- //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- // 
- // This file defines the LoopInfo class that is used to identify natural loops 
- // and determine the loop depth of various nodes of the CFG.  A natural loop 
- // has exactly one entry-point, which is called the header. Note that natural 
- // loops may actually be several loops that share the same header node. 
- // 
- // This analysis calculates the nesting structure of loops in a function.  For 
- // each natural loop identified, this analysis identifies natural loops 
- // contained entirely within the loop and the basic blocks the make up the loop. 
- // 
- // It can calculate on the fly various bits of information, for example: 
- // 
- //  * whether there is a preheader for the loop 
- //  * the number of back edges to the header 
- //  * whether or not a particular block branches out of the loop 
- //  * the successor blocks of the loop 
- //  * the loop depth 
- //  * etc... 
- // 
- // Note that this analysis specifically identifies *Loops* not cycles or SCCs 
- // in the CFG.  There can be strongly connected components in the CFG which 
- // this analysis will not recognize and that will not be represented by a Loop 
- // instance.  In particular, a Loop might be inside such a non-loop SCC, or a 
- // non-loop SCC might contain a sub-SCC which is a Loop. 
- // 
- // For an overview of terminology used in this API (and thus all of our loop 
- // analyses or transforms), see docs/LoopTerminology.rst. 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_ANALYSIS_LOOPINFO_H 
- #define LLVM_ANALYSIS_LOOPINFO_H 
-   
- #include "llvm/ADT/DenseMap.h" 
- #include "llvm/ADT/DenseSet.h" 
- #include "llvm/ADT/GraphTraits.h" 
- #include "llvm/ADT/SmallPtrSet.h" 
- #include "llvm/ADT/SmallVector.h" 
- #include "llvm/IR/CFG.h" 
- #include "llvm/IR/Instructions.h" 
- #include "llvm/IR/PassManager.h" 
- #include "llvm/Pass.h" 
- #include "llvm/Support/Allocator.h" 
- #include <algorithm> 
- #include <optional> 
- #include <utility> 
-   
- namespace llvm { 
-   
- class DominatorTree; 
- class InductionDescriptor; 
- class Instruction; 
- class LoopInfo; 
- class Loop; 
- class MDNode; 
- class MemorySSAUpdater; 
- class ScalarEvolution; 
- class raw_ostream; 
- template <class N, bool IsPostDom> class DominatorTreeBase; 
- template <class N, class M> class LoopInfoBase; 
- template <class N, class M> class LoopBase; 
-   
- //===----------------------------------------------------------------------===// 
- /// Instances of this class are used to represent loops that are detected in the 
- /// flow graph. 
- /// 
- template <class BlockT, class LoopT> class LoopBase { 
-   LoopT *ParentLoop; 
-   // Loops contained entirely within this one. 
-   std::vector<LoopT *> SubLoops; 
-   
-   // The list of blocks in this loop. First entry is the header node. 
-   std::vector<BlockT *> Blocks; 
-   
-   SmallPtrSet<const BlockT *, 8> DenseBlockSet; 
-   
- #if LLVM_ENABLE_ABI_BREAKING_CHECKS 
-   /// Indicator that this loop is no longer a valid loop. 
-   bool IsInvalid = false; 
- #endif 
-   
-   LoopBase(const LoopBase<BlockT, LoopT> &) = delete; 
-   const LoopBase<BlockT, LoopT> & 
-   operator=(const LoopBase<BlockT, LoopT> &) = delete; 
-   
- public: 
-   /// Return the nesting level of this loop.  An outer-most loop has depth 1, 
-   /// for consistency with loop depth values used for basic blocks, where depth 
-   /// 0 is used for blocks not inside any loops. 
-   unsigned getLoopDepth() const { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     unsigned D = 1; 
-     for (const LoopT *CurLoop = ParentLoop; CurLoop; 
-          CurLoop = CurLoop->ParentLoop) 
-       ++D; 
-     return D; 
-   } 
-   BlockT *getHeader() const { return getBlocks().front(); } 
-   /// Return the parent loop if it exists or nullptr for top 
-   /// level loops. 
-   
-   /// A loop is either top-level in a function (that is, it is not 
-   /// contained in any other loop) or it is entirely enclosed in 
-   /// some other loop. 
-   /// If a loop is top-level, it has no parent, otherwise its 
-   /// parent is the innermost loop in which it is enclosed. 
-   LoopT *getParentLoop() const { return ParentLoop; } 
-   
-   /// Get the outermost loop in which this loop is contained. 
-   /// This may be the loop itself, if it already is the outermost loop. 
-   const LoopT *getOutermostLoop() const { 
-     const LoopT *L = static_cast<const LoopT *>(this); 
-     while (L->ParentLoop) 
-       L = L->ParentLoop; 
-     return L; 
-   } 
-   
-   LoopT *getOutermostLoop() { 
-     LoopT *L = static_cast<LoopT *>(this); 
-     while (L->ParentLoop) 
-       L = L->ParentLoop; 
-     return L; 
-   } 
-   
-   /// This is a raw interface for bypassing addChildLoop. 
-   void setParentLoop(LoopT *L) { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     ParentLoop = L; 
-   } 
-   
-   /// Return true if the specified loop is contained within in this loop. 
-   bool contains(const LoopT *L) const { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     if (L == this) 
-       return true; 
-     if (!L) 
-       return false; 
-     return contains(L->getParentLoop()); 
-   } 
-   
-   /// Return true if the specified basic block is in this loop. 
-   bool contains(const BlockT *BB) const { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     return DenseBlockSet.count(BB); 
-   } 
-   
-   /// Return true if the specified instruction is in this loop. 
-   template <class InstT> bool contains(const InstT *Inst) const { 
-     return contains(Inst->getParent()); 
-   } 
-   
-   /// Return the loops contained entirely within this loop. 
-   const std::vector<LoopT *> &getSubLoops() const { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     return SubLoops; 
-   } 
-   std::vector<LoopT *> &getSubLoopsVector() { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     return SubLoops; 
-   } 
-   typedef typename std::vector<LoopT *>::const_iterator iterator; 
-   typedef 
-       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; 
-   iterator begin() const { return getSubLoops().begin(); } 
-   iterator end() const { return getSubLoops().end(); } 
-   reverse_iterator rbegin() const { return getSubLoops().rbegin(); } 
-   reverse_iterator rend() const { return getSubLoops().rend(); } 
-   
-   // LoopInfo does not detect irreducible control flow, just natural 
-   // loops. That is, it is possible that there is cyclic control 
-   // flow within the "innermost loop" or around the "outermost 
-   // loop". 
-   
-   /// Return true if the loop does not contain any (natural) loops. 
-   bool isInnermost() const { return getSubLoops().empty(); } 
-   /// Return true if the loop does not have a parent (natural) loop 
-   // (i.e. it is outermost, which is the same as top-level). 
-   bool isOutermost() const { return getParentLoop() == nullptr; } 
-   
-   /// Get a list of the basic blocks which make up this loop. 
-   ArrayRef<BlockT *> getBlocks() const { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     return Blocks; 
-   } 
-   typedef typename ArrayRef<BlockT *>::const_iterator block_iterator; 
-   block_iterator block_begin() const { return getBlocks().begin(); } 
-   block_iterator block_end() const { return getBlocks().end(); } 
-   inline iterator_range<block_iterator> blocks() const { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     return make_range(block_begin(), block_end()); 
-   } 
-   
-   /// Get the number of blocks in this loop in constant time. 
-   /// Invalidate the loop, indicating that it is no longer a loop. 
-   unsigned getNumBlocks() const { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     return Blocks.size(); 
-   } 
-   
-   /// Return a direct, mutable handle to the blocks vector so that we can 
-   /// mutate it efficiently with techniques like `std::remove`. 
-   std::vector<BlockT *> &getBlocksVector() { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     return Blocks; 
-   } 
-   /// Return a direct, mutable handle to the blocks set so that we can 
-   /// mutate it efficiently. 
-   SmallPtrSetImpl<const BlockT *> &getBlocksSet() { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     return DenseBlockSet; 
-   } 
-   
-   /// Return a direct, immutable handle to the blocks set. 
-   const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     return DenseBlockSet; 
-   } 
-   
-   /// Return true if this loop is no longer valid.  The only valid use of this 
-   /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to 
-   /// true by the destructor.  In other words, if this accessor returns true, 
-   /// the caller has already triggered UB by calling this accessor; and so it 
-   /// can only be called in a context where a return value of true indicates a 
-   /// programmer error. 
-   bool isInvalid() const { 
- #if LLVM_ENABLE_ABI_BREAKING_CHECKS 
-     return IsInvalid; 
- #else 
-     return false; 
- #endif 
-   } 
-   
-   /// True if terminator in the block can branch to another block that is 
-   /// outside of the current loop. \p BB must be inside the loop. 
-   bool isLoopExiting(const BlockT *BB) const { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     assert(contains(BB) && "Exiting block must be part of the loop"); 
-     for (const auto *Succ : children<const BlockT *>(BB)) { 
-       if (!contains(Succ)) 
-         return true; 
-     } 
-     return false; 
-   } 
-   
-   /// Returns true if \p BB is a loop-latch. 
-   /// A latch block is a block that contains a branch back to the header. 
-   /// This function is useful when there are multiple latches in a loop 
-   /// because \fn getLoopLatch will return nullptr in that case. 
-   bool isLoopLatch(const BlockT *BB) const { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     assert(contains(BB) && "block does not belong to the loop"); 
-   
-     BlockT *Header = getHeader(); 
-     auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header); 
-     auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header); 
-     return std::find(PredBegin, PredEnd, BB) != PredEnd; 
-   } 
-   
-   /// Calculate the number of back edges to the loop header. 
-   unsigned getNumBackEdges() const { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     unsigned NumBackEdges = 0; 
-     BlockT *H = getHeader(); 
-   
-     for (const auto Pred : children<Inverse<BlockT *>>(H)) 
-       if (contains(Pred)) 
-         ++NumBackEdges; 
-   
-     return NumBackEdges; 
-   } 
-   
-   //===--------------------------------------------------------------------===// 
-   // APIs for simple analysis of the loop. 
-   // 
-   // Note that all of these methods can fail on general loops (ie, there may not 
-   // be a preheader, etc).  For best success, the loop simplification and 
-   // induction variable canonicalization pass should be used to normalize loops 
-   // for easy analysis.  These methods assume canonical loops. 
-   
-   /// Return all blocks inside the loop that have successors outside of the 
-   /// loop. These are the blocks _inside of the current loop_ which branch out. 
-   /// The returned list is always unique. 
-   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const; 
-   
-   /// If getExitingBlocks would return exactly one block, return that block. 
-   /// Otherwise return null. 
-   BlockT *getExitingBlock() const; 
-   
-   /// Return all of the successor blocks of this loop. These are the blocks 
-   /// _outside of the current loop_ which are branched to. 
-   void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; 
-   
-   /// If getExitBlocks would return exactly one block, return that block. 
-   /// Otherwise return null. 
-   BlockT *getExitBlock() const; 
-   
-   /// Return true if no exit block for the loop has a predecessor that is 
-   /// outside the loop. 
-   bool hasDedicatedExits() const; 
-   
-   /// Return all unique successor blocks of this loop. 
-   /// These are the blocks _outside of the current loop_ which are branched to. 
-   void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; 
-   
-   /// Return all unique successor blocks of this loop except successors from 
-   /// Latch block are not considered. If the exit comes from Latch has also 
-   /// non Latch predecessor in a loop it will be added to ExitBlocks. 
-   /// These are the blocks _outside of the current loop_ which are branched to. 
-   void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const; 
-   
-   /// If getUniqueExitBlocks would return exactly one block, return that block. 
-   /// Otherwise return null. 
-   BlockT *getUniqueExitBlock() const; 
-   
-   /// Return true if this loop does not have any exit blocks. 
-   bool hasNoExitBlocks() const; 
-   
-   /// Edge type. 
-   typedef std::pair<BlockT *, BlockT *> Edge; 
-   
-   /// Return all pairs of (_inside_block_,_outside_block_). 
-   void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const; 
-   
-   /// If there is a preheader for this loop, return it. A loop has a preheader 
-   /// if there is only one edge to the header of the loop from outside of the 
-   /// loop. If this is the case, the block branching to the header of the loop 
-   /// is the preheader node. 
-   /// 
-   /// This method returns null if there is no preheader for the loop. 
-   BlockT *getLoopPreheader() const; 
-   
-   /// If the given loop's header has exactly one unique predecessor outside the 
-   /// loop, return it. Otherwise return null. 
-   ///  This is less strict that the loop "preheader" concept, which requires 
-   /// the predecessor to have exactly one successor. 
-   BlockT *getLoopPredecessor() const; 
-   
-   /// If there is a single latch block for this loop, return it. 
-   /// A latch block is a block that contains a branch back to the header. 
-   BlockT *getLoopLatch() const; 
-   
-   /// Return all loop latch blocks of this loop. A latch block is a block that 
-   /// contains a branch back to the header. 
-   void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     BlockT *H = getHeader(); 
-     for (const auto Pred : children<Inverse<BlockT *>>(H)) 
-       if (contains(Pred)) 
-         LoopLatches.push_back(Pred); 
-   } 
-   
-   /// Return all inner loops in the loop nest rooted by the loop in preorder, 
-   /// with siblings in forward program order. 
-   template <class Type> 
-   static void getInnerLoopsInPreorder(const LoopT &L, 
-                                       SmallVectorImpl<Type> &PreOrderLoops) { 
-     SmallVector<LoopT *, 4> PreOrderWorklist; 
-     PreOrderWorklist.append(L.rbegin(), L.rend()); 
-   
-     while (!PreOrderWorklist.empty()) { 
-       LoopT *L = PreOrderWorklist.pop_back_val(); 
-       // Sub-loops are stored in forward program order, but will process the 
-       // worklist backwards so append them in reverse order. 
-       PreOrderWorklist.append(L->rbegin(), L->rend()); 
-       PreOrderLoops.push_back(L); 
-     } 
-   } 
-   
-   /// Return all loops in the loop nest rooted by the loop in preorder, with 
-   /// siblings in forward program order. 
-   SmallVector<const LoopT *, 4> getLoopsInPreorder() const { 
-     SmallVector<const LoopT *, 4> PreOrderLoops; 
-     const LoopT *CurLoop = static_cast<const LoopT *>(this); 
-     PreOrderLoops.push_back(CurLoop); 
-     getInnerLoopsInPreorder(*CurLoop, PreOrderLoops); 
-     return PreOrderLoops; 
-   } 
-   SmallVector<LoopT *, 4> getLoopsInPreorder() { 
-     SmallVector<LoopT *, 4> PreOrderLoops; 
-     LoopT *CurLoop = static_cast<LoopT *>(this); 
-     PreOrderLoops.push_back(CurLoop); 
-     getInnerLoopsInPreorder(*CurLoop, PreOrderLoops); 
-     return PreOrderLoops; 
-   } 
-   
-   //===--------------------------------------------------------------------===// 
-   // APIs for updating loop information after changing the CFG 
-   // 
-   
-   /// This method is used by other analyses to update loop information. 
-   /// NewBB is set to be a new member of the current loop. 
-   /// Because of this, it is added as a member of all parent loops, and is added 
-   /// to the specified LoopInfo object as being in the current basic block.  It 
-   /// is not valid to replace the loop header with this method. 
-   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI); 
-   
-   /// This is used when splitting loops up. It replaces the OldChild entry in 
-   /// our children list with NewChild, and updates the parent pointer of 
-   /// OldChild to be null and the NewChild to be this loop. 
-   /// This updates the loop depth of the new child. 
-   void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild); 
-   
-   /// Add the specified loop to be a child of this loop. 
-   /// This updates the loop depth of the new child. 
-   void addChildLoop(LoopT *NewChild) { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     assert(!NewChild->ParentLoop && "NewChild already has a parent!"); 
-     NewChild->ParentLoop = static_cast<LoopT *>(this); 
-     SubLoops.push_back(NewChild); 
-   } 
-   
-   /// This removes the specified child from being a subloop of this loop. The 
-   /// loop is not deleted, as it will presumably be inserted into another loop. 
-   LoopT *removeChildLoop(iterator I) { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     assert(I != SubLoops.end() && "Cannot remove end iterator!"); 
-     LoopT *Child = *I; 
-     assert(Child->ParentLoop == this && "Child is not a child of this loop!"); 
-     SubLoops.erase(SubLoops.begin() + (I - begin())); 
-     Child->ParentLoop = nullptr; 
-     return Child; 
-   } 
-   
-   /// This removes the specified child from being a subloop of this loop. The 
-   /// loop is not deleted, as it will presumably be inserted into another loop. 
-   LoopT *removeChildLoop(LoopT *Child) { 
-     return removeChildLoop(llvm::find(*this, Child)); 
-   } 
-   
-   /// This adds a basic block directly to the basic block list. 
-   /// This should only be used by transformations that create new loops.  Other 
-   /// transformations should use addBasicBlockToLoop. 
-   void addBlockEntry(BlockT *BB) { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     Blocks.push_back(BB); 
-     DenseBlockSet.insert(BB); 
-   } 
-   
-   /// interface to reverse Blocks[from, end of loop] in this loop 
-   void reverseBlock(unsigned from) { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     std::reverse(Blocks.begin() + from, Blocks.end()); 
-   } 
-   
-   /// interface to do reserve() for Blocks 
-   void reserveBlocks(unsigned size) { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     Blocks.reserve(size); 
-   } 
-   
-   /// This method is used to move BB (which must be part of this loop) to be the 
-   /// loop header of the loop (the block that dominates all others). 
-   void moveToHeader(BlockT *BB) { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     if (Blocks[0] == BB) 
-       return; 
-     for (unsigned i = 0;; ++i) { 
-       assert(i != Blocks.size() && "Loop does not contain BB!"); 
-       if (Blocks[i] == BB) { 
-         Blocks[i] = Blocks[0]; 
-         Blocks[0] = BB; 
-         return; 
-       } 
-     } 
-   } 
-   
-   /// This removes the specified basic block from the current loop, updating the 
-   /// Blocks as appropriate. This does not update the mapping in the LoopInfo 
-   /// class. 
-   void removeBlockFromLoop(BlockT *BB) { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     auto I = find(Blocks, BB); 
-     assert(I != Blocks.end() && "N is not in this list!"); 
-     Blocks.erase(I); 
-   
-     DenseBlockSet.erase(BB); 
-   } 
-   
-   /// Verify loop structure 
-   void verifyLoop() const; 
-   
-   /// Verify loop structure of this loop and all nested loops. 
-   void verifyLoopNest(DenseSet<const LoopT *> *Loops) const; 
-   
-   /// Returns true if the loop is annotated parallel. 
-   /// 
-   /// Derived classes can override this method using static template 
-   /// polymorphism. 
-   bool isAnnotatedParallel() const { return false; } 
-   
-   /// Print loop with all the BBs inside it. 
-   void print(raw_ostream &OS, bool Verbose = false, bool PrintNested = true, 
-              unsigned Depth = 0) const; 
-   
- protected: 
-   friend class LoopInfoBase<BlockT, LoopT>; 
-   
-   /// This creates an empty loop. 
-   LoopBase() : ParentLoop(nullptr) {} 
-   
-   explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) { 
-     Blocks.push_back(BB); 
-     DenseBlockSet.insert(BB); 
-   } 
-   
-   // Since loop passes like SCEV are allowed to key analysis results off of 
-   // `Loop` pointers, we cannot re-use pointers within a loop pass manager. 
-   // This means loop passes should not be `delete` ing `Loop` objects directly 
-   // (and risk a later `Loop` allocation re-using the address of a previous one) 
-   // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop` 
-   // pointer till the end of the lifetime of the `LoopInfo` object. 
-   // 
-   // To make it easier to follow this rule, we mark the destructor as 
-   // non-public. 
-   ~LoopBase() { 
-     for (auto *SubLoop : SubLoops) 
-       SubLoop->~LoopT(); 
-   
- #if LLVM_ENABLE_ABI_BREAKING_CHECKS 
-     IsInvalid = true; 
- #endif 
-     SubLoops.clear(); 
-     Blocks.clear(); 
-     DenseBlockSet.clear(); 
-     ParentLoop = nullptr; 
-   } 
- }; 
-   
- template <class BlockT, class LoopT> 
- raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) { 
-   Loop.print(OS); 
-   return OS; 
- } 
-   
- // Implementation in LoopInfoImpl.h 
- extern template class LoopBase<BasicBlock, Loop>; 
-   
- /// Represents a single loop in the control flow graph.  Note that not all SCCs 
- /// in the CFG are necessarily loops. 
- class LLVM_EXTERNAL_VISIBILITY Loop : public LoopBase<BasicBlock, Loop> { 
- public: 
-   /// A range representing the start and end location of a loop. 
-   class LocRange { 
-     DebugLoc Start; 
-     DebugLoc End; 
-   
-   public: 
-     LocRange() = default; 
-     LocRange(DebugLoc Start) : Start(Start), End(Start) {} 
-     LocRange(DebugLoc Start, DebugLoc End) 
-         : Start(std::move(Start)), End(std::move(End)) {} 
-   
-     const DebugLoc &getStart() const { return Start; } 
-     const DebugLoc &getEnd() const { return End; } 
-   
-     /// Check for null. 
-     /// 
-     explicit operator bool() const { return Start && End; } 
-   }; 
-   
-   /// Return true if the specified value is loop invariant. 
-   bool isLoopInvariant(const Value *V) const; 
-   
-   /// Return true if all the operands of the specified instruction are loop 
-   /// invariant. 
-   bool hasLoopInvariantOperands(const Instruction *I) const; 
-   
-   /// If the given value is an instruction inside of the loop and it can be 
-   /// hoisted, do so to make it trivially loop-invariant. 
-   /// Return true if \c V is already loop-invariant, and false if \c V can't 
-   /// be made loop-invariant. If \c V is made loop-invariant, \c Changed is 
-   /// set to true. This function can be used as a slightly more aggressive 
-   /// replacement for isLoopInvariant. 
-   /// 
-   /// If InsertPt is specified, it is the point to hoist instructions to. 
-   /// If null, the terminator of the loop preheader is used. 
-   /// 
-   bool makeLoopInvariant(Value *V, bool &Changed, 
-                          Instruction *InsertPt = nullptr, 
-                          MemorySSAUpdater *MSSAU = nullptr, 
-                          ScalarEvolution *SE = nullptr) const; 
-   
-   /// If the given instruction is inside of the loop and it can be hoisted, do 
-   /// so to make it trivially loop-invariant. 
-   /// Return true if \c I is already loop-invariant, and false if \c I can't 
-   /// be made loop-invariant. If \c I is made loop-invariant, \c Changed is 
-   /// set to true. This function can be used as a slightly more aggressive 
-   /// replacement for isLoopInvariant. 
-   /// 
-   /// If InsertPt is specified, it is the point to hoist instructions to. 
-   /// If null, the terminator of the loop preheader is used. 
-   /// 
-   bool makeLoopInvariant(Instruction *I, bool &Changed, 
-                          Instruction *InsertPt = nullptr, 
-                          MemorySSAUpdater *MSSAU = nullptr, 
-                          ScalarEvolution *SE = nullptr) const; 
-   
-   /// Check to see if the loop has a canonical induction variable: an integer 
-   /// recurrence that starts at 0 and increments by one each time through the 
-   /// loop. If so, return the phi node that corresponds to it. 
-   /// 
-   /// The IndVarSimplify pass transforms loops to have a canonical induction 
-   /// variable. 
-   /// 
-   PHINode *getCanonicalInductionVariable() const; 
-   
-   /// Get the latch condition instruction. 
-   ICmpInst *getLatchCmpInst() const; 
-   
-   /// Obtain the unique incoming and back edge. Return false if they are 
-   /// non-unique or the loop is dead; otherwise, return true. 
-   bool getIncomingAndBackEdge(BasicBlock *&Incoming, 
-                               BasicBlock *&Backedge) const; 
-   
-   /// Below are some utilities to get the loop guard, loop bounds and induction 
-   /// variable, and to check if a given phinode is an auxiliary induction 
-   /// variable, if the loop is guarded, and if the loop is canonical. 
-   /// 
-   /// Here is an example: 
-   /// \code 
-   /// for (int i = lb; i < ub; i+=step) 
-   ///   <loop body> 
-   /// --- pseudo LLVMIR --- 
-   /// beforeloop: 
-   ///   guardcmp = (lb < ub) 
-   ///   if (guardcmp) goto preheader; else goto afterloop 
-   /// preheader: 
-   /// loop: 
-   ///   i_1 = phi[{lb, preheader}, {i_2, latch}] 
-   ///   <loop body> 
-   ///   i_2 = i_1 + step 
-   /// latch: 
-   ///   cmp = (i_2 < ub) 
-   ///   if (cmp) goto loop 
-   /// exit: 
-   /// afterloop: 
-   /// \endcode 
-   /// 
-   /// - getBounds 
-   ///   - getInitialIVValue      --> lb 
-   ///   - getStepInst            --> i_2 = i_1 + step 
-   ///   - getStepValue           --> step 
-   ///   - getFinalIVValue        --> ub 
-   ///   - getCanonicalPredicate  --> '<' 
-   ///   - getDirection           --> Increasing 
-   /// 
-   /// - getInductionVariable            --> i_1 
-   /// - isAuxiliaryInductionVariable(x) --> true if x == i_1 
-   /// - getLoopGuardBranch() 
-   ///                 --> `if (guardcmp) goto preheader; else goto afterloop` 
-   /// - isGuarded()                     --> true 
-   /// - isCanonical                     --> false 
-   struct LoopBounds { 
-     /// Return the LoopBounds object if 
-     /// - the given \p IndVar is an induction variable 
-     /// - the initial value of the induction variable can be found 
-     /// - the step instruction of the induction variable can be found 
-     /// - the final value of the induction variable can be found 
-     /// 
-     /// Else None. 
-     static std::optional<Loop::LoopBounds> 
-     getBounds(const Loop &L, PHINode &IndVar, ScalarEvolution &SE); 
-   
-     /// Get the initial value of the loop induction variable. 
-     Value &getInitialIVValue() const { return InitialIVValue; } 
-   
-     /// Get the instruction that updates the loop induction variable. 
-     Instruction &getStepInst() const { return StepInst; } 
-   
-     /// Get the step that the loop induction variable gets updated by in each 
-     /// loop iteration. Return nullptr if not found. 
-     Value *getStepValue() const { return StepValue; } 
-   
-     /// Get the final value of the loop induction variable. 
-     Value &getFinalIVValue() const { return FinalIVValue; } 
-   
-     /// Return the canonical predicate for the latch compare instruction, if 
-     /// able to be calcuated. Else BAD_ICMP_PREDICATE. 
-     /// 
-     /// A predicate is considered as canonical if requirements below are all 
-     /// satisfied: 
-     /// 1. The first successor of the latch branch is the loop header 
-     ///    If not, inverse the predicate. 
-     /// 2. One of the operands of the latch comparison is StepInst 
-     ///    If not, and 
-     ///    - if the current calcuated predicate is not ne or eq, flip the 
-     ///      predicate. 
-     ///    - else if the loop is increasing, return slt 
-     ///      (notice that it is safe to change from ne or eq to sign compare) 
-     ///    - else if the loop is decreasing, return sgt 
-     ///      (notice that it is safe to change from ne or eq to sign compare) 
-     /// 
-     /// Here is an example when both (1) and (2) are not satisfied: 
-     /// \code 
-     /// loop.header: 
-     ///  %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header] 
-     ///  %inc = add %iv, %step 
-     ///  %cmp = slt %iv, %finaliv 
-     ///  br %cmp, %loop.exit, %loop.header 
-     /// loop.exit: 
-     /// \endcode 
-     /// - The second successor of the latch branch is the loop header instead 
-     ///   of the first successor (slt -> sge) 
-     /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv) 
-     ///   instead of the StepInst (%inc) (sge -> sgt) 
-     /// 
-     /// The predicate would be sgt if both (1) and (2) are satisfied. 
-     /// getCanonicalPredicate() returns sgt for this example. 
-     /// Note: The IR is not changed. 
-     ICmpInst::Predicate getCanonicalPredicate() const; 
-   
-     /// An enum for the direction of the loop 
-     /// - for (int i = 0; i < ub; ++i)  --> Increasing 
-     /// - for (int i = ub; i > 0; --i)  --> Descresing 
-     /// - for (int i = x; i != y; i+=z) --> Unknown 
-     enum class Direction { Increasing, Decreasing, Unknown }; 
-   
-     /// Get the direction of the loop. 
-     Direction getDirection() const; 
-   
-   private: 
-     LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F, 
-                ScalarEvolution &SE) 
-         : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV), 
-           FinalIVValue(F), SE(SE) {} 
-   
-     const Loop &L; 
-   
-     // The initial value of the loop induction variable 
-     Value &InitialIVValue; 
-   
-     // The instruction that updates the loop induction variable 
-     Instruction &StepInst; 
-   
-     // The value that the loop induction variable gets updated by in each loop 
-     // iteration 
-     Value *StepValue; 
-   
-     // The final value of the loop induction variable 
-     Value &FinalIVValue; 
-   
-     ScalarEvolution &SE; 
-   }; 
-   
-   /// Return the struct LoopBounds collected if all struct members are found, 
-   /// else std::nullopt. 
-   std::optional<LoopBounds> getBounds(ScalarEvolution &SE) const; 
-   
-   /// Return the loop induction variable if found, else return nullptr. 
-   /// An instruction is considered as the loop induction variable if 
-   /// - it is an induction variable of the loop; and 
-   /// - it is used to determine the condition of the branch in the loop latch 
-   /// 
-   /// Note: the induction variable doesn't need to be canonical, i.e. starts at 
-   /// zero and increments by one each time through the loop (but it can be). 
-   PHINode *getInductionVariable(ScalarEvolution &SE) const; 
-   
-   /// Get the loop induction descriptor for the loop induction variable. Return 
-   /// true if the loop induction variable is found. 
-   bool getInductionDescriptor(ScalarEvolution &SE, 
-                               InductionDescriptor &IndDesc) const; 
-   
-   /// Return true if the given PHINode \p AuxIndVar is 
-   /// - in the loop header 
-   /// - not used outside of the loop 
-   /// - incremented by a loop invariant step for each loop iteration 
-   /// - step instruction opcode should be add or sub 
-   /// Note: auxiliary induction variable is not required to be used in the 
-   ///       conditional branch in the loop latch. (but it can be) 
-   bool isAuxiliaryInductionVariable(PHINode &AuxIndVar, 
-                                     ScalarEvolution &SE) const; 
-   
-   /// Return the loop guard branch, if it exists. 
-   /// 
-   /// This currently only works on simplified loop, as it requires a preheader 
-   /// and a latch to identify the guard. It will work on loops of the form: 
-   /// \code 
-   /// GuardBB: 
-   ///   br cond1, Preheader, ExitSucc <== GuardBranch 
-   /// Preheader: 
-   ///   br Header 
-   /// Header: 
-   ///  ... 
-   ///   br Latch 
-   /// Latch: 
-   ///   br cond2, Header, ExitBlock 
-   /// ExitBlock: 
-   ///   br ExitSucc 
-   /// ExitSucc: 
-   /// \endcode 
-   BranchInst *getLoopGuardBranch() const; 
-   
-   /// Return true iff the loop is 
-   /// - in simplify rotated form, and 
-   /// - guarded by a loop guard branch. 
-   bool isGuarded() const { return (getLoopGuardBranch() != nullptr); } 
-   
-   /// Return true if the loop is in rotated form. 
-   /// 
-   /// This does not check if the loop was rotated by loop rotation, instead it 
-   /// only checks if the loop is in rotated form (has a valid latch that exists 
-   /// the loop). 
-   bool isRotatedForm() const { 
-     assert(!isInvalid() && "Loop not in a valid state!"); 
-     BasicBlock *Latch = getLoopLatch(); 
-     return Latch && isLoopExiting(Latch); 
-   } 
-   
-   /// Return true if the loop induction variable starts at zero and increments 
-   /// by one each time through the loop. 
-   bool isCanonical(ScalarEvolution &SE) const; 
-   
-   /// Return true if the Loop is in LCSSA form. If \p IgnoreTokens is set to 
-   /// true, token values defined inside loop are allowed to violate LCSSA form. 
-   bool isLCSSAForm(const DominatorTree &DT, bool IgnoreTokens = true) const; 
-   
-   /// Return true if this Loop and all inner subloops are in LCSSA form. If \p 
-   /// IgnoreTokens is set to true, token values defined inside loop are allowed 
-   /// to violate LCSSA form. 
-   bool isRecursivelyLCSSAForm(const DominatorTree &DT, const LoopInfo &LI, 
-                               bool IgnoreTokens = true) const; 
-   
-   /// Return true if the Loop is in the form that the LoopSimplify form 
-   /// transforms loops to, which is sometimes called normal form. 
-   bool isLoopSimplifyForm() const; 
-   
-   /// Return true if the loop body is safe to clone in practice. 
-   bool isSafeToClone() const; 
-   
-   /// Returns true if the loop is annotated parallel. 
-   /// 
-   /// A parallel loop can be assumed to not contain any dependencies between 
-   /// iterations by the compiler. That is, any loop-carried dependency checking 
-   /// can be skipped completely when parallelizing the loop on the target 
-   /// machine. Thus, if the parallel loop information originates from the 
-   /// programmer, e.g. via the OpenMP parallel for pragma, it is the 
-   /// programmer's responsibility to ensure there are no loop-carried 
-   /// dependencies. The final execution order of the instructions across 
-   /// iterations is not guaranteed, thus, the end result might or might not 
-   /// implement actual concurrent execution of instructions across multiple 
-   /// iterations. 
-   bool isAnnotatedParallel() const; 
-   
-   /// Return the llvm.loop loop id metadata node for this loop if it is present. 
-   /// 
-   /// If this loop contains the same llvm.loop metadata on each branch to the 
-   /// header then the node is returned. If any latch instruction does not 
-   /// contain llvm.loop or if multiple latches contain different nodes then 
-   /// 0 is returned. 
-   MDNode *getLoopID() const; 
-   /// Set the llvm.loop loop id metadata for this loop. 
-   /// 
-   /// The LoopID metadata node will be added to each terminator instruction in 
-   /// the loop that branches to the loop header. 
-   /// 
-   /// The LoopID metadata node should have one or more operands and the first 
-   /// operand should be the node itself. 
-   void setLoopID(MDNode *LoopID) const; 
-   
-   /// Add llvm.loop.unroll.disable to this loop's loop id metadata. 
-   /// 
-   /// Remove existing unroll metadata and add unroll disable metadata to 
-   /// indicate the loop has already been unrolled.  This prevents a loop 
-   /// from being unrolled more than is directed by a pragma if the loop 
-   /// unrolling pass is run more than once (which it generally is). 
-   void setLoopAlreadyUnrolled(); 
-   
-   /// Add llvm.loop.mustprogress to this loop's loop id metadata. 
-   void setLoopMustProgress(); 
-   
-   void dump() const; 
-   void dumpVerbose() const; 
-   
-   /// Return the debug location of the start of this loop. 
-   /// This looks for a BB terminating instruction with a known debug 
-   /// location by looking at the preheader and header blocks. If it 
-   /// cannot find a terminating instruction with location information, 
-   /// it returns an unknown location. 
-   DebugLoc getStartLoc() const; 
-   
-   /// Return the source code span of the loop. 
-   LocRange getLocRange() const; 
-   
-   StringRef getName() const { 
-     if (BasicBlock *Header = getHeader()) 
-       if (Header->hasName()) 
-         return Header->getName(); 
-     return "<unnamed loop>"; 
-   } 
-   
- private: 
-   Loop() = default; 
-   
-   friend class LoopInfoBase<BasicBlock, Loop>; 
-   friend class LoopBase<BasicBlock, Loop>; 
-   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {} 
-   ~Loop() = default; 
- }; 
-   
- //===----------------------------------------------------------------------===// 
- /// This class builds and contains all of the top-level loop 
- /// structures in the specified function. 
- /// 
-   
- template <class BlockT, class LoopT> class LoopInfoBase { 
-   // BBMap - Mapping of basic blocks to the inner most loop they occur in 
-   DenseMap<const BlockT *, LoopT *> BBMap; 
-   std::vector<LoopT *> TopLevelLoops; 
-   BumpPtrAllocator LoopAllocator; 
-   
-   friend class LoopBase<BlockT, LoopT>; 
-   friend class LoopInfo; 
-   
-   void operator=(const LoopInfoBase &) = delete; 
-   LoopInfoBase(const LoopInfoBase &) = delete; 
-   
- public: 
-   LoopInfoBase() = default; 
-   ~LoopInfoBase() { releaseMemory(); } 
-   
-   LoopInfoBase(LoopInfoBase &&Arg) 
-       : BBMap(std::move(Arg.BBMap)), 
-         TopLevelLoops(std::move(Arg.TopLevelLoops)), 
-         LoopAllocator(std::move(Arg.LoopAllocator)) { 
-     // We have to clear the arguments top level loops as we've taken ownership. 
-     Arg.TopLevelLoops.clear(); 
-   } 
-   LoopInfoBase &operator=(LoopInfoBase &&RHS) { 
-     BBMap = std::move(RHS.BBMap); 
-   
-     for (auto *L : TopLevelLoops) 
-       L->~LoopT(); 
-   
-     TopLevelLoops = std::move(RHS.TopLevelLoops); 
-     LoopAllocator = std::move(RHS.LoopAllocator); 
-     RHS.TopLevelLoops.clear(); 
-     return *this; 
-   } 
-   
-   void releaseMemory() { 
-     BBMap.clear(); 
-   
-     for (auto *L : TopLevelLoops) 
-       L->~LoopT(); 
-     TopLevelLoops.clear(); 
-     LoopAllocator.Reset(); 
-   } 
-   
-   template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) { 
-     LoopT *Storage = LoopAllocator.Allocate<LoopT>(); 
-     return new (Storage) LoopT(std::forward<ArgsTy>(Args)...); 
-   } 
-   
-   /// iterator/begin/end - The interface to the top-level loops in the current 
-   /// function. 
-   /// 
-   typedef typename std::vector<LoopT *>::const_iterator iterator; 
-   typedef 
-       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator; 
-   iterator begin() const { return TopLevelLoops.begin(); } 
-   iterator end() const { return TopLevelLoops.end(); } 
-   reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); } 
-   reverse_iterator rend() const { return TopLevelLoops.rend(); } 
-   bool empty() const { return TopLevelLoops.empty(); } 
-   
-   /// Return all of the loops in the function in preorder across the loop 
-   /// nests, with siblings in forward program order. 
-   /// 
-   /// Note that because loops form a forest of trees, preorder is equivalent to 
-   /// reverse postorder. 
-   SmallVector<LoopT *, 4> getLoopsInPreorder() const; 
-   
-   /// Return all of the loops in the function in preorder across the loop 
-   /// nests, with siblings in *reverse* program order. 
-   /// 
-   /// Note that because loops form a forest of trees, preorder is equivalent to 
-   /// reverse postorder. 
-   /// 
-   /// Also note that this is *not* a reverse preorder. Only the siblings are in 
-   /// reverse program order. 
-   SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder() const; 
-   
-   /// Return the inner most loop that BB lives in. If a basic block is in no 
-   /// loop (for example the entry node), null is returned. 
-   LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); } 
-   
-   /// Same as getLoopFor. 
-   const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); } 
-   
-   /// Return the loop nesting level of the specified block. A depth of 0 means 
-   /// the block is not inside any loop. 
-   unsigned getLoopDepth(const BlockT *BB) const { 
-     const LoopT *L = getLoopFor(BB); 
-     return L ? L->getLoopDepth() : 0; 
-   } 
-   
-   // True if the block is a loop header node 
-   bool isLoopHeader(const BlockT *BB) const { 
-     const LoopT *L = getLoopFor(BB); 
-     return L && L->getHeader() == BB; 
-   } 
-   
-   /// Return the top-level loops. 
-   const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; } 
-   
-   /// Return the top-level loops. 
-   std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; } 
-   
-   /// This removes the specified top-level loop from this loop info object. 
-   /// The loop is not deleted, as it will presumably be inserted into 
-   /// another loop. 
-   LoopT *removeLoop(iterator I) { 
-     assert(I != end() && "Cannot remove end iterator!"); 
-     LoopT *L = *I; 
-     assert(L->isOutermost() && "Not a top-level loop!"); 
-     TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin())); 
-     return L; 
-   } 
-   
-   /// Change the top-level loop that contains BB to the specified loop. 
-   /// This should be used by transformations that restructure the loop hierarchy 
-   /// tree. 
-   void changeLoopFor(BlockT *BB, LoopT *L) { 
-     if (!L) { 
-       BBMap.erase(BB); 
-       return; 
-     } 
-     BBMap[BB] = L; 
-   } 
-   
-   /// Replace the specified loop in the top-level loops list with the indicated 
-   /// loop. 
-   void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) { 
-     auto I = find(TopLevelLoops, OldLoop); 
-     assert(I != TopLevelLoops.end() && "Old loop not at top level!"); 
-     *I = NewLoop; 
-     assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop && 
-            "Loops already embedded into a subloop!"); 
-   } 
-   
-   /// This adds the specified loop to the collection of top-level loops. 
-   void addTopLevelLoop(LoopT *New) { 
-     assert(New->isOutermost() && "Loop already in subloop!"); 
-     TopLevelLoops.push_back(New); 
-   } 
-   
-   /// This method completely removes BB from all data structures, 
-   /// including all of the Loop objects it is nested in and our mapping from 
-   /// BasicBlocks to loops. 
-   void removeBlock(BlockT *BB) { 
-     auto I = BBMap.find(BB); 
-     if (I != BBMap.end()) { 
-       for (LoopT *L = I->second; L; L = L->getParentLoop()) 
-         L->removeBlockFromLoop(BB); 
-   
-       BBMap.erase(I); 
-     } 
-   } 
-   
-   // Internals 
-   
-   static bool isNotAlreadyContainedIn(const LoopT *SubLoop, 
-                                       const LoopT *ParentLoop) { 
-     if (!SubLoop) 
-       return true; 
-     if (SubLoop == ParentLoop) 
-       return false; 
-     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); 
-   } 
-   
-   /// Create the loop forest using a stable algorithm. 
-   void analyze(const DominatorTreeBase<BlockT, false> &DomTree); 
-   
-   // Debugging 
-   void print(raw_ostream &OS) const; 
-   
-   void verify(const DominatorTreeBase<BlockT, false> &DomTree) const; 
-   
-   /// Destroy a loop that has been removed from the `LoopInfo` nest. 
-   /// 
-   /// This runs the destructor of the loop object making it invalid to 
-   /// reference afterward. The memory is retained so that the *pointer* to the 
-   /// loop remains valid. 
-   /// 
-   /// The caller is responsible for removing this loop from the loop nest and 
-   /// otherwise disconnecting it from the broader `LoopInfo` data structures. 
-   /// Callers that don't naturally handle this themselves should probably call 
-   /// `erase' instead. 
-   void destroy(LoopT *L) { 
-     L->~LoopT(); 
-   
-     // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons 
-     // \c L, but the pointer remains valid for non-dereferencing uses. 
-     LoopAllocator.Deallocate(L); 
-   } 
- }; 
-   
- // Implementation in LoopInfoImpl.h 
- extern template class LoopInfoBase<BasicBlock, Loop>; 
-   
- class LoopInfo : public LoopInfoBase<BasicBlock, Loop> { 
-   typedef LoopInfoBase<BasicBlock, Loop> BaseT; 
-   
-   friend class LoopBase<BasicBlock, Loop>; 
-   
-   void operator=(const LoopInfo &) = delete; 
-   LoopInfo(const LoopInfo &) = delete; 
-   
- public: 
-   LoopInfo() = default; 
-   explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree); 
-   
-   LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {} 
-   LoopInfo &operator=(LoopInfo &&RHS) { 
-     BaseT::operator=(std::move(static_cast<BaseT &>(RHS))); 
-     return *this; 
-   } 
-   
-   /// Handle invalidation explicitly. 
-   bool invalidate(Function &F, const PreservedAnalyses &PA, 
-                   FunctionAnalysisManager::Invalidator &); 
-   
-   // Most of the public interface is provided via LoopInfoBase. 
-   
-   /// Update LoopInfo after removing the last backedge from a loop. This updates 
-   /// the loop forest and parent loops for each block so that \c L is no longer 
-   /// referenced, but does not actually delete \c L immediately. The pointer 
-   /// will remain valid until this LoopInfo's memory is released. 
-   void erase(Loop *L); 
-   
-   /// Returns true if replacing From with To everywhere is guaranteed to 
-   /// preserve LCSSA form. 
-   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) { 
-     // Preserving LCSSA form is only problematic if the replacing value is an 
-     // instruction. 
-     Instruction *I = dyn_cast<Instruction>(To); 
-     if (!I) 
-       return true; 
-     // If both instructions are defined in the same basic block then replacement 
-     // cannot break LCSSA form. 
-     if (I->getParent() == From->getParent()) 
-       return true; 
-     // If the instruction is not defined in a loop then it can safely replace 
-     // anything. 
-     Loop *ToLoop = getLoopFor(I->getParent()); 
-     if (!ToLoop) 
-       return true; 
-     // If the replacing instruction is defined in the same loop as the original 
-     // instruction, or in a loop that contains it as an inner loop, then using 
-     // it as a replacement will not break LCSSA form. 
-     return ToLoop->contains(getLoopFor(From->getParent())); 
-   } 
-   
-   /// Checks if moving a specific instruction can break LCSSA in any loop. 
-   /// 
-   /// Return true if moving \p Inst to before \p NewLoc will break LCSSA, 
-   /// assuming that the function containing \p Inst and \p NewLoc is currently 
-   /// in LCSSA form. 
-   bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) { 
-     assert(Inst->getFunction() == NewLoc->getFunction() && 
-            "Can't reason about IPO!"); 
-   
-     auto *OldBB = Inst->getParent(); 
-     auto *NewBB = NewLoc->getParent(); 
-   
-     // Movement within the same loop does not break LCSSA (the equality check is 
-     // to avoid doing a hashtable lookup in case of intra-block movement). 
-     if (OldBB == NewBB) 
-       return true; 
-   
-     auto *OldLoop = getLoopFor(OldBB); 
-     auto *NewLoop = getLoopFor(NewBB); 
-   
-     if (OldLoop == NewLoop) 
-       return true; 
-   
-     // Check if Outer contains Inner; with the null loop counting as the 
-     // "outermost" loop. 
-     auto Contains = [](const Loop *Outer, const Loop *Inner) { 
-       return !Outer || Outer->contains(Inner); 
-     }; 
-   
-     // To check that the movement of Inst to before NewLoc does not break LCSSA, 
-     // we need to check two sets of uses for possible LCSSA violations at 
-     // NewLoc: the users of NewInst, and the operands of NewInst. 
-   
-     // If we know we're hoisting Inst out of an inner loop to an outer loop, 
-     // then the uses *of* Inst don't need to be checked. 
-   
-     if (!Contains(NewLoop, OldLoop)) { 
-       for (Use &U : Inst->uses()) { 
-         auto *UI = cast<Instruction>(U.getUser()); 
-         auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U) 
-                                      : UI->getParent(); 
-         if (UBB != NewBB && getLoopFor(UBB) != NewLoop) 
-           return false; 
-       } 
-     } 
-   
-     // If we know we're sinking Inst from an outer loop into an inner loop, then 
-     // the *operands* of Inst don't need to be checked. 
-   
-     if (!Contains(OldLoop, NewLoop)) { 
-       // See below on why we can't handle phi nodes here. 
-       if (isa<PHINode>(Inst)) 
-         return false; 
-   
-       for (Use &U : Inst->operands()) { 
-         auto *DefI = dyn_cast<Instruction>(U.get()); 
-         if (!DefI) 
-           return false; 
-   
-         // This would need adjustment if we allow Inst to be a phi node -- the 
-         // new use block won't simply be NewBB. 
-   
-         auto *DefBlock = DefI->getParent(); 
-         if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop) 
-           return false; 
-       } 
-     } 
-   
-     return true; 
-   } 
-   
-   // Return true if a new use of V added in ExitBB would require an LCSSA PHI 
-   // to be inserted at the begining of the block.  Note that V is assumed to 
-   // dominate ExitBB, and ExitBB must be the exit block of some loop.  The 
-   // IR is assumed to be in LCSSA form before the planned insertion. 
-   bool wouldBeOutOfLoopUseRequiringLCSSA(const Value *V, 
-                                          const BasicBlock *ExitBB) const; 
-   
- }; 
-   
- /// Enable verification of loop info. 
- /// 
- /// The flag enables checks which are expensive and are disabled by default 
- /// unless the `EXPENSIVE_CHECKS` macro is defined.  The `-verify-loop-info` 
- /// flag allows the checks to be enabled selectively without re-compilation. 
- extern bool VerifyLoopInfo; 
-   
- // Allow clients to walk the list of nested loops... 
- template <> struct GraphTraits<const Loop *> { 
-   typedef const Loop *NodeRef; 
-   typedef LoopInfo::iterator ChildIteratorType; 
-   
-   static NodeRef getEntryNode(const Loop *L) { return L; } 
-   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } 
-   static ChildIteratorType child_end(NodeRef N) { return N->end(); } 
- }; 
-   
- template <> struct GraphTraits<Loop *> { 
-   typedef Loop *NodeRef; 
-   typedef LoopInfo::iterator ChildIteratorType; 
-   
-   static NodeRef getEntryNode(Loop *L) { return L; } 
-   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } 
-   static ChildIteratorType child_end(NodeRef N) { return N->end(); } 
- }; 
-   
- /// Analysis pass that exposes the \c LoopInfo for a function. 
- class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> { 
-   friend AnalysisInfoMixin<LoopAnalysis>; 
-   static AnalysisKey Key; 
-   
- public: 
-   typedef LoopInfo Result; 
-   
-   LoopInfo run(Function &F, FunctionAnalysisManager &AM); 
- }; 
-   
- /// Printer pass for the \c LoopAnalysis results. 
- class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> { 
-   raw_ostream &OS; 
-   
- public: 
-   explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {} 
-   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 
- }; 
-   
- /// Verifier pass for the \c LoopAnalysis results. 
- struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> { 
-   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 
- }; 
-   
- /// The legacy pass manager's analysis pass to compute loop information. 
- class LoopInfoWrapperPass : public FunctionPass { 
-   LoopInfo LI; 
-   
- public: 
-   static char ID; // Pass identification, replacement for typeid 
-   
-   LoopInfoWrapperPass(); 
-   
-   LoopInfo &getLoopInfo() { return LI; } 
-   const LoopInfo &getLoopInfo() const { return LI; } 
-   
-   /// Calculate the natural loop information for a given function. 
-   bool runOnFunction(Function &F) override; 
-   
-   void verifyAnalysis() const override; 
-   
-   void releaseMemory() override { LI.releaseMemory(); } 
-   
-   void print(raw_ostream &O, const Module *M = nullptr) const override; 
-   
-   void getAnalysisUsage(AnalysisUsage &AU) const override; 
- }; 
-   
- /// Function to print a loop's contents as LLVM's text IR assembly. 
- void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = ""); 
-   
- /// Find and return the loop attribute node for the attribute @p Name in 
- /// @p LoopID. Return nullptr if there is no such attribute. 
- MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name); 
-   
- /// Find string metadata for a loop. 
- /// 
- /// Returns the MDNode where the first operand is the metadata's name. The 
- /// following operands are the metadata's values. If no metadata with @p Name is 
- /// found, return nullptr. 
- MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name); 
-   
- std::optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, 
-                                                  StringRef Name); 
-   
- /// Returns true if Name is applied to TheLoop and enabled. 
- bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name); 
-   
- /// Find named metadata for a loop with an integer value. 
- std::optional<int> getOptionalIntLoopAttribute(const Loop *TheLoop, 
-                                                StringRef Name); 
-   
- /// Find named metadata for a loop with an integer value. Return \p Default if 
- /// not set. 
- int getIntLoopAttribute(const Loop *TheLoop, StringRef Name, int Default = 0); 
-   
- /// Find string metadata for loop 
- /// 
- /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 
- /// operand or null otherwise.  If the string metadata is not found return 
- /// Optional's not-a-value. 
- std::optional<const MDOperand *> findStringMetadataForLoop(const Loop *TheLoop, 
-                                                            StringRef Name); 
-   
- /// Look for the loop attribute that requires progress within the loop. 
- /// Note: Most consumers probably want "isMustProgress" which checks 
- /// the containing function attribute too. 
- bool hasMustProgress(const Loop *L); 
-   
- /// Return true if this loop can be assumed to make progress.  (i.e. can't 
- /// be infinite without side effects without also being undefined) 
- bool isMustProgress(const Loop *L); 
-   
- /// Return true if this loop can be assumed to run for a finite number of 
- /// iterations. 
- bool isFinite(const Loop *L); 
-   
- /// Return whether an MDNode might represent an access group. 
- /// 
- /// Access group metadata nodes have to be distinct and empty. Being 
- /// always-empty ensures that it never needs to be changed (which -- because 
- /// MDNodes are designed immutable -- would require creating a new MDNode). Note 
- /// that this is not a sufficient condition: not every distinct and empty NDNode 
- /// is representing an access group. 
- bool isValidAsAccessGroup(MDNode *AccGroup); 
-   
- /// Create a new LoopID after the loop has been transformed. 
- /// 
- /// This can be used when no follow-up loop attributes are defined 
- /// (llvm::makeFollowupLoopID returning None) to stop transformations to be 
- /// applied again. 
- /// 
- /// @param Context        The LLVMContext in which to create the new LoopID. 
- /// @param OrigLoopID     The original LoopID; can be nullptr if the original 
- ///                       loop has no LoopID. 
- /// @param RemovePrefixes Remove all loop attributes that have these prefixes. 
- ///                       Use to remove metadata of the transformation that has 
- ///                       been applied. 
- /// @param AddAttrs       Add these loop attributes to the new LoopID. 
- /// 
- /// @return A new LoopID that can be applied using Loop::setLoopID(). 
- llvm::MDNode * 
- makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID, 
-                                llvm::ArrayRef<llvm::StringRef> RemovePrefixes, 
-                                llvm::ArrayRef<llvm::MDNode *> AddAttrs); 
-   
- } // End llvm namespace 
-   
- #endif 
-