- //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- // 
- // The ScalarEvolution class is an LLVM pass which can be used to analyze and 
- // categorize scalar expressions in loops.  It specializes in recognizing 
- // general induction variables, representing them with the abstract and opaque 
- // SCEV class.  Given this analysis, trip counts of loops and other important 
- // properties can be obtained. 
- // 
- // This analysis is primarily useful for induction variable substitution and 
- // strength reduction. 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H 
- #define LLVM_ANALYSIS_SCALAREVOLUTION_H 
-   
- #include "llvm/ADT/APInt.h" 
- #include "llvm/ADT/ArrayRef.h" 
- #include "llvm/ADT/DenseMap.h" 
- #include "llvm/ADT/DenseMapInfo.h" 
- #include "llvm/ADT/FoldingSet.h" 
- #include "llvm/ADT/PointerIntPair.h" 
- #include "llvm/ADT/SetVector.h" 
- #include "llvm/ADT/SmallPtrSet.h" 
- #include "llvm/ADT/SmallVector.h" 
- #include "llvm/IR/ConstantRange.h" 
- #include "llvm/IR/InstrTypes.h" 
- #include "llvm/IR/Instructions.h" 
- #include "llvm/IR/PassManager.h" 
- #include "llvm/IR/ValueHandle.h" 
- #include "llvm/IR/ValueMap.h" 
- #include "llvm/Pass.h" 
- #include <cassert> 
- #include <cstdint> 
- #include <memory> 
- #include <optional> 
- #include <utility> 
-   
- namespace llvm { 
-   
- class OverflowingBinaryOperator; 
- class AssumptionCache; 
- class BasicBlock; 
- class Constant; 
- class ConstantInt; 
- class DataLayout; 
- class DominatorTree; 
- class Function; 
- class GEPOperator; 
- class Instruction; 
- class LLVMContext; 
- class Loop; 
- class LoopInfo; 
- class raw_ostream; 
- class ScalarEvolution; 
- class SCEVAddRecExpr; 
- class SCEVUnknown; 
- class StructType; 
- class TargetLibraryInfo; 
- class Type; 
- class Value; 
- enum SCEVTypes : unsigned short; 
-   
- extern bool VerifySCEV; 
-   
- /// This class represents an analyzed expression in the program.  These are 
- /// opaque objects that the client is not allowed to do much with directly. 
- /// 
- class SCEV : public FoldingSetNode { 
-   friend struct FoldingSetTrait<SCEV>; 
-   
-   /// A reference to an Interned FoldingSetNodeID for this node.  The 
-   /// ScalarEvolution's BumpPtrAllocator holds the data. 
-   FoldingSetNodeIDRef FastID; 
-   
-   // The SCEV baseclass this node corresponds to 
-   const SCEVTypes SCEVType; 
-   
- protected: 
-   // Estimated complexity of this node's expression tree size. 
-   const unsigned short ExpressionSize; 
-   
-   /// This field is initialized to zero and may be used in subclasses to store 
-   /// miscellaneous information. 
-   unsigned short SubclassData = 0; 
-   
- public: 
-   /// NoWrapFlags are bitfield indices into SubclassData. 
-   /// 
-   /// Add and Mul expressions may have no-unsigned-wrap <NUW> or 
-   /// no-signed-wrap <NSW> properties, which are derived from the IR 
-   /// operator. NSW is a misnomer that we use to mean no signed overflow or 
-   /// underflow. 
-   /// 
-   /// AddRec expressions may have a no-self-wraparound <NW> property if, in 
-   /// the integer domain, abs(step) * max-iteration(loop) <= 
-   /// unsigned-max(bitwidth).  This means that the recurrence will never reach 
-   /// its start value if the step is non-zero.  Computing the same value on 
-   /// each iteration is not considered wrapping, and recurrences with step = 0 
-   /// are trivially <NW>.  <NW> is independent of the sign of step and the 
-   /// value the add recurrence starts with. 
-   /// 
-   /// Note that NUW and NSW are also valid properties of a recurrence, and 
-   /// either implies NW. For convenience, NW will be set for a recurrence 
-   /// whenever either NUW or NSW are set. 
-   /// 
-   /// We require that the flag on a SCEV apply to the entire scope in which 
-   /// that SCEV is defined.  A SCEV's scope is set of locations dominated by 
-   /// a defining location, which is in turn described by the following rules: 
-   /// * A SCEVUnknown is at the point of definition of the Value. 
-   /// * A SCEVConstant is defined at all points. 
-   /// * A SCEVAddRec is defined starting with the header of the associated 
-   ///   loop. 
-   /// * All other SCEVs are defined at the earlest point all operands are 
-   ///   defined. 
-   /// 
-   /// The above rules describe a maximally hoisted form (without regards to 
-   /// potential control dependence).  A SCEV is defined anywhere a 
-   /// corresponding instruction could be defined in said maximally hoisted 
-   /// form.  Note that SCEVUDivExpr (currently the only expression type which 
-   /// can trap) can be defined per these rules in regions where it would trap 
-   /// at runtime.  A SCEV being defined does not require the existence of any 
-   /// instruction within the defined scope. 
-   enum NoWrapFlags { 
-     FlagAnyWrap = 0,    // No guarantee. 
-     FlagNW = (1 << 0),  // No self-wrap. 
-     FlagNUW = (1 << 1), // No unsigned wrap. 
-     FlagNSW = (1 << 2), // No signed wrap. 
-     NoWrapMask = (1 << 3) - 1 
-   }; 
-   
-   explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 
-                 unsigned short ExpressionSize) 
-       : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {} 
-   SCEV(const SCEV &) = delete; 
-   SCEV &operator=(const SCEV &) = delete; 
-   
-   SCEVTypes getSCEVType() const { return SCEVType; } 
-   
-   /// Return the LLVM type of this SCEV expression. 
-   Type *getType() const; 
-   
-   /// Return operands of this SCEV expression. 
-   ArrayRef<const SCEV *> operands() const; 
-   
-   /// Return true if the expression is a constant zero. 
-   bool isZero() const; 
-   
-   /// Return true if the expression is a constant one. 
-   bool isOne() const; 
-   
-   /// Return true if the expression is a constant all-ones value. 
-   bool isAllOnesValue() const; 
-   
-   /// Return true if the specified scev is negated, but not a constant. 
-   bool isNonConstantNegative() const; 
-   
-   // Returns estimated size of the mathematical expression represented by this 
-   // SCEV. The rules of its calculation are following: 
-   // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1; 
-   // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula: 
-   //    (1 + Size(Op1) + ... + Size(OpN)). 
-   // This value gives us an estimation of time we need to traverse through this 
-   // SCEV and all its operands recursively. We may use it to avoid performing 
-   // heavy transformations on SCEVs of excessive size for sake of saving the 
-   // compilation time. 
-   unsigned short getExpressionSize() const { 
-     return ExpressionSize; 
-   } 
-   
-   /// Print out the internal representation of this scalar to the specified 
-   /// stream.  This should really only be used for debugging purposes. 
-   void print(raw_ostream &OS) const; 
-   
-   /// This method is used for debugging. 
-   void dump() const; 
- }; 
-   
- // Specialize FoldingSetTrait for SCEV to avoid needing to compute 
- // temporary FoldingSetNodeID values. 
- template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> { 
-   static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; } 
-   
-   static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash, 
-                      FoldingSetNodeID &TempID) { 
-     return ID == X.FastID; 
-   } 
-   
-   static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) { 
-     return X.FastID.ComputeHash(); 
-   } 
- }; 
-   
- inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) { 
-   S.print(OS); 
-   return OS; 
- } 
-   
- /// An object of this class is returned by queries that could not be answered. 
- /// For example, if you ask for the number of iterations of a linked-list 
- /// traversal loop, you will get one of these.  None of the standard SCEV 
- /// operations are valid on this class, it is just a marker. 
- struct SCEVCouldNotCompute : public SCEV { 
-   SCEVCouldNotCompute(); 
-   
-   /// Methods for support type inquiry through isa, cast, and dyn_cast: 
-   static bool classof(const SCEV *S); 
- }; 
-   
- /// This class represents an assumption made using SCEV expressions which can 
- /// be checked at run-time. 
- class SCEVPredicate : public FoldingSetNode { 
-   friend struct FoldingSetTrait<SCEVPredicate>; 
-   
-   /// A reference to an Interned FoldingSetNodeID for this node.  The 
-   /// ScalarEvolution's BumpPtrAllocator holds the data. 
-   FoldingSetNodeIDRef FastID; 
-   
- public: 
-   enum SCEVPredicateKind { P_Union, P_Compare, P_Wrap }; 
-   
- protected: 
-   SCEVPredicateKind Kind; 
-   ~SCEVPredicate() = default; 
-   SCEVPredicate(const SCEVPredicate &) = default; 
-   SCEVPredicate &operator=(const SCEVPredicate &) = default; 
-   
- public: 
-   SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind); 
-   
-   SCEVPredicateKind getKind() const { return Kind; } 
-   
-   /// Returns the estimated complexity of this predicate.  This is roughly 
-   /// measured in the number of run-time checks required. 
-   virtual unsigned getComplexity() const { return 1; } 
-   
-   /// Returns true if the predicate is always true. This means that no 
-   /// assumptions were made and nothing needs to be checked at run-time. 
-   virtual bool isAlwaysTrue() const = 0; 
-   
-   /// Returns true if this predicate implies \p N. 
-   virtual bool implies(const SCEVPredicate *N) const = 0; 
-   
-   /// Prints a textual representation of this predicate with an indentation of 
-   /// \p Depth. 
-   virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0; 
- }; 
-   
- inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) { 
-   P.print(OS); 
-   return OS; 
- } 
-   
- // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute 
- // temporary FoldingSetNodeID values. 
- template <> 
- struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> { 
-   static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) { 
-     ID = X.FastID; 
-   } 
-   
-   static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID, 
-                      unsigned IDHash, FoldingSetNodeID &TempID) { 
-     return ID == X.FastID; 
-   } 
-   
-   static unsigned ComputeHash(const SCEVPredicate &X, 
-                               FoldingSetNodeID &TempID) { 
-     return X.FastID.ComputeHash(); 
-   } 
- }; 
-   
- /// This class represents an assumption that the expression LHS Pred RHS 
- /// evaluates to true, and this can be checked at run-time. 
- class SCEVComparePredicate final : public SCEVPredicate { 
-   /// We assume that LHS Pred RHS is true. 
-   const ICmpInst::Predicate Pred; 
-   const SCEV *LHS; 
-   const SCEV *RHS; 
-   
- public: 
-   SCEVComparePredicate(const FoldingSetNodeIDRef ID, 
-                        const ICmpInst::Predicate Pred, 
-                        const SCEV *LHS, const SCEV *RHS); 
-   
-   /// Implementation of the SCEVPredicate interface 
-   bool implies(const SCEVPredicate *N) const override; 
-   void print(raw_ostream &OS, unsigned Depth = 0) const override; 
-   bool isAlwaysTrue() const override; 
-   
-   ICmpInst::Predicate getPredicate() const { return Pred; } 
-   
-   /// Returns the left hand side of the predicate. 
-   const SCEV *getLHS() const { return LHS; } 
-   
-   /// Returns the right hand side of the predicate. 
-   const SCEV *getRHS() const { return RHS; } 
-   
-   /// Methods for support type inquiry through isa, cast, and dyn_cast: 
-   static bool classof(const SCEVPredicate *P) { 
-     return P->getKind() == P_Compare; 
-   } 
- }; 
-   
- /// This class represents an assumption made on an AddRec expression. Given an 
- /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw 
- /// flags (defined below) in the first X iterations of the loop, where X is a 
- /// SCEV expression returned by getPredicatedBackedgeTakenCount). 
- /// 
- /// Note that this does not imply that X is equal to the backedge taken 
- /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a 
- /// predicated backedge taken count of X, we only guarantee that {0,+,1} has 
- /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we 
- /// have more than X iterations. 
- class SCEVWrapPredicate final : public SCEVPredicate { 
- public: 
-   /// Similar to SCEV::NoWrapFlags, but with slightly different semantics 
-   /// for FlagNUSW. The increment is considered to be signed, and a + b 
-   /// (where b is the increment) is considered to wrap if: 
-   ///    zext(a + b) != zext(a) + sext(b) 
-   /// 
-   /// If Signed is a function that takes an n-bit tuple and maps to the 
-   /// integer domain as the tuples value interpreted as twos complement, 
-   /// and Unsigned a function that takes an n-bit tuple and maps to the 
-   /// integer domain as as the base two value of input tuple, then a + b 
-   /// has IncrementNUSW iff: 
-   /// 
-   /// 0 <= Unsigned(a) + Signed(b) < 2^n 
-   /// 
-   /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW. 
-   /// 
-   /// Note that the IncrementNUSW flag is not commutative: if base + inc 
-   /// has IncrementNUSW, then inc + base doesn't neccessarily have this 
-   /// property. The reason for this is that this is used for sign/zero 
-   /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is 
-   /// assumed. A {base,+,inc} expression is already non-commutative with 
-   /// regards to base and inc, since it is interpreted as: 
-   ///     (((base + inc) + inc) + inc) ... 
-   enum IncrementWrapFlags { 
-     IncrementAnyWrap = 0,     // No guarantee. 
-     IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap. 
-     IncrementNSSW = (1 << 1), // No signed with signed increment wrap 
-                               // (equivalent with SCEV::NSW) 
-     IncrementNoWrapMask = (1 << 2) - 1 
-   }; 
-   
-   /// Convenient IncrementWrapFlags manipulation methods. 
-   [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags 
-   clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, 
-              SCEVWrapPredicate::IncrementWrapFlags OffFlags) { 
-     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); 
-     assert((OffFlags & IncrementNoWrapMask) == OffFlags && 
-            "Invalid flags value!"); 
-     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags); 
-   } 
-   
-   [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags 
-   maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) { 
-     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); 
-     assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!"); 
-   
-     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask); 
-   } 
-   
-   [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags 
-   setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, 
-            SCEVWrapPredicate::IncrementWrapFlags OnFlags) { 
-     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); 
-     assert((OnFlags & IncrementNoWrapMask) == OnFlags && 
-            "Invalid flags value!"); 
-   
-     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags); 
-   } 
-   
-   /// Returns the set of SCEVWrapPredicate no wrap flags implied by a 
-   /// SCEVAddRecExpr. 
-   [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags 
-   getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE); 
-   
- private: 
-   const SCEVAddRecExpr *AR; 
-   IncrementWrapFlags Flags; 
-   
- public: 
-   explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 
-                              const SCEVAddRecExpr *AR, 
-                              IncrementWrapFlags Flags); 
-   
-   /// Returns the set assumed no overflow flags. 
-   IncrementWrapFlags getFlags() const { return Flags; } 
-   
-   /// Implementation of the SCEVPredicate interface 
-   const SCEVAddRecExpr *getExpr() const; 
-   bool implies(const SCEVPredicate *N) const override; 
-   void print(raw_ostream &OS, unsigned Depth = 0) const override; 
-   bool isAlwaysTrue() const override; 
-   
-   /// Methods for support type inquiry through isa, cast, and dyn_cast: 
-   static bool classof(const SCEVPredicate *P) { 
-     return P->getKind() == P_Wrap; 
-   } 
- }; 
-   
- /// This class represents a composition of other SCEV predicates, and is the 
- /// class that most clients will interact with.  This is equivalent to a 
- /// logical "AND" of all the predicates in the union. 
- /// 
- /// NB! Unlike other SCEVPredicate sub-classes this class does not live in the 
- /// ScalarEvolution::Preds folding set.  This is why the \c add function is sound. 
- class SCEVUnionPredicate final : public SCEVPredicate { 
- private: 
-   using PredicateMap = 
-       DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>; 
-   
-   /// Vector with references to all predicates in this union. 
-   SmallVector<const SCEVPredicate *, 16> Preds; 
-   
-   /// Adds a predicate to this union. 
-   void add(const SCEVPredicate *N); 
-   
- public: 
-   SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds); 
-   
-   const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const { 
-     return Preds; 
-   } 
-   
-   /// Implementation of the SCEVPredicate interface 
-   bool isAlwaysTrue() const override; 
-   bool implies(const SCEVPredicate *N) const override; 
-   void print(raw_ostream &OS, unsigned Depth) const override; 
-   
-   /// We estimate the complexity of a union predicate as the size number of 
-   /// predicates in the union. 
-   unsigned getComplexity() const override { return Preds.size(); } 
-   
-   /// Methods for support type inquiry through isa, cast, and dyn_cast: 
-   static bool classof(const SCEVPredicate *P) { 
-     return P->getKind() == P_Union; 
-   } 
- }; 
-   
- /// The main scalar evolution driver. Because client code (intentionally) 
- /// can't do much with the SCEV objects directly, they must ask this class 
- /// for services. 
- class ScalarEvolution { 
-   friend class ScalarEvolutionsTest; 
-   
- public: 
-   /// An enum describing the relationship between a SCEV and a loop. 
-   enum LoopDisposition { 
-     LoopVariant,   ///< The SCEV is loop-variant (unknown). 
-     LoopInvariant, ///< The SCEV is loop-invariant. 
-     LoopComputable ///< The SCEV varies predictably with the loop. 
-   }; 
-   
-   /// An enum describing the relationship between a SCEV and a basic block. 
-   enum BlockDisposition { 
-     DoesNotDominateBlock,  ///< The SCEV does not dominate the block. 
-     DominatesBlock,        ///< The SCEV dominates the block. 
-     ProperlyDominatesBlock ///< The SCEV properly dominates the block. 
-   }; 
-   
-   /// Convenient NoWrapFlags manipulation that hides enum casts and is 
-   /// visible in the ScalarEvolution name space. 
-   [[nodiscard]] static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, 
-                                                    int Mask) { 
-     return (SCEV::NoWrapFlags)(Flags & Mask); 
-   } 
-   [[nodiscard]] static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags, 
-                                                   SCEV::NoWrapFlags OnFlags) { 
-     return (SCEV::NoWrapFlags)(Flags | OnFlags); 
-   } 
-   [[nodiscard]] static SCEV::NoWrapFlags 
-   clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) { 
-     return (SCEV::NoWrapFlags)(Flags & ~OffFlags); 
-   } 
-   [[nodiscard]] static bool hasFlags(SCEV::NoWrapFlags Flags, 
-                                      SCEV::NoWrapFlags TestFlags) { 
-     return TestFlags == maskFlags(Flags, TestFlags); 
-   }; 
-   
-   ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC, 
-                   DominatorTree &DT, LoopInfo &LI); 
-   ScalarEvolution(ScalarEvolution &&Arg); 
-   ~ScalarEvolution(); 
-   
-   LLVMContext &getContext() const { return F.getContext(); } 
-   
-   /// Test if values of the given type are analyzable within the SCEV 
-   /// framework. This primarily includes integer types, and it can optionally 
-   /// include pointer types if the ScalarEvolution class has access to 
-   /// target-specific information. 
-   bool isSCEVable(Type *Ty) const; 
-   
-   /// Return the size in bits of the specified type, for which isSCEVable must 
-   /// return true. 
-   uint64_t getTypeSizeInBits(Type *Ty) const; 
-   
-   /// Return a type with the same bitwidth as the given type and which 
-   /// represents how SCEV will treat the given type, for which isSCEVable must 
-   /// return true. For pointer types, this is the pointer-sized integer type. 
-   Type *getEffectiveSCEVType(Type *Ty) const; 
-   
-   // Returns a wider type among {Ty1, Ty2}. 
-   Type *getWiderType(Type *Ty1, Type *Ty2) const; 
-   
-   /// Return true if there exists a point in the program at which both 
-   /// A and B could be operands to the same instruction. 
-   /// SCEV expressions are generally assumed to correspond to instructions 
-   /// which could exists in IR.  In general, this requires that there exists 
-   /// a use point in the program where all operands dominate the use. 
-   /// 
-   /// Example: 
-   /// loop { 
-   ///   if 
-   ///     loop { v1 = load @global1; } 
-   ///   else 
-   ///     loop { v2 = load @global2; } 
-   /// } 
-   /// No SCEV with operand V1, and v2 can exist in this program. 
-   bool instructionCouldExistWitthOperands(const SCEV *A, const SCEV *B); 
-   
-   /// Return true if the SCEV is a scAddRecExpr or it contains 
-   /// scAddRecExpr. The result will be cached in HasRecMap. 
-   bool containsAddRecurrence(const SCEV *S); 
-   
-   /// Is operation \p BinOp between \p LHS and \p RHS provably does not have 
-   /// a signed/unsigned overflow (\p Signed)? If \p CtxI is specified, the 
-   /// no-overflow fact should be true in the context of this instruction. 
-   bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 
-                        const SCEV *LHS, const SCEV *RHS, 
-                        const Instruction *CtxI = nullptr); 
-   
-   /// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into 
-   /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet. 
-   /// Does not mutate the original instruction. Returns std::nullopt if it could 
-   /// not deduce more precise flags than the instruction already has, otherwise 
-   /// returns proven flags. 
-   std::optional<SCEV::NoWrapFlags> 
-   getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO); 
-   
-   /// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops. 
-   void registerUser(const SCEV *User, ArrayRef<const SCEV *> Ops); 
-   
-   /// Return true if the SCEV expression contains an undef value. 
-   bool containsUndefs(const SCEV *S) const; 
-   
-   /// Return true if the SCEV expression contains a Value that has been 
-   /// optimised out and is now a nullptr. 
-   bool containsErasedValue(const SCEV *S) const; 
-   
-   /// Return a SCEV expression for the full generality of the specified 
-   /// expression. 
-   const SCEV *getSCEV(Value *V); 
-   
-   const SCEV *getConstant(ConstantInt *V); 
-   const SCEV *getConstant(const APInt &Val); 
-   const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false); 
-   const SCEV *getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth = 0); 
-   const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty); 
-   const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0); 
-   const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0); 
-   const SCEV *getZeroExtendExprImpl(const SCEV *Op, Type *Ty, 
-                                     unsigned Depth = 0); 
-   const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0); 
-   const SCEV *getSignExtendExprImpl(const SCEV *Op, Type *Ty, 
-                                     unsigned Depth = 0); 
-   const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty); 
-   const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty); 
-   const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 
-                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, 
-                          unsigned Depth = 0); 
-   const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS, 
-                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, 
-                          unsigned Depth = 0) { 
-     SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 
-     return getAddExpr(Ops, Flags, Depth); 
-   } 
-   const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, 
-                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, 
-                          unsigned Depth = 0) { 
-     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2}; 
-     return getAddExpr(Ops, Flags, Depth); 
-   } 
-   const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 
-                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, 
-                          unsigned Depth = 0); 
-   const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS, 
-                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, 
-                          unsigned Depth = 0) { 
-     SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 
-     return getMulExpr(Ops, Flags, Depth); 
-   } 
-   const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, 
-                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, 
-                          unsigned Depth = 0) { 
-     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2}; 
-     return getMulExpr(Ops, Flags, Depth); 
-   } 
-   const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS); 
-   const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS); 
-   const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS); 
-   const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, 
-                             SCEV::NoWrapFlags Flags); 
-   const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 
-                             const Loop *L, SCEV::NoWrapFlags Flags); 
-   const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands, 
-                             const Loop *L, SCEV::NoWrapFlags Flags) { 
-     SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end()); 
-     return getAddRecExpr(NewOp, L, Flags); 
-   } 
-   
-   /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some 
-   /// Predicates. If successful return these <AddRecExpr, Predicates>; 
-   /// The function is intended to be called from PSCEV (the caller will decide 
-   /// whether to actually add the predicates and carry out the rewrites). 
-   std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 
-   createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI); 
-   
-   /// Returns an expression for a GEP 
-   /// 
-   /// \p GEP The GEP. The indices contained in the GEP itself are ignored, 
-   /// instead we use IndexExprs. 
-   /// \p IndexExprs The expressions for the indices. 
-   const SCEV *getGEPExpr(GEPOperator *GEP, 
-                          const SmallVectorImpl<const SCEV *> &IndexExprs); 
-   const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW); 
-   const SCEV *getMinMaxExpr(SCEVTypes Kind, 
-                             SmallVectorImpl<const SCEV *> &Operands); 
-   const SCEV *getSequentialMinMaxExpr(SCEVTypes Kind, 
-                                       SmallVectorImpl<const SCEV *> &Operands); 
-   const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS); 
-   const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands); 
-   const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS); 
-   const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands); 
-   const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS); 
-   const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands); 
-   const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS, 
-                           bool Sequential = false); 
-   const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands, 
-                           bool Sequential = false); 
-   const SCEV *getUnknown(Value *V); 
-   const SCEV *getCouldNotCompute(); 
-   
-   /// Return a SCEV for the constant 0 of a specific type. 
-   const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); } 
-   
-   /// Return a SCEV for the constant 1 of a specific type. 
-   const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); } 
-   
-   /// Return a SCEV for the constant -1 of a specific type. 
-   const SCEV *getMinusOne(Type *Ty) { 
-     return getConstant(Ty, -1, /*isSigned=*/true); 
-   } 
-   
-   /// Return an expression for sizeof ScalableTy that is type IntTy, where 
-   /// ScalableTy is a scalable vector type. 
-   const SCEV *getSizeOfScalableVectorExpr(Type *IntTy, 
-                                           ScalableVectorType *ScalableTy); 
-   
-   /// Return an expression for the alloc size of AllocTy that is type IntTy 
-   const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy); 
-   
-   /// Return an expression for the store size of StoreTy that is type IntTy 
-   const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy); 
-   
-   /// Return an expression for offsetof on the given field with type IntTy 
-   const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo); 
-   
-   /// Return the SCEV object corresponding to -V. 
-   const SCEV *getNegativeSCEV(const SCEV *V, 
-                               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap); 
-   
-   /// Return the SCEV object corresponding to ~V. 
-   const SCEV *getNotSCEV(const SCEV *V); 
-   
-   /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1. 
-   /// 
-   /// If the LHS and RHS are pointers which don't share a common base 
-   /// (according to getPointerBase()), this returns a SCEVCouldNotCompute. 
-   /// To compute the difference between two unrelated pointers, you can 
-   /// explicitly convert the arguments using getPtrToIntExpr(), for pointer 
-   /// types that support it. 
-   const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 
-                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, 
-                            unsigned Depth = 0); 
-   
-   /// Compute ceil(N / D). N and D are treated as unsigned values. 
-   /// 
-   /// Since SCEV doesn't have native ceiling division, this generates a 
-   /// SCEV expression of the following form: 
-   /// 
-   /// umin(N, 1) + floor((N - umin(N, 1)) / D) 
-   /// 
-   /// A denominator of zero or poison is handled the same way as getUDivExpr(). 
-   const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D); 
-   
-   /// Return a SCEV corresponding to a conversion of the input value to the 
-   /// specified type.  If the type must be extended, it is zero extended. 
-   const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 
-                                       unsigned Depth = 0); 
-   
-   /// Return a SCEV corresponding to a conversion of the input value to the 
-   /// specified type.  If the type must be extended, it is sign extended. 
-   const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty, 
-                                       unsigned Depth = 0); 
-   
-   /// Return a SCEV corresponding to a conversion of the input value to the 
-   /// specified type.  If the type must be extended, it is zero extended.  The 
-   /// conversion must not be narrowing. 
-   const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty); 
-   
-   /// Return a SCEV corresponding to a conversion of the input value to the 
-   /// specified type.  If the type must be extended, it is sign extended.  The 
-   /// conversion must not be narrowing. 
-   const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty); 
-   
-   /// Return a SCEV corresponding to a conversion of the input value to the 
-   /// specified type. If the type must be extended, it is extended with 
-   /// unspecified bits. The conversion must not be narrowing. 
-   const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty); 
-   
-   /// Return a SCEV corresponding to a conversion of the input value to the 
-   /// specified type.  The conversion must not be widening. 
-   const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty); 
-   
-   /// Promote the operands to the wider of the types using zero-extension, and 
-   /// then perform a umax operation with them. 
-   const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS); 
-   
-   /// Promote the operands to the wider of the types using zero-extension, and 
-   /// then perform a umin operation with them. 
-   const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS, 
-                                          bool Sequential = false); 
-   
-   /// Promote the operands to the wider of the types using zero-extension, and 
-   /// then perform a umin operation with them. N-ary function. 
-   const SCEV *getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, 
-                                          bool Sequential = false); 
-   
-   /// Transitively follow the chain of pointer-type operands until reaching a 
-   /// SCEV that does not have a single pointer operand. This returns a 
-   /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner 
-   /// cases do exist. 
-   const SCEV *getPointerBase(const SCEV *V); 
-   
-   /// Compute an expression equivalent to S - getPointerBase(S). 
-   const SCEV *removePointerBase(const SCEV *S); 
-   
-   /// Return a SCEV expression for the specified value at the specified scope 
-   /// in the program.  The L value specifies a loop nest to evaluate the 
-   /// expression at, where null is the top-level or a specified loop is 
-   /// immediately inside of the loop. 
-   /// 
-   /// This method can be used to compute the exit value for a variable defined 
-   /// in a loop by querying what the value will hold in the parent loop. 
-   /// 
-   /// In the case that a relevant loop exit value cannot be computed, the 
-   /// original value V is returned. 
-   const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L); 
-   
-   /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L). 
-   const SCEV *getSCEVAtScope(Value *V, const Loop *L); 
-   
-   /// Test whether entry to the loop is protected by a conditional between LHS 
-   /// and RHS.  This is used to help avoid max expressions in loop trip 
-   /// counts, and to eliminate casts. 
-   bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, 
-                                 const SCEV *LHS, const SCEV *RHS); 
-   
-   /// Test whether entry to the basic block is protected by a conditional 
-   /// between LHS and RHS. 
-   bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 
-                                       ICmpInst::Predicate Pred, const SCEV *LHS, 
-                                       const SCEV *RHS); 
-   
-   /// Test whether the backedge of the loop is protected by a conditional 
-   /// between LHS and RHS.  This is used to eliminate casts. 
-   bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, 
-                                    const SCEV *LHS, const SCEV *RHS); 
-   
-   /// Convert from an "exit count" (i.e. "backedge taken count") to a "trip 
-   /// count".  A "trip count" is the number of times the header of the loop 
-   /// will execute if an exit is taken after the specified number of backedges 
-   /// have been taken.  (e.g. TripCount = ExitCount + 1).  Note that the 
-   /// expression can overflow if ExitCount = UINT_MAX.  \p Extend controls 
-   /// how potential overflow is handled.  If true, a wider result type is 
-   /// returned. ex: EC = 255 (i8), TC = 256 (i9).  If false, result unsigned 
-   /// wraps with 2s-complement semantics.  ex: EC = 255 (i8), TC = 0 (i8) 
-   const SCEV *getTripCountFromExitCount(const SCEV *ExitCount, 
-                                         bool Extend = true); 
-   
-   /// Returns the exact trip count of the loop if we can compute it, and 
-   /// the result is a small constant.  '0' is used to represent an unknown 
-   /// or non-constant trip count.  Note that a trip count is simply one more 
-   /// than the backedge taken count for the loop. 
-   unsigned getSmallConstantTripCount(const Loop *L); 
-   
-   /// Return the exact trip count for this loop if we exit through ExitingBlock. 
-   /// '0' is used to represent an unknown or non-constant trip count.  Note 
-   /// that a trip count is simply one more than the backedge taken count for 
-   /// the same exit. 
-   /// This "trip count" assumes that control exits via ExitingBlock. More 
-   /// precisely, it is the number of times that control will reach ExitingBlock 
-   /// before taking the branch. For loops with multiple exits, it may not be 
-   /// the number times that the loop header executes if the loop exits 
-   /// prematurely via another branch. 
-   unsigned getSmallConstantTripCount(const Loop *L, 
-                                      const BasicBlock *ExitingBlock); 
-   
-   /// Returns the upper bound of the loop trip count as a normal unsigned 
-   /// value. 
-   /// Returns 0 if the trip count is unknown or not constant. 
-   unsigned getSmallConstantMaxTripCount(const Loop *L); 
-   
-   /// Returns the upper bound of the loop trip count infered from array size. 
-   /// Can not access bytes starting outside the statically allocated size 
-   /// without being immediate UB. 
-   /// Returns SCEVCouldNotCompute if the trip count could not inferred 
-   /// from array accesses. 
-   const SCEV *getConstantMaxTripCountFromArray(const Loop *L); 
-   
-   /// Returns the largest constant divisor of the trip count as a normal 
-   /// unsigned value, if possible. This means that the actual trip count is 
-   /// always a multiple of the returned value. Returns 1 if the trip count is 
-   /// unknown or not guaranteed to be the multiple of a constant., Will also 
-   /// return 1 if the trip count is very large (>= 2^32). 
-   /// Note that the argument is an exit count for loop L, NOT a trip count. 
-   unsigned getSmallConstantTripMultiple(const Loop *L, 
-                                         const SCEV *ExitCount); 
-   
-   /// Returns the largest constant divisor of the trip count of the 
-   /// loop.  Will return 1 if no trip count could be computed, or if a 
-   /// divisor could not be found. 
-   unsigned getSmallConstantTripMultiple(const Loop *L); 
-   
-   /// Returns the largest constant divisor of the trip count of this loop as a 
-   /// normal unsigned value, if possible. This means that the actual trip 
-   /// count is always a multiple of the returned value (don't forget the trip 
-   /// count could very well be zero as well!). As explained in the comments 
-   /// for getSmallConstantTripCount, this assumes that control exits the loop 
-   /// via ExitingBlock. 
-   unsigned getSmallConstantTripMultiple(const Loop *L, 
-                                         const BasicBlock *ExitingBlock); 
-   
-   /// The terms "backedge taken count" and "exit count" are used 
-   /// interchangeably to refer to the number of times the backedge of a loop  
-   /// has executed before the loop is exited. 
-   enum ExitCountKind { 
-     /// An expression exactly describing the number of times the backedge has 
-     /// executed when a loop is exited. 
-     Exact, 
-     /// A constant which provides an upper bound on the exact trip count. 
-     ConstantMaximum, 
-     /// An expression which provides an upper bound on the exact trip count. 
-     SymbolicMaximum, 
-   }; 
-   
-   /// Return the number of times the backedge executes before the given exit 
-   /// would be taken; if not exactly computable, return SCEVCouldNotCompute.  
-   /// For a single exit loop, this value is equivelent to the result of 
-   /// getBackedgeTakenCount.  The loop is guaranteed to exit (via *some* exit) 
-   /// before the backedge is executed (ExitCount + 1) times.  Note that there 
-   /// is no guarantee about *which* exit is taken on the exiting iteration. 
-   const SCEV *getExitCount(const Loop *L, const BasicBlock *ExitingBlock, 
-                            ExitCountKind Kind = Exact); 
-   
-   /// If the specified loop has a predictable backedge-taken count, return it, 
-   /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is 
-   /// the number of times the loop header will be branched to from within the 
-   /// loop, assuming there are no abnormal exists like exception throws. This is 
-   /// one less than the trip count of the loop, since it doesn't count the first 
-   /// iteration, when the header is branched to from outside the loop. 
-   /// 
-   /// Note that it is not valid to call this method on a loop without a 
-   /// loop-invariant backedge-taken count (see 
-   /// hasLoopInvariantBackedgeTakenCount). 
-   const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact); 
-   
-   /// Similar to getBackedgeTakenCount, except it will add a set of 
-   /// SCEV predicates to Predicates that are required to be true in order for 
-   /// the answer to be correct. Predicates can be checked with run-time 
-   /// checks and can be used to perform loop versioning. 
-   const SCEV *getPredicatedBackedgeTakenCount(const Loop *L, 
-                                               SmallVector<const SCEVPredicate *, 4> &Predicates); 
-   
-   /// When successful, this returns a SCEVConstant that is greater than or equal 
-   /// to (i.e. a "conservative over-approximation") of the value returend by 
-   /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the 
-   /// SCEVCouldNotCompute object. 
-   const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) { 
-     return getBackedgeTakenCount(L, ConstantMaximum); 
-   } 
-   
-   /// When successful, this returns a SCEV that is greater than or equal 
-   /// to (i.e. a "conservative over-approximation") of the value returend by 
-   /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the 
-   /// SCEVCouldNotCompute object. 
-   const SCEV *getSymbolicMaxBackedgeTakenCount(const Loop *L) { 
-     return getBackedgeTakenCount(L, SymbolicMaximum); 
-   } 
-   
-   /// Return true if the backedge taken count is either the value returned by 
-   /// getConstantMaxBackedgeTakenCount or zero. 
-   bool isBackedgeTakenCountMaxOrZero(const Loop *L); 
-   
-   /// Return true if the specified loop has an analyzable loop-invariant 
-   /// backedge-taken count. 
-   bool hasLoopInvariantBackedgeTakenCount(const Loop *L); 
-   
-   // This method should be called by the client when it made any change that 
-   // would invalidate SCEV's answers, and the client wants to remove all loop 
-   // information held internally by ScalarEvolution. This is intended to be used 
-   // when the alternative to forget a loop is too expensive (i.e. large loop 
-   // bodies). 
-   void forgetAllLoops(); 
-   
-   /// This method should be called by the client when it has changed a loop in 
-   /// a way that may effect ScalarEvolution's ability to compute a trip count, 
-   /// or if the loop is deleted.  This call is potentially expensive for large 
-   /// loop bodies. 
-   void forgetLoop(const Loop *L); 
-   
-   // This method invokes forgetLoop for the outermost loop of the given loop 
-   // \p L, making ScalarEvolution forget about all this subtree. This needs to 
-   // be done whenever we make a transform that may affect the parameters of the 
-   // outer loop, such as exit counts for branches. 
-   void forgetTopmostLoop(const Loop *L); 
-   
-   /// This method should be called by the client when it has changed a value 
-   /// in a way that may effect its value, or which may disconnect it from a 
-   /// def-use chain linking it to a loop. 
-   void forgetValue(Value *V); 
-   
-   /// Called when the client has changed the disposition of values in 
-   /// this loop. 
-   /// 
-   /// We don't have a way to invalidate per-loop dispositions. Clear and 
-   /// recompute is simpler. 
-   void forgetLoopDispositions(); 
-   
-   /// Called when the client has changed the disposition of values in 
-   /// a loop or block. 
-   /// 
-   /// We don't have a way to invalidate per-loop/per-block dispositions. Clear 
-   /// and recompute is simpler. 
-   void forgetBlockAndLoopDispositions(Value *V = nullptr); 
-   
-   /// Determine the minimum number of zero bits that S is guaranteed to end in 
-   /// (at every loop iteration).  It is, at the same time, the minimum number 
-   /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2. 
-   /// If S is guaranteed to be 0, it returns the bitwidth of S. 
-   uint32_t GetMinTrailingZeros(const SCEV *S); 
-   
-   /// Determine the unsigned range for a particular SCEV. 
-   /// NOTE: This returns a copy of the reference returned by getRangeRef. 
-   ConstantRange getUnsignedRange(const SCEV *S) { 
-     return getRangeRef(S, HINT_RANGE_UNSIGNED); 
-   } 
-   
-   /// Determine the min of the unsigned range for a particular SCEV. 
-   APInt getUnsignedRangeMin(const SCEV *S) { 
-     return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin(); 
-   } 
-   
-   /// Determine the max of the unsigned range for a particular SCEV. 
-   APInt getUnsignedRangeMax(const SCEV *S) { 
-     return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax(); 
-   } 
-   
-   /// Determine the signed range for a particular SCEV. 
-   /// NOTE: This returns a copy of the reference returned by getRangeRef. 
-   ConstantRange getSignedRange(const SCEV *S) { 
-     return getRangeRef(S, HINT_RANGE_SIGNED); 
-   } 
-   
-   /// Determine the min of the signed range for a particular SCEV. 
-   APInt getSignedRangeMin(const SCEV *S) { 
-     return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin(); 
-   } 
-   
-   /// Determine the max of the signed range for a particular SCEV. 
-   APInt getSignedRangeMax(const SCEV *S) { 
-     return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax(); 
-   } 
-   
-   /// Test if the given expression is known to be negative. 
-   bool isKnownNegative(const SCEV *S); 
-   
-   /// Test if the given expression is known to be positive. 
-   bool isKnownPositive(const SCEV *S); 
-   
-   /// Test if the given expression is known to be non-negative. 
-   bool isKnownNonNegative(const SCEV *S); 
-   
-   /// Test if the given expression is known to be non-positive. 
-   bool isKnownNonPositive(const SCEV *S); 
-   
-   /// Test if the given expression is known to be non-zero. 
-   bool isKnownNonZero(const SCEV *S); 
-   
-   /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from 
-   /// \p S by substitution of all AddRec sub-expression related to loop \p L 
-   /// with initial value of that SCEV. The second is obtained from \p S by 
-   /// substitution of all AddRec sub-expressions related to loop \p L with post 
-   /// increment of this AddRec in the loop \p L. In both cases all other AddRec 
-   /// sub-expressions (not related to \p L) remain the same. 
-   /// If the \p S contains non-invariant unknown SCEV the function returns 
-   /// CouldNotCompute SCEV in both values of std::pair. 
-   /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1 
-   /// the function returns pair: 
-   /// first = {0, +, 1}<L2> 
-   /// second = {1, +, 1}<L1> + {0, +, 1}<L2> 
-   /// We can see that for the first AddRec sub-expression it was replaced with 
-   /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post 
-   /// increment value) for the second one. In both cases AddRec expression 
-   /// related to L2 remains the same. 
-   std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L, 
-                                                                 const SCEV *S); 
-   
-   /// We'd like to check the predicate on every iteration of the most dominated 
-   /// loop between loops used in LHS and RHS. 
-   /// To do this we use the following list of steps: 
-   /// 1. Collect set S all loops on which either LHS or RHS depend. 
-   /// 2. If S is non-empty 
-   /// a. Let PD be the element of S which is dominated by all other elements. 
-   /// b. Let E(LHS) be value of LHS on entry of PD. 
-   ///    To get E(LHS), we should just take LHS and replace all AddRecs that are 
-   ///    attached to PD on with their entry values. 
-   ///    Define E(RHS) in the same way. 
-   /// c. Let B(LHS) be value of L on backedge of PD. 
-   ///    To get B(LHS), we should just take LHS and replace all AddRecs that are 
-   ///    attached to PD on with their backedge values. 
-   ///    Define B(RHS) in the same way. 
-   /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD, 
-   ///    so we can assert on that. 
-   /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) && 
-   ///                   isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS)) 
-   bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS, 
-                            const SCEV *RHS); 
-   
-   /// Test if the given expression is known to satisfy the condition described 
-   /// by Pred, LHS, and RHS. 
-   bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, 
-                         const SCEV *RHS); 
-   
-   /// Check whether the condition described by Pred, LHS, and RHS is true or 
-   /// false. If we know it, return the evaluation of this condition. If neither 
-   /// is proved, return std::nullopt. 
-   std::optional<bool> evaluatePredicate(ICmpInst::Predicate Pred, 
-                                         const SCEV *LHS, const SCEV *RHS); 
-   
-   /// Test if the given expression is known to satisfy the condition described 
-   /// by Pred, LHS, and RHS in the given Context. 
-   bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, 
-                           const SCEV *RHS, const Instruction *CtxI); 
-   
-   /// Check whether the condition described by Pred, LHS, and RHS is true or 
-   /// false in the given \p Context. If we know it, return the evaluation of 
-   /// this condition. If neither is proved, return std::nullopt. 
-   std::optional<bool> evaluatePredicateAt(ICmpInst::Predicate Pred, 
-                                           const SCEV *LHS, const SCEV *RHS, 
-                                           const Instruction *CtxI); 
-   
-   /// Test if the condition described by Pred, LHS, RHS is known to be true on 
-   /// every iteration of the loop of the recurrency LHS. 
-   bool isKnownOnEveryIteration(ICmpInst::Predicate Pred, 
-                                const SCEVAddRecExpr *LHS, const SCEV *RHS); 
-   
-   /// Information about the number of loop iterations for which a loop exit's 
-   /// branch condition evaluates to the not-taken path.  This is a temporary 
-   /// pair of exact and max expressions that are eventually summarized in 
-   /// ExitNotTakenInfo and BackedgeTakenInfo. 
-   struct ExitLimit { 
-     const SCEV *ExactNotTaken; // The exit is not taken exactly this many times 
-     const SCEV *ConstantMaxNotTaken; // The exit is not taken at most this many 
-                                      // times 
-     const SCEV *SymbolicMaxNotTaken; 
-   
-     // Not taken either exactly ConstantMaxNotTaken or zero times 
-     bool MaxOrZero = false; 
-   
-     /// A set of predicate guards for this ExitLimit. The result is only valid 
-     /// if all of the predicates in \c Predicates evaluate to 'true' at 
-     /// run-time. 
-     SmallPtrSet<const SCEVPredicate *, 4> Predicates; 
-   
-     void addPredicate(const SCEVPredicate *P) { 
-       assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!"); 
-       Predicates.insert(P); 
-     } 
-   
-     /// Construct either an exact exit limit from a constant, or an unknown 
-     /// one from a SCEVCouldNotCompute.  No other types of SCEVs are allowed 
-     /// as arguments and asserts enforce that internally. 
-     /*implicit*/ ExitLimit(const SCEV *E); 
-   
-     ExitLimit( 
-         const SCEV *E, const SCEV *ConstantMaxNotTaken, 
-         const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, 
-         ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList = 
-             std::nullopt); 
-   
-     ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken, 
-               const SCEV *SymbolicMaxNotTaken, bool MaxOrZero, 
-               const SmallPtrSetImpl<const SCEVPredicate *> &PredSet); 
-   
-     /// Test whether this ExitLimit contains any computed information, or 
-     /// whether it's all SCEVCouldNotCompute values. 
-     bool hasAnyInfo() const { 
-       return !isa<SCEVCouldNotCompute>(ExactNotTaken) || 
-              !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken); 
-     } 
-   
-     /// Test whether this ExitLimit contains all information. 
-     bool hasFullInfo() const { 
-       return !isa<SCEVCouldNotCompute>(ExactNotTaken); 
-     } 
-   }; 
-   
-   /// Compute the number of times the backedge of the specified loop will 
-   /// execute if its exit condition were a conditional branch of ExitCond. 
-   /// 
-   /// \p ControlsExit is true if ExitCond directly controls the exit 
-   /// branch. In this case, we can assume that the loop exits only if the 
-   /// condition is true and can infer that failing to meet the condition prior 
-   /// to integer wraparound results in undefined behavior. 
-   /// 
-   /// If \p AllowPredicates is set, this call will try to use a minimal set of 
-   /// SCEV predicates in order to return an exact answer. 
-   ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond, 
-                                      bool ExitIfTrue, bool ControlsExit, 
-                                      bool AllowPredicates = false); 
-   
-   /// A predicate is said to be monotonically increasing if may go from being 
-   /// false to being true as the loop iterates, but never the other way 
-   /// around.  A predicate is said to be monotonically decreasing if may go 
-   /// from being true to being false as the loop iterates, but never the other 
-   /// way around. 
-   enum MonotonicPredicateType { 
-     MonotonicallyIncreasing, 
-     MonotonicallyDecreasing 
-   }; 
-   
-   /// If, for all loop invariant X, the predicate "LHS `Pred` X" is 
-   /// monotonically increasing or decreasing, returns 
-   /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing) 
-   /// respectively. If we could not prove either of these facts, returns 
-   /// std::nullopt. 
-   std::optional<MonotonicPredicateType> 
-   getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 
-                             ICmpInst::Predicate Pred); 
-   
-   struct LoopInvariantPredicate { 
-     ICmpInst::Predicate Pred; 
-     const SCEV *LHS; 
-     const SCEV *RHS; 
-   
-     LoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, 
-                            const SCEV *RHS) 
-         : Pred(Pred), LHS(LHS), RHS(RHS) {} 
-   }; 
-   /// If the result of the predicate LHS `Pred` RHS is loop invariant with 
-   /// respect to L, return a LoopInvariantPredicate with LHS and RHS being 
-   /// invariants, available at L's entry. Otherwise, return std::nullopt. 
-   std::optional<LoopInvariantPredicate> 
-   getLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, 
-                             const SCEV *RHS, const Loop *L, 
-                             const Instruction *CtxI = nullptr); 
-   
-   /// If the result of the predicate LHS `Pred` RHS is loop invariant with 
-   /// respect to L at given Context during at least first MaxIter iterations, 
-   /// return a LoopInvariantPredicate with LHS and RHS being invariants, 
-   /// available at L's entry. Otherwise, return std::nullopt. The predicate 
-   /// should be the loop's exit condition. 
-   std::optional<LoopInvariantPredicate> 
-   getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred, 
-                                                 const SCEV *LHS, 
-                                                 const SCEV *RHS, const Loop *L, 
-                                                 const Instruction *CtxI, 
-                                                 const SCEV *MaxIter); 
-   
-   std::optional<LoopInvariantPredicate> 
-   getLoopInvariantExitCondDuringFirstIterationsImpl( 
-       ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 
-       const Instruction *CtxI, const SCEV *MaxIter); 
-   
-   /// Simplify LHS and RHS in a comparison with predicate Pred. Return true 
-   /// iff any changes were made. If the operands are provably equal or 
-   /// unequal, LHS and RHS are set to the same value and Pred is set to either 
-   /// ICMP_EQ or ICMP_NE. ControllingFiniteLoop is set if this comparison 
-   /// controls the exit of a loop known to have a finite number of iterations. 
-   bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS, 
-                             const SCEV *&RHS, unsigned Depth = 0, 
-                             bool ControllingFiniteLoop = false); 
-   
-   /// Return the "disposition" of the given SCEV with respect to the given 
-   /// loop. 
-   LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L); 
-   
-   /// Return true if the value of the given SCEV is unchanging in the 
-   /// specified loop. 
-   bool isLoopInvariant(const SCEV *S, const Loop *L); 
-   
-   /// Determine if the SCEV can be evaluated at loop's entry. It is true if it 
-   /// doesn't depend on a SCEVUnknown of an instruction which is dominated by 
-   /// the header of loop L. 
-   bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L); 
-   
-   /// Return true if the given SCEV changes value in a known way in the 
-   /// specified loop.  This property being true implies that the value is 
-   /// variant in the loop AND that we can emit an expression to compute the 
-   /// value of the expression at any particular loop iteration. 
-   bool hasComputableLoopEvolution(const SCEV *S, const Loop *L); 
-   
-   /// Return the "disposition" of the given SCEV with respect to the given 
-   /// block. 
-   BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB); 
-   
-   /// Return true if elements that makes up the given SCEV dominate the 
-   /// specified basic block. 
-   bool dominates(const SCEV *S, const BasicBlock *BB); 
-   
-   /// Return true if elements that makes up the given SCEV properly dominate 
-   /// the specified basic block. 
-   bool properlyDominates(const SCEV *S, const BasicBlock *BB); 
-   
-   /// Test whether the given SCEV has Op as a direct or indirect operand. 
-   bool hasOperand(const SCEV *S, const SCEV *Op) const; 
-   
-   /// Return the size of an element read or written by Inst. 
-   const SCEV *getElementSize(Instruction *Inst); 
-   
-   void print(raw_ostream &OS) const; 
-   void verify() const; 
-   bool invalidate(Function &F, const PreservedAnalyses &PA, 
-                   FunctionAnalysisManager::Invalidator &Inv); 
-   
-   /// Return the DataLayout associated with the module this SCEV instance is 
-   /// operating on. 
-   const DataLayout &getDataLayout() const { 
-     return F.getParent()->getDataLayout(); 
-   } 
-   
-   const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS); 
-   const SCEVPredicate *getComparePredicate(ICmpInst::Predicate Pred, 
-                                            const SCEV *LHS, const SCEV *RHS); 
-   
-   const SCEVPredicate * 
-   getWrapPredicate(const SCEVAddRecExpr *AR, 
-                    SCEVWrapPredicate::IncrementWrapFlags AddedFlags); 
-   
-   /// Re-writes the SCEV according to the Predicates in \p A. 
-   const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L, 
-                                     const SCEVPredicate &A); 
-   /// Tries to convert the \p S expression to an AddRec expression, 
-   /// adding additional predicates to \p Preds as required. 
-   const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates( 
-       const SCEV *S, const Loop *L, 
-       SmallPtrSetImpl<const SCEVPredicate *> &Preds); 
-   
-   /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a 
-   /// constant, and std::nullopt if it isn't. 
-   /// 
-   /// This is intended to be a cheaper version of getMinusSCEV.  We can be 
-   /// frugal here since we just bail out of actually constructing and 
-   /// canonicalizing an expression in the cases where the result isn't going 
-   /// to be a constant. 
-   std::optional<APInt> computeConstantDifference(const SCEV *LHS, 
-                                                  const SCEV *RHS); 
-   
-   /// Update no-wrap flags of an AddRec. This may drop the cached info about 
-   /// this AddRec (such as range info) in case if new flags may potentially 
-   /// sharpen it. 
-   void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags); 
-   
-   /// Try to apply information from loop guards for \p L to \p Expr. 
-   const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L); 
-   
-   /// Return true if the loop has no abnormal exits. That is, if the loop 
-   /// is not infinite, it must exit through an explicit edge in the CFG. 
-   /// (As opposed to either a) throwing out of the function or b) entering a 
-   /// well defined infinite loop in some callee.) 
-   bool loopHasNoAbnormalExits(const Loop *L) { 
-     return getLoopProperties(L).HasNoAbnormalExits; 
-   } 
-   
-   /// Return true if this loop is finite by assumption.  That is, 
-   /// to be infinite, it must also be undefined. 
-   bool loopIsFiniteByAssumption(const Loop *L); 
-   
-   class FoldID { 
-     SmallVector<unsigned, 5> Bits; 
-   
-   public: 
-     void addInteger(unsigned long I) { 
-       if (sizeof(long) == sizeof(int)) 
-         addInteger(unsigned(I)); 
-       else if (sizeof(long) == sizeof(long long)) 
-         addInteger((unsigned long long)I); 
-       else 
-         llvm_unreachable("unexpected sizeof(long)"); 
-     } 
-     void addInteger(unsigned I) { Bits.push_back(I); } 
-     void addInteger(int I) { Bits.push_back(I); } 
-   
-     void addInteger(unsigned long long I) { 
-       addInteger(unsigned(I)); 
-       addInteger(unsigned(I >> 32)); 
-     } 
-   
-     void addPointer(const void *Ptr) { 
-       // Note: this adds pointers to the hash using sizes and endianness that 
-       // depend on the host. It doesn't matter, however, because hashing on 
-       // pointer values is inherently unstable. Nothing should depend on the 
-       // ordering of nodes in the folding set. 
-       static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long), 
-                     "unexpected pointer size"); 
-       addInteger(reinterpret_cast<uintptr_t>(Ptr)); 
-     } 
-   
-     unsigned computeHash() const { 
-       unsigned Hash = Bits.size(); 
-       for (unsigned I = 0; I != Bits.size(); ++I) 
-         Hash = detail::combineHashValue(Hash, Bits[I]); 
-       return Hash; 
-     } 
-     bool operator==(const FoldID &RHS) const { 
-       if (Bits.size() != RHS.Bits.size()) 
-         return false; 
-       for (unsigned I = 0; I != Bits.size(); ++I) 
-         if (Bits[I] != RHS.Bits[I]) 
-           return false; 
-       return true; 
-     } 
-   }; 
-   
- private: 
-   /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a 
-   /// Value is deleted. 
-   class SCEVCallbackVH final : public CallbackVH { 
-     ScalarEvolution *SE; 
-   
-     void deleted() override; 
-     void allUsesReplacedWith(Value *New) override; 
-   
-   public: 
-     SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr); 
-   }; 
-   
-   friend class SCEVCallbackVH; 
-   friend class SCEVExpander; 
-   friend class SCEVUnknown; 
-   
-   /// The function we are analyzing. 
-   Function &F; 
-   
-   /// Does the module have any calls to the llvm.experimental.guard intrinsic 
-   /// at all?  If this is false, we avoid doing work that will only help if 
-   /// thare are guards present in the IR. 
-   bool HasGuards; 
-   
-   /// The target library information for the target we are targeting. 
-   TargetLibraryInfo &TLI; 
-   
-   /// The tracker for \@llvm.assume intrinsics in this function. 
-   AssumptionCache &AC; 
-   
-   /// The dominator tree. 
-   DominatorTree &DT; 
-   
-   /// The loop information for the function we are currently analyzing. 
-   LoopInfo &LI; 
-   
-   /// This SCEV is used to represent unknown trip counts and things. 
-   std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute; 
-   
-   /// The type for HasRecMap. 
-   using HasRecMapType = DenseMap<const SCEV *, bool>; 
-   
-   /// This is a cache to record whether a SCEV contains any scAddRecExpr. 
-   HasRecMapType HasRecMap; 
-   
-   /// The type for ExprValueMap. 
-   using ValueSetVector = SmallSetVector<Value *, 4>; 
-   using ExprValueMapType = DenseMap<const SCEV *, ValueSetVector>; 
-   
-   /// ExprValueMap -- This map records the original values from which 
-   /// the SCEV expr is generated from. 
-   ExprValueMapType ExprValueMap; 
-   
-   /// The type for ValueExprMap. 
-   using ValueExprMapType = 
-       DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>; 
-   
-   /// This is a cache of the values we have analyzed so far. 
-   ValueExprMapType ValueExprMap; 
-   
-   /// This is a cache for expressions that got folded to a different existing 
-   /// SCEV. 
-   DenseMap<FoldID, const SCEV *> FoldCache; 
-   DenseMap<const SCEV *, SmallVector<FoldID, 2>> FoldCacheUser; 
-   
-   /// Mark predicate values currently being processed by isImpliedCond. 
-   SmallPtrSet<const Value *, 6> PendingLoopPredicates; 
-   
-   /// Mark SCEVUnknown Phis currently being processed by getRangeRef. 
-   SmallPtrSet<const PHINode *, 6> PendingPhiRanges; 
-   
-   /// Mark SCEVUnknown Phis currently being processed by getRangeRefIter. 
-   SmallPtrSet<const PHINode *, 6> PendingPhiRangesIter; 
-   
-   // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge. 
-   SmallPtrSet<const PHINode *, 6> PendingMerges; 
-   
-   /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of 
-   /// conditions dominating the backedge of a loop. 
-   bool WalkingBEDominatingConds = false; 
-   
-   /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a 
-   /// predicate by splitting it into a set of independent predicates. 
-   bool ProvingSplitPredicate = false; 
-   
-   /// Memoized values for the GetMinTrailingZeros 
-   DenseMap<const SCEV *, uint32_t> MinTrailingZerosCache; 
-   
-   /// Return the Value set from which the SCEV expr is generated. 
-   ArrayRef<Value *> getSCEVValues(const SCEV *S); 
-   
-   /// Private helper method for the GetMinTrailingZeros method 
-   uint32_t GetMinTrailingZerosImpl(const SCEV *S); 
-   
-   /// Information about the number of times a particular loop exit may be 
-   /// reached before exiting the loop. 
-   struct ExitNotTakenInfo { 
-     PoisoningVH<BasicBlock> ExitingBlock; 
-     const SCEV *ExactNotTaken; 
-     const SCEV *ConstantMaxNotTaken; 
-     const SCEV *SymbolicMaxNotTaken; 
-     SmallPtrSet<const SCEVPredicate *, 4> Predicates; 
-   
-     explicit ExitNotTakenInfo( 
-         PoisoningVH<BasicBlock> ExitingBlock, const SCEV *ExactNotTaken, 
-         const SCEV *ConstantMaxNotTaken, const SCEV *SymbolicMaxNotTaken, 
-         const SmallPtrSet<const SCEVPredicate *, 4> &Predicates) 
-         : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken), 
-           ConstantMaxNotTaken(ConstantMaxNotTaken), 
-           SymbolicMaxNotTaken(SymbolicMaxNotTaken), Predicates(Predicates) {} 
-   
-     bool hasAlwaysTruePredicate() const { 
-       return Predicates.empty(); 
-     } 
-   }; 
-   
-   /// Information about the backedge-taken count of a loop. This currently 
-   /// includes an exact count and a maximum count. 
-   /// 
-   class BackedgeTakenInfo { 
-     friend class ScalarEvolution; 
-   
-     /// A list of computable exits and their not-taken counts.  Loops almost 
-     /// never have more than one computable exit. 
-     SmallVector<ExitNotTakenInfo, 1> ExitNotTaken; 
-   
-     /// Expression indicating the least constant maximum backedge-taken count of 
-     /// the loop that is known, or a SCEVCouldNotCompute. This expression is 
-     /// only valid if the redicates associated with all loop exits are true. 
-     const SCEV *ConstantMax = nullptr; 
-   
-     /// Indicating if \c ExitNotTaken has an element for every exiting block in 
-     /// the loop. 
-     bool IsComplete = false; 
-   
-     /// Expression indicating the least maximum backedge-taken count of the loop 
-     /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query. 
-     const SCEV *SymbolicMax = nullptr; 
-   
-     /// True iff the backedge is taken either exactly Max or zero times. 
-     bool MaxOrZero = false; 
-   
-     bool isComplete() const { return IsComplete; } 
-     const SCEV *getConstantMax() const { return ConstantMax; } 
-   
-   public: 
-     BackedgeTakenInfo() = default; 
-     BackedgeTakenInfo(BackedgeTakenInfo &&) = default; 
-     BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default; 
-   
-     using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>; 
-   
-     /// Initialize BackedgeTakenInfo from a list of exact exit counts. 
-     BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool IsComplete, 
-                       const SCEV *ConstantMax, bool MaxOrZero); 
-   
-     /// Test whether this BackedgeTakenInfo contains any computed information, 
-     /// or whether it's all SCEVCouldNotCompute values. 
-     bool hasAnyInfo() const { 
-       return !ExitNotTaken.empty() || 
-              !isa<SCEVCouldNotCompute>(getConstantMax()); 
-     } 
-   
-     /// Test whether this BackedgeTakenInfo contains complete information. 
-     bool hasFullInfo() const { return isComplete(); } 
-   
-     /// Return an expression indicating the exact *backedge-taken* 
-     /// count of the loop if it is known or SCEVCouldNotCompute 
-     /// otherwise.  If execution makes it to the backedge on every 
-     /// iteration (i.e. there are no abnormal exists like exception 
-     /// throws and thread exits) then this is the number of times the 
-     /// loop header will execute minus one. 
-     /// 
-     /// If the SCEV predicate associated with the answer can be different 
-     /// from AlwaysTrue, we must add a (non null) Predicates argument. 
-     /// The SCEV predicate associated with the answer will be added to 
-     /// Predicates. A run-time check needs to be emitted for the SCEV 
-     /// predicate in order for the answer to be valid. 
-     /// 
-     /// Note that we should always know if we need to pass a predicate 
-     /// argument or not from the way the ExitCounts vector was computed. 
-     /// If we allowed SCEV predicates to be generated when populating this 
-     /// vector, this information can contain them and therefore a 
-     /// SCEVPredicate argument should be added to getExact. 
-     const SCEV *getExact(const Loop *L, ScalarEvolution *SE, 
-                          SmallVector<const SCEVPredicate *, 4> *Predicates = nullptr) const; 
-   
-     /// Return the number of times this loop exit may fall through to the back 
-     /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via 
-     /// this block before this number of iterations, but may exit via another 
-     /// block. 
-     const SCEV *getExact(const BasicBlock *ExitingBlock, 
-                          ScalarEvolution *SE) const; 
-   
-     /// Get the constant max backedge taken count for the loop. 
-     const SCEV *getConstantMax(ScalarEvolution *SE) const; 
-   
-     /// Get the constant max backedge taken count for the particular loop exit. 
-     const SCEV *getConstantMax(const BasicBlock *ExitingBlock, 
-                                ScalarEvolution *SE) const; 
-   
-     /// Get the symbolic max backedge taken count for the loop. 
-     const SCEV *getSymbolicMax(const Loop *L, ScalarEvolution *SE); 
-   
-     /// Get the symbolic max backedge taken count for the particular loop exit. 
-     const SCEV *getSymbolicMax(const BasicBlock *ExitingBlock, 
-                                ScalarEvolution *SE) const; 
-   
-     /// Return true if the number of times this backedge is taken is either the 
-     /// value returned by getConstantMax or zero. 
-     bool isConstantMaxOrZero(ScalarEvolution *SE) const; 
-   }; 
-   
-   /// Cache the backedge-taken count of the loops for this function as they 
-   /// are computed. 
-   DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts; 
-   
-   /// Cache the predicated backedge-taken count of the loops for this 
-   /// function as they are computed. 
-   DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts; 
-   
-   /// Loops whose backedge taken counts directly use this non-constant SCEV. 
-   DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>> 
-       BECountUsers; 
-   
-   /// This map contains entries for all of the PHI instructions that we 
-   /// attempt to compute constant evolutions for.  This allows us to avoid 
-   /// potentially expensive recomputation of these properties.  An instruction 
-   /// maps to null if we are unable to compute its exit value. 
-   DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue; 
-   
-   /// This map contains entries for all the expressions that we attempt to 
-   /// compute getSCEVAtScope information for, which can be expensive in 
-   /// extreme cases. 
-   DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>> 
-       ValuesAtScopes; 
-   
-   /// Reverse map for invalidation purposes: Stores of which SCEV and which 
-   /// loop this is the value-at-scope of. 
-   DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>> 
-       ValuesAtScopesUsers; 
-   
-   /// Memoized computeLoopDisposition results. 
-   DenseMap<const SCEV *, 
-            SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>> 
-       LoopDispositions; 
-   
-   struct LoopProperties { 
-     /// Set to true if the loop contains no instruction that can abnormally exit 
-     /// the loop (i.e. via throwing an exception, by terminating the thread 
-     /// cleanly or by infinite looping in a called function).  Strictly 
-     /// speaking, the last one is not leaving the loop, but is identical to 
-     /// leaving the loop for reasoning about undefined behavior. 
-     bool HasNoAbnormalExits; 
-   
-     /// Set to true if the loop contains no instruction that can have side 
-     /// effects (i.e. via throwing an exception, volatile or atomic access). 
-     bool HasNoSideEffects; 
-   }; 
-   
-   /// Cache for \c getLoopProperties. 
-   DenseMap<const Loop *, LoopProperties> LoopPropertiesCache; 
-   
-   /// Return a \c LoopProperties instance for \p L, creating one if necessary. 
-   LoopProperties getLoopProperties(const Loop *L); 
-   
-   bool loopHasNoSideEffects(const Loop *L) { 
-     return getLoopProperties(L).HasNoSideEffects; 
-   } 
-   
-   /// Compute a LoopDisposition value. 
-   LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L); 
-   
-   /// Memoized computeBlockDisposition results. 
-   DenseMap< 
-       const SCEV *, 
-       SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>> 
-       BlockDispositions; 
-   
-   /// Compute a BlockDisposition value. 
-   BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB); 
-   
-   /// Stores all SCEV that use a given SCEV as its direct operand. 
-   DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers; 
-   
-   /// Memoized results from getRange 
-   DenseMap<const SCEV *, ConstantRange> UnsignedRanges; 
-   
-   /// Memoized results from getRange 
-   DenseMap<const SCEV *, ConstantRange> SignedRanges; 
-   
-   /// Used to parameterize getRange 
-   enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED }; 
-   
-   /// Set the memoized range for the given SCEV. 
-   const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint, 
-                                 ConstantRange CR) { 
-     DenseMap<const SCEV *, ConstantRange> &Cache = 
-         Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges; 
-   
-     auto Pair = Cache.try_emplace(S, std::move(CR)); 
-     if (!Pair.second) 
-       Pair.first->second = std::move(CR); 
-     return Pair.first->second; 
-   } 
-   
-   /// Determine the range for a particular SCEV. 
-   /// NOTE: This returns a reference to an entry in a cache. It must be 
-   /// copied if its needed for longer. 
-   const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint, 
-                                    unsigned Depth = 0); 
-   
-   /// Determine the range for a particular SCEV, but evaluates ranges for 
-   /// operands iteratively first. 
-   const ConstantRange &getRangeRefIter(const SCEV *S, RangeSignHint Hint); 
-   
-   /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}. 
-   /// Helper for \c getRange. 
-   ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step, 
-                                     const SCEV *MaxBECount, unsigned BitWidth); 
-   
-   /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p 
-   /// Start,+,\p Step}<nw>. 
-   ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec, 
-                                                   const SCEV *MaxBECount, 
-                                                   unsigned BitWidth, 
-                                                   RangeSignHint SignHint); 
-   
-   /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p 
-   /// Step} by "factoring out" a ternary expression from the add recurrence. 
-   /// Helper called by \c getRange. 
-   ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step, 
-                                      const SCEV *MaxBECount, unsigned BitWidth); 
-   
-   /// If the unknown expression U corresponds to a simple recurrence, return 
-   /// a constant range which represents the entire recurrence.  Note that 
-   /// *add* recurrences with loop invariant steps aren't represented by 
-   /// SCEVUnknowns and thus don't use this mechanism. 
-   ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U); 
-   
-   /// We know that there is no SCEV for the specified value.  Analyze the 
-   /// expression recursively. 
-   const SCEV *createSCEV(Value *V); 
-   
-   /// We know that there is no SCEV for the specified value. Create a new SCEV 
-   /// for \p V iteratively. 
-   const SCEV *createSCEVIter(Value *V); 
-   /// Collect operands of \p V for which SCEV expressions should be constructed 
-   /// first. Returns a SCEV directly if it can be constructed trivially for \p 
-   /// V. 
-   const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops); 
-   
-   /// Provide the special handling we need to analyze PHI SCEVs. 
-   const SCEV *createNodeForPHI(PHINode *PN); 
-   
-   /// Helper function called from createNodeForPHI. 
-   const SCEV *createAddRecFromPHI(PHINode *PN); 
-   
-   /// A helper function for createAddRecFromPHI to handle simple cases. 
-   const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV, 
-                                             Value *StartValueV); 
-   
-   /// Helper function called from createNodeForPHI. 
-   const SCEV *createNodeFromSelectLikePHI(PHINode *PN); 
-   
-   /// Provide special handling for a select-like instruction (currently this 
-   /// is either a select instruction or a phi node).  \p Ty is the type of the 
-   /// instruction being processed, that is assumed equivalent to 
-   /// "Cond ? TrueVal : FalseVal". 
-   std::optional<const SCEV *> 
-   createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, ICmpInst *Cond, 
-                                                Value *TrueVal, Value *FalseVal); 
-   
-   /// See if we can model this select-like instruction via umin_seq expression. 
-   const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *I, Value *Cond, 
-                                                  Value *TrueVal, 
-                                                  Value *FalseVal); 
-   
-   /// Given a value \p V, which is a select-like instruction (currently this is 
-   /// either a select instruction or a phi node), which is assumed equivalent to 
-   ///   Cond ? TrueVal : FalseVal 
-   /// see if we can model it as a SCEV expression. 
-   const SCEV *createNodeForSelectOrPHI(Value *V, Value *Cond, Value *TrueVal, 
-                                        Value *FalseVal); 
-   
-   /// Provide the special handling we need to analyze GEP SCEVs. 
-   const SCEV *createNodeForGEP(GEPOperator *GEP); 
-   
-   /// Implementation code for getSCEVAtScope; called at most once for each 
-   /// SCEV+Loop pair. 
-   const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L); 
-   
-   /// Return the BackedgeTakenInfo for the given loop, lazily computing new 
-   /// values if the loop hasn't been analyzed yet. The returned result is 
-   /// guaranteed not to be predicated. 
-   BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L); 
-   
-   /// Similar to getBackedgeTakenInfo, but will add predicates as required 
-   /// with the purpose of returning complete information. 
-   const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L); 
-   
-   /// Compute the number of times the specified loop will iterate. 
-   /// If AllowPredicates is set, we will create new SCEV predicates as 
-   /// necessary in order to return an exact answer. 
-   BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L, 
-                                               bool AllowPredicates = false); 
-   
-   /// Compute the number of times the backedge of the specified loop will 
-   /// execute if it exits via the specified block. If AllowPredicates is set, 
-   /// this call will try to use a minimal set of SCEV predicates in order to 
-   /// return an exact answer. 
-   ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 
-                              bool AllowPredicates = false); 
-   
-   /// Return a symbolic upper bound for the backedge taken count of the loop. 
-   /// This is more general than getConstantMaxBackedgeTakenCount as it returns 
-   /// an arbitrary expression as opposed to only constants. 
-   const SCEV *computeSymbolicMaxBackedgeTakenCount(const Loop *L); 
-   
-   // Helper functions for computeExitLimitFromCond to avoid exponential time 
-   // complexity. 
-   
-   class ExitLimitCache { 
-     // It may look like we need key on the whole (L, ExitIfTrue, ControlsExit, 
-     // AllowPredicates) tuple, but recursive calls to 
-     // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only 
-     // vary the in \c ExitCond and \c ControlsExit parameters.  We remember the 
-     // initial values of the other values to assert our assumption. 
-     SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap; 
-   
-     const Loop *L; 
-     bool ExitIfTrue; 
-     bool AllowPredicates; 
-   
-   public: 
-     ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates) 
-         : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {} 
-   
-     std::optional<ExitLimit> find(const Loop *L, Value *ExitCond, 
-                                   bool ExitIfTrue, bool ControlsExit, 
-                                   bool AllowPredicates); 
-   
-     void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue, 
-                 bool ControlsExit, bool AllowPredicates, const ExitLimit &EL); 
-   }; 
-   
-   using ExitLimitCacheTy = ExitLimitCache; 
-   
-   ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache, 
-                                            const Loop *L, Value *ExitCond, 
-                                            bool ExitIfTrue, 
-                                            bool ControlsExit, 
-                                            bool AllowPredicates); 
-   ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L, 
-                                          Value *ExitCond, bool ExitIfTrue, 
-                                          bool ControlsExit, 
-                                          bool AllowPredicates); 
-   std::optional<ScalarEvolution::ExitLimit> 
-   computeExitLimitFromCondFromBinOp(ExitLimitCacheTy &Cache, const Loop *L, 
-                                     Value *ExitCond, bool ExitIfTrue, 
-                                     bool ControlsExit, bool AllowPredicates); 
-   
-   /// Compute the number of times the backedge of the specified loop will 
-   /// execute if its exit condition were a conditional branch of the ICmpInst 
-   /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try 
-   /// to use a minimal set of SCEV predicates in order to return an exact 
-   /// answer. 
-   ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond, 
-                                      bool ExitIfTrue, 
-                                      bool IsSubExpr, 
-                                      bool AllowPredicates = false); 
-   
-   /// Variant of previous which takes the components representing an ICmp 
-   /// as opposed to the ICmpInst itself.  Note that the prior version can 
-   /// return more precise results in some cases and is preferred when caller 
-   /// has a materialized ICmp. 
-   ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst::Predicate Pred, 
-                                      const SCEV *LHS, const SCEV *RHS, 
-                                      bool IsSubExpr, 
-                                      bool AllowPredicates = false); 
-   
-   /// Compute the number of times the backedge of the specified loop will 
-   /// execute if its exit condition were a switch with a single exiting case 
-   /// to ExitingBB. 
-   ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L, 
-                                                  SwitchInst *Switch, 
-                                                  BasicBlock *ExitingBB, 
-                                                  bool IsSubExpr); 
-   
-   /// Compute the exit limit of a loop that is controlled by a 
-   /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip 
-   /// count in these cases (since SCEV has no way of expressing them), but we 
-   /// can still sometimes compute an upper bound. 
-   /// 
-   /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred 
-   /// RHS`. 
-   ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L, 
-                                          ICmpInst::Predicate Pred); 
-   
-   /// If the loop is known to execute a constant number of times (the 
-   /// condition evolves only from constants), try to evaluate a few iterations 
-   /// of the loop until we get the exit condition gets a value of ExitWhen 
-   /// (true or false).  If we cannot evaluate the exit count of the loop, 
-   /// return CouldNotCompute. 
-   const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond, 
-                                            bool ExitWhen); 
-   
-   /// Return the number of times an exit condition comparing the specified 
-   /// value to zero will execute.  If not computable, return CouldNotCompute. 
-   /// If AllowPredicates is set, this call will try to use a minimal set of 
-   /// SCEV predicates in order to return an exact answer. 
-   ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr, 
-                          bool AllowPredicates = false); 
-   
-   /// Return the number of times an exit condition checking the specified 
-   /// value for nonzero will execute.  If not computable, return 
-   /// CouldNotCompute. 
-   ExitLimit howFarToNonZero(const SCEV *V, const Loop *L); 
-   
-   /// Return the number of times an exit condition containing the specified 
-   /// less-than comparison will execute.  If not computable, return 
-   /// CouldNotCompute. 
-   /// 
-   /// \p isSigned specifies whether the less-than is signed. 
-   /// 
-   /// \p ControlsExit is true when the LHS < RHS condition directly controls 
-   /// the branch (loops exits only if condition is true). In this case, we can 
-   /// use NoWrapFlags to skip overflow checks. 
-   /// 
-   /// If \p AllowPredicates is set, this call will try to use a minimal set of 
-   /// SCEV predicates in order to return an exact answer. 
-   ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, 
-                              bool isSigned, bool ControlsExit, 
-                              bool AllowPredicates = false); 
-   
-   ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, 
-                                 bool isSigned, bool IsSubExpr, 
-                                 bool AllowPredicates = false); 
-   
-   /// Return a predecessor of BB (which may not be an immediate predecessor) 
-   /// which has exactly one successor from which BB is reachable, or null if 
-   /// no such block is found. 
-   std::pair<const BasicBlock *, const BasicBlock *> 
-   getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const; 
-   
-   /// Test whether the condition described by Pred, LHS, and RHS is true 
-   /// whenever the given FoundCondValue value evaluates to true in given 
-   /// Context. If Context is nullptr, then the found predicate is true 
-   /// everywhere. LHS and FoundLHS may have different type width. 
-   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 
-                      const Value *FoundCondValue, bool Inverse, 
-                      const Instruction *Context = nullptr); 
-   
-   /// Test whether the condition described by Pred, LHS, and RHS is true 
-   /// whenever the given FoundCondValue value evaluates to true in given 
-   /// Context. If Context is nullptr, then the found predicate is true 
-   /// everywhere. LHS and FoundLHS must have same type width. 
-   bool isImpliedCondBalancedTypes(ICmpInst::Predicate Pred, const SCEV *LHS, 
-                                   const SCEV *RHS, 
-                                   ICmpInst::Predicate FoundPred, 
-                                   const SCEV *FoundLHS, const SCEV *FoundRHS, 
-                                   const Instruction *CtxI); 
-   
-   /// Test whether the condition described by Pred, LHS, and RHS is true 
-   /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is 
-   /// true in given Context. If Context is nullptr, then the found predicate is 
-   /// true everywhere. 
-   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 
-                      ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, 
-                      const SCEV *FoundRHS, 
-                      const Instruction *Context = nullptr); 
-   
-   /// Test whether the condition described by Pred, LHS, and RHS is true 
-   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is 
-   /// true in given Context. If Context is nullptr, then the found predicate is 
-   /// true everywhere. 
-   bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS, 
-                              const SCEV *RHS, const SCEV *FoundLHS, 
-                              const SCEV *FoundRHS, 
-                              const Instruction *Context = nullptr); 
-   
-   /// Test whether the condition described by Pred, LHS, and RHS is true 
-   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is 
-   /// true. Here LHS is an operation that includes FoundLHS as one of its 
-   /// arguments. 
-   bool isImpliedViaOperations(ICmpInst::Predicate Pred, 
-                               const SCEV *LHS, const SCEV *RHS, 
-                               const SCEV *FoundLHS, const SCEV *FoundRHS, 
-                               unsigned Depth = 0); 
-   
-   /// Test whether the condition described by Pred, LHS, and RHS is true. 
-   /// Use only simple non-recursive types of checks, such as range analysis etc. 
-   bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 
-                                        const SCEV *LHS, const SCEV *RHS); 
-   
-   /// Test whether the condition described by Pred, LHS, and RHS is true 
-   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is 
-   /// true. 
-   bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS, 
-                                    const SCEV *RHS, const SCEV *FoundLHS, 
-                                    const SCEV *FoundRHS); 
-   
-   /// Test whether the condition described by Pred, LHS, and RHS is true 
-   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is 
-   /// true.  Utility function used by isImpliedCondOperands.  Tries to get 
-   /// cases like "X `sgt` 0 => X - 1 `sgt` -1". 
-   bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS, 
-                                       const SCEV *RHS, const SCEV *FoundLHS, 
-                                       const SCEV *FoundRHS); 
-   
-   /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied 
-   /// by a call to @llvm.experimental.guard in \p BB. 
-   bool isImpliedViaGuard(const BasicBlock *BB, ICmpInst::Predicate Pred, 
-                          const SCEV *LHS, const SCEV *RHS); 
-   
-   /// Test whether the condition described by Pred, LHS, and RHS is true 
-   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is 
-   /// true. 
-   /// 
-   /// This routine tries to rule out certain kinds of integer overflow, and 
-   /// then tries to reason about arithmetic properties of the predicates. 
-   bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred, 
-                                           const SCEV *LHS, const SCEV *RHS, 
-                                           const SCEV *FoundLHS, 
-                                           const SCEV *FoundRHS); 
-   
-   /// Test whether the condition described by Pred, LHS, and RHS is true 
-   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is 
-   /// true. 
-   /// 
-   /// This routine tries to weaken the known condition basing on fact that 
-   /// FoundLHS is an AddRec. 
-   bool isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred, 
-                                            const SCEV *LHS, const SCEV *RHS, 
-                                            const SCEV *FoundLHS, 
-                                            const SCEV *FoundRHS, 
-                                            const Instruction *CtxI); 
-   
-   /// Test whether the condition described by Pred, LHS, and RHS is true 
-   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is 
-   /// true. 
-   /// 
-   /// This routine tries to figure out predicate for Phis which are SCEVUnknown 
-   /// if it is true for every possible incoming value from their respective 
-   /// basic blocks. 
-   bool isImpliedViaMerge(ICmpInst::Predicate Pred, 
-                          const SCEV *LHS, const SCEV *RHS, 
-                          const SCEV *FoundLHS, const SCEV *FoundRHS, 
-                          unsigned Depth); 
-   
-   /// Test whether the condition described by Pred, LHS, and RHS is true 
-   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is 
-   /// true. 
-   /// 
-   /// This routine tries to reason about shifts. 
-   bool isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, const SCEV *LHS, 
-                                      const SCEV *RHS, const SCEV *FoundLHS, 
-                                      const SCEV *FoundRHS); 
-   
-   /// If we know that the specified Phi is in the header of its containing 
-   /// loop, we know the loop executes a constant number of times, and the PHI 
-   /// node is just a recurrence involving constants, fold it. 
-   Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs, 
-                                               const Loop *L); 
-   
-   /// Test if the given expression is known to satisfy the condition described 
-   /// by Pred and the known constant ranges of LHS and RHS. 
-   bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred, 
-                                          const SCEV *LHS, const SCEV *RHS); 
-   
-   /// Try to prove the condition described by "LHS Pred RHS" by ruling out 
-   /// integer overflow. 
-   /// 
-   /// For instance, this will return true for "A s< (A + C)<nsw>" if C is 
-   /// positive. 
-   bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS, 
-                                      const SCEV *RHS); 
-   
-   /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to 
-   /// prove them individually. 
-   bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS, 
-                                     const SCEV *RHS); 
-   
-   /// Try to match the Expr as "(L + R)<Flags>". 
-   bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R, 
-                       SCEV::NoWrapFlags &Flags); 
-   
-   /// Forget predicated/non-predicated backedge taken counts for the given loop. 
-   void forgetBackedgeTakenCounts(const Loop *L, bool Predicated); 
-   
-   /// Drop memoized information for all \p SCEVs. 
-   void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs); 
-   
-   /// Helper for forgetMemoizedResults. 
-   void forgetMemoizedResultsImpl(const SCEV *S); 
-   
-   /// Return an existing SCEV for V if there is one, otherwise return nullptr. 
-   const SCEV *getExistingSCEV(Value *V); 
-   
-   /// Erase Value from ValueExprMap and ExprValueMap. 
-   void eraseValueFromMap(Value *V); 
-   
-   /// Insert V to S mapping into ValueExprMap and ExprValueMap. 
-   void insertValueToMap(Value *V, const SCEV *S); 
-   
-   /// Return false iff given SCEV contains a SCEVUnknown with NULL value- 
-   /// pointer. 
-   bool checkValidity(const SCEV *S) const; 
-   
-   /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be 
-   /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is 
-   /// equivalent to proving no signed (resp. unsigned) wrap in 
-   /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr` 
-   /// (resp. `SCEVZeroExtendExpr`). 
-   template <typename ExtendOpTy> 
-   bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step, 
-                                  const Loop *L); 
-   
-   /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation. 
-   SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR); 
-   
-   /// Try to prove NSW on \p AR by proving facts about conditions known  on 
-   /// entry and backedge. 
-   SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR); 
-   
-   /// Try to prove NUW on \p AR by proving facts about conditions known on 
-   /// entry and backedge. 
-   SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR); 
-   
-   std::optional<MonotonicPredicateType> 
-   getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 
-                                 ICmpInst::Predicate Pred); 
-   
-   /// Return SCEV no-wrap flags that can be proven based on reasoning about 
-   /// how poison produced from no-wrap flags on this value (e.g. a nuw add) 
-   /// would trigger undefined behavior on overflow. 
-   SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V); 
-   
-   /// Return a scope which provides an upper bound on the defining scope of 
-   /// 'S'. Specifically, return the first instruction in said bounding scope. 
-   /// Return nullptr if the scope is trivial (function entry). 
-   /// (See scope definition rules associated with flag discussion above) 
-   const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S); 
-   
-   /// Return a scope which provides an upper bound on the defining scope for 
-   /// a SCEV with the operands in Ops.  The outparam Precise is set if the 
-   /// bound found is a precise bound (i.e. must be the defining scope.) 
-   const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 
-                                            bool &Precise); 
-   
-   /// Wrapper around the above for cases which don't care if the bound 
-   /// is precise. 
-   const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops); 
-   
-   /// Given two instructions in the same function, return true if we can 
-   /// prove B must execute given A executes. 
-   bool isGuaranteedToTransferExecutionTo(const Instruction *A, 
-                                          const Instruction *B); 
-   
-   /// Return true if the SCEV corresponding to \p I is never poison.  Proving 
-   /// this is more complex than proving that just \p I is never poison, since 
-   /// SCEV commons expressions across control flow, and you can have cases 
-   /// like: 
-   /// 
-   ///   idx0 = a + b; 
-   ///   ptr[idx0] = 100; 
-   ///   if (<condition>) { 
-   ///     idx1 = a +nsw b; 
-   ///     ptr[idx1] = 200; 
-   ///   } 
-   /// 
-   /// where the SCEV expression (+ a b) is guaranteed to not be poison (and 
-   /// hence not sign-overflow) only if "<condition>" is true.  Since both 
-   /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b), 
-   /// it is not okay to annotate (+ a b) with <nsw> in the above example. 
-   bool isSCEVExprNeverPoison(const Instruction *I); 
-   
-   /// This is like \c isSCEVExprNeverPoison but it specifically works for 
-   /// instructions that will get mapped to SCEV add recurrences.  Return true 
-   /// if \p I will never generate poison under the assumption that \p I is an 
-   /// add recurrence on the loop \p L. 
-   bool isAddRecNeverPoison(const Instruction *I, const Loop *L); 
-   
-   /// Similar to createAddRecFromPHI, but with the additional flexibility of 
-   /// suggesting runtime overflow checks in case casts are encountered. 
-   /// If successful, the analysis records that for this loop, \p SymbolicPHI, 
-   /// which is the UnknownSCEV currently representing the PHI, can be rewritten 
-   /// into an AddRec, assuming some predicates; The function then returns the 
-   /// AddRec and the predicates as a pair, and caches this pair in 
-   /// PredicatedSCEVRewrites. 
-   /// If the analysis is not successful, a mapping from the \p SymbolicPHI to 
-   /// itself (with no predicates) is recorded, and a nullptr with an empty 
-   /// predicates vector is returned as a pair. 
-   std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 
-   createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI); 
-   
-   /// Compute the maximum backedge count based on the range of values 
-   /// permitted by Start, End, and Stride. This is for loops of the form 
-   /// {Start, +, Stride} LT End. 
-   /// 
-   /// Preconditions: 
-   /// * the induction variable is known to be positive. 
-   /// * the induction variable is assumed not to overflow (i.e. either it 
-   ///   actually doesn't, or we'd have to immediately execute UB) 
-   /// We *don't* assert these preconditions so please be careful. 
-   const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride, 
-                                      const SCEV *End, unsigned BitWidth, 
-                                      bool IsSigned); 
-   
-   /// Verify if an linear IV with positive stride can overflow when in a 
-   /// less-than comparison, knowing the invariant term of the comparison, 
-   /// the stride. 
-   bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned); 
-   
-   /// Verify if an linear IV with negative stride can overflow when in a 
-   /// greater-than comparison, knowing the invariant term of the comparison, 
-   /// the stride. 
-   bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned); 
-   
-   /// Get add expr already created or create a new one. 
-   const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 
-                                  SCEV::NoWrapFlags Flags); 
-   
-   /// Get mul expr already created or create a new one. 
-   const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 
-                                  SCEV::NoWrapFlags Flags); 
-   
-   // Get addrec expr already created or create a new one. 
-   const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 
-                                     const Loop *L, SCEV::NoWrapFlags Flags); 
-   
-   /// Return x if \p Val is f(x) where f is a 1-1 function. 
-   const SCEV *stripInjectiveFunctions(const SCEV *Val) const; 
-   
-   /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed. 
-   /// A loop is considered "used" by an expression if it contains 
-   /// an add rec on said loop. 
-   void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed); 
-   
-   /// Try to match the pattern generated by getURemExpr(A, B). If successful, 
-   /// Assign A and B to LHS and RHS, respectively. 
-   bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS); 
-   
-   /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in 
-   /// `UniqueSCEVs`.  Return if found, else nullptr. 
-   SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops); 
-   
-   /// Get reachable blocks in this function, making limited use of SCEV 
-   /// reasoning about conditions. 
-   void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable, 
-                           Function &F); 
-   
-   FoldingSet<SCEV> UniqueSCEVs; 
-   FoldingSet<SCEVPredicate> UniquePreds; 
-   BumpPtrAllocator SCEVAllocator; 
-   
-   /// This maps loops to a list of addrecs that directly use said loop. 
-   DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers; 
-   
-   /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression 
-   /// they can be rewritten into under certain predicates. 
-   DenseMap<std::pair<const SCEVUnknown *, const Loop *>, 
-            std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 
-       PredicatedSCEVRewrites; 
-   
-   /// Set of AddRecs for which proving NUW via an induction has already been 
-   /// tried. 
-   SmallPtrSet<const SCEVAddRecExpr *, 16> UnsignedWrapViaInductionTried; 
-   
-   /// Set of AddRecs for which proving NSW via an induction has already been 
-   /// tried. 
-   SmallPtrSet<const SCEVAddRecExpr *, 16> SignedWrapViaInductionTried; 
-   
-   /// The head of a linked list of all SCEVUnknown values that have been 
-   /// allocated. This is used by releaseMemory to locate them all and call 
-   /// their destructors. 
-   SCEVUnknown *FirstUnknown = nullptr; 
- }; 
-   
- /// Analysis pass that exposes the \c ScalarEvolution for a function. 
- class ScalarEvolutionAnalysis 
-     : public AnalysisInfoMixin<ScalarEvolutionAnalysis> { 
-   friend AnalysisInfoMixin<ScalarEvolutionAnalysis>; 
-   
-   static AnalysisKey Key; 
-   
- public: 
-   using Result = ScalarEvolution; 
-   
-   ScalarEvolution run(Function &F, FunctionAnalysisManager &AM); 
- }; 
-   
- /// Verifier pass for the \c ScalarEvolutionAnalysis results. 
- class ScalarEvolutionVerifierPass 
-     : public PassInfoMixin<ScalarEvolutionVerifierPass> { 
- public: 
-   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 
- }; 
-   
- /// Printer pass for the \c ScalarEvolutionAnalysis results. 
- class ScalarEvolutionPrinterPass 
-     : public PassInfoMixin<ScalarEvolutionPrinterPass> { 
-   raw_ostream &OS; 
-   
- public: 
-   explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {} 
-   
-   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 
- }; 
-   
- class ScalarEvolutionWrapperPass : public FunctionPass { 
-   std::unique_ptr<ScalarEvolution> SE; 
-   
- public: 
-   static char ID; 
-   
-   ScalarEvolutionWrapperPass(); 
-   
-   ScalarEvolution &getSE() { return *SE; } 
-   const ScalarEvolution &getSE() const { return *SE; } 
-   
-   bool runOnFunction(Function &F) override; 
-   void releaseMemory() override; 
-   void getAnalysisUsage(AnalysisUsage &AU) const override; 
-   void print(raw_ostream &OS, const Module * = nullptr) const override; 
-   void verifyAnalysis() const override; 
- }; 
-   
- /// An interface layer with SCEV used to manage how we see SCEV expressions 
- /// for values in the context of existing predicates. We can add new 
- /// predicates, but we cannot remove them. 
- /// 
- /// This layer has multiple purposes: 
- ///   - provides a simple interface for SCEV versioning. 
- ///   - guarantees that the order of transformations applied on a SCEV 
- ///     expression for a single Value is consistent across two different 
- ///     getSCEV calls. This means that, for example, once we've obtained 
- ///     an AddRec expression for a certain value through expression 
- ///     rewriting, we will continue to get an AddRec expression for that 
- ///     Value. 
- ///   - lowers the number of expression rewrites. 
- class PredicatedScalarEvolution { 
- public: 
-   PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L); 
-   
-   const SCEVPredicate &getPredicate() const; 
-   
-   /// Returns the SCEV expression of V, in the context of the current SCEV 
-   /// predicate.  The order of transformations applied on the expression of V 
-   /// returned by ScalarEvolution is guaranteed to be preserved, even when 
-   /// adding new predicates. 
-   const SCEV *getSCEV(Value *V); 
-   
-   /// Get the (predicated) backedge count for the analyzed loop. 
-   const SCEV *getBackedgeTakenCount(); 
-   
-   /// Adds a new predicate. 
-   void addPredicate(const SCEVPredicate &Pred); 
-   
-   /// Attempts to produce an AddRecExpr for V by adding additional SCEV 
-   /// predicates. If we can't transform the expression into an AddRecExpr we 
-   /// return nullptr and not add additional SCEV predicates to the current 
-   /// context. 
-   const SCEVAddRecExpr *getAsAddRec(Value *V); 
-   
-   /// Proves that V doesn't overflow by adding SCEV predicate. 
-   void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags); 
-   
-   /// Returns true if we've proved that V doesn't wrap by means of a SCEV 
-   /// predicate. 
-   bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags); 
-   
-   /// Returns the ScalarEvolution analysis used. 
-   ScalarEvolution *getSE() const { return &SE; } 
-   
-   /// We need to explicitly define the copy constructor because of FlagsMap. 
-   PredicatedScalarEvolution(const PredicatedScalarEvolution &); 
-   
-   /// Print the SCEV mappings done by the Predicated Scalar Evolution. 
-   /// The printed text is indented by \p Depth. 
-   void print(raw_ostream &OS, unsigned Depth) const; 
-   
-   /// Check if \p AR1 and \p AR2 are equal, while taking into account 
-   /// Equal predicates in Preds. 
-   bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1, 
-                                 const SCEVAddRecExpr *AR2) const; 
-   
- private: 
-   /// Increments the version number of the predicate.  This needs to be called 
-   /// every time the SCEV predicate changes. 
-   void updateGeneration(); 
-   
-   /// Holds a SCEV and the version number of the SCEV predicate used to 
-   /// perform the rewrite of the expression. 
-   using RewriteEntry = std::pair<unsigned, const SCEV *>; 
-   
-   /// Maps a SCEV to the rewrite result of that SCEV at a certain version 
-   /// number. If this number doesn't match the current Generation, we will 
-   /// need to do a rewrite. To preserve the transformation order of previous 
-   /// rewrites, we will rewrite the previous result instead of the original 
-   /// SCEV. 
-   DenseMap<const SCEV *, RewriteEntry> RewriteMap; 
-   
-   /// Records what NoWrap flags we've added to a Value *. 
-   ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap; 
-   
-   /// The ScalarEvolution analysis. 
-   ScalarEvolution &SE; 
-   
-   /// The analyzed Loop. 
-   const Loop &L; 
-   
-   /// The SCEVPredicate that forms our context. We will rewrite all 
-   /// expressions assuming that this predicate true. 
-   std::unique_ptr<SCEVUnionPredicate> Preds; 
-   
-   /// Marks the version of the SCEV predicate used. When rewriting a SCEV 
-   /// expression we mark it with the version of the predicate. We use this to 
-   /// figure out if the predicate has changed from the last rewrite of the 
-   /// SCEV. If so, we need to perform a new rewrite. 
-   unsigned Generation = 0; 
-   
-   /// The backedge taken count. 
-   const SCEV *BackedgeCount = nullptr; 
- }; 
-   
- template <> struct DenseMapInfo<ScalarEvolution::FoldID> { 
-   static inline ScalarEvolution::FoldID getEmptyKey() { 
-     ScalarEvolution::FoldID ID; 
-     ID.addInteger(~0ULL); 
-     return ID; 
-   } 
-   static inline ScalarEvolution::FoldID getTombstoneKey() { 
-     ScalarEvolution::FoldID ID; 
-     ID.addInteger(~0ULL - 1ULL); 
-     return ID; 
-   } 
-   
-   static unsigned getHashValue(const ScalarEvolution::FoldID &Val) { 
-     return Val.computeHash(); 
-   } 
-   
-   static bool isEqual(const ScalarEvolution::FoldID &LHS, 
-                       const ScalarEvolution::FoldID &RHS) { 
-     return LHS == RHS; 
-   } 
- }; 
-   
- } // end namespace llvm 
-   
- #endif // LLVM_ANALYSIS_SCALAREVOLUTION_H 
-