  TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {}
 
 
 
  const DataLayout &getDataLayout() const { return DL; }
 
 
 
  InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
 
                             ArrayRef<const Value *> Operands,
 
                             TTI::TargetCostKind CostKind) const {
 
    // In the basic model, we just assume that all-constant GEPs will be folded
 
    // into their uses via addressing modes.
 
    for (const Value *Operand : Operands)
 
      if (!isa<Constant>(Operand))
 
        return TTI::TCC_Basic;
 
 
 
    return TTI::TCC_Free;
 
  }
 
 
 
  unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
 
                                            unsigned &JTSize,
 
                                            ProfileSummaryInfo *PSI,
 
                                            BlockFrequencyInfo *BFI) const {
 
    (void)PSI;
 
    (void)BFI;
 
    JTSize = 0;
 
    return SI.getNumCases();
 
  }
 
 
 
  unsigned getInliningThresholdMultiplier() const { return 1; }
 
  unsigned adjustInliningThreshold(const CallBase *CB) const { return 0; }
 
 
 
  int getInlinerVectorBonusPercent() const { return 150; }
 
 
 
  InstructionCost getMemcpyCost(const Instruction *I) const {
 
    return TTI::TCC_Expensive;
 
  }
 
 
 
  // Although this default value is arbitrary, it is not random. It is assumed
 
  // that a condition that evaluates the same way by a higher percentage than
 
  // this is best represented as control flow. Therefore, the default value N
 
  // should be set such that the win from N% correct executions is greater than
 
  // the loss from (100 - N)% mispredicted executions for the majority of
 
  //  intended targets.
 
  BranchProbability getPredictableBranchThreshold() const {
 
    return BranchProbability(99, 100);
 
  }
 
 
 
  bool hasBranchDivergence() const { return false; }
 
 
 
  bool useGPUDivergenceAnalysis() const { return false; }
 
 
 
  bool isSourceOfDivergence(const Value *V) const { return false; }
 
 
 
  bool isAlwaysUniform(const Value *V) const { return false; }
 
 
 
  unsigned getFlatAddressSpace() const { return -1; }
 
 
 
  bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
 
                                  Intrinsic::ID IID) const {
 
    return false;
 
  }
 
 
 
  bool isNoopAddrSpaceCast(unsigned, unsigned) const { return false; }
 
  bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const {
 
    return AS == 0;
 
  };
 
 
 
  unsigned getAssumedAddrSpace(const Value *V) const { return -1; }
 
 
 
  bool isSingleThreaded() const { return false; }
 
 
 
  std::pair<const Value *, unsigned>
 
  getPredicatedAddrSpace(const Value *V) const {
 
    return std::make_pair(nullptr, -1);
 
  }
 
 
 
  Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
 
                                          Value *NewV) const {
 
    return nullptr;
 
  }
 
 
 
  bool isLoweredToCall(const Function *F) const {
 
    assert(F && "A concrete function must be provided to this routine.");
 
 
 
    // FIXME: These should almost certainly not be handled here, and instead
 
    // handled with the help of TLI or the target itself. This was largely
 
    // ported from existing analysis heuristics here so that such refactorings
 
    // can take place in the future.
 
 
 
    if (F->isIntrinsic())
 
      return false;
 
 
 
    if (F->hasLocalLinkage() || !F->hasName())
 
      return true;
 
 
 
    StringRef Name = F->getName();
 
 
 
    // These will all likely lower to a single selection DAG node.
 
    if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
 
        Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" ||
 
        Name == "fmin" || Name == "fminf" || Name == "fminl" ||
 
        Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" ||
 
        Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" ||
 
        Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl")
 
      return false;
 
 
 
    // These are all likely to be optimized into something smaller.
 
    if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" ||
 
        Name == "exp2l" || Name == "exp2f" || Name == "floor" ||
 
        Name == "floorf" || Name == "ceil" || Name == "round" ||
 
        Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" ||
 
        Name == "llabs")
 
      return false;
 
 
 
    return true;
 
  }
 
 
 
  bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
 
                                AssumptionCache &AC, TargetLibraryInfo *LibInfo,
 
                                HardwareLoopInfo &HWLoopInfo) const {
 
    return false;
 
  }
 
 
 
  bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
 
                                   AssumptionCache &AC, TargetLibraryInfo *TLI,
 
                                   DominatorTree *DT,
 
                                   LoopVectorizationLegality *LVL,
 
                                   InterleavedAccessInfo *IAI) const {
 
    return false;
 
  }
 
 
 
  PredicationStyle emitGetActiveLaneMask() const {
 
    return PredicationStyle::None;
 
  }
 
 
 
  std::optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
 
                                                    IntrinsicInst &II) const {
 
    return std::nullopt;
 
  }
 
 
 
  std::optional<Value *>
 
  simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
 
                                   APInt DemandedMask, KnownBits &Known,
 
                                   bool &KnownBitsComputed) const {
 
    return std::nullopt;
 
  }
 
 
 
  std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
 
      InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
 
      APInt &UndefElts2, APInt &UndefElts3,
 
      std::function<void(Instruction *, unsigned, APInt, APInt &)>
 
          SimplifyAndSetOp) const {
 
    return std::nullopt;
 
  }
 
 
 
  void getUnrollingPreferences(Loop *, ScalarEvolution &,
 
                               TTI::UnrollingPreferences &,
 
                               OptimizationRemarkEmitter *) const {}
 
 
 
  void getPeelingPreferences(Loop *, ScalarEvolution &,
 
                             TTI::PeelingPreferences &) const {}
 
 
 
  bool isLegalAddImmediate(int64_t Imm) const { return false; }
 
 
 
  bool isLegalICmpImmediate(int64_t Imm) const { return false; }
 
 
 
  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
 
                             bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
 
                             Instruction *I = nullptr) const {
 
    // Guess that only reg and reg+reg addressing is allowed. This heuristic is
 
    // taken from the implementation of LSR.
 
    return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1);
 
  }
 
 
 
  bool isLSRCostLess(const TTI::LSRCost &C1, const TTI::LSRCost &C2) const {
 
    return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds,
 
                    C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
 
           std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds,
 
                    C2.ScaleCost, C2.ImmCost, C2.SetupCost);
 
  }
 
 
 
  bool isNumRegsMajorCostOfLSR() const { return true; }
 
 
 
  bool isProfitableLSRChainElement(Instruction *I) const { return false; }
 
 
 
  bool canMacroFuseCmp() const { return false; }
 
 
 
  bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
 
                  DominatorTree *DT, AssumptionCache *AC,
 
                  TargetLibraryInfo *LibInfo) const {
 
    return false;
 
  }
 
 
 
  TTI::AddressingModeKind
 
    getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const {
 
    return TTI::AMK_None;
 
  }
 
 
 
  bool isLegalMaskedStore(Type *DataType, Align Alignment) const {
 
    return false;
 
  }
 
 
 
  bool isLegalMaskedLoad(Type *DataType, Align Alignment) const {
 
    return false;
 
  }
 
 
 
  bool isLegalNTStore(Type *DataType, Align Alignment) const {
 
    // By default, assume nontemporal memory stores are available for stores
 
    // that are aligned and have a size that is a power of 2.
 
    unsigned DataSize = DL.getTypeStoreSize(DataType);
 
    return Alignment >= DataSize && isPowerOf2_32(DataSize);
 
  }
 
 
 
  bool isLegalNTLoad(Type *DataType, Align Alignment) const {
 
    // By default, assume nontemporal memory loads are available for loads that
 
    // are aligned and have a size that is a power of 2.
 
    unsigned DataSize = DL.getTypeStoreSize(DataType);
 
    return Alignment >= DataSize && isPowerOf2_32(DataSize);
 
  }
 
 
 
  bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const {
 
    return false;
 
  }
 
 
 
  bool isLegalMaskedScatter(Type *DataType, Align Alignment) const {
 
    return false;
 
  }
 
 
 
  bool isLegalMaskedGather(Type *DataType, Align Alignment) const {
 
    return false;
 
  }
 
 
 
  bool forceScalarizeMaskedGather(VectorType *DataType, Align Alignment) const {
 
    return false;
 
  }
 
 
 
  bool forceScalarizeMaskedScatter(VectorType *DataType,
 
                                   Align Alignment) const {
 
    return false;
 
  }
 
 
 
  bool isLegalMaskedCompressStore(Type *DataType) const { return false; }
 
 
 
  bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
 
                       const SmallBitVector &OpcodeMask) const {
 
    return false;
 
  }
 
 
 
  bool isLegalMaskedExpandLoad(Type *DataType) const { return false; }
 
 
 
  bool enableOrderedReductions() const { return false; }
 
 
 
  bool hasDivRemOp(Type *DataType, bool IsSigned) const { return false; }
 
 
 
  bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const {
 
    return false;
 
  }
 
 
 
  bool prefersVectorizedAddressing() const { return true; }
 
 
 
  InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
 
                                       int64_t BaseOffset, bool HasBaseReg,
 
                                       int64_t Scale,
 
                                       unsigned AddrSpace) const {
 
    // Guess that all legal addressing mode are free.
 
    if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
 
                              AddrSpace))
 
      return 0;
 
    return -1;
 
  }
 
 
 
  bool LSRWithInstrQueries() const { return false; }
 
 
 
  bool isTruncateFree(Type *Ty1, Type *Ty2) const { return false; }
 
 
 
  bool isProfitableToHoist(Instruction *I) const { return true; }
 
 
 
  bool useAA() const { return false; }
 
 
 
  bool isTypeLegal(Type *Ty) const { return false; }
 
 
 
  unsigned getRegUsageForType(Type *Ty) const { return 1; }
 
 
 
  bool shouldBuildLookupTables() const { return true; }
 
 
 
  bool shouldBuildLookupTablesForConstant(Constant *C) const { return true; }
 
 
 
  bool shouldBuildRelLookupTables() const { return false; }
 
 
 
  bool useColdCCForColdCall(Function &F) const { return false; }
 
 
 
  InstructionCost getScalarizationOverhead(VectorType *Ty,
 
                                           const APInt &DemandedElts,
 
                                           bool Insert, bool Extract,
 
                                           TTI::TargetCostKind CostKind) const {
 
    return 0;
 
  }
 
 
 
  InstructionCost
 
  getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
 
                                   ArrayRef<Type *> Tys,
 
                                   TTI::TargetCostKind CostKind) const {
 
    return 0;
 
  }
 
 
 
  bool supportsEfficientVectorElementLoadStore() const { return false; }
 
 
 
  bool supportsTailCalls() const { return true; }
 
 
 
  bool supportsTailCallFor(const CallBase *CB) const {
 
    return supportsTailCalls();
 
  }
 
 
 
  bool enableAggressiveInterleaving(bool LoopHasReductions) const {
 
    return false;
 
  }
 
 
 
  TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
 
                                                    bool IsZeroCmp) const {
 
    return {};
 
  }
 
 
 
  bool enableSelectOptimize() const { return true; }
 
 
 
  bool enableInterleavedAccessVectorization() const { return false; }
 
 
 
  bool enableMaskedInterleavedAccessVectorization() const { return false; }
 
 
 
  bool isFPVectorizationPotentiallyUnsafe() const { return false; }
 
 
 
  bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
 
                                      unsigned AddressSpace, Align Alignment,
 
                                      unsigned *Fast) const {
 
    return false;
 
  }
 
 
 
  TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const {
 
    return TTI::PSK_Software;
 
  }
 
 
 
  bool haveFastSqrt(Type *Ty) const { return false; }
 
 
 
  bool isExpensiveToSpeculativelyExecute(const Instruction *I) { return true; }
 
 
 
  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const { return true; }
 
 
 
  InstructionCost getFPOpCost(Type *Ty) const {
 
    return TargetTransformInfo::TCC_Basic;
 
  }
 
 
 
  InstructionCost getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
 
                                        const APInt &Imm, Type *Ty) const {
 
    return 0;
 
  }
 
 
 
  InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
 
                                TTI::TargetCostKind CostKind) const {
 
    return TTI::TCC_Basic;
 
  }
 
 
 
  InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
 
                                    const APInt &Imm, Type *Ty,
 
                                    TTI::TargetCostKind CostKind,
 
                                    Instruction *Inst = nullptr) const {
 
    return TTI::TCC_Free;
 
  }
 
 
 
  InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
 
                                      const APInt &Imm, Type *Ty,
 
                                      TTI::TargetCostKind CostKind) const {
 
    return TTI::TCC_Free;
 
  }
 
 
 
  unsigned getNumberOfRegisters(unsigned ClassID) const { return 8; }
 
 
 
  unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const {
 
    return Vector ? 1 : 0;
 
  };
 
 
 
  const char *getRegisterClassName(unsigned ClassID) const {
 
    switch (ClassID) {
 
    default:
 
      return "Generic::Unknown Register Class";
 
    case 0:
 
      return "Generic::ScalarRC";
 
    case 1:
 
      return "Generic::VectorRC";
 
    }
 
  }
 
 
 
  TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
 
    return TypeSize::getFixed(32);
 
  }
 
 
 
  unsigned getMinVectorRegisterBitWidth() const { return 128; }
 
 
 
  std::optional<unsigned> getMaxVScale() const { return std::nullopt; }
 
  std::optional<unsigned> getVScaleForTuning() const { return std::nullopt; }
 
 
 
  bool
 
  shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const {
 
    return false;
 
  }
 
 
 
  ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const {
 
    return ElementCount::get(0, IsScalable);
 
  }
 
 
 
  unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { return 0; }
 
  unsigned getStoreMinimumVF(unsigned VF, Type *, Type *) const { return VF; }
 
 
 
  bool shouldConsiderAddressTypePromotion(
 
      const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
 
    AllowPromotionWithoutCommonHeader = false;
 
    return false;
 
  }
 
 
 
  unsigned getCacheLineSize() const { return 0; }
 
  std::optional<unsigned>
 
  getCacheSize(TargetTransformInfo::CacheLevel Level) const {
 
    switch (Level) {
 
    case TargetTransformInfo::CacheLevel::L1D:
 
      [[fallthrough]];
 
    case TargetTransformInfo::CacheLevel::L2D:
 
      return std::nullopt;
 
    }
 
    llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
 
  }
 
 
 
  std::optional<unsigned>
 
  getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const {
 
    switch (Level) {
 
    case TargetTransformInfo::CacheLevel::L1D:
 
      [[fallthrough]];
 
    case TargetTransformInfo::CacheLevel::L2D:
 
      return std::nullopt;
 
    }
 
 
 
    llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
 
  }
 
 
 
  unsigned getPrefetchDistance() const { return 0; }
 
  unsigned getMinPrefetchStride(unsigned NumMemAccesses,
 
                                unsigned NumStridedMemAccesses,
 
                                unsigned NumPrefetches, bool HasCall) const {
 
    return 1;
 
  }
 
  unsigned getMaxPrefetchIterationsAhead() const { return UINT_MAX; }
 
  bool enableWritePrefetching() const { return false; }
 
  bool shouldPrefetchAddressSpace(unsigned AS) const { return !AS; }
 
 
 
  unsigned getMaxInterleaveFactor(unsigned VF) const { return 1; }
 
 
 
  InstructionCost getArithmeticInstrCost(
 
      unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
 
      TTI::OperandValueInfo Opd1Info, TTI::OperandValueInfo Opd2Info,
 
      ArrayRef<const Value *> Args,
 
      const Instruction *CxtI = nullptr) const {
 
    // FIXME: A number of transformation tests seem to require these values
 
    // which seems a little odd for how arbitary there are.
 
    switch (Opcode) {
 
    default:
 
      break;
 
    case Instruction::FDiv:
 
    case Instruction::FRem:
 
    case Instruction::SDiv:
 
    case Instruction::SRem:
 
    case Instruction::UDiv:
 
    case Instruction::URem:
 
      // FIXME: Unlikely to be true for CodeSize.
 
      return TTI::TCC_Expensive;
 
    }
 
 
 
    // Assume a 3cy latency for fp arithmetic ops.
 
    if (CostKind == TTI::TCK_Latency)
 
      if (Ty->getScalarType()->isFloatingPointTy())
 
        return 3;
 
 
 
    return 1;
 
  }
 
 
 
  InstructionCost
 
  getShuffleCost(TTI::ShuffleKind Kind, VectorType *Ty, ArrayRef<int> Mask,
 
                 TTI::TargetCostKind CostKind, int Index, VectorType *SubTp,
 
                 ArrayRef<const Value *> Args = std::nullopt) const {
 
    return 1;
 
  }
 
 
 
  InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
 
                                   TTI::CastContextHint CCH,
 
                                   TTI::TargetCostKind CostKind,
 
                                   const Instruction *I) const {
 
    switch (Opcode) {
 
    default:
 
      break;
 
    case Instruction::IntToPtr: {
 
      unsigned SrcSize = Src->getScalarSizeInBits();
 
      if (DL.isLegalInteger(SrcSize) &&
 
          SrcSize <= DL.getPointerTypeSizeInBits(Dst))
 
        return 0;
 
      break;
 
    }
 
    case Instruction::PtrToInt: {
 
      unsigned DstSize = Dst->getScalarSizeInBits();
 
      if (DL.isLegalInteger(DstSize) &&
 
          DstSize >= DL.getPointerTypeSizeInBits(Src))
 
        return 0;
 
      break;
 
    }
 
    case Instruction::BitCast:
 
      if (Dst == Src || (Dst->isPointerTy() && Src->isPointerTy()))
 
        // Identity and pointer-to-pointer casts are free.
 
        return 0;
 
      break;
 
    case Instruction::Trunc: {
 
      // trunc to a native type is free (assuming the target has compare and
 
      // shift-right of the same width).
 
      TypeSize DstSize = DL.getTypeSizeInBits(Dst);
 
      if (!DstSize.isScalable() && DL.isLegalInteger(DstSize.getFixedValue()))
 
        return 0;
 
      break;
 
    }
 
    }
 
    return 1;
 
  }
 
 
 
  InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
 
                                           VectorType *VecTy,
 
                                           unsigned Index) const {
 
    return 1;
 
  }
 
 
 
  InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
 
                                 const Instruction *I = nullptr) const {
 
    // A phi would be free, unless we're costing the throughput because it
 
    // will require a register.
 
    if (Opcode == Instruction::PHI && CostKind != TTI::TCK_RecipThroughput)
 
      return 0;
 
    return 1;
 
  }
 
 
 
  InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
 
                                     CmpInst::Predicate VecPred,
 
                                     TTI::TargetCostKind CostKind,
 
                                     const Instruction *I) const {
 
    return 1;
 
  }
 
 
 
  InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
 
                                     TTI::TargetCostKind CostKind,
 
                                     unsigned Index, Value *Op0,
 
                                     Value *Op1) const {
 
    return 1;
 
  }
 
 
 
  InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
 
                                     TTI::TargetCostKind CostKind,
 
                                     unsigned Index) const {
 
    return 1;
 
  }
 
 
 
  unsigned getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
 
                                     const APInt &DemandedDstElts,
 
                                     TTI::TargetCostKind CostKind) {
 
    return 1;
 
  }
 
 
 
  InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
 
                                  unsigned AddressSpace,
 
                                  TTI::TargetCostKind CostKind,
 
                                  TTI::OperandValueInfo OpInfo,
 
                                  const Instruction *I) const {
 
    return 1;
 
  }
 
 
 
  InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
 
                                    unsigned AddressSpace,
 
                                    TTI::TargetCostKind CostKind,
 
                                    const Instruction *I) const {
 
    return 1;
 
  }
 
 
 
  InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
 
                                        Align Alignment, unsigned AddressSpace,
 
                                        TTI::TargetCostKind CostKind) const {
 
    return 1;
 
  }
 
 
 
  InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
 
                                         const Value *Ptr, bool VariableMask,
 
                                         Align Alignment,
 
                                         TTI::TargetCostKind CostKind,
 
                                         const Instruction *I = nullptr) const {
 
    return 1;
 
  }
 
 
 
  unsigned getInterleavedMemoryOpCost(
 
      unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
 
      Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
 
      bool UseMaskForCond, bool UseMaskForGaps) const {
 
    return 1;
 
  }
 
 
 
  InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
 
                                        TTI::TargetCostKind CostKind) const {
 
    switch (ICA.getID()) {
 
    default:
 
      break;
 
    case Intrinsic::annotation:
 
    case Intrinsic::assume:
 
    case Intrinsic::sideeffect:
 
    case Intrinsic::pseudoprobe:
 
    case Intrinsic::arithmetic_fence:
 
    case Intrinsic::dbg_declare:
 
    case Intrinsic::dbg_value:
 
    case Intrinsic::dbg_label:
 
    case Intrinsic::invariant_start:
 
    case Intrinsic::invariant_end:
 
    case Intrinsic::launder_invariant_group:
 
    case Intrinsic::strip_invariant_group:
 
    case Intrinsic::is_constant:
 
    case Intrinsic::lifetime_start:
 
    case Intrinsic::lifetime_end:
 
    case Intrinsic::experimental_noalias_scope_decl:
 
    case Intrinsic::objectsize:
 
    case Intrinsic::ptr_annotation:
 
    case Intrinsic::var_annotation:
 
    case Intrinsic::experimental_gc_result:
 
    case Intrinsic::experimental_gc_relocate:
 
    case Intrinsic::coro_alloc:
 
    case Intrinsic::coro_begin:
 
    case Intrinsic::coro_free:
 
    case Intrinsic::coro_end:
 
    case Intrinsic::coro_frame:
 
    case Intrinsic::coro_size:
 
    case Intrinsic::coro_align:
 
    case Intrinsic::coro_suspend:
 
    case Intrinsic::coro_subfn_addr:
 
    case Intrinsic::threadlocal_address:
 
      // These intrinsics don't actually represent code after lowering.
 
      return 0;
 
    }
 
    return 1;
 
  }
 
 
 
  InstructionCost getCallInstrCost(Function *F, Type *RetTy,
 
                                   ArrayRef<Type *> Tys,
 
                                   TTI::TargetCostKind CostKind) const {
 
    return 1;
 
  }
 
 
 
  // Assume that we have a register of the right size for the type.
 
  unsigned getNumberOfParts(Type *Tp) const { return 1; }
 
 
 
  InstructionCost getAddressComputationCost(Type *Tp, ScalarEvolution *,
 
                                            const SCEV *) const {
 
    return 0;
 
  }
 
 
 
  InstructionCost getArithmeticReductionCost(unsigned, VectorType *,
 
                                             std::optional<FastMathFlags> FMF,
 
                                             TTI::TargetCostKind) const {
 
    return 1;
 
  }
 
 
 
  InstructionCost getMinMaxReductionCost(VectorType *, VectorType *, bool,
 
                                         TTI::TargetCostKind) const {
 
    return 1;
 
  }
 
 
 
  InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned,
 
                                           Type *ResTy, VectorType *Ty,
 
                                           std::optional<FastMathFlags> FMF,
 
                                           TTI::TargetCostKind CostKind) const {
 
    return 1;
 
  }
 
 
 
  InstructionCost getMulAccReductionCost(bool IsUnsigned, Type *ResTy,
 
                                         VectorType *Ty,
 
                                         TTI::TargetCostKind CostKind) const {
 
    return 1;
 
  }
 
 
 
  InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
 
    return 0;
 
  }
 
 
 
  bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const {
 
    return false;
 
  }
 
 
 
  unsigned getAtomicMemIntrinsicMaxElementSize() const {
 
    // Note for overrides: You must ensure for all element unordered-atomic
 
    // memory intrinsics that all power-of-2 element sizes up to, and
 
    // including, the return value of this method have a corresponding
 
    // runtime lib call. These runtime lib call definitions can be found
 
    // in RuntimeLibcalls.h
 
    return 0;
 
  }
 
 
 
  Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
 
                                           Type *ExpectedType) const {
 
    return nullptr;
 
  }
 
 
 
  Type *
 
  getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
 
                            unsigned SrcAddrSpace, unsigned DestAddrSpace,
 
                            unsigned SrcAlign, unsigned DestAlign,
 
                            std::optional<uint32_t> AtomicElementSize) const {
 
    return AtomicElementSize ? Type::getIntNTy(Context, *AtomicElementSize * 8)
 
                             : Type::getInt8Ty(Context);
 
  }
 
 
 
  void getMemcpyLoopResidualLoweringType(
 
      SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
 
      unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
 
      unsigned SrcAlign, unsigned DestAlign,
 
      std::optional<uint32_t> AtomicCpySize) const {
 
    unsigned OpSizeInBytes = AtomicCpySize ? *AtomicCpySize : 1;
 
    Type *OpType = Type::getIntNTy(Context, OpSizeInBytes * 8);
 
    for (unsigned i = 0; i != RemainingBytes; i += OpSizeInBytes)
 
      OpsOut.push_back(OpType);
 
  }
 
 
 
  bool areInlineCompatible(const Function *Caller,
 
                           const Function *Callee) const {
 
    return (Caller->getFnAttribute("target-cpu") ==
 
            Callee->getFnAttribute("target-cpu")) &&
 
           (Caller->getFnAttribute("target-features") ==
 
            Callee->getFnAttribute("target-features"));
 
  }
 
 
 
  bool areTypesABICompatible(const Function *Caller, const Function *Callee,
 
                             const ArrayRef<Type *> &Types) const {
 
    return (Caller->getFnAttribute("target-cpu") ==
 
            Callee->getFnAttribute("target-cpu")) &&
 
           (Caller->getFnAttribute("target-features") ==
 
            Callee->getFnAttribute("target-features"));
 
  }
 
 
 
  bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty,
 
                          const DataLayout &DL) const {
 
    return false;
 
  }
 
 
 
  bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty,
 
                           const DataLayout &DL) const {
 
    return false;
 
  }
 
 
 
  unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; }
 
 
 
  bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; }
 
 
 
  bool isLegalToVectorizeStore(StoreInst *SI) const { return true; }
 
 
 
  bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
 
                                   unsigned AddrSpace) const {
 
    return true;
 
  }
 
 
 
  bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
 
                                    unsigned AddrSpace) const {
 
    return true;
 
  }
 
 
 
  bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
 
                                   ElementCount VF) const {
 
    return true;
 
  }
 
 
 
  bool isElementTypeLegalForScalableVector(Type *Ty) const { return true; }
 
 
 
  unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
 
                               unsigned ChainSizeInBytes,
 
                               VectorType *VecTy) const {
 
    return VF;
 
  }
 
 
 
  unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
 
                                unsigned ChainSizeInBytes,
 
                                VectorType *VecTy) const {
 
    return VF;
 
  }
 
 
 
  bool preferInLoopReduction(unsigned Opcode, Type *Ty,
 
                             TTI::ReductionFlags Flags) const {
 
    return false;
 
  }
 
 
 
  bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
 
                                       TTI::ReductionFlags Flags) const {
 
    return false;
 
  }
 
 
 
  bool preferEpilogueVectorization() const {
 
    return true;
 
  }
 
 
 
  bool shouldExpandReduction(const IntrinsicInst *II) const { return true; }
 
 
 
  unsigned getGISelRematGlobalCost() const { return 1; }
 
 
 
  unsigned getMinTripCountTailFoldingThreshold() const { return 0; }
 
 
 
  bool supportsScalableVectors() const { return false; }
 
 
 
  bool enableScalableVectorization() const { return false; }
 
 
 
  bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
 
                             Align Alignment) const {
 
    return false;
 
  }
 
 
 
  TargetTransformInfo::VPLegalization
 
  getVPLegalizationStrategy(const VPIntrinsic &PI) const {
 
    return TargetTransformInfo::VPLegalization(
 
        /* EVLParamStrategy */ TargetTransformInfo::VPLegalization::Discard,
 
        /* OperatorStrategy */ TargetTransformInfo::VPLegalization::Convert);
 
  }
 
 
 
protected:
 
  // Obtain the minimum required size to hold the value (without the sign)
 
  // In case of a vector it returns the min required size for one element.
 
  unsigned minRequiredElementSize(const Value *Val, bool &isSigned) const {
 
    if (isa<ConstantDataVector>(Val) || isa<ConstantVector>(Val)) {
 
      const auto *VectorValue = cast<Constant>(Val);
 
 
 
      // In case of a vector need to pick the max between the min
 
      // required size for each element
 
      auto *VT = cast<FixedVectorType>(Val->getType());
 
 
 
      // Assume unsigned elements
 
      isSigned = false;
 
 
 
      // The max required size is the size of the vector element type
 
      unsigned MaxRequiredSize =
 
          VT->getElementType()->getPrimitiveSizeInBits().getFixedValue();
 
 
 
      unsigned MinRequiredSize = 0;
 
      for (unsigned i = 0, e = VT->getNumElements(); i < e; ++i) {
 
        if (auto *IntElement =
 
                dyn_cast<ConstantInt>(VectorValue->getAggregateElement(i))) {
 
          bool signedElement = IntElement->getValue().isNegative();
 
          // Get the element min required size.
 
          unsigned ElementMinRequiredSize =
 
              IntElement->getValue().getMinSignedBits() - 1;
 
          // In case one element is signed then all the vector is signed.
 
          isSigned |= signedElement;
 
          // Save the max required bit size between all the elements.
 
          MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize);
 
        } else {
 
          // not an int constant element
 
          return MaxRequiredSize;
 
        }
 
      }
 
      return MinRequiredSize;
 
    }
 
 
 
    if (const auto *CI = dyn_cast<ConstantInt>(Val)) {
 
      isSigned = CI->getValue().isNegative();
 
      return CI->getValue().getMinSignedBits() - 1;
 
    }
 
 
 
    if (const auto *Cast = dyn_cast<SExtInst>(Val)) {
 
      isSigned = true;
 
      return Cast->getSrcTy()->getScalarSizeInBits() - 1;
 
    }
 
 
 
    if (const auto *Cast = dyn_cast<ZExtInst>(Val)) {
 
      isSigned = false;
 
      return Cast->getSrcTy()->getScalarSizeInBits();
 
    }
 
 
 
    isSigned = false;
 
    return Val->getType()->getScalarSizeInBits();
 
  }
 
 
 
  bool isStridedAccess(const SCEV *Ptr) const {
 
    return Ptr && isa<SCEVAddRecExpr>(Ptr);
 
  }
 
 
 
  const SCEVConstant *getConstantStrideStep(ScalarEvolution *SE,
 
                                            const SCEV *Ptr) const {
 
    if (!isStridedAccess(Ptr))
 
      return nullptr;
 
    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ptr);
 
    return dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*SE));
 
  }
 
 
 
  bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr,
 
                                       int64_t MergeDistance) const {
 
    const SCEVConstant *Step = getConstantStrideStep(SE, Ptr);
 
    if (!Step)
 
      return false;
 
    APInt StrideVal = Step->getAPInt();
 
    if (StrideVal.getBitWidth() > 64)
 
      return false;
 
    // FIXME: Need to take absolute value for negative stride case.
 
    return StrideVal.getSExtValue() < MergeDistance;
 
  }
 
};
 
 
 
/// CRTP base class for use as a mix-in that aids implementing
 
/// a TargetTransformInfo-compatible class.
 
template <typename T>
 
class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase {
 
private:
 
  typedef TargetTransformInfoImplBase BaseT;
 
 
 
protected:
 
  explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {}
 
 
 
public:
 
  using BaseT::getGEPCost;
 
 
 
  InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
 
                             ArrayRef<const Value *> Operands,
 
                             TTI::TargetCostKind CostKind) {
 
    assert(PointeeType && Ptr && "can't get GEPCost of nullptr");
 
    assert(cast<PointerType>(Ptr->getType()->getScalarType())
 
               ->isOpaqueOrPointeeTypeMatches(PointeeType) &&
 
           "explicit pointee type doesn't match operand's pointee type");
 
    auto *BaseGV = dyn_cast<GlobalValue>(Ptr->stripPointerCasts());
 
    bool HasBaseReg = (BaseGV == nullptr);
 
 
 
    auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType());
 
    APInt BaseOffset(PtrSizeBits, 0);
 
    int64_t Scale = 0;
 
 
 
    auto GTI = gep_type_begin(PointeeType, Operands);
 
    Type *TargetType = nullptr;
 
 
 
    // Handle the case where the GEP instruction has a single operand,
 
    // the basis, therefore TargetType is a nullptr.
 
    if (Operands.empty())
 
      return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic;
 
 
 
    for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) {
 
      TargetType = GTI.getIndexedType();
 
      // We assume that the cost of Scalar GEP with constant index and the
 
      // cost of Vector GEP with splat constant index are the same.
 
      const ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
 
      if (!ConstIdx)
 
        if (auto Splat = getSplatValue(*I))
 
          ConstIdx = dyn_cast<ConstantInt>(Splat);
 
      if (StructType *STy = GTI.getStructTypeOrNull()) {
 
        // For structures the index is always splat or scalar constant
 
        assert(ConstIdx && "Unexpected GEP index");
 
        uint64_t Field = ConstIdx->getZExtValue();
 
        BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field);
 
      } else {
 
        // If this operand is a scalable type, bail out early.
 
        // TODO: handle scalable vectors
 
        if (isa<ScalableVectorType>(TargetType))
 
          return TTI::TCC_Basic;
 
        int64_t ElementSize =
 
            DL.getTypeAllocSize(GTI.getIndexedType()).getFixedValue();
 
        if (ConstIdx) {
 
          BaseOffset +=
 
              ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize;
 
        } else {
 
          // Needs scale register.
 
          if (Scale != 0)
 
            // No addressing mode takes two scale registers.
 
            return TTI::TCC_Basic;
 
          Scale = ElementSize;
 
        }
 
      }
 
    }
 
 
 
    if (static_cast<T *>(this)->isLegalAddressingMode(
 
            TargetType, const_cast<GlobalValue *>(BaseGV),
 
            BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale,
 
            Ptr->getType()->getPointerAddressSpace()))
 
      return TTI::TCC_Free;
 
    return TTI::TCC_Basic;
 
  }
 
 
 
  InstructionCost getInstructionCost(const User *U,
 
                                     ArrayRef<const Value *> Operands,
 
                                     TTI::TargetCostKind CostKind) {
 
    using namespace llvm::PatternMatch;
 
 
 
    auto *TargetTTI = static_cast<T *>(this);
 
    // Handle non-intrinsic calls, invokes, and callbr.
 
    // FIXME: Unlikely to be true for anything but CodeSize.
 
    auto *CB = dyn_cast<CallBase>(U);
 
    if (CB && !isa<IntrinsicInst>(U)) {
 
      if (const Function *F = CB->getCalledFunction()) {
 
        if (!TargetTTI->isLoweredToCall(F))
 
          return TTI::TCC_Basic; // Give a basic cost if it will be lowered
 
 
 
        return TTI::TCC_Basic * (F->getFunctionType()->getNumParams() + 1);
 
      }
 
      // For indirect or other calls, scale cost by number of arguments.
 
      return TTI::TCC_Basic * (CB->arg_size() + 1);
 
    }
 
 
 
    Type *Ty = U->getType();
 
    unsigned Opcode = Operator::getOpcode(U);
 
    auto *I = dyn_cast<Instruction>(U);
 
    switch (Opcode) {
 
    default:
 
      break;
 
    case Instruction::Call: {
 
      assert(isa<IntrinsicInst>(U) && "Unexpected non-intrinsic call");
 
      auto *Intrinsic = cast<IntrinsicInst>(U);
 
      IntrinsicCostAttributes CostAttrs(Intrinsic->getIntrinsicID(), *CB);
 
      return TargetTTI->getIntrinsicInstrCost(CostAttrs, CostKind);
 
    }
 
    case Instruction::Br:
 
    case Instruction::Ret:
 
    case Instruction::PHI:
 
    case Instruction::Switch:
 
      return TargetTTI->getCFInstrCost(Opcode, CostKind, I);
 
    case Instruction::ExtractValue:
 
    case Instruction::Freeze:
 
      return TTI::TCC_Free;
 
    case Instruction::Alloca:
 
      if (cast<AllocaInst>(U)->isStaticAlloca())
 
        return TTI::TCC_Free;
 
      break;
 
    case Instruction::GetElementPtr: {
 
      const auto *GEP = cast<GEPOperator>(U);
 
      return TargetTTI->getGEPCost(GEP->getSourceElementType(),
 
                                   GEP->getPointerOperand(),
 
                                   Operands.drop_front(), CostKind);
 
    }
 
    case Instruction::Add:
 
    case Instruction::FAdd:
 
    case Instruction::Sub:
 
    case Instruction::FSub:
 
    case Instruction::Mul:
 
    case Instruction::FMul:
 
    case Instruction::UDiv:
 
    case Instruction::SDiv:
 
    case Instruction::FDiv:
 
    case Instruction::URem:
 
    case Instruction::SRem:
 
    case Instruction::FRem:
 
    case Instruction::Shl:
 
    case Instruction::LShr:
 
    case Instruction::AShr:
 
    case Instruction::And:
 
    case Instruction::Or:
 
    case Instruction::Xor:
 
    case Instruction::FNeg: {
 
      const TTI::OperandValueInfo Op1Info = TTI::getOperandInfo(U->getOperand(0));
 
      TTI::OperandValueInfo Op2Info;
 
      if (Opcode != Instruction::FNeg)
 
        Op2Info = TTI::getOperandInfo(U->getOperand(1));
 
      SmallVector<const Value *, 2> Operands(U->operand_values());
 
      return TargetTTI->getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
 
                                               Op2Info, Operands, I);
 
    }
 
    case Instruction::IntToPtr:
 
    case Instruction::PtrToInt:
 
    case Instruction::SIToFP:
 
    case Instruction::UIToFP:
 
    case Instruction::FPToUI:
 
    case Instruction::FPToSI:
 
    case Instruction::Trunc:
 
    case Instruction::FPTrunc:
 
    case Instruction::BitCast:
 
    case Instruction::FPExt:
 
    case Instruction::SExt:
 
    case Instruction::ZExt:
 
    case Instruction::AddrSpaceCast: {
 
      Type *OpTy = U->getOperand(0)->getType();
 
      return TargetTTI->getCastInstrCost(
 
          Opcode, Ty, OpTy, TTI::getCastContextHint(I), CostKind, I);
 
    }
 
    case Instruction::Store: {
 
      auto *SI = cast<StoreInst>(U);
 
      Type *ValTy = U->getOperand(0)->getType();
 
      TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(U->getOperand(0));
 
      return TargetTTI->getMemoryOpCost(Opcode, ValTy, SI->getAlign(),
 
                                        SI->getPointerAddressSpace(), CostKind,
 
                                        OpInfo, I);
 
    }
 
    case Instruction::Load: {
 
      // FIXME: Arbitary cost which could come from the backend.
 
      if (CostKind == TTI::TCK_Latency)
 
        return 4;
 
      auto *LI = cast<LoadInst>(U);
 
      Type *LoadType = U->getType();
 
      // If there is a non-register sized type, the cost estimation may expand
 
      // it to be several instructions to load into multiple registers on the
 
      // target.  But, if the only use of the load is a trunc instruction to a
 
      // register sized type, the instruction selector can combine these
 
      // instructions to be a single load.  So, in this case, we use the
 
      // destination type of the trunc instruction rather than the load to
 
      // accurately estimate the cost of this load instruction.
 
      if (CostKind == TTI::TCK_CodeSize && LI->hasOneUse() &&
 
          !LoadType->isVectorTy()) {
 
        if (const TruncInst *TI = dyn_cast<TruncInst>(*LI->user_begin()))
 
          LoadType = TI->getDestTy();
 
      }
 
      return TargetTTI->getMemoryOpCost(Opcode, LoadType, LI->getAlign(),
 
                                        LI->getPointerAddressSpace(), CostKind,
 
                                        {TTI::OK_AnyValue, TTI::OP_None}, I);
 
    }
 
    case Instruction::Select: {
 
      const Value *Op0, *Op1;
 
      if (match(U, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
 
          match(U, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
 
        // select x, y, false --> x & y
 
        // select x, true, y --> x | y
 
        const auto Op1Info = TTI::getOperandInfo(Op0);
 
        const auto Op2Info = TTI::getOperandInfo(Op1);
 
        assert(Op0->getType()->getScalarSizeInBits() == 1 &&
 
               Op1->getType()->getScalarSizeInBits() == 1);
 
 
 
        SmallVector<const Value *, 2> Operands{Op0, Op1};
 
        return TargetTTI->getArithmeticInstrCost(
 
            match(U, m_LogicalOr()) ? Instruction::Or : Instruction::And, Ty,
 
            CostKind, Op1Info, Op2Info, Operands, I);
 
      }
 
      Type *CondTy = U->getOperand(0)->getType();
 
      return TargetTTI->getCmpSelInstrCost(Opcode, U->getType(), CondTy,
 
                                           CmpInst::BAD_ICMP_PREDICATE,
 
                                           CostKind, I);
 
    }
 
    case Instruction::ICmp:
 
    case Instruction::FCmp: {
 
      Type *ValTy = U->getOperand(0)->getType();
 
      // TODO: Also handle ICmp/FCmp constant expressions.
 
      return TargetTTI->getCmpSelInstrCost(Opcode, ValTy, U->getType(),
 
                                           I ? cast<CmpInst>(I)->getPredicate()
 
                                             : CmpInst::BAD_ICMP_PREDICATE,
 
                                           CostKind, I);
 
    }
 
    case Instruction::InsertElement: {
 
      auto *IE = dyn_cast<InsertElementInst>(U);
 
      if (!IE)
 
        return TTI::TCC_Basic; // FIXME
 
      unsigned Idx = -1;
 
      if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2)))
 
        if (CI->getValue().getActiveBits() <= 32)
 
          Idx = CI->getZExtValue();
 
      return TargetTTI->getVectorInstrCost(*IE, Ty, CostKind, Idx);
 
    }
 
    case Instruction::ShuffleVector: {
 
      auto *Shuffle = dyn_cast<ShuffleVectorInst>(U);
 
      if (!Shuffle)
 
        return TTI::TCC_Basic; // FIXME
 
 
 
      auto *VecTy = cast<VectorType>(U->getType());
 
      auto *VecSrcTy = cast<VectorType>(U->getOperand(0)->getType());
 
      int NumSubElts, SubIndex;
 
 
 
      if (Shuffle->changesLength()) {
 
        // Treat a 'subvector widening' as a free shuffle.
 
        if (Shuffle->increasesLength() && Shuffle->isIdentityWithPadding())
 
          return 0;
 
 
 
        if (Shuffle->isExtractSubvectorMask(SubIndex))
 
          return TargetTTI->getShuffleCost(TTI::SK_ExtractSubvector, VecSrcTy,
 
                                           Shuffle->getShuffleMask(), CostKind,
 
                                           SubIndex, VecTy, Operands);
 
 
 
        if (Shuffle->isInsertSubvectorMask(NumSubElts, SubIndex))
 
          return TargetTTI->getShuffleCost(
 
              TTI::SK_InsertSubvector, VecTy, Shuffle->getShuffleMask(),
 
              CostKind, SubIndex,
 
              FixedVectorType::get(VecTy->getScalarType(), NumSubElts),
 
              Operands);
 
 
 
        int ReplicationFactor, VF;
 
        if (Shuffle->isReplicationMask(ReplicationFactor, VF)) {
 
          APInt DemandedDstElts =
 
              APInt::getNullValue(Shuffle->getShuffleMask().size());
 
          for (auto I : enumerate(Shuffle->getShuffleMask())) {
 
            if (I.value() != UndefMaskElem)
 
              DemandedDstElts.setBit(I.index());
 
          }
 
          return TargetTTI->getReplicationShuffleCost(
 
              VecSrcTy->getElementType(), ReplicationFactor, VF,
 
              DemandedDstElts, CostKind);
 
        }
 
 
 
        return CostKind == TTI::TCK_RecipThroughput ? -1 : 1;
 
      }
 
 
 
      if (Shuffle->isIdentity())
 
        return 0;
 
 
 
      if (Shuffle->isReverse())
 
        return TargetTTI->getShuffleCost(TTI::SK_Reverse, VecTy,
 
                                         Shuffle->getShuffleMask(), CostKind, 0,
 
                                         nullptr, Operands);
 
 
 
      if (Shuffle->isSelect())
 
        return TargetTTI->getShuffleCost(TTI::SK_Select, VecTy,
 
                                         Shuffle->getShuffleMask(), CostKind, 0,
 
                                         nullptr, Operands);
 
 
 
      if (Shuffle->isTranspose())
 
        return TargetTTI->getShuffleCost(TTI::SK_Transpose, VecTy,
 
                                         Shuffle->getShuffleMask(), CostKind, 0,
 
                                         nullptr, Operands);
 
 
 
      if (Shuffle->isZeroEltSplat())
 
        return TargetTTI->getShuffleCost(TTI::SK_Broadcast, VecTy,
 
                                         Shuffle->getShuffleMask(), CostKind, 0,
 
                                         nullptr, Operands);
 
 
 
      if (Shuffle->isSingleSource())
 
        return TargetTTI->getShuffleCost(TTI::SK_PermuteSingleSrc, VecTy,
 
                                         Shuffle->getShuffleMask(), CostKind, 0,
 
                                         nullptr, Operands);
 
 
 
      if (Shuffle->isInsertSubvectorMask(NumSubElts, SubIndex))
 
        return TargetTTI->getShuffleCost(
 
            TTI::SK_InsertSubvector, VecTy, Shuffle->getShuffleMask(), CostKind,
 
            SubIndex, FixedVectorType::get(VecTy->getScalarType(), NumSubElts),
 
            Operands);
 
 
 
      if (Shuffle->isSplice(SubIndex))
 
        return TargetTTI->getShuffleCost(TTI::SK_Splice, VecTy,
 
                                         Shuffle->getShuffleMask(), CostKind,
 
                                         SubIndex, nullptr, Operands);
 
 
 
      return TargetTTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy,
 
                                       Shuffle->getShuffleMask(), CostKind, 0,
 
                                       nullptr, Operands);
 
    }
 
    case Instruction::ExtractElement: {
 
      auto *EEI = dyn_cast<ExtractElementInst>(U);
 
      if (!EEI)
 
        return TTI::TCC_Basic; // FIXME
 
      unsigned Idx = -1;
 
      if (auto *CI = dyn_cast<ConstantInt>(EEI->getOperand(1)))
 
        if (CI->getValue().getActiveBits() <= 32)
 
          Idx = CI->getZExtValue();
 
      Type *DstTy = U->getOperand(0)->getType();
 
      return TargetTTI->getVectorInstrCost(*EEI, DstTy, CostKind, Idx);
 
    }
 
    }
 
 
 
    // By default, just classify everything as 'basic' or -1 to represent that
 
    // don't know the throughput cost.
 
    return CostKind == TTI::TCK_RecipThroughput ? -1 : TTI::TCC_Basic;
 
  }
 
 
 
  bool isExpensiveToSpeculativelyExecute(const Instruction *I) {
 
    auto *TargetTTI = static_cast<T *>(this);
 
    SmallVector<const Value *, 4> Ops(I->operand_values());
 
    InstructionCost Cost = TargetTTI->getInstructionCost(
 
        I, Ops, TargetTransformInfo::TCK_SizeAndLatency);
 
    return Cost >= TargetTransformInfo::TCC_Expensive;
 
  }
 
};
 
} // namespace llvm
 
 
 
#endif