- //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- // 
- // This is the generic implementation of LoopInfo used for both Loops and 
- // MachineLoops. 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H 
- #define LLVM_ANALYSIS_LOOPINFOIMPL_H 
-   
- #include "llvm/ADT/PostOrderIterator.h" 
- #include "llvm/ADT/STLExtras.h" 
- #include "llvm/ADT/SetOperations.h" 
- #include "llvm/Analysis/LoopInfo.h" 
- #include "llvm/IR/Dominators.h" 
-   
- namespace llvm { 
-   
- //===----------------------------------------------------------------------===// 
- // APIs for simple analysis of the loop. See header notes. 
-   
- /// getExitingBlocks - Return all blocks inside the loop that have successors 
- /// outside of the loop.  These are the blocks _inside of the current loop_ 
- /// which branch out.  The returned list is always unique. 
- /// 
- template <class BlockT, class LoopT> 
- void LoopBase<BlockT, LoopT>::getExitingBlocks( 
-     SmallVectorImpl<BlockT *> &ExitingBlocks) const { 
-   assert(!isInvalid() && "Loop not in a valid state!"); 
-   for (const auto BB : blocks()) 
-     for (auto *Succ : children<BlockT *>(BB)) 
-       if (!contains(Succ)) { 
-         // Not in current loop? It must be an exit block. 
-         ExitingBlocks.push_back(BB); 
-         break; 
-       } 
- } 
-   
- /// getExitingBlock - If getExitingBlocks would return exactly one block, 
- /// return that block. Otherwise return null. 
- template <class BlockT, class LoopT> 
- BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const { 
-   assert(!isInvalid() && "Loop not in a valid state!"); 
-   auto notInLoop = [&](BlockT *BB) { return !contains(BB); }; 
-   auto isExitBlock = [&](BlockT *BB, bool AllowRepeats) -> BlockT * { 
-     assert(!AllowRepeats && "Unexpected parameter value."); 
-     // Child not in current loop?  It must be an exit block. 
-     return any_of(children<BlockT *>(BB), notInLoop) ? BB : nullptr; 
-   }; 
-   
-   return find_singleton<BlockT>(blocks(), isExitBlock); 
- } 
-   
- /// getExitBlocks - Return all of the successor blocks of this loop.  These 
- /// are the blocks _outside of the current loop_ which are branched to. 
- /// 
- template <class BlockT, class LoopT> 
- void LoopBase<BlockT, LoopT>::getExitBlocks( 
-     SmallVectorImpl<BlockT *> &ExitBlocks) const { 
-   assert(!isInvalid() && "Loop not in a valid state!"); 
-   for (const auto BB : blocks()) 
-     for (auto *Succ : children<BlockT *>(BB)) 
-       if (!contains(Succ)) 
-         // Not in current loop? It must be an exit block. 
-         ExitBlocks.push_back(Succ); 
- } 
-   
- /// getExitBlock - If getExitBlocks would return exactly one block, 
- /// return that block. Otherwise return null. 
- template <class BlockT, class LoopT> 
- std::pair<BlockT *, bool> getExitBlockHelper(const LoopBase<BlockT, LoopT> *L, 
-                                              bool Unique) { 
-   assert(!L->isInvalid() && "Loop not in a valid state!"); 
-   auto notInLoop = [&](BlockT *BB, 
-                        bool AllowRepeats) -> std::pair<BlockT *, bool> { 
-     assert(AllowRepeats == Unique && "Unexpected parameter value."); 
-     return {!L->contains(BB) ? BB : nullptr, false}; 
-   }; 
-   auto singleExitBlock = [&](BlockT *BB, 
-                              bool AllowRepeats) -> std::pair<BlockT *, bool> { 
-     assert(AllowRepeats == Unique && "Unexpected parameter value."); 
-     return find_singleton_nested<BlockT>(children<BlockT *>(BB), notInLoop, 
-                                          AllowRepeats); 
-   }; 
-   return find_singleton_nested<BlockT>(L->blocks(), singleExitBlock, Unique); 
- } 
-   
- template <class BlockT, class LoopT> 
- bool LoopBase<BlockT, LoopT>::hasNoExitBlocks() const { 
-   auto RC = getExitBlockHelper(this, false); 
-   if (RC.second) 
-     // found multiple exit blocks 
-     return false; 
-   // return true if there is no exit block 
-   return !RC.first; 
- } 
-   
- /// getExitBlock - If getExitBlocks would return exactly one block, 
- /// return that block. Otherwise return null. 
- template <class BlockT, class LoopT> 
- BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const { 
-   return getExitBlockHelper(this, false).first; 
- } 
-   
- template <class BlockT, class LoopT> 
- bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const { 
-   // Each predecessor of each exit block of a normal loop is contained 
-   // within the loop. 
-   SmallVector<BlockT *, 4> UniqueExitBlocks; 
-   getUniqueExitBlocks(UniqueExitBlocks); 
-   for (BlockT *EB : UniqueExitBlocks) 
-     for (BlockT *Predecessor : children<Inverse<BlockT *>>(EB)) 
-       if (!contains(Predecessor)) 
-         return false; 
-   // All the requirements are met. 
-   return true; 
- } 
-   
- // Helper function to get unique loop exits. Pred is a predicate pointing to 
- // BasicBlocks in a loop which should be considered to find loop exits. 
- template <class BlockT, class LoopT, typename PredicateT> 
- void getUniqueExitBlocksHelper(const LoopT *L, 
-                                SmallVectorImpl<BlockT *> &ExitBlocks, 
-                                PredicateT Pred) { 
-   assert(!L->isInvalid() && "Loop not in a valid state!"); 
-   SmallPtrSet<BlockT *, 32> Visited; 
-   auto Filtered = make_filter_range(L->blocks(), Pred); 
-   for (BlockT *BB : Filtered) 
-     for (BlockT *Successor : children<BlockT *>(BB)) 
-       if (!L->contains(Successor)) 
-         if (Visited.insert(Successor).second) 
-           ExitBlocks.push_back(Successor); 
- } 
-   
- template <class BlockT, class LoopT> 
- void LoopBase<BlockT, LoopT>::getUniqueExitBlocks( 
-     SmallVectorImpl<BlockT *> &ExitBlocks) const { 
-   getUniqueExitBlocksHelper(this, ExitBlocks, 
-                             [](const BlockT *BB) { return true; }); 
- } 
-   
- template <class BlockT, class LoopT> 
- void LoopBase<BlockT, LoopT>::getUniqueNonLatchExitBlocks( 
-     SmallVectorImpl<BlockT *> &ExitBlocks) const { 
-   const BlockT *Latch = getLoopLatch(); 
-   assert(Latch && "Latch block must exists"); 
-   getUniqueExitBlocksHelper(this, ExitBlocks, 
-                             [Latch](const BlockT *BB) { return BB != Latch; }); 
- } 
-   
- template <class BlockT, class LoopT> 
- BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const { 
-   return getExitBlockHelper(this, true).first; 
- } 
-   
- /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_). 
- template <class BlockT, class LoopT> 
- void LoopBase<BlockT, LoopT>::getExitEdges( 
-     SmallVectorImpl<Edge> &ExitEdges) const { 
-   assert(!isInvalid() && "Loop not in a valid state!"); 
-   for (const auto BB : blocks()) 
-     for (auto *Succ : children<BlockT *>(BB)) 
-       if (!contains(Succ)) 
-         // Not in current loop? It must be an exit block. 
-         ExitEdges.emplace_back(BB, Succ); 
- } 
-   
- /// getLoopPreheader - If there is a preheader for this loop, return it.  A 
- /// loop has a preheader if there is only one edge to the header of the loop 
- /// from outside of the loop and it is legal to hoist instructions into the 
- /// predecessor. If this is the case, the block branching to the header of the 
- /// loop is the preheader node. 
- /// 
- /// This method returns null if there is no preheader for the loop. 
- /// 
- template <class BlockT, class LoopT> 
- BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const { 
-   assert(!isInvalid() && "Loop not in a valid state!"); 
-   // Keep track of nodes outside the loop branching to the header... 
-   BlockT *Out = getLoopPredecessor(); 
-   if (!Out) 
-     return nullptr; 
-   
-   // Make sure we are allowed to hoist instructions into the predecessor. 
-   if (!Out->isLegalToHoistInto()) 
-     return nullptr; 
-   
-   // Make sure there is only one exit out of the preheader. 
-   typedef GraphTraits<BlockT *> BlockTraits; 
-   typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out); 
-   ++SI; 
-   if (SI != BlockTraits::child_end(Out)) 
-     return nullptr; // Multiple exits from the block, must not be a preheader. 
-   
-   // The predecessor has exactly one successor, so it is a preheader. 
-   return Out; 
- } 
-   
- /// getLoopPredecessor - If the given loop's header has exactly one unique 
- /// predecessor outside the loop, return it. Otherwise return null. 
- /// This is less strict that the loop "preheader" concept, which requires 
- /// the predecessor to have exactly one successor. 
- /// 
- template <class BlockT, class LoopT> 
- BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const { 
-   assert(!isInvalid() && "Loop not in a valid state!"); 
-   // Keep track of nodes outside the loop branching to the header... 
-   BlockT *Out = nullptr; 
-   
-   // Loop over the predecessors of the header node... 
-   BlockT *Header = getHeader(); 
-   for (const auto Pred : children<Inverse<BlockT *>>(Header)) { 
-     if (!contains(Pred)) { // If the block is not in the loop... 
-       if (Out && Out != Pred) 
-         return nullptr; // Multiple predecessors outside the loop 
-       Out = Pred; 
-     } 
-   } 
-   
-   return Out; 
- } 
-   
- /// getLoopLatch - If there is a single latch block for this loop, return it. 
- /// A latch block is a block that contains a branch back to the header. 
- template <class BlockT, class LoopT> 
- BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const { 
-   assert(!isInvalid() && "Loop not in a valid state!"); 
-   BlockT *Header = getHeader(); 
-   BlockT *Latch = nullptr; 
-   for (const auto Pred : children<Inverse<BlockT *>>(Header)) { 
-     if (contains(Pred)) { 
-       if (Latch) 
-         return nullptr; 
-       Latch = Pred; 
-     } 
-   } 
-   
-   return Latch; 
- } 
-   
- //===----------------------------------------------------------------------===// 
- // APIs for updating loop information after changing the CFG 
- // 
-   
- /// addBasicBlockToLoop - This method is used by other analyses to update loop 
- /// information.  NewBB is set to be a new member of the current loop. 
- /// Because of this, it is added as a member of all parent loops, and is added 
- /// to the specified LoopInfo object as being in the current basic block.  It 
- /// is not valid to replace the loop header with this method. 
- /// 
- template <class BlockT, class LoopT> 
- void LoopBase<BlockT, LoopT>::addBasicBlockToLoop( 
-     BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) { 
-   assert(!isInvalid() && "Loop not in a valid state!"); 
- #ifndef NDEBUG 
-   if (!Blocks.empty()) { 
-     auto SameHeader = LIB[getHeader()]; 
-     assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() && 
-            "Incorrect LI specified for this loop!"); 
-   } 
- #endif 
-   assert(NewBB && "Cannot add a null basic block to the loop!"); 
-   assert(!LIB[NewBB] && "BasicBlock already in the loop!"); 
-   
-   LoopT *L = static_cast<LoopT *>(this); 
-   
-   // Add the loop mapping to the LoopInfo object... 
-   LIB.BBMap[NewBB] = L; 
-   
-   // Add the basic block to this loop and all parent loops... 
-   while (L) { 
-     L->addBlockEntry(NewBB); 
-     L = L->getParentLoop(); 
-   } 
- } 
-   
- /// replaceChildLoopWith - This is used when splitting loops up.  It replaces 
- /// the OldChild entry in our children list with NewChild, and updates the 
- /// parent pointer of OldChild to be null and the NewChild to be this loop. 
- /// This updates the loop depth of the new child. 
- template <class BlockT, class LoopT> 
- void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild, 
-                                                    LoopT *NewChild) { 
-   assert(!isInvalid() && "Loop not in a valid state!"); 
-   assert(OldChild->ParentLoop == this && "This loop is already broken!"); 
-   assert(!NewChild->ParentLoop && "NewChild already has a parent!"); 
-   typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild); 
-   assert(I != SubLoops.end() && "OldChild not in loop!"); 
-   *I = NewChild; 
-   OldChild->ParentLoop = nullptr; 
-   NewChild->ParentLoop = static_cast<LoopT *>(this); 
- } 
-   
- /// verifyLoop - Verify loop structure 
- template <class BlockT, class LoopT> 
- void LoopBase<BlockT, LoopT>::verifyLoop() const { 
-   assert(!isInvalid() && "Loop not in a valid state!"); 
- #ifndef NDEBUG 
-   assert(!Blocks.empty() && "Loop header is missing"); 
-   
-   // Setup for using a depth-first iterator to visit every block in the loop. 
-   SmallVector<BlockT *, 8> ExitBBs; 
-   getExitBlocks(ExitBBs); 
-   df_iterator_default_set<BlockT *> VisitSet; 
-   VisitSet.insert(ExitBBs.begin(), ExitBBs.end()); 
-   
-   // Keep track of the BBs visited. 
-   SmallPtrSet<BlockT *, 8> VisitedBBs; 
-   
-   // Check the individual blocks. 
-   for (BlockT *BB : depth_first_ext(getHeader(), VisitSet)) { 
-     assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB), 
-                        GraphTraits<BlockT *>::child_end(BB), 
-                        [&](BlockT *B) { return contains(B); }) && 
-            "Loop block has no in-loop successors!"); 
-   
-     assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB), 
-                        GraphTraits<Inverse<BlockT *>>::child_end(BB), 
-                        [&](BlockT *B) { return contains(B); }) && 
-            "Loop block has no in-loop predecessors!"); 
-   
-     SmallVector<BlockT *, 2> OutsideLoopPreds; 
-     for (BlockT *B : 
-          llvm::make_range(GraphTraits<Inverse<BlockT *>>::child_begin(BB), 
-                           GraphTraits<Inverse<BlockT *>>::child_end(BB))) 
-       if (!contains(B)) 
-         OutsideLoopPreds.push_back(B); 
-   
-     if (BB == getHeader()) { 
-       assert(!OutsideLoopPreds.empty() && "Loop is unreachable!"); 
-     } else if (!OutsideLoopPreds.empty()) { 
-       // A non-header loop shouldn't be reachable from outside the loop, 
-       // though it is permitted if the predecessor is not itself actually 
-       // reachable. 
-       BlockT *EntryBB = &BB->getParent()->front(); 
-       for (BlockT *CB : depth_first(EntryBB)) 
-         for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i) 
-           assert(CB != OutsideLoopPreds[i] && 
-                  "Loop has multiple entry points!"); 
-     } 
-     assert(BB != &getHeader()->getParent()->front() && 
-            "Loop contains function entry block!"); 
-   
-     VisitedBBs.insert(BB); 
-   } 
-   
-   if (VisitedBBs.size() != getNumBlocks()) { 
-     dbgs() << "The following blocks are unreachable in the loop: "; 
-     for (auto *BB : Blocks) { 
-       if (!VisitedBBs.count(BB)) { 
-         dbgs() << *BB << "\n"; 
-       } 
-     } 
-     assert(false && "Unreachable block in loop"); 
-   } 
-   
-   // Check the subloops. 
-   for (iterator I = begin(), E = end(); I != E; ++I) 
-     // Each block in each subloop should be contained within this loop. 
-     for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end(); 
-          BI != BE; ++BI) { 
-       assert(contains(*BI) && 
-              "Loop does not contain all the blocks of a subloop!"); 
-     } 
-   
-   // Check the parent loop pointer. 
-   if (ParentLoop) { 
-     assert(is_contained(*ParentLoop, this) && 
-            "Loop is not a subloop of its parent!"); 
-   } 
- #endif 
- } 
-   
- /// verifyLoop - Verify loop structure of this loop and all nested loops. 
- template <class BlockT, class LoopT> 
- void LoopBase<BlockT, LoopT>::verifyLoopNest( 
-     DenseSet<const LoopT *> *Loops) const { 
-   assert(!isInvalid() && "Loop not in a valid state!"); 
-   Loops->insert(static_cast<const LoopT *>(this)); 
-   // Verify this loop. 
-   verifyLoop(); 
-   // Verify the subloops. 
-   for (iterator I = begin(), E = end(); I != E; ++I) 
-     (*I)->verifyLoopNest(Loops); 
- } 
-   
- template <class BlockT, class LoopT> 
- void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, bool Verbose, 
-                                     bool PrintNested, unsigned Depth) const { 
-   OS.indent(Depth * 2); 
-   if (static_cast<const LoopT *>(this)->isAnnotatedParallel()) 
-     OS << "Parallel "; 
-   OS << "Loop at depth " << getLoopDepth() << " containing: "; 
-   
-   BlockT *H = getHeader(); 
-   for (unsigned i = 0; i < getBlocks().size(); ++i) { 
-     BlockT *BB = getBlocks()[i]; 
-     if (!Verbose) { 
-       if (i) 
-         OS << ","; 
-       BB->printAsOperand(OS, false); 
-     } else 
-       OS << "\n"; 
-   
-     if (BB == H) 
-       OS << "<header>"; 
-     if (isLoopLatch(BB)) 
-       OS << "<latch>"; 
-     if (isLoopExiting(BB)) 
-       OS << "<exiting>"; 
-     if (Verbose) 
-       BB->print(OS); 
-   } 
-   
-   if (PrintNested) { 
-     OS << "\n"; 
-   
-     for (iterator I = begin(), E = end(); I != E; ++I) 
-       (*I)->print(OS, /*Verbose*/ false, PrintNested, Depth + 2); 
-   } 
- } 
-   
- //===----------------------------------------------------------------------===// 
- /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the 
- /// result does / not depend on use list (block predecessor) order. 
- /// 
-   
- /// Discover a subloop with the specified backedges such that: All blocks within 
- /// this loop are mapped to this loop or a subloop. And all subloops within this 
- /// loop have their parent loop set to this loop or a subloop. 
- template <class BlockT, class LoopT> 
- static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges, 
-                                   LoopInfoBase<BlockT, LoopT> *LI, 
-                                   const DomTreeBase<BlockT> &DomTree) { 
-   typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits; 
-   
-   unsigned NumBlocks = 0; 
-   unsigned NumSubloops = 0; 
-   
-   // Perform a backward CFG traversal using a worklist. 
-   std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end()); 
-   while (!ReverseCFGWorklist.empty()) { 
-     BlockT *PredBB = ReverseCFGWorklist.back(); 
-     ReverseCFGWorklist.pop_back(); 
-   
-     LoopT *Subloop = LI->getLoopFor(PredBB); 
-     if (!Subloop) { 
-       if (!DomTree.isReachableFromEntry(PredBB)) 
-         continue; 
-   
-       // This is an undiscovered block. Map it to the current loop. 
-       LI->changeLoopFor(PredBB, L); 
-       ++NumBlocks; 
-       if (PredBB == L->getHeader()) 
-         continue; 
-       // Push all block predecessors on the worklist. 
-       ReverseCFGWorklist.insert(ReverseCFGWorklist.end(), 
-                                 InvBlockTraits::child_begin(PredBB), 
-                                 InvBlockTraits::child_end(PredBB)); 
-     } else { 
-       // This is a discovered block. Find its outermost discovered loop. 
-       Subloop = Subloop->getOutermostLoop(); 
-   
-       // If it is already discovered to be a subloop of this loop, continue. 
-       if (Subloop == L) 
-         continue; 
-   
-       // Discover a subloop of this loop. 
-       Subloop->setParentLoop(L); 
-       ++NumSubloops; 
-       NumBlocks += Subloop->getBlocksVector().capacity(); 
-       PredBB = Subloop->getHeader(); 
-       // Continue traversal along predecessors that are not loop-back edges from 
-       // within this subloop tree itself. Note that a predecessor may directly 
-       // reach another subloop that is not yet discovered to be a subloop of 
-       // this loop, which we must traverse. 
-       for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) { 
-         if (LI->getLoopFor(Pred) != Subloop) 
-           ReverseCFGWorklist.push_back(Pred); 
-       } 
-     } 
-   } 
-   L->getSubLoopsVector().reserve(NumSubloops); 
-   L->reserveBlocks(NumBlocks); 
- } 
-   
- /// Populate all loop data in a stable order during a single forward DFS. 
- template <class BlockT, class LoopT> class PopulateLoopsDFS { 
-   typedef GraphTraits<BlockT *> BlockTraits; 
-   typedef typename BlockTraits::ChildIteratorType SuccIterTy; 
-   
-   LoopInfoBase<BlockT, LoopT> *LI; 
-   
- public: 
-   PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {} 
-   
-   void traverse(BlockT *EntryBlock); 
-   
- protected: 
-   void insertIntoLoop(BlockT *Block); 
- }; 
-   
- /// Top-level driver for the forward DFS within the loop. 
- template <class BlockT, class LoopT> 
- void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) { 
-   for (BlockT *BB : post_order(EntryBlock)) 
-     insertIntoLoop(BB); 
- } 
-   
- /// Add a single Block to its ancestor loops in PostOrder. If the block is a 
- /// subloop header, add the subloop to its parent in PostOrder, then reverse the 
- /// Block and Subloop vectors of the now complete subloop to achieve RPO. 
- template <class BlockT, class LoopT> 
- void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) { 
-   LoopT *Subloop = LI->getLoopFor(Block); 
-   if (Subloop && Block == Subloop->getHeader()) { 
-     // We reach this point once per subloop after processing all the blocks in 
-     // the subloop. 
-     if (!Subloop->isOutermost()) 
-       Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop); 
-     else 
-       LI->addTopLevelLoop(Subloop); 
-   
-     // For convenience, Blocks and Subloops are inserted in postorder. Reverse 
-     // the lists, except for the loop header, which is always at the beginning. 
-     Subloop->reverseBlock(1); 
-     std::reverse(Subloop->getSubLoopsVector().begin(), 
-                  Subloop->getSubLoopsVector().end()); 
-   
-     Subloop = Subloop->getParentLoop(); 
-   } 
-   for (; Subloop; Subloop = Subloop->getParentLoop()) 
-     Subloop->addBlockEntry(Block); 
- } 
-   
- /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal 
- /// interleaved with backward CFG traversals within each subloop 
- /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so 
- /// this part of the algorithm is linear in the number of CFG edges. Subloop and 
- /// Block vectors are then populated during a single forward CFG traversal 
- /// (PopulateLoopDFS). 
- /// 
- /// During the two CFG traversals each block is seen three times: 
- /// 1) Discovered and mapped by a reverse CFG traversal. 
- /// 2) Visited during a forward DFS CFG traversal. 
- /// 3) Reverse-inserted in the loop in postorder following forward DFS. 
- /// 
- /// The Block vectors are inclusive, so step 3 requires loop-depth number of 
- /// insertions per block. 
- template <class BlockT, class LoopT> 
- void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) { 
-   // Postorder traversal of the dominator tree. 
-   const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode(); 
-   for (auto DomNode : post_order(DomRoot)) { 
-   
-     BlockT *Header = DomNode->getBlock(); 
-     SmallVector<BlockT *, 4> Backedges; 
-   
-     // Check each predecessor of the potential loop header. 
-     for (const auto Backedge : children<Inverse<BlockT *>>(Header)) { 
-       // If Header dominates predBB, this is a new loop. Collect the backedges. 
-       if (DomTree.dominates(Header, Backedge) && 
-           DomTree.isReachableFromEntry(Backedge)) { 
-         Backedges.push_back(Backedge); 
-       } 
-     } 
-     // Perform a backward CFG traversal to discover and map blocks in this loop. 
-     if (!Backedges.empty()) { 
-       LoopT *L = AllocateLoop(Header); 
-       discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree); 
-     } 
-   } 
-   // Perform a single forward CFG traversal to populate block and subloop 
-   // vectors for all loops. 
-   PopulateLoopsDFS<BlockT, LoopT> DFS(this); 
-   DFS.traverse(DomRoot->getBlock()); 
- } 
-   
- template <class BlockT, class LoopT> 
- SmallVector<LoopT *, 4> 
- LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() const { 
-   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist; 
-   // The outer-most loop actually goes into the result in the same relative 
-   // order as we walk it. But LoopInfo stores the top level loops in reverse 
-   // program order so for here we reverse it to get forward program order. 
-   // FIXME: If we change the order of LoopInfo we will want to remove the 
-   // reverse here. 
-   for (LoopT *RootL : reverse(*this)) { 
-     auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder(); 
-     PreOrderLoops.append(PreOrderLoopsInRootL.begin(), 
-                          PreOrderLoopsInRootL.end()); 
-   } 
-   
-   return PreOrderLoops; 
- } 
-   
- template <class BlockT, class LoopT> 
- SmallVector<LoopT *, 4> 
- LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() const { 
-   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist; 
-   // The outer-most loop actually goes into the result in the same relative 
-   // order as we walk it. LoopInfo stores the top level loops in reverse 
-   // program order so we walk in order here. 
-   // FIXME: If we change the order of LoopInfo we will want to add a reverse 
-   // here. 
-   for (LoopT *RootL : *this) { 
-     assert(PreOrderWorklist.empty() && 
-            "Must start with an empty preorder walk worklist."); 
-     PreOrderWorklist.push_back(RootL); 
-     do { 
-       LoopT *L = PreOrderWorklist.pop_back_val(); 
-       // Sub-loops are stored in forward program order, but will process the 
-       // worklist backwards so we can just append them in order. 
-       PreOrderWorklist.append(L->begin(), L->end()); 
-       PreOrderLoops.push_back(L); 
-     } while (!PreOrderWorklist.empty()); 
-   } 
-   
-   return PreOrderLoops; 
- } 
-   
- // Debugging 
- template <class BlockT, class LoopT> 
- void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const { 
-   for (unsigned i = 0; i < TopLevelLoops.size(); ++i) 
-     TopLevelLoops[i]->print(OS); 
- #if 0 
-   for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(), 
-          E = BBMap.end(); I != E; ++I) 
-     OS << "BB '" << I->first->getName() << "' level = " 
-        << I->second->getLoopDepth() << "\n"; 
- #endif 
- } 
-   
- template <typename T> 
- bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) { 
-   llvm::sort(BB1); 
-   llvm::sort(BB2); 
-   return BB1 == BB2; 
- } 
-   
- template <class BlockT, class LoopT> 
- void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders, 
-                                const LoopInfoBase<BlockT, LoopT> &LI, 
-                                const LoopT &L) { 
-   LoopHeaders[L.getHeader()] = &L; 
-   for (LoopT *SL : L) 
-     addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL); 
- } 
-   
- #ifndef NDEBUG 
- template <class BlockT, class LoopT> 
- static void compareLoops(const LoopT *L, const LoopT *OtherL, 
-                          DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) { 
-   BlockT *H = L->getHeader(); 
-   BlockT *OtherH = OtherL->getHeader(); 
-   assert(H == OtherH && 
-          "Mismatched headers even though found in the same map entry!"); 
-   
-   assert(L->getLoopDepth() == OtherL->getLoopDepth() && 
-          "Mismatched loop depth!"); 
-   const LoopT *ParentL = L, *OtherParentL = OtherL; 
-   do { 
-     assert(ParentL->getHeader() == OtherParentL->getHeader() && 
-            "Mismatched parent loop headers!"); 
-     ParentL = ParentL->getParentLoop(); 
-     OtherParentL = OtherParentL->getParentLoop(); 
-   } while (ParentL); 
-   
-   for (const LoopT *SubL : *L) { 
-     BlockT *SubH = SubL->getHeader(); 
-     const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH); 
-     assert(OtherSubL && "Inner loop is missing in computed loop info!"); 
-     OtherLoopHeaders.erase(SubH); 
-     compareLoops(SubL, OtherSubL, OtherLoopHeaders); 
-   } 
-   
-   std::vector<BlockT *> BBs = L->getBlocks(); 
-   std::vector<BlockT *> OtherBBs = OtherL->getBlocks(); 
-   assert(compareVectors(BBs, OtherBBs) && 
-          "Mismatched basic blocks in the loops!"); 
-   
-   const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet(); 
-   const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet = 
-       OtherL->getBlocksSet(); 
-   assert(BlocksSet.size() == OtherBlocksSet.size() && 
-          llvm::set_is_subset(BlocksSet, OtherBlocksSet) && 
-          "Mismatched basic blocks in BlocksSets!"); 
- } 
- #endif 
-   
- template <class BlockT, class LoopT> 
- void LoopInfoBase<BlockT, LoopT>::verify( 
-     const DomTreeBase<BlockT> &DomTree) const { 
-   DenseSet<const LoopT *> Loops; 
-   for (iterator I = begin(), E = end(); I != E; ++I) { 
-     assert((*I)->isOutermost() && "Top-level loop has a parent!"); 
-     (*I)->verifyLoopNest(&Loops); 
-   } 
-   
- // Verify that blocks are mapped to valid loops. 
- #ifndef NDEBUG 
-   for (auto &Entry : BBMap) { 
-     const BlockT *BB = Entry.first; 
-     LoopT *L = Entry.second; 
-     assert(Loops.count(L) && "orphaned loop"); 
-     assert(L->contains(BB) && "orphaned block"); 
-     for (LoopT *ChildLoop : *L) 
-       assert(!ChildLoop->contains(BB) && 
-              "BBMap should point to the innermost loop containing BB"); 
-   } 
-   
-   // Recompute LoopInfo to verify loops structure. 
-   LoopInfoBase<BlockT, LoopT> OtherLI; 
-   OtherLI.analyze(DomTree); 
-   
-   // Build a map we can use to move from our LI to the computed one. This 
-   // allows us to ignore the particular order in any layer of the loop forest 
-   // while still comparing the structure. 
-   DenseMap<BlockT *, const LoopT *> OtherLoopHeaders; 
-   for (LoopT *L : OtherLI) 
-     addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L); 
-   
-   // Walk the top level loops and ensure there is a corresponding top-level 
-   // loop in the computed version and then recursively compare those loop 
-   // nests. 
-   for (LoopT *L : *this) { 
-     BlockT *Header = L->getHeader(); 
-     const LoopT *OtherL = OtherLoopHeaders.lookup(Header); 
-     assert(OtherL && "Top level loop is missing in computed loop info!"); 
-     // Now that we've matched this loop, erase its header from the map. 
-     OtherLoopHeaders.erase(Header); 
-     // And recursively compare these loops. 
-     compareLoops(L, OtherL, OtherLoopHeaders); 
-   } 
-   
-   // Any remaining entries in the map are loops which were found when computing 
-   // a fresh LoopInfo but not present in the current one. 
-   if (!OtherLoopHeaders.empty()) { 
-     for (const auto &HeaderAndLoop : OtherLoopHeaders) 
-       dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n"; 
-     llvm_unreachable("Found new loops when recomputing LoopInfo!"); 
-   } 
- #endif 
- } 
-   
- } // End llvm namespace 
-   
- #endif 
-