- //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===// 
- // 
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
- // See https://llvm.org/LICENSE.txt for license information. 
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
- // 
- //===----------------------------------------------------------------------===// 
- // 
- // This file defines the interface for the loop memory dependence framework that 
- // was originally developed for the Loop Vectorizer. 
- // 
- //===----------------------------------------------------------------------===// 
-   
- #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H 
- #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H 
-   
- #include "llvm/ADT/EquivalenceClasses.h" 
- #include "llvm/Analysis/LoopAnalysisManager.h" 
- #include "llvm/Analysis/ScalarEvolutionExpressions.h" 
- #include "llvm/IR/DiagnosticInfo.h" 
- #include "llvm/Pass.h" 
- #include <optional> 
-   
- namespace llvm { 
-   
- class AAResults; 
- class DataLayout; 
- class Loop; 
- class LoopAccessInfo; 
- class raw_ostream; 
- class SCEV; 
- class SCEVUnionPredicate; 
- class Value; 
-   
- /// Collection of parameters shared beetween the Loop Vectorizer and the 
- /// Loop Access Analysis. 
- struct VectorizerParams { 
-   /// Maximum SIMD width. 
-   static const unsigned MaxVectorWidth; 
-   
-   /// VF as overridden by the user. 
-   static unsigned VectorizationFactor; 
-   /// Interleave factor as overridden by the user. 
-   static unsigned VectorizationInterleave; 
-   /// True if force-vector-interleave was specified by the user. 
-   static bool isInterleaveForced(); 
-   
-   /// \When performing memory disambiguation checks at runtime do not 
-   /// make more than this number of comparisons. 
-   static unsigned RuntimeMemoryCheckThreshold; 
- }; 
-   
- /// Checks memory dependences among accesses to the same underlying 
- /// object to determine whether there vectorization is legal or not (and at 
- /// which vectorization factor). 
- /// 
- /// Note: This class will compute a conservative dependence for access to 
- /// different underlying pointers. Clients, such as the loop vectorizer, will 
- /// sometimes deal these potential dependencies by emitting runtime checks. 
- /// 
- /// We use the ScalarEvolution framework to symbolically evalutate access 
- /// functions pairs. Since we currently don't restructure the loop we can rely 
- /// on the program order of memory accesses to determine their safety. 
- /// At the moment we will only deem accesses as safe for: 
- ///  * A negative constant distance assuming program order. 
- /// 
- ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x; 
- ///            a[i] = tmp;                y = a[i]; 
- /// 
- ///   The latter case is safe because later checks guarantuee that there can't 
- ///   be a cycle through a phi node (that is, we check that "x" and "y" is not 
- ///   the same variable: a header phi can only be an induction or a reduction, a 
- ///   reduction can't have a memory sink, an induction can't have a memory 
- ///   source). This is important and must not be violated (or we have to 
- ///   resort to checking for cycles through memory). 
- /// 
- ///  * A positive constant distance assuming program order that is bigger 
- ///    than the biggest memory access. 
- /// 
- ///     tmp = a[i]        OR              b[i] = x 
- ///     a[i+2] = tmp                      y = b[i+2]; 
- /// 
- ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 
- /// 
- ///  * Zero distances and all accesses have the same size. 
- /// 
- class MemoryDepChecker { 
- public: 
-   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 
-   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 
-   /// Set of potential dependent memory accesses. 
-   typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 
-   
-   /// Type to keep track of the status of the dependence check. The order of 
-   /// the elements is important and has to be from most permissive to least 
-   /// permissive. 
-   enum class VectorizationSafetyStatus { 
-     // Can vectorize safely without RT checks. All dependences are known to be 
-     // safe. 
-     Safe, 
-     // Can possibly vectorize with RT checks to overcome unknown dependencies. 
-     PossiblySafeWithRtChecks, 
-     // Cannot vectorize due to known unsafe dependencies. 
-     Unsafe, 
-   }; 
-   
-   /// Dependece between memory access instructions. 
-   struct Dependence { 
-     /// The type of the dependence. 
-     enum DepType { 
-       // No dependence. 
-       NoDep, 
-       // We couldn't determine the direction or the distance. 
-       Unknown, 
-       // Lexically forward. 
-       // 
-       // FIXME: If we only have loop-independent forward dependences (e.g. a 
-       // read and write of A[i]), LAA will locally deem the dependence "safe" 
-       // without querying the MemoryDepChecker.  Therefore we can miss 
-       // enumerating loop-independent forward dependences in 
-       // getDependences.  Note that as soon as there are different 
-       // indices used to access the same array, the MemoryDepChecker *is* 
-       // queried and the dependence list is complete. 
-       Forward, 
-       // Forward, but if vectorized, is likely to prevent store-to-load 
-       // forwarding. 
-       ForwardButPreventsForwarding, 
-       // Lexically backward. 
-       Backward, 
-       // Backward, but the distance allows a vectorization factor of 
-       // MaxSafeDepDistBytes. 
-       BackwardVectorizable, 
-       // Same, but may prevent store-to-load forwarding. 
-       BackwardVectorizableButPreventsForwarding 
-     }; 
-   
-     /// String version of the types. 
-     static const char *DepName[]; 
-   
-     /// Index of the source of the dependence in the InstMap vector. 
-     unsigned Source; 
-     /// Index of the destination of the dependence in the InstMap vector. 
-     unsigned Destination; 
-     /// The type of the dependence. 
-     DepType Type; 
-   
-     Dependence(unsigned Source, unsigned Destination, DepType Type) 
-         : Source(Source), Destination(Destination), Type(Type) {} 
-   
-     /// Return the source instruction of the dependence. 
-     Instruction *getSource(const LoopAccessInfo &LAI) const; 
-     /// Return the destination instruction of the dependence. 
-     Instruction *getDestination(const LoopAccessInfo &LAI) const; 
-   
-     /// Dependence types that don't prevent vectorization. 
-     static VectorizationSafetyStatus isSafeForVectorization(DepType Type); 
-   
-     /// Lexically forward dependence. 
-     bool isForward() const; 
-     /// Lexically backward dependence. 
-     bool isBackward() const; 
-   
-     /// May be a lexically backward dependence type (includes Unknown). 
-     bool isPossiblyBackward() const; 
-   
-     /// Print the dependence.  \p Instr is used to map the instruction 
-     /// indices to instructions. 
-     void print(raw_ostream &OS, unsigned Depth, 
-                const SmallVectorImpl<Instruction *> &Instrs) const; 
-   }; 
-   
-   MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L) 
-       : PSE(PSE), InnermostLoop(L) {} 
-   
-   /// Register the location (instructions are given increasing numbers) 
-   /// of a write access. 
-   void addAccess(StoreInst *SI); 
-   
-   /// Register the location (instructions are given increasing numbers) 
-   /// of a write access. 
-   void addAccess(LoadInst *LI); 
-   
-   /// Check whether the dependencies between the accesses are safe. 
-   /// 
-   /// Only checks sets with elements in \p CheckDeps. 
-   bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps, 
-                    const ValueToValueMap &Strides); 
-   
-   /// No memory dependence was encountered that would inhibit 
-   /// vectorization. 
-   bool isSafeForVectorization() const { 
-     return Status == VectorizationSafetyStatus::Safe; 
-   } 
-   
-   /// Return true if the number of elements that are safe to operate on 
-   /// simultaneously is not bounded. 
-   bool isSafeForAnyVectorWidth() const { 
-     return MaxSafeVectorWidthInBits == UINT_MAX; 
-   } 
-   
-   /// The maximum number of bytes of a vector register we can vectorize 
-   /// the accesses safely with. 
-   uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 
-   
-   /// Return the number of elements that are safe to operate on 
-   /// simultaneously, multiplied by the size of the element in bits. 
-   uint64_t getMaxSafeVectorWidthInBits() const { 
-     return MaxSafeVectorWidthInBits; 
-   } 
-   
-   /// In same cases when the dependency check fails we can still 
-   /// vectorize the loop with a dynamic array access check. 
-   bool shouldRetryWithRuntimeCheck() const { 
-     return FoundNonConstantDistanceDependence && 
-            Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks; 
-   } 
-   
-   /// Returns the memory dependences.  If null is returned we exceeded 
-   /// the MaxDependences threshold and this information is not 
-   /// available. 
-   const SmallVectorImpl<Dependence> *getDependences() const { 
-     return RecordDependences ? &Dependences : nullptr; 
-   } 
-   
-   void clearDependences() { Dependences.clear(); } 
-   
-   /// The vector of memory access instructions.  The indices are used as 
-   /// instruction identifiers in the Dependence class. 
-   const SmallVectorImpl<Instruction *> &getMemoryInstructions() const { 
-     return InstMap; 
-   } 
-   
-   /// Generate a mapping between the memory instructions and their 
-   /// indices according to program order. 
-   DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const { 
-     DenseMap<Instruction *, unsigned> OrderMap; 
-   
-     for (unsigned I = 0; I < InstMap.size(); ++I) 
-       OrderMap[InstMap[I]] = I; 
-   
-     return OrderMap; 
-   } 
-   
-   /// Find the set of instructions that read or write via \p Ptr. 
-   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr, 
-                                                          bool isWrite) const; 
-   
-   /// Return the program order indices for the access location (Ptr, IsWrite). 
-   /// Returns an empty ArrayRef if there are no accesses for the location. 
-   ArrayRef<unsigned> getOrderForAccess(Value *Ptr, bool IsWrite) const { 
-     auto I = Accesses.find({Ptr, IsWrite}); 
-     if (I != Accesses.end()) 
-       return I->second; 
-     return {}; 
-   } 
-   
-   const Loop *getInnermostLoop() const { return InnermostLoop; } 
-   
- private: 
-   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and 
-   /// applies dynamic knowledge to simplify SCEV expressions and convert them 
-   /// to a more usable form. We need this in case assumptions about SCEV 
-   /// expressions need to be made in order to avoid unknown dependences. For 
-   /// example we might assume a unit stride for a pointer in order to prove 
-   /// that a memory access is strided and doesn't wrap. 
-   PredicatedScalarEvolution &PSE; 
-   const Loop *InnermostLoop; 
-   
-   /// Maps access locations (ptr, read/write) to program order. 
-   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 
-   
-   /// Memory access instructions in program order. 
-   SmallVector<Instruction *, 16> InstMap; 
-   
-   /// The program order index to be used for the next instruction. 
-   unsigned AccessIdx = 0; 
-   
-   // We can access this many bytes in parallel safely. 
-   uint64_t MaxSafeDepDistBytes = 0; 
-   
-   /// Number of elements (from consecutive iterations) that are safe to 
-   /// operate on simultaneously, multiplied by the size of the element in bits. 
-   /// The size of the element is taken from the memory access that is most 
-   /// restrictive. 
-   uint64_t MaxSafeVectorWidthInBits = -1U; 
-   
-   /// If we see a non-constant dependence distance we can still try to 
-   /// vectorize this loop with runtime checks. 
-   bool FoundNonConstantDistanceDependence = false; 
-   
-   /// Result of the dependence checks, indicating whether the checked 
-   /// dependences are safe for vectorization, require RT checks or are known to 
-   /// be unsafe. 
-   VectorizationSafetyStatus Status = VectorizationSafetyStatus::Safe; 
-   
-   //// True if Dependences reflects the dependences in the 
-   //// loop.  If false we exceeded MaxDependences and 
-   //// Dependences is invalid. 
-   bool RecordDependences = true; 
-   
-   /// Memory dependences collected during the analysis.  Only valid if 
-   /// RecordDependences is true. 
-   SmallVector<Dependence, 8> Dependences; 
-   
-   /// Check whether there is a plausible dependence between the two 
-   /// accesses. 
-   /// 
-   /// Access \p A must happen before \p B in program order. The two indices 
-   /// identify the index into the program order map. 
-   /// 
-   /// This function checks  whether there is a plausible dependence (or the 
-   /// absence of such can't be proved) between the two accesses. If there is a 
-   /// plausible dependence but the dependence distance is bigger than one 
-   /// element access it records this distance in \p MaxSafeDepDistBytes (if this 
-   /// distance is smaller than any other distance encountered so far). 
-   /// Otherwise, this function returns true signaling a possible dependence. 
-   Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx, 
-                                   const MemAccessInfo &B, unsigned BIdx, 
-                                   const ValueToValueMap &Strides); 
-   
-   /// Check whether the data dependence could prevent store-load 
-   /// forwarding. 
-   /// 
-   /// \return false if we shouldn't vectorize at all or avoid larger 
-   /// vectorization factors by limiting MaxSafeDepDistBytes. 
-   bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize); 
-   
-   /// Updates the current safety status with \p S. We can go from Safe to 
-   /// either PossiblySafeWithRtChecks or Unsafe and from 
-   /// PossiblySafeWithRtChecks to Unsafe. 
-   void mergeInStatus(VectorizationSafetyStatus S); 
- }; 
-   
- class RuntimePointerChecking; 
- /// A grouping of pointers. A single memcheck is required between 
- /// two groups. 
- struct RuntimeCheckingPtrGroup { 
-   /// Create a new pointer checking group containing a single 
-   /// pointer, with index \p Index in RtCheck. 
-   RuntimeCheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck); 
-   
-   /// Tries to add the pointer recorded in RtCheck at index 
-   /// \p Index to this pointer checking group. We can only add a pointer 
-   /// to a checking group if we will still be able to get 
-   /// the upper and lower bounds of the check. Returns true in case 
-   /// of success, false otherwise. 
-   bool addPointer(unsigned Index, RuntimePointerChecking &RtCheck); 
-   bool addPointer(unsigned Index, const SCEV *Start, const SCEV *End, 
-                   unsigned AS, bool NeedsFreeze, ScalarEvolution &SE); 
-   
-   /// The SCEV expression which represents the upper bound of all the 
-   /// pointers in this group. 
-   const SCEV *High; 
-   /// The SCEV expression which represents the lower bound of all the 
-   /// pointers in this group. 
-   const SCEV *Low; 
-   /// Indices of all the pointers that constitute this grouping. 
-   SmallVector<unsigned, 2> Members; 
-   /// Address space of the involved pointers. 
-   unsigned AddressSpace; 
-   /// Whether the pointer needs to be frozen after expansion, e.g. because it 
-   /// may be poison outside the loop. 
-   bool NeedsFreeze = false; 
- }; 
-   
- /// A memcheck which made up of a pair of grouped pointers. 
- typedef std::pair<const RuntimeCheckingPtrGroup *, 
-                   const RuntimeCheckingPtrGroup *> 
-     RuntimePointerCheck; 
-   
- struct PointerDiffInfo { 
-   const SCEV *SrcStart; 
-   const SCEV *SinkStart; 
-   unsigned AccessSize; 
-   bool NeedsFreeze; 
-   
-   PointerDiffInfo(const SCEV *SrcStart, const SCEV *SinkStart, 
-                   unsigned AccessSize, bool NeedsFreeze) 
-       : SrcStart(SrcStart), SinkStart(SinkStart), AccessSize(AccessSize), 
-         NeedsFreeze(NeedsFreeze) {} 
- }; 
-   
- /// Holds information about the memory runtime legality checks to verify 
- /// that a group of pointers do not overlap. 
- class RuntimePointerChecking { 
-   friend struct RuntimeCheckingPtrGroup; 
-   
- public: 
-   struct PointerInfo { 
-     /// Holds the pointer value that we need to check. 
-     TrackingVH<Value> PointerValue; 
-     /// Holds the smallest byte address accessed by the pointer throughout all 
-     /// iterations of the loop. 
-     const SCEV *Start; 
-     /// Holds the largest byte address accessed by the pointer throughout all 
-     /// iterations of the loop, plus 1. 
-     const SCEV *End; 
-     /// Holds the information if this pointer is used for writing to memory. 
-     bool IsWritePtr; 
-     /// Holds the id of the set of pointers that could be dependent because of a 
-     /// shared underlying object. 
-     unsigned DependencySetId; 
-     /// Holds the id of the disjoint alias set to which this pointer belongs. 
-     unsigned AliasSetId; 
-     /// SCEV for the access. 
-     const SCEV *Expr; 
-     /// True if the pointer expressions needs to be frozen after expansion. 
-     bool NeedsFreeze; 
-   
-     PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End, 
-                 bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId, 
-                 const SCEV *Expr, bool NeedsFreeze) 
-         : PointerValue(PointerValue), Start(Start), End(End), 
-           IsWritePtr(IsWritePtr), DependencySetId(DependencySetId), 
-           AliasSetId(AliasSetId), Expr(Expr), NeedsFreeze(NeedsFreeze) {} 
-   }; 
-   
-   RuntimePointerChecking(MemoryDepChecker &DC, ScalarEvolution *SE) 
-       : DC(DC), SE(SE) {} 
-   
-   /// Reset the state of the pointer runtime information. 
-   void reset() { 
-     Need = false; 
-     Pointers.clear(); 
-     Checks.clear(); 
-   } 
-   
-   /// Insert a pointer and calculate the start and end SCEVs. 
-   /// We need \p PSE in order to compute the SCEV expression of the pointer 
-   /// according to the assumptions that we've made during the analysis. 
-   /// The method might also version the pointer stride according to \p Strides, 
-   /// and add new predicates to \p PSE. 
-   void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy, 
-               bool WritePtr, unsigned DepSetId, unsigned ASId, 
-               PredicatedScalarEvolution &PSE, bool NeedsFreeze); 
-   
-   /// No run-time memory checking is necessary. 
-   bool empty() const { return Pointers.empty(); } 
-   
-   /// Generate the checks and store it.  This also performs the grouping 
-   /// of pointers to reduce the number of memchecks necessary. 
-   void generateChecks(MemoryDepChecker::DepCandidates &DepCands, 
-                       bool UseDependencies); 
-   
-   /// Returns the checks that generateChecks created. They can be used to ensure 
-   /// no read/write accesses overlap across all loop iterations. 
-   const SmallVectorImpl<RuntimePointerCheck> &getChecks() const { 
-     return Checks; 
-   } 
-   
-   // Returns an optional list of (pointer-difference expressions, access size) 
-   // pairs that can be used to prove that there are no vectorization-preventing 
-   // dependencies at runtime. There are is a vectorization-preventing dependency 
-   // if any pointer-difference is <u VF * InterleaveCount * access size. Returns 
-   // std::nullopt if pointer-difference checks cannot be used. 
-   std::optional<ArrayRef<PointerDiffInfo>> getDiffChecks() const { 
-     if (!CanUseDiffCheck) 
-       return std::nullopt; 
-     return {DiffChecks}; 
-   } 
-   
-   /// Decide if we need to add a check between two groups of pointers, 
-   /// according to needsChecking. 
-   bool needsChecking(const RuntimeCheckingPtrGroup &M, 
-                      const RuntimeCheckingPtrGroup &N) const; 
-   
-   /// Returns the number of run-time checks required according to 
-   /// needsChecking. 
-   unsigned getNumberOfChecks() const { return Checks.size(); } 
-   
-   /// Print the list run-time memory checks necessary. 
-   void print(raw_ostream &OS, unsigned Depth = 0) const; 
-   
-   /// Print \p Checks. 
-   void printChecks(raw_ostream &OS, 
-                    const SmallVectorImpl<RuntimePointerCheck> &Checks, 
-                    unsigned Depth = 0) const; 
-   
-   /// This flag indicates if we need to add the runtime check. 
-   bool Need = false; 
-   
-   /// Information about the pointers that may require checking. 
-   SmallVector<PointerInfo, 2> Pointers; 
-   
-   /// Holds a partitioning of pointers into "check groups". 
-   SmallVector<RuntimeCheckingPtrGroup, 2> CheckingGroups; 
-   
-   /// Check if pointers are in the same partition 
-   /// 
-   /// \p PtrToPartition contains the partition number for pointers (-1 if the 
-   /// pointer belongs to multiple partitions). 
-   static bool 
-   arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition, 
-                              unsigned PtrIdx1, unsigned PtrIdx2); 
-   
-   /// Decide whether we need to issue a run-time check for pointer at 
-   /// index \p I and \p J to prove their independence. 
-   bool needsChecking(unsigned I, unsigned J) const; 
-   
-   /// Return PointerInfo for pointer at index \p PtrIdx. 
-   const PointerInfo &getPointerInfo(unsigned PtrIdx) const { 
-     return Pointers[PtrIdx]; 
-   } 
-   
-   ScalarEvolution *getSE() const { return SE; } 
-   
- private: 
-   /// Groups pointers such that a single memcheck is required 
-   /// between two different groups. This will clear the CheckingGroups vector 
-   /// and re-compute it. We will only group dependecies if \p UseDependencies 
-   /// is true, otherwise we will create a separate group for each pointer. 
-   void groupChecks(MemoryDepChecker::DepCandidates &DepCands, 
-                    bool UseDependencies); 
-   
-   /// Generate the checks and return them. 
-   SmallVector<RuntimePointerCheck, 4> generateChecks(); 
-   
-   /// Try to create add a new (pointer-difference, access size) pair to 
-   /// DiffCheck for checking groups \p CGI and \p CGJ. If pointer-difference 
-   /// checks cannot be used for the groups, set CanUseDiffCheck to false. 
-   void tryToCreateDiffCheck(const RuntimeCheckingPtrGroup &CGI, 
-                             const RuntimeCheckingPtrGroup &CGJ); 
-   
-   MemoryDepChecker &DC; 
-   
-   /// Holds a pointer to the ScalarEvolution analysis. 
-   ScalarEvolution *SE; 
-   
-   /// Set of run-time checks required to establish independence of 
-   /// otherwise may-aliasing pointers in the loop. 
-   SmallVector<RuntimePointerCheck, 4> Checks; 
-   
-   /// Flag indicating if pointer-difference checks can be used 
-   bool CanUseDiffCheck = true; 
-   
-   /// A list of (pointer-difference, access size) pairs that can be used to 
-   /// prove that there are no vectorization-preventing dependencies. 
-   SmallVector<PointerDiffInfo> DiffChecks; 
- }; 
-   
- /// Drive the analysis of memory accesses in the loop 
- /// 
- /// This class is responsible for analyzing the memory accesses of a loop.  It 
- /// collects the accesses and then its main helper the AccessAnalysis class 
- /// finds and categorizes the dependences in buildDependenceSets. 
- /// 
- /// For memory dependences that can be analyzed at compile time, it determines 
- /// whether the dependence is part of cycle inhibiting vectorization.  This work 
- /// is delegated to the MemoryDepChecker class. 
- /// 
- /// For memory dependences that cannot be determined at compile time, it 
- /// generates run-time checks to prove independence.  This is done by 
- /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the 
- /// RuntimePointerCheck class. 
- /// 
- /// If pointers can wrap or can't be expressed as affine AddRec expressions by 
- /// ScalarEvolution, we will generate run-time checks by emitting a 
- /// SCEVUnionPredicate. 
- /// 
- /// Checks for both memory dependences and the SCEV predicates contained in the 
- /// PSE must be emitted in order for the results of this analysis to be valid. 
- class LoopAccessInfo { 
- public: 
-   LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI, 
-                  AAResults *AA, DominatorTree *DT, LoopInfo *LI); 
-   
-   /// Return true we can analyze the memory accesses in the loop and there are 
-   /// no memory dependence cycles. 
-   bool canVectorizeMemory() const { return CanVecMem; } 
-   
-   /// Return true if there is a convergent operation in the loop. There may 
-   /// still be reported runtime pointer checks that would be required, but it is 
-   /// not legal to insert them. 
-   bool hasConvergentOp() const { return HasConvergentOp; } 
-   
-   const RuntimePointerChecking *getRuntimePointerChecking() const { 
-     return PtrRtChecking.get(); 
-   } 
-   
-   /// Number of memchecks required to prove independence of otherwise 
-   /// may-alias pointers. 
-   unsigned getNumRuntimePointerChecks() const { 
-     return PtrRtChecking->getNumberOfChecks(); 
-   } 
-   
-   /// Return true if the block BB needs to be predicated in order for the loop 
-   /// to be vectorized. 
-   static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 
-                                     DominatorTree *DT); 
-   
-   /// Returns true if the value V is uniform within the loop. 
-   bool isUniform(Value *V) const; 
-   
-   uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; } 
-   unsigned getNumStores() const { return NumStores; } 
-   unsigned getNumLoads() const { return NumLoads;} 
-   
-   /// The diagnostics report generated for the analysis.  E.g. why we 
-   /// couldn't analyze the loop. 
-   const OptimizationRemarkAnalysis *getReport() const { return Report.get(); } 
-   
-   /// the Memory Dependence Checker which can determine the 
-   /// loop-independent and loop-carried dependences between memory accesses. 
-   const MemoryDepChecker &getDepChecker() const { return *DepChecker; } 
-   
-   /// Return the list of instructions that use \p Ptr to read or write 
-   /// memory. 
-   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr, 
-                                                          bool isWrite) const { 
-     return DepChecker->getInstructionsForAccess(Ptr, isWrite); 
-   } 
-   
-   /// If an access has a symbolic strides, this maps the pointer value to 
-   /// the stride symbol. 
-   const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; } 
-   
-   /// Pointer has a symbolic stride. 
-   bool hasStride(Value *V) const { return StrideSet.count(V); } 
-   
-   /// Print the information about the memory accesses in the loop. 
-   void print(raw_ostream &OS, unsigned Depth = 0) const; 
-   
-   /// If the loop has memory dependence involving an invariant address, i.e. two 
-   /// stores or a store and a load, then return true, else return false. 
-   bool hasDependenceInvolvingLoopInvariantAddress() const { 
-     return HasDependenceInvolvingLoopInvariantAddress; 
-   } 
-   
-   /// Return the list of stores to invariant addresses. 
-   ArrayRef<StoreInst *> getStoresToInvariantAddresses() const { 
-     return StoresToInvariantAddresses; 
-   } 
-   
-   /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts 
-   /// them to a more usable form.  All SCEV expressions during the analysis 
-   /// should be re-written (and therefore simplified) according to PSE. 
-   /// A user of LoopAccessAnalysis will need to emit the runtime checks 
-   /// associated with this predicate. 
-   const PredicatedScalarEvolution &getPSE() const { return *PSE; } 
-   
- private: 
-   /// Analyze the loop. 
-   void analyzeLoop(AAResults *AA, LoopInfo *LI, 
-                    const TargetLibraryInfo *TLI, DominatorTree *DT); 
-   
-   /// Check if the structure of the loop allows it to be analyzed by this 
-   /// pass. 
-   bool canAnalyzeLoop(); 
-   
-   /// Save the analysis remark. 
-   /// 
-   /// LAA does not directly emits the remarks.  Instead it stores it which the 
-   /// client can retrieve and presents as its own analysis 
-   /// (e.g. -Rpass-analysis=loop-vectorize). 
-   OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName, 
-                                              Instruction *Instr = nullptr); 
-   
-   /// Collect memory access with loop invariant strides. 
-   /// 
-   /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 
-   /// invariant. 
-   void collectStridedAccess(Value *LoadOrStoreInst); 
-   
-   // Emits the first unsafe memory dependence in a loop. 
-   // Emits nothing if there are no unsafe dependences 
-   // or if the dependences were not recorded. 
-   void emitUnsafeDependenceRemark(); 
-   
-   std::unique_ptr<PredicatedScalarEvolution> PSE; 
-   
-   /// We need to check that all of the pointers in this list are disjoint 
-   /// at runtime. Using std::unique_ptr to make using move ctor simpler. 
-   std::unique_ptr<RuntimePointerChecking> PtrRtChecking; 
-   
-   /// the Memory Dependence Checker which can determine the 
-   /// loop-independent and loop-carried dependences between memory accesses. 
-   std::unique_ptr<MemoryDepChecker> DepChecker; 
-   
-   Loop *TheLoop; 
-   
-   unsigned NumLoads = 0; 
-   unsigned NumStores = 0; 
-   
-   uint64_t MaxSafeDepDistBytes = -1; 
-   
-   /// Cache the result of analyzeLoop. 
-   bool CanVecMem = false; 
-   bool HasConvergentOp = false; 
-   
-   /// Indicator that there are non vectorizable stores to a uniform address. 
-   bool HasDependenceInvolvingLoopInvariantAddress = false; 
-   
-   /// List of stores to invariant addresses. 
-   SmallVector<StoreInst *> StoresToInvariantAddresses; 
-   
-   /// The diagnostics report generated for the analysis.  E.g. why we 
-   /// couldn't analyze the loop. 
-   std::unique_ptr<OptimizationRemarkAnalysis> Report; 
-   
-   /// If an access has a symbolic strides, this maps the pointer value to 
-   /// the stride symbol. 
-   ValueToValueMap SymbolicStrides; 
-   
-   /// Set of symbolic strides values. 
-   SmallPtrSet<Value *, 8> StrideSet; 
- }; 
-   
- Value *stripIntegerCast(Value *V); 
-   
- /// Return the SCEV corresponding to a pointer with the symbolic stride 
- /// replaced with constant one, assuming the SCEV predicate associated with 
- /// \p PSE is true. 
- /// 
- /// If necessary this method will version the stride of the pointer according 
- /// to \p PtrToStride and therefore add further predicates to \p PSE. 
- /// 
- /// \p PtrToStride provides the mapping between the pointer value and its 
- /// stride as collected by LoopVectorizationLegality::collectStridedAccess. 
- const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 
-                                       const ValueToValueMap &PtrToStride, 
-                                       Value *Ptr); 
-   
- /// If the pointer has a constant stride return it in units of the access type 
- /// size.  Otherwise return std::nullopt. 
- /// 
- /// Ensure that it does not wrap in the address space, assuming the predicate 
- /// associated with \p PSE is true. 
- /// 
- /// If necessary this method will version the stride of the pointer according 
- /// to \p PtrToStride and therefore add further predicates to \p PSE. 
- /// The \p Assume parameter indicates if we are allowed to make additional 
- /// run-time assumptions. 
- std::optional<int64_t> 
- getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, 
-              const Loop *Lp, 
-              const ValueToValueMap &StridesMap = ValueToValueMap(), 
-              bool Assume = false, bool ShouldCheckWrap = true); 
-   
- /// Returns the distance between the pointers \p PtrA and \p PtrB iff they are 
- /// compatible and it is possible to calculate the distance between them. This 
- /// is a simple API that does not depend on the analysis pass. 
- /// \param StrictCheck Ensure that the calculated distance matches the 
- /// type-based one after all the bitcasts removal in the provided pointers. 
- std::optional<int> getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, 
-                                    Value *PtrB, const DataLayout &DL, 
-                                    ScalarEvolution &SE, 
-                                    bool StrictCheck = false, 
-                                    bool CheckType = true); 
-   
- /// Attempt to sort the pointers in \p VL and return the sorted indices 
- /// in \p SortedIndices, if reordering is required. 
- /// 
- /// Returns 'true' if sorting is legal, otherwise returns 'false'. 
- /// 
- /// For example, for a given \p VL of memory accesses in program order, a[i+4], 
- /// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the 
- /// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and 
- /// saves the mask for actual memory accesses in program order in 
- /// \p SortedIndices as <1,2,0,3> 
- bool sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, const DataLayout &DL, 
-                      ScalarEvolution &SE, 
-                      SmallVectorImpl<unsigned> &SortedIndices); 
-   
- /// Returns true if the memory operations \p A and \p B are consecutive. 
- /// This is a simple API that does not depend on the analysis pass. 
- bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 
-                          ScalarEvolution &SE, bool CheckType = true); 
-   
- class LoopAccessInfoManager { 
-   /// The cache. 
-   DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap; 
-   
-   // The used analysis passes. 
-   ScalarEvolution &SE; 
-   AAResults &AA; 
-   DominatorTree &DT; 
-   LoopInfo &LI; 
-   const TargetLibraryInfo *TLI = nullptr; 
-   
- public: 
-   LoopAccessInfoManager(ScalarEvolution &SE, AAResults &AA, DominatorTree &DT, 
-                         LoopInfo &LI, const TargetLibraryInfo *TLI) 
-       : SE(SE), AA(AA), DT(DT), LI(LI), TLI(TLI) {} 
-   
-   const LoopAccessInfo &getInfo(Loop &L); 
-   
-   void clear() { LoopAccessInfoMap.clear(); } 
- }; 
-   
- /// This analysis provides dependence information for the memory accesses 
- /// of a loop. 
- /// 
- /// It runs the analysis for a loop on demand.  This can be initiated by 
- /// querying the loop access info via LAA::getInfo.  getInfo return a 
- /// LoopAccessInfo object.  See this class for the specifics of what information 
- /// is provided. 
- class LoopAccessLegacyAnalysis : public FunctionPass { 
- public: 
-   static char ID; 
-   
-   LoopAccessLegacyAnalysis(); 
-   
-   bool runOnFunction(Function &F) override; 
-   
-   void getAnalysisUsage(AnalysisUsage &AU) const override; 
-   
-   /// Return the proxy object for retrieving LoopAccessInfo for individual 
-   /// loops. 
-   /// 
-   /// If there is no cached result available run the analysis. 
-   LoopAccessInfoManager &getLAIs() { return *LAIs; } 
-   
-   void releaseMemory() override { 
-     // Invalidate the cache when the pass is freed. 
-     LAIs->clear(); 
-   } 
-   
- private: 
-   std::unique_ptr<LoopAccessInfoManager> LAIs; 
- }; 
-   
- /// This analysis provides dependence information for the memory 
- /// accesses of a loop. 
- /// 
- /// It runs the analysis for a loop on demand.  This can be initiated by 
- /// querying the loop access info via AM.getResult<LoopAccessAnalysis>. 
- /// getResult return a LoopAccessInfo object.  See this class for the 
- /// specifics of what information is provided. 
- class LoopAccessAnalysis 
-     : public AnalysisInfoMixin<LoopAccessAnalysis> { 
-   friend AnalysisInfoMixin<LoopAccessAnalysis>; 
-   static AnalysisKey Key; 
-   
- public: 
-   typedef LoopAccessInfoManager Result; 
-   
-   Result run(Function &F, FunctionAnalysisManager &AM); 
- }; 
-   
- inline Instruction *MemoryDepChecker::Dependence::getSource( 
-     const LoopAccessInfo &LAI) const { 
-   return LAI.getDepChecker().getMemoryInstructions()[Source]; 
- } 
-   
- inline Instruction *MemoryDepChecker::Dependence::getDestination( 
-     const LoopAccessInfo &LAI) const { 
-   return LAI.getDepChecker().getMemoryInstructions()[Destination]; 
- } 
-   
- } // End llvm namespace 
-   
- #endif 
-