//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
///
 
/// \file
 
/// This file contains some templates that are useful if you are working with
 
/// the STL at all.
 
///
 
/// No library is required when using these functions.
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_STLEXTRAS_H
 
#define LLVM_ADT_STLEXTRAS_H
 
 
 
#include "llvm/ADT/Hashing.h"
 
#include "llvm/ADT/STLForwardCompat.h"
 
#include "llvm/ADT/STLFunctionalExtras.h"
 
#include "llvm/ADT/identity.h"
 
#include "llvm/ADT/iterator.h"
 
#include "llvm/ADT/iterator_range.h"
 
#include "llvm/Config/abi-breaking.h"
 
#include "llvm/Support/ErrorHandling.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <cstddef>
 
#include <cstdint>
 
#include <cstdlib>
 
#include <functional>
 
#include <initializer_list>
 
#include <iterator>
 
#include <limits>
 
#include <memory>
 
#include <optional>
 
#include <tuple>
 
#include <type_traits>
 
#include <utility>
 
 
 
#ifdef EXPENSIVE_CHECKS
 
#include <random> // for std::mt19937
 
#endif
 
 
 
namespace llvm {
 
 
 
// Only used by compiler if both template types are the same.  Useful when
 
// using SFINAE to test for the existence of member functions.
 
template <typename T, T> struct SameType;
 
 
 
namespace detail {
 
 
 
template <typename RangeT>
 
using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
 
 
 
template <typename RangeT>
 
using ValueOfRange =
 
    std::remove_reference_t<decltype(*std::begin(std::declval<RangeT &>()))>;
 
 
 
} // end namespace detail
 
 
 
//===----------------------------------------------------------------------===//
 
//     Extra additions to <type_traits>
 
//===----------------------------------------------------------------------===//
 
 
 
template <typename T> struct make_const_ptr {
 
  using type = std::add_pointer_t<std::add_const_t<T>>;
 
};
 
 
 
template <typename T> struct make_const_ref {
 
  using type = std::add_lvalue_reference_t<std::add_const_t<T>>;
 
};
 
 
 
namespace detail {
 
template <class, template <class...> class Op, class... Args> struct detector {
 
  using value_t = std::false_type;
 
};
 
template <template <class...> class Op, class... Args>
 
struct detector<std::void_t<Op<Args...>>, Op, Args...> {
 
  using value_t = std::true_type;
 
};
 
} // end namespace detail
 
 
 
/// Detects if a given trait holds for some set of arguments 'Args'.
 
/// For example, the given trait could be used to detect if a given type
 
/// has a copy assignment operator:
 
///   template<class T>
 
///   using has_copy_assign_t = decltype(std::declval<T&>()
 
///                                                 = std::declval<const T&>());
 
///   bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
 
template <template <class...> class Op, class... Args>
 
using is_detected = typename detail::detector<void, Op, Args...>::value_t;
 
 
 
/// This class provides various trait information about a callable object.
 
///   * To access the number of arguments: Traits::num_args
 
///   * To access the type of an argument: Traits::arg_t<Index>
 
///   * To access the type of the result:  Traits::result_t
 
template <typename T, bool isClass = std::is_class<T>::value>
 
struct function_traits : public function_traits<decltype(&T::operator())> {};
 
 
 
/// Overload for class function types.
 
template <typename ClassType, typename ReturnType, typename... Args>
 
struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
 
  /// The number of arguments to this function.
 
  enum { num_args = sizeof...(Args) };
 
 
 
  /// The result type of this function.
 
  using result_t = ReturnType;
 
 
 
  /// The type of an argument to this function.
 
  template <size_t Index>
 
  using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>;
 
};
 
/// Overload for class function types.
 
template <typename ClassType, typename ReturnType, typename... Args>
 
struct function_traits<ReturnType (ClassType::*)(Args...), false>
 
    : public function_traits<ReturnType (ClassType::*)(Args...) const> {};
 
/// Overload for non-class function types.
 
template <typename ReturnType, typename... Args>
 
struct function_traits<ReturnType (*)(Args...), false> {
 
  /// The number of arguments to this function.
 
  enum { num_args = sizeof...(Args) };
 
 
 
  /// The result type of this function.
 
  using result_t = ReturnType;
 
 
 
  /// The type of an argument to this function.
 
  template <size_t i>
 
  using arg_t = std::tuple_element_t<i, std::tuple<Args...>>;
 
};
 
template <typename ReturnType, typename... Args>
 
struct function_traits<ReturnType (*const)(Args...), false>
 
    : public function_traits<ReturnType (*)(Args...)> {};
 
/// Overload for non-class function type references.
 
template <typename ReturnType, typename... Args>
 
struct function_traits<ReturnType (&)(Args...), false>
 
    : public function_traits<ReturnType (*)(Args...)> {};
 
 
 
/// traits class for checking whether type T is one of any of the given
 
/// types in the variadic list.
 
template <typename T, typename... Ts>
 
using is_one_of = std::disjunction<std::is_same<T, Ts>...>;
 
 
 
/// traits class for checking whether type T is a base class for all
 
///  the given types in the variadic list.
 
template <typename T, typename... Ts>
 
using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>;
 
 
 
namespace detail {
 
template <typename T, typename... Us> struct TypesAreDistinct;
 
template <typename T, typename... Us>
 
struct TypesAreDistinct
 
    : std::integral_constant<bool, !is_one_of<T, Us...>::value &&
 
                                       TypesAreDistinct<Us...>::value> {};
 
template <typename T> struct TypesAreDistinct<T> : std::true_type {};
 
} // namespace detail
 
 
 
/// Determine if all types in Ts are distinct.
 
///
 
/// Useful to statically assert when Ts is intended to describe a non-multi set
 
/// of types.
 
///
 
/// Expensive (currently quadratic in sizeof(Ts...)), and so should only be
 
/// asserted once per instantiation of a type which requires it.
 
template <typename... Ts> struct TypesAreDistinct;
 
template <> struct TypesAreDistinct<> : std::true_type {};
 
template <typename... Ts>
 
struct TypesAreDistinct
 
    : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {};
 
 
 
/// Find the first index where a type appears in a list of types.
 
///
 
/// FirstIndexOfType<T, Us...>::value is the first index of T in Us.
 
///
 
/// Typically only meaningful when it is otherwise statically known that the
 
/// type pack has no duplicate types. This should be guaranteed explicitly with
 
/// static_assert(TypesAreDistinct<Us...>::value).
 
///
 
/// It is a compile-time error to instantiate when T is not present in Us, i.e.
 
/// if is_one_of<T, Us...>::value is false.
 
template <typename T, typename... Us> struct FirstIndexOfType;
 
template <typename T, typename U, typename... Us>
 
struct FirstIndexOfType<T, U, Us...>
 
    : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {};
 
template <typename T, typename... Us>
 
struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {};
 
 
 
/// Find the type at a given index in a list of types.
 
///
 
/// TypeAtIndex<I, Ts...> is the type at index I in Ts.
 
template <size_t I, typename... Ts>
 
using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>;
 
 
 
/// Helper which adds two underlying types of enumeration type.
 
/// Implicit conversion to a common type is accepted.
 
template <typename EnumTy1, typename EnumTy2,
 
          typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value,
 
                                          std::underlying_type_t<EnumTy1>>,
 
          typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value,
 
                                          std::underlying_type_t<EnumTy2>>>
 
constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) {
 
  return static_cast<UT1>(LHS) + static_cast<UT2>(RHS);
 
}
 
 
 
//===----------------------------------------------------------------------===//
 
//     Extra additions to <iterator>
 
//===----------------------------------------------------------------------===//
 
 
 
namespace callable_detail {
 
 
 
/// Templated storage wrapper for a callable.
 
///
 
/// This class is consistently default constructible, copy / move
 
/// constructible / assignable.
 
///
 
/// Supported callable types:
 
///  - Function pointer
 
///  - Function reference
 
///  - Lambda
 
///  - Function object
 
template <typename T,
 
          bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>>
 
class Callable {
 
  using value_type = std::remove_reference_t<T>;
 
  using reference = value_type &;
 
  using const_reference = value_type const &;
 
 
 
  std::optional<value_type> Obj;
 
 
 
  static_assert(!std::is_pointer_v<value_type>,
 
                "Pointers to non-functions are not callable.");
 
 
 
public:
 
  Callable() = default;
 
  Callable(T const &O) : Obj(std::in_place, O) {}
 
 
 
  Callable(Callable const &Other) = default;
 
  Callable(Callable &&Other) = default;
 
 
 
  Callable &operator=(Callable const &Other) {
 
    Obj = std::nullopt;
 
    if (Other.Obj)
 
      Obj.emplace(*Other.Obj);
 
    return *this;
 
  }
 
 
 
  Callable &operator=(Callable &&Other) {
 
    Obj = std::nullopt;
 
    if (Other.Obj)
 
      Obj.emplace(std::move(*Other.Obj));
 
    return *this;
 
  }
 
 
 
  template <typename... Pn,
 
            std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
 
  decltype(auto) operator()(Pn &&...Params) {
 
    return (*Obj)(std::forward<Pn>(Params)...);
 
  }
 
 
 
  template <typename... Pn,
 
            std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0>
 
  decltype(auto) operator()(Pn &&...Params) const {
 
    return (*Obj)(std::forward<Pn>(Params)...);
 
  }
 
 
 
  bool valid() const { return Obj != std::nullopt; }
 
  bool reset() { return Obj = std::nullopt; }
 
 
 
  operator reference() { return *Obj; }
 
  operator const_reference() const { return *Obj; }
 
};
 
 
 
// Function specialization.  No need to waste extra space wrapping with a
 
// std::optional.
 
template <typename T> class Callable<T, true> {
 
  static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>;
 
 
 
  using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>;
 
  using CastT = std::conditional_t<IsPtr, T, T &>;
 
 
 
private:
 
  StorageT Func = nullptr;
 
 
 
private:
 
  template <typename In> static constexpr auto convertIn(In &&I) {
 
    if constexpr (IsPtr) {
 
      // Pointer... just echo it back.
 
      return I;
 
    } else {
 
      // Must be a function reference.  Return its address.
 
      return &I;
 
    }
 
  }
 
 
 
public:
 
  Callable() = default;
 
 
 
  // Construct from a function pointer or reference.
 
  //
 
  // Disable this constructor for references to 'Callable' so we don't violate
 
  // the rule of 0.
 
  template < // clang-format off
 
    typename FnPtrOrRef,
 
    std::enable_if_t<
 
      !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int
 
    > = 0
 
  > // clang-format on
 
  Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {}
 
 
 
  template <typename... Pn,
 
            std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
 
  decltype(auto) operator()(Pn &&...Params) const {
 
    return Func(std::forward<Pn>(Params)...);
 
  }
 
 
 
  bool valid() const { return Func != nullptr; }
 
  void reset() { Func = nullptr; }
 
 
 
  operator T const &() const {
 
    if constexpr (IsPtr) {
 
      // T is a pointer... just echo it back.
 
      return Func;
 
    } else {
 
      static_assert(std::is_reference_v<T>,
 
                    "Expected a reference to a function.");
 
      // T is a function reference... dereference the stored pointer.
 
      return *Func;
 
    }
 
  }
 
};
 
 
 
} // namespace callable_detail
 
 
 
namespace adl_detail {
 
 
 
using std::begin;
 
 
 
template <typename ContainerTy>
 
decltype(auto) adl_begin(ContainerTy &&container) {
 
  return begin(std::forward<ContainerTy>(container));
 
}
 
 
 
using std::end;
 
 
 
template <typename ContainerTy>
 
decltype(auto) adl_end(ContainerTy &&container) {
 
  return end(std::forward<ContainerTy>(container));
 
}
 
 
 
using std::swap;
 
 
 
template <typename T>
 
void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
 
                                                       std::declval<T>()))) {
 
  swap(std::forward<T>(lhs), std::forward<T>(rhs));
 
}
 
 
 
} // end namespace adl_detail
 
 
 
template <typename ContainerTy>
 
decltype(auto) adl_begin(ContainerTy &&container) {
 
  return adl_detail::adl_begin(std::forward<ContainerTy>(container));
 
}
 
 
 
template <typename ContainerTy>
 
decltype(auto) adl_end(ContainerTy &&container) {
 
  return adl_detail::adl_end(std::forward<ContainerTy>(container));
 
}
 
 
 
template <typename T>
 
void adl_swap(T &&lhs, T &&rhs) noexcept(
 
    noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
 
  adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
 
}
 
 
 
/// Returns true if the given container only contains a single element.
 
template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
 
  auto B = std::begin(C), E = std::end(C);
 
  return B != E && std::next(B) == E;
 
}
 
 
 
/// Return a range covering \p RangeOrContainer with the first N elements
 
/// excluded.
 
template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) {
 
  return make_range(std::next(adl_begin(RangeOrContainer), N),
 
                    adl_end(RangeOrContainer));
 
}
 
 
 
/// Return a range covering \p RangeOrContainer with the last N elements
 
/// excluded.
 
template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) {
 
  return make_range(adl_begin(RangeOrContainer),
 
                    std::prev(adl_end(RangeOrContainer), N));
 
}
 
 
 
// mapped_iterator - This is a simple iterator adapter that causes a function to
 
// be applied whenever operator* is invoked on the iterator.
 
 
 
template <typename ItTy, typename FuncTy,
 
          typename ReferenceTy =
 
              decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
 
class mapped_iterator
 
    : public iterator_adaptor_base<
 
          mapped_iterator<ItTy, FuncTy>, ItTy,
 
          typename std::iterator_traits<ItTy>::iterator_category,
 
          std::remove_reference_t<ReferenceTy>,
 
          typename std::iterator_traits<ItTy>::difference_type,
 
          std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
 
public:
 
  mapped_iterator() = default;
 
  mapped_iterator(ItTy U, FuncTy F)
 
    : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
 
 
 
  ItTy getCurrent() { return this->I; }
 
 
 
  const FuncTy &getFunction() const { return F; }
 
 
 
  ReferenceTy operator*() const { return F(*this->I); }
 
 
 
private:
 
  callable_detail::Callable<FuncTy> F{};
 
};
 
 
 
// map_iterator - Provide a convenient way to create mapped_iterators, just like
 
// make_pair is useful for creating pairs...
 
template <class ItTy, class FuncTy>
 
inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
 
  return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
 
}
 
 
 
template <class ContainerTy, class FuncTy>
 
auto map_range(ContainerTy &&C, FuncTy F) {
 
  return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
 
}
 
 
 
/// A base type of mapped iterator, that is useful for building derived
 
/// iterators that do not need/want to store the map function (as in
 
/// mapped_iterator). These iterators must simply provide a `mapElement` method
 
/// that defines how to map a value of the iterator to the provided reference
 
/// type.
 
template <typename DerivedT, typename ItTy, typename ReferenceTy>
 
class mapped_iterator_base
 
    : public iterator_adaptor_base<
 
          DerivedT, ItTy,
 
          typename std::iterator_traits<ItTy>::iterator_category,
 
          std::remove_reference_t<ReferenceTy>,
 
          typename std::iterator_traits<ItTy>::difference_type,
 
          std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
 
public:
 
  using BaseT = mapped_iterator_base;
 
 
 
  mapped_iterator_base(ItTy U)
 
      : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {}
 
 
 
  ItTy getCurrent() { return this->I; }
 
 
 
  ReferenceTy operator*() const {
 
    return static_cast<const DerivedT &>(*this).mapElement(*this->I);
 
  }
 
};
 
 
 
/// Helper to determine if type T has a member called rbegin().
 
template <typename Ty> class has_rbegin_impl {
 
  using yes = char[1];
 
  using no = char[2];
 
 
 
  template <typename Inner>
 
  static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
 
 
 
  template <typename>
 
  static no& test(...);
 
 
 
public:
 
  static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
 
};
 
 
 
/// Metafunction to determine if T& or T has a member called rbegin().
 
template <typename Ty>
 
struct has_rbegin : has_rbegin_impl<std::remove_reference_t<Ty>> {};
 
 
 
// Returns an iterator_range over the given container which iterates in reverse.
 
template <typename ContainerTy> auto reverse(ContainerTy &&C) {
 
  if constexpr (has_rbegin<ContainerTy>::value)
 
    return make_range(C.rbegin(), C.rend());
 
  else
 
    return make_range(std::make_reverse_iterator(std::end(C)),
 
                      std::make_reverse_iterator(std::begin(C)));
 
}
 
 
 
/// An iterator adaptor that filters the elements of given inner iterators.
 
///
 
/// The predicate parameter should be a callable object that accepts the wrapped
 
/// iterator's reference type and returns a bool. When incrementing or
 
/// decrementing the iterator, it will call the predicate on each element and
 
/// skip any where it returns false.
 
///
 
/// \code
 
///   int A[] = { 1, 2, 3, 4 };
 
///   auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
 
///   // R contains { 1, 3 }.
 
/// \endcode
 
///
 
/// Note: filter_iterator_base implements support for forward iteration.
 
/// filter_iterator_impl exists to provide support for bidirectional iteration,
 
/// conditional on whether the wrapped iterator supports it.
 
template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
 
class filter_iterator_base
 
    : public iterator_adaptor_base<
 
          filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
 
          WrappedIteratorT,
 
          std::common_type_t<IterTag,
 
                             typename std::iterator_traits<
 
                                 WrappedIteratorT>::iterator_category>> {
 
  using BaseT = typename filter_iterator_base::iterator_adaptor_base;
 
 
 
protected:
 
  WrappedIteratorT End;
 
  PredicateT Pred;
 
 
 
  void findNextValid() {
 
    while (this->I != End && !Pred(*this->I))
 
      BaseT::operator++();
 
  }
 
 
 
  filter_iterator_base() = default;
 
 
 
  // Construct the iterator. The begin iterator needs to know where the end
 
  // is, so that it can properly stop when it gets there. The end iterator only
 
  // needs the predicate to support bidirectional iteration.
 
  filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
 
                       PredicateT Pred)
 
      : BaseT(Begin), End(End), Pred(Pred) {
 
    findNextValid();
 
  }
 
 
 
public:
 
  using BaseT::operator++;
 
 
 
  filter_iterator_base &operator++() {
 
    BaseT::operator++();
 
    findNextValid();
 
    return *this;
 
  }
 
 
 
  decltype(auto) operator*() const {
 
    assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
 
    return BaseT::operator*();
 
  }
 
 
 
  decltype(auto) operator->() const {
 
    assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
 
    return BaseT::operator->();
 
  }
 
};
 
 
 
/// Specialization of filter_iterator_base for forward iteration only.
 
template <typename WrappedIteratorT, typename PredicateT,
 
          typename IterTag = std::forward_iterator_tag>
 
class filter_iterator_impl
 
    : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
 
public:
 
  filter_iterator_impl() = default;
 
 
 
  filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
 
                       PredicateT Pred)
 
      : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {}
 
};
 
 
 
/// Specialization of filter_iterator_base for bidirectional iteration.
 
template <typename WrappedIteratorT, typename PredicateT>
 
class filter_iterator_impl<WrappedIteratorT, PredicateT,
 
                           std::bidirectional_iterator_tag>
 
    : public filter_iterator_base<WrappedIteratorT, PredicateT,
 
                                  std::bidirectional_iterator_tag> {
 
  using BaseT = typename filter_iterator_impl::filter_iterator_base;
 
 
 
  void findPrevValid() {
 
    while (!this->Pred(*this->I))
 
      BaseT::operator--();
 
  }
 
 
 
public:
 
  using BaseT::operator--;
 
 
 
  filter_iterator_impl() = default;
 
 
 
  filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
 
                       PredicateT Pred)
 
      : BaseT(Begin, End, Pred) {}
 
 
 
  filter_iterator_impl &operator--() {
 
    BaseT::operator--();
 
    findPrevValid();
 
    return *this;
 
  }
 
};
 
 
 
namespace detail {
 
 
 
template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
 
  using type = std::forward_iterator_tag;
 
};
 
 
 
template <> struct fwd_or_bidi_tag_impl<true> {
 
  using type = std::bidirectional_iterator_tag;
 
};
 
 
 
/// Helper which sets its type member to forward_iterator_tag if the category
 
/// of \p IterT does not derive from bidirectional_iterator_tag, and to
 
/// bidirectional_iterator_tag otherwise.
 
template <typename IterT> struct fwd_or_bidi_tag {
 
  using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
 
      std::bidirectional_iterator_tag,
 
      typename std::iterator_traits<IterT>::iterator_category>::value>::type;
 
};
 
 
 
} // namespace detail
 
 
 
/// Defines filter_iterator to a suitable specialization of
 
/// filter_iterator_impl, based on the underlying iterator's category.
 
template <typename WrappedIteratorT, typename PredicateT>
 
using filter_iterator = filter_iterator_impl<
 
    WrappedIteratorT, PredicateT,
 
    typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
 
 
 
/// Convenience function that takes a range of elements and a predicate,
 
/// and return a new filter_iterator range.
 
///
 
/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
 
/// lifetime of that temporary is not kept by the returned range object, and the
 
/// temporary is going to be dropped on the floor after the make_iterator_range
 
/// full expression that contains this function call.
 
template <typename RangeT, typename PredicateT>
 
iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
 
make_filter_range(RangeT &&Range, PredicateT Pred) {
 
  using FilterIteratorT =
 
      filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
 
  return make_range(
 
      FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
 
                      std::end(std::forward<RangeT>(Range)), Pred),
 
      FilterIteratorT(std::end(std::forward<RangeT>(Range)),
 
                      std::end(std::forward<RangeT>(Range)), Pred));
 
}
 
 
 
/// A pseudo-iterator adaptor that is designed to implement "early increment"
 
/// style loops.
 
///
 
/// This is *not a normal iterator* and should almost never be used directly. It
 
/// is intended primarily to be used with range based for loops and some range
 
/// algorithms.
 
///
 
/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
 
/// somewhere between them. The constraints of these iterators are:
 
///
 
/// - On construction or after being incremented, it is comparable and
 
///   dereferencable. It is *not* incrementable.
 
/// - After being dereferenced, it is neither comparable nor dereferencable, it
 
///   is only incrementable.
 
///
 
/// This means you can only dereference the iterator once, and you can only
 
/// increment it once between dereferences.
 
template <typename WrappedIteratorT>
 
class early_inc_iterator_impl
 
    : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
 
                                   WrappedIteratorT, std::input_iterator_tag> {
 
  using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base;
 
 
 
  using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
 
 
 
protected:
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
  bool IsEarlyIncremented = false;
 
#endif
 
 
 
public:
 
  early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
 
 
 
  using BaseT::operator*;
 
  decltype(*std::declval<WrappedIteratorT>()) operator*() {
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    assert(!IsEarlyIncremented && "Cannot dereference twice!");
 
    IsEarlyIncremented = true;
 
#endif
 
    return *(this->I)++;
 
  }
 
 
 
  using BaseT::operator++;
 
  early_inc_iterator_impl &operator++() {
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
 
    IsEarlyIncremented = false;
 
#endif
 
    return *this;
 
  }
 
 
 
  friend bool operator==(const early_inc_iterator_impl &LHS,
 
                         const early_inc_iterator_impl &RHS) {
 
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
 
    assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!");
 
#endif
 
    return (const BaseT &)LHS == (const BaseT &)RHS;
 
  }
 
};
 
 
 
/// Make a range that does early increment to allow mutation of the underlying
 
/// range without disrupting iteration.
 
///
 
/// The underlying iterator will be incremented immediately after it is
 
/// dereferenced, allowing deletion of the current node or insertion of nodes to
 
/// not disrupt iteration provided they do not invalidate the *next* iterator --
 
/// the current iterator can be invalidated.
 
///
 
/// This requires a very exact pattern of use that is only really suitable to
 
/// range based for loops and other range algorithms that explicitly guarantee
 
/// to dereference exactly once each element, and to increment exactly once each
 
/// element.
 
template <typename RangeT>
 
iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
 
make_early_inc_range(RangeT &&Range) {
 
  using EarlyIncIteratorT =
 
      early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
 
  return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
 
                    EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
 
}
 
 
 
// Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest
 
template <typename R, typename UnaryPredicate>
 
bool all_of(R &&range, UnaryPredicate P);
 
 
 
template <typename R, typename UnaryPredicate>
 
bool any_of(R &&range, UnaryPredicate P);
 
 
 
template <typename T> bool all_equal(std::initializer_list<T> Values);
 
 
 
namespace detail {
 
 
 
using std::declval;
 
 
 
// We have to alias this since inlining the actual type at the usage site
 
// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
 
template<typename... Iters> struct ZipTupleType {
 
  using type = std::tuple<decltype(*declval<Iters>())...>;
 
};
 
 
 
template <typename ZipType, typename... Iters>
 
using zip_traits = iterator_facade_base<
 
    ZipType,
 
    std::common_type_t<
 
        std::bidirectional_iterator_tag,
 
        typename std::iterator_traits<Iters>::iterator_category...>,
 
    // ^ TODO: Implement random access methods.
 
    typename ZipTupleType<Iters...>::type,
 
    typename std::iterator_traits<
 
        std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
 
    // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
 
    // inner iterators have the same difference_type. It would fail if, for
 
    // instance, the second field's difference_type were non-numeric while the
 
    // first is.
 
    typename ZipTupleType<Iters...>::type *,
 
    typename ZipTupleType<Iters...>::type>;
 
 
 
template <typename ZipType, typename... Iters>
 
struct zip_common : public zip_traits<ZipType, Iters...> {
 
  using Base = zip_traits<ZipType, Iters...>;
 
  using value_type = typename Base::value_type;
 
 
 
  std::tuple<Iters...> iterators;
 
 
 
protected:
 
  template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
 
    return value_type(*std::get<Ns>(iterators)...);
 
  }
 
 
 
  template <size_t... Ns>
 
  decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
 
    return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
 
  }
 
 
 
  template <size_t... Ns>
 
  decltype(iterators) tup_dec(std::index_sequence<Ns...>) const {
 
    return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
 
  }
 
 
 
  template <size_t... Ns>
 
  bool test_all_equals(const zip_common &other,
 
            std::index_sequence<Ns...>) const {
 
    return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) &&
 
            ...);
 
  }
 
 
 
public:
 
  zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
 
 
 
  value_type operator*() const {
 
    return deref(std::index_sequence_for<Iters...>{});
 
  }
 
 
 
  ZipType &operator++() {
 
    iterators = tup_inc(std::index_sequence_for<Iters...>{});
 
    return *reinterpret_cast<ZipType *>(this);
 
  }
 
 
 
  ZipType &operator--() {
 
    static_assert(Base::IsBidirectional,
 
                  "All inner iterators must be at least bidirectional.");
 
    iterators = tup_dec(std::index_sequence_for<Iters...>{});
 
    return *reinterpret_cast<ZipType *>(this);
 
  }
 
 
 
  /// Return true if all the iterator are matching `other`'s iterators.
 
  bool all_equals(zip_common &other) {
 
    return test_all_equals(other, std::index_sequence_for<Iters...>{});
 
  }
 
};
 
 
 
template <typename... Iters>
 
struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
 
  using Base = zip_common<zip_first<Iters...>, Iters...>;
 
 
 
  bool operator==(const zip_first<Iters...> &other) const {
 
    return std::get<0>(this->iterators) == std::get<0>(other.iterators);
 
  }
 
 
 
  zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
 
};
 
 
 
template <typename... Iters>
 
class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
 
  template <size_t... Ns>
 
  bool test(const zip_shortest<Iters...> &other,
 
            std::index_sequence<Ns...>) const {
 
    return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) &&
 
            ...);
 
  }
 
 
 
public:
 
  using Base = zip_common<zip_shortest<Iters...>, Iters...>;
 
 
 
  zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
 
 
 
  bool operator==(const zip_shortest<Iters...> &other) const {
 
    return !test(other, std::index_sequence_for<Iters...>{});
 
  }
 
};
 
 
 
template <template <typename...> class ItType, typename... Args> class zippy {
 
public:
 
  using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
 
  using iterator_category = typename iterator::iterator_category;
 
  using value_type = typename iterator::value_type;
 
  using difference_type = typename iterator::difference_type;
 
  using pointer = typename iterator::pointer;
 
  using reference = typename iterator::reference;
 
 
 
private:
 
  std::tuple<Args...> ts;
 
 
 
  template <size_t... Ns>
 
  iterator begin_impl(std::index_sequence<Ns...>) const {
 
    return iterator(std::begin(std::get<Ns>(ts))...);
 
  }
 
  template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
 
    return iterator(std::end(std::get<Ns>(ts))...);
 
  }
 
 
 
public:
 
  zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
 
 
 
  iterator begin() const {
 
    return begin_impl(std::index_sequence_for<Args...>{});
 
  }
 
  iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
 
};
 
 
 
} // end namespace detail
 
 
 
/// zip iterator for two or more iteratable types. Iteration continues until the
 
/// end of the *shortest* iteratee is reached.
 
template <typename T, typename U, typename... Args>
 
detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
 
                                                       Args &&...args) {
 
  return detail::zippy<detail::zip_shortest, T, U, Args...>(
 
      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
 
}
 
 
 
/// zip iterator that assumes that all iteratees have the same length.
 
/// In builds with assertions on, this assumption is checked before the
 
/// iteration starts.
 
template <typename T, typename U, typename... Args>
 
detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u,
 
                                                          Args &&...args) {
 
  assert(all_equal({std::distance(adl_begin(t), adl_end(t)),
 
                    std::distance(adl_begin(u), adl_end(u)),
 
                    std::distance(adl_begin(args), adl_end(args))...}) &&
 
         "Iteratees do not have equal length");
 
  return detail::zippy<detail::zip_first, T, U, Args...>(
 
      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
 
}
 
 
 
/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
 
/// be the shortest. Iteration continues until the end of the first iteratee is
 
/// reached. In builds with assertions on, we check that the assumption about
 
/// the first iteratee being the shortest holds.
 
template <typename T, typename U, typename... Args>
 
detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
 
                                                          Args &&...args) {
 
  assert(std::distance(adl_begin(t), adl_end(t)) <=
 
             std::min({std::distance(adl_begin(u), adl_end(u)),
 
                       std::distance(adl_begin(args), adl_end(args))...}) &&
 
         "First iteratee is not the shortest");
 
 
 
  return detail::zippy<detail::zip_first, T, U, Args...>(
 
      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
 
}
 
 
 
namespace detail {
 
template <typename Iter>
 
Iter next_or_end(const Iter &I, const Iter &End) {
 
  if (I == End)
 
    return End;
 
  return std::next(I);
 
}
 
 
 
template <typename Iter>
 
auto deref_or_none(const Iter &I, const Iter &End) -> std::optional<
 
    std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
 
  if (I == End)
 
    return std::nullopt;
 
  return *I;
 
}
 
 
 
template <typename Iter> struct ZipLongestItemType {
 
  using type = std::optional<std::remove_const_t<
 
      std::remove_reference_t<decltype(*std::declval<Iter>())>>>;
 
};
 
 
 
template <typename... Iters> struct ZipLongestTupleType {
 
  using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
 
};
 
 
 
template <typename... Iters>
 
class zip_longest_iterator
 
    : public iterator_facade_base<
 
          zip_longest_iterator<Iters...>,
 
          std::common_type_t<
 
              std::forward_iterator_tag,
 
              typename std::iterator_traits<Iters>::iterator_category...>,
 
          typename ZipLongestTupleType<Iters...>::type,
 
          typename std::iterator_traits<
 
              std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
 
          typename ZipLongestTupleType<Iters...>::type *,
 
          typename ZipLongestTupleType<Iters...>::type> {
 
public:
 
  using value_type = typename ZipLongestTupleType<Iters...>::type;
 
 
 
private:
 
  std::tuple<Iters...> iterators;
 
  std::tuple<Iters...> end_iterators;
 
 
 
  template <size_t... Ns>
 
  bool test(const zip_longest_iterator<Iters...> &other,
 
            std::index_sequence<Ns...>) const {
 
    return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) ||
 
            ...);
 
  }
 
 
 
  template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
 
    return value_type(
 
        deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
 
  }
 
 
 
  template <size_t... Ns>
 
  decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
 
    return std::tuple<Iters...>(
 
        next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
 
  }
 
 
 
public:
 
  zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
 
      : iterators(std::forward<Iters>(ts.first)...),
 
        end_iterators(std::forward<Iters>(ts.second)...) {}
 
 
 
  value_type operator*() const {
 
    return deref(std::index_sequence_for<Iters...>{});
 
  }
 
 
 
  zip_longest_iterator<Iters...> &operator++() {
 
    iterators = tup_inc(std::index_sequence_for<Iters...>{});
 
    return *this;
 
  }
 
 
 
  bool operator==(const zip_longest_iterator<Iters...> &other) const {
 
    return !test(other, std::index_sequence_for<Iters...>{});
 
  }
 
};
 
 
 
template <typename... Args> class zip_longest_range {
 
public:
 
  using iterator =
 
      zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
 
  using iterator_category = typename iterator::iterator_category;
 
  using value_type = typename iterator::value_type;
 
  using difference_type = typename iterator::difference_type;
 
  using pointer = typename iterator::pointer;
 
  using reference = typename iterator::reference;
 
 
 
private:
 
  std::tuple<Args...> ts;
 
 
 
  template <size_t... Ns>
 
  iterator begin_impl(std::index_sequence<Ns...>) const {
 
    return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
 
                                   adl_end(std::get<Ns>(ts)))...);
 
  }
 
 
 
  template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
 
    return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
 
                                   adl_end(std::get<Ns>(ts)))...);
 
  }
 
 
 
public:
 
  zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
 
 
 
  iterator begin() const {
 
    return begin_impl(std::index_sequence_for<Args...>{});
 
  }
 
  iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
 
};
 
} // namespace detail
 
 
 
/// Iterate over two or more iterators at the same time. Iteration continues
 
/// until all iterators reach the end. The std::optional only contains a value
 
/// if the iterator has not reached the end.
 
template <typename T, typename U, typename... Args>
 
detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
 
                                                     Args &&... args) {
 
  return detail::zip_longest_range<T, U, Args...>(
 
      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
 
}
 
 
 
/// Iterator wrapper that concatenates sequences together.
 
///
 
/// This can concatenate different iterators, even with different types, into
 
/// a single iterator provided the value types of all the concatenated
 
/// iterators expose `reference` and `pointer` types that can be converted to
 
/// `ValueT &` and `ValueT *` respectively. It doesn't support more
 
/// interesting/customized pointer or reference types.
 
///
 
/// Currently this only supports forward or higher iterator categories as
 
/// inputs and always exposes a forward iterator interface.
 
template <typename ValueT, typename... IterTs>
 
class concat_iterator
 
    : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
 
                                  std::forward_iterator_tag, ValueT> {
 
  using BaseT = typename concat_iterator::iterator_facade_base;
 
 
 
  /// We store both the current and end iterators for each concatenated
 
  /// sequence in a tuple of pairs.
 
  ///
 
  /// Note that something like iterator_range seems nice at first here, but the
 
  /// range properties are of little benefit and end up getting in the way
 
  /// because we need to do mutation on the current iterators.
 
  std::tuple<IterTs...> Begins;
 
  std::tuple<IterTs...> Ends;
 
 
 
  /// Attempts to increment a specific iterator.
 
  ///
 
  /// Returns true if it was able to increment the iterator. Returns false if
 
  /// the iterator is already at the end iterator.
 
  template <size_t Index> bool incrementHelper() {
 
    auto &Begin = std::get<Index>(Begins);
 
    auto &End = std::get<Index>(Ends);
 
    if (Begin == End)
 
      return false;
 
 
 
    ++Begin;
 
    return true;
 
  }
 
 
 
  /// Increments the first non-end iterator.
 
  ///
 
  /// It is an error to call this with all iterators at the end.
 
  template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
 
    // Build a sequence of functions to increment each iterator if possible.
 
    bool (concat_iterator::*IncrementHelperFns[])() = {
 
        &concat_iterator::incrementHelper<Ns>...};
 
 
 
    // Loop over them, and stop as soon as we succeed at incrementing one.
 
    for (auto &IncrementHelperFn : IncrementHelperFns)
 
      if ((this->*IncrementHelperFn)())
 
        return;
 
 
 
    llvm_unreachable("Attempted to increment an end concat iterator!");
 
  }
 
 
 
  /// Returns null if the specified iterator is at the end. Otherwise,
 
  /// dereferences the iterator and returns the address of the resulting
 
  /// reference.
 
  template <size_t Index> ValueT *getHelper() const {
 
    auto &Begin = std::get<Index>(Begins);
 
    auto &End = std::get<Index>(Ends);
 
    if (Begin == End)
 
      return nullptr;
 
 
 
    return &*Begin;
 
  }
 
 
 
  /// Finds the first non-end iterator, dereferences, and returns the resulting
 
  /// reference.
 
  ///
 
  /// It is an error to call this with all iterators at the end.
 
  template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
 
    // Build a sequence of functions to get from iterator if possible.
 
    ValueT *(concat_iterator::*GetHelperFns[])() const = {
 
        &concat_iterator::getHelper<Ns>...};
 
 
 
    // Loop over them, and return the first result we find.
 
    for (auto &GetHelperFn : GetHelperFns)
 
      if (ValueT *P = (this->*GetHelperFn)())
 
        return *P;
 
 
 
    llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
 
  }
 
 
 
public:
 
  /// Constructs an iterator from a sequence of ranges.
 
  ///
 
  /// We need the full range to know how to switch between each of the
 
  /// iterators.
 
  template <typename... RangeTs>
 
  explicit concat_iterator(RangeTs &&... Ranges)
 
      : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
 
 
 
  using BaseT::operator++;
 
 
 
  concat_iterator &operator++() {
 
    increment(std::index_sequence_for<IterTs...>());
 
    return *this;
 
  }
 
 
 
  ValueT &operator*() const {
 
    return get(std::index_sequence_for<IterTs...>());
 
  }
 
 
 
  bool operator==(const concat_iterator &RHS) const {
 
    return Begins == RHS.Begins && Ends == RHS.Ends;
 
  }
 
};
 
 
 
namespace detail {
 
 
 
/// Helper to store a sequence of ranges being concatenated and access them.
 
///
 
/// This is designed to facilitate providing actual storage when temporaries
 
/// are passed into the constructor such that we can use it as part of range
 
/// based for loops.
 
template <typename ValueT, typename... RangeTs> class concat_range {
 
public:
 
  using iterator =
 
      concat_iterator<ValueT,
 
                      decltype(std::begin(std::declval<RangeTs &>()))...>;
 
 
 
private:
 
  std::tuple<RangeTs...> Ranges;
 
 
 
  template <size_t... Ns>
 
  iterator begin_impl(std::index_sequence<Ns...>) {
 
    return iterator(std::get<Ns>(Ranges)...);
 
  }
 
  template <size_t... Ns>
 
  iterator begin_impl(std::index_sequence<Ns...>) const {
 
    return iterator(std::get<Ns>(Ranges)...);
 
  }
 
  template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
 
    return iterator(make_range(std::end(std::get<Ns>(Ranges)),
 
                               std::end(std::get<Ns>(Ranges)))...);
 
  }
 
  template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
 
    return iterator(make_range(std::end(std::get<Ns>(Ranges)),
 
                               std::end(std::get<Ns>(Ranges)))...);
 
  }
 
 
 
public:
 
  concat_range(RangeTs &&... Ranges)
 
      : Ranges(std::forward<RangeTs>(Ranges)...) {}
 
 
 
  iterator begin() {
 
    return begin_impl(std::index_sequence_for<RangeTs...>{});
 
  }
 
  iterator begin() const {
 
    return begin_impl(std::index_sequence_for<RangeTs...>{});
 
  }
 
  iterator end() {
 
    return end_impl(std::index_sequence_for<RangeTs...>{});
 
  }
 
  iterator end() const {
 
    return end_impl(std::index_sequence_for<RangeTs...>{});
 
  }
 
};
 
 
 
} // end namespace detail
 
 
 
/// Concatenated range across two or more ranges.
 
///
 
/// The desired value type must be explicitly specified.
 
template <typename ValueT, typename... RangeTs>
 
detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
 
  static_assert(sizeof...(RangeTs) > 1,
 
                "Need more than one range to concatenate!");
 
  return detail::concat_range<ValueT, RangeTs...>(
 
      std::forward<RangeTs>(Ranges)...);
 
}
 
 
 
/// A utility class used to implement an iterator that contains some base object
 
/// and an index. The iterator moves the index but keeps the base constant.
 
template <typename DerivedT, typename BaseT, typename T,
 
          typename PointerT = T *, typename ReferenceT = T &>
 
class indexed_accessor_iterator
 
    : public llvm::iterator_facade_base<DerivedT,
 
                                        std::random_access_iterator_tag, T,
 
                                        std::ptrdiff_t, PointerT, ReferenceT> {
 
public:
 
  ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
 
    assert(base == rhs.base && "incompatible iterators");
 
    return index - rhs.index;
 
  }
 
  bool operator==(const indexed_accessor_iterator &rhs) const {
 
    return base == rhs.base && index == rhs.index;
 
  }
 
  bool operator<(const indexed_accessor_iterator &rhs) const {
 
    assert(base == rhs.base && "incompatible iterators");
 
    return index < rhs.index;
 
  }
 
 
 
  DerivedT &operator+=(ptrdiff_t offset) {
 
    this->index += offset;
 
    return static_cast<DerivedT &>(*this);
 
  }
 
  DerivedT &operator-=(ptrdiff_t offset) {
 
    this->index -= offset;
 
    return static_cast<DerivedT &>(*this);
 
  }
 
 
 
  /// Returns the current index of the iterator.
 
  ptrdiff_t getIndex() const { return index; }
 
 
 
  /// Returns the current base of the iterator.
 
  const BaseT &getBase() const { return base; }
 
 
 
protected:
 
  indexed_accessor_iterator(BaseT base, ptrdiff_t index)
 
      : base(base), index(index) {}
 
  BaseT base;
 
  ptrdiff_t index;
 
};
 
 
 
namespace detail {
 
/// The class represents the base of a range of indexed_accessor_iterators. It
 
/// provides support for many different range functionalities, e.g.
 
/// drop_front/slice/etc.. Derived range classes must implement the following
 
/// static methods:
 
///   * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
 
///     - Dereference an iterator pointing to the base object at the given
 
///       index.
 
///   * BaseT offset_base(const BaseT &base, ptrdiff_t index)
 
///     - Return a new base that is offset from the provide base by 'index'
 
///       elements.
 
template <typename DerivedT, typename BaseT, typename T,
 
          typename PointerT = T *, typename ReferenceT = T &>
 
class indexed_accessor_range_base {
 
public:
 
  using RangeBaseT = indexed_accessor_range_base;
 
 
 
  /// An iterator element of this range.
 
  class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
 
                                                    PointerT, ReferenceT> {
 
  public:
 
    // Index into this iterator, invoking a static method on the derived type.
 
    ReferenceT operator*() const {
 
      return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
 
    }
 
 
 
  private:
 
    iterator(BaseT owner, ptrdiff_t curIndex)
 
        : iterator::indexed_accessor_iterator(owner, curIndex) {}
 
 
 
    /// Allow access to the constructor.
 
    friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
 
                                       ReferenceT>;
 
  };
 
 
 
  indexed_accessor_range_base(iterator begin, iterator end)
 
      : base(offset_base(begin.getBase(), begin.getIndex())),
 
        count(end.getIndex() - begin.getIndex()) {}
 
  indexed_accessor_range_base(const iterator_range<iterator> &range)
 
      : indexed_accessor_range_base(range.begin(), range.end()) {}
 
  indexed_accessor_range_base(BaseT base, ptrdiff_t count)
 
      : base(base), count(count) {}
 
 
 
  iterator begin() const { return iterator(base, 0); }
 
  iterator end() const { return iterator(base, count); }
 
  ReferenceT operator[](size_t Index) const {
 
    assert(Index < size() && "invalid index for value range");
 
    return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index));
 
  }
 
  ReferenceT front() const {
 
    assert(!empty() && "expected non-empty range");
 
    return (*this)[0];
 
  }
 
  ReferenceT back() const {
 
    assert(!empty() && "expected non-empty range");
 
    return (*this)[size() - 1];
 
  }
 
 
 
  /// Compare this range with another.
 
  template <typename OtherT>
 
  friend bool operator==(const indexed_accessor_range_base &lhs,
 
                         const OtherT &rhs) {
 
    return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
 
  }
 
  template <typename OtherT>
 
  friend bool operator!=(const indexed_accessor_range_base &lhs,
 
                         const OtherT &rhs) {
 
    return !(lhs == rhs);
 
  }
 
 
 
  /// Return the size of this range.
 
  size_t size() const { return count; }
 
 
 
  /// Return if the range is empty.
 
  bool empty() const { return size() == 0; }
 
 
 
  /// Drop the first N elements, and keep M elements.
 
  DerivedT slice(size_t n, size_t m) const {
 
    assert(n + m <= size() && "invalid size specifiers");
 
    return DerivedT(offset_base(base, n), m);
 
  }
 
 
 
  /// Drop the first n elements.
 
  DerivedT drop_front(size_t n = 1) const {
 
    assert(size() >= n && "Dropping more elements than exist");
 
    return slice(n, size() - n);
 
  }
 
  /// Drop the last n elements.
 
  DerivedT drop_back(size_t n = 1) const {
 
    assert(size() >= n && "Dropping more elements than exist");
 
    return DerivedT(base, size() - n);
 
  }
 
 
 
  /// Take the first n elements.
 
  DerivedT take_front(size_t n = 1) const {
 
    return n < size() ? drop_back(size() - n)
 
                      : static_cast<const DerivedT &>(*this);
 
  }
 
 
 
  /// Take the last n elements.
 
  DerivedT take_back(size_t n = 1) const {
 
    return n < size() ? drop_front(size() - n)
 
                      : static_cast<const DerivedT &>(*this);
 
  }
 
 
 
  /// Allow conversion to any type accepting an iterator_range.
 
  template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
 
                                 RangeT, iterator_range<iterator>>::value>>
 
  operator RangeT() const {
 
    return RangeT(iterator_range<iterator>(*this));
 
  }
 
 
 
  /// Returns the base of this range.
 
  const BaseT &getBase() const { return base; }
 
 
 
private:
 
  /// Offset the given base by the given amount.
 
  static BaseT offset_base(const BaseT &base, size_t n) {
 
    return n == 0 ? base : DerivedT::offset_base(base, n);
 
  }
 
 
 
protected:
 
  indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
 
  indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
 
  indexed_accessor_range_base &
 
  operator=(const indexed_accessor_range_base &) = default;
 
 
 
  /// The base that owns the provided range of values.
 
  BaseT base;
 
  /// The size from the owning range.
 
  ptrdiff_t count;
 
};
 
} // end namespace detail
 
 
 
/// This class provides an implementation of a range of
 
/// indexed_accessor_iterators where the base is not indexable. Ranges with
 
/// bases that are offsetable should derive from indexed_accessor_range_base
 
/// instead. Derived range classes are expected to implement the following
 
/// static method:
 
///   * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
 
///     - Dereference an iterator pointing to a parent base at the given index.
 
template <typename DerivedT, typename BaseT, typename T,
 
          typename PointerT = T *, typename ReferenceT = T &>
 
class indexed_accessor_range
 
    : public detail::indexed_accessor_range_base<
 
          DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
 
public:
 
  indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
 
      : detail::indexed_accessor_range_base<
 
            DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
 
            std::make_pair(base, startIndex), count) {}
 
  using detail::indexed_accessor_range_base<
 
      DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
 
      ReferenceT>::indexed_accessor_range_base;
 
 
 
  /// Returns the current base of the range.
 
  const BaseT &getBase() const { return this->base.first; }
 
 
 
  /// Returns the current start index of the range.
 
  ptrdiff_t getStartIndex() const { return this->base.second; }
 
 
 
  /// See `detail::indexed_accessor_range_base` for details.
 
  static std::pair<BaseT, ptrdiff_t>
 
  offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
 
    // We encode the internal base as a pair of the derived base and a start
 
    // index into the derived base.
 
    return std::make_pair(base.first, base.second + index);
 
  }
 
  /// See `detail::indexed_accessor_range_base` for details.
 
  static ReferenceT
 
  dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
 
                       ptrdiff_t index) {
 
    return DerivedT::dereference(base.first, base.second + index);
 
  }
 
};
 
 
 
namespace detail {
 
/// Return a reference to the first or second member of a reference. Otherwise,
 
/// return a copy of the member of a temporary.
 
///
 
/// When passing a range whose iterators return values instead of references,
 
/// the reference must be dropped from `decltype((elt.first))`, which will
 
/// always be a reference, to avoid returning a reference to a temporary.
 
template <typename EltTy, typename FirstTy> class first_or_second_type {
 
public:
 
  using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy,
 
                                  std::remove_reference_t<FirstTy>>;
 
};
 
} // end namespace detail
 
 
 
/// Given a container of pairs, return a range over the first elements.
 
template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
 
  using EltTy = decltype((*std::begin(c)));
 
  return llvm::map_range(std::forward<ContainerTy>(c),
 
                         [](EltTy elt) -> typename detail::first_or_second_type<
 
                                           EltTy, decltype((elt.first))>::type {
 
                           return elt.first;
 
                         });
 
}
 
 
 
/// Given a container of pairs, return a range over the second elements.
 
template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
 
  using EltTy = decltype((*std::begin(c)));
 
  return llvm::map_range(
 
      std::forward<ContainerTy>(c),
 
      [](EltTy elt) ->
 
      typename detail::first_or_second_type<EltTy,
 
                                            decltype((elt.second))>::type {
 
        return elt.second;
 
      });
 
}
 
 
 
//===----------------------------------------------------------------------===//
 
//     Extra additions to <utility>
 
//===----------------------------------------------------------------------===//
 
 
 
/// Function object to check whether the first component of a std::pair
 
/// compares less than the first component of another std::pair.
 
struct less_first {
 
  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
 
    return std::less<>()(lhs.first, rhs.first);
 
  }
 
};
 
 
 
/// Function object to check whether the second component of a std::pair
 
/// compares less than the second component of another std::pair.
 
struct less_second {
 
  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
 
    return std::less<>()(lhs.second, rhs.second);
 
  }
 
};
 
 
 
/// \brief Function object to apply a binary function to the first component of
 
/// a std::pair.
 
template<typename FuncTy>
 
struct on_first {
 
  FuncTy func;
 
 
 
  template <typename T>
 
  decltype(auto) operator()(const T &lhs, const T &rhs) const {
 
    return func(lhs.first, rhs.first);
 
  }
 
};
 
 
 
/// Utility type to build an inheritance chain that makes it easy to rank
 
/// overload candidates.
 
template <int N> struct rank : rank<N - 1> {};
 
template <> struct rank<0> {};
 
 
 
/// traits class for checking whether type T is one of any of the given
 
/// types in the variadic list.
 
template <typename T, typename... Ts>
 
using is_one_of = std::disjunction<std::is_same<T, Ts>...>;
 
 
 
/// traits class for checking whether type T is a base class for all
 
///  the given types in the variadic list.
 
template <typename T, typename... Ts>
 
using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>;
 
 
 
namespace detail {
 
template <typename... Ts> struct Visitor;
 
 
 
template <typename HeadT, typename... TailTs>
 
struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> {
 
  explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail)
 
      : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)),
 
        Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {}
 
  using remove_cvref_t<HeadT>::operator();
 
  using Visitor<TailTs...>::operator();
 
};
 
 
 
template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> {
 
  explicit constexpr Visitor(HeadT &&Head)
 
      : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {}
 
  using remove_cvref_t<HeadT>::operator();
 
};
 
} // namespace detail
 
 
 
/// Returns an opaquely-typed Callable object whose operator() overload set is
 
/// the sum of the operator() overload sets of each CallableT in CallableTs.
 
///
 
/// The type of the returned object derives from each CallableT in CallableTs.
 
/// The returned object is constructed by invoking the appropriate copy or move
 
/// constructor of each CallableT, as selected by overload resolution on the
 
/// corresponding argument to makeVisitor.
 
///
 
/// Example:
 
///
 
/// \code
 
/// auto visitor = makeVisitor([](auto) { return "unhandled type"; },
 
///                            [](int i) { return "int"; },
 
///                            [](std::string s) { return "str"; });
 
/// auto a = visitor(42);    // `a` is now "int".
 
/// auto b = visitor("foo"); // `b` is now "str".
 
/// auto c = visitor(3.14f); // `c` is now "unhandled type".
 
/// \endcode
 
///
 
/// Example of making a visitor with a lambda which captures a move-only type:
 
///
 
/// \code
 
/// std::unique_ptr<FooHandler> FH = /* ... */;
 
/// auto visitor = makeVisitor(
 
///     [FH{std::move(FH)}](Foo F) { return FH->handle(F); },
 
///     [](int i) { return i; },
 
///     [](std::string s) { return atoi(s); });
 
/// \endcode
 
template <typename... CallableTs>
 
constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) {
 
  return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...);
 
}
 
 
 
//===----------------------------------------------------------------------===//
 
//     Extra additions to <algorithm>
 
//===----------------------------------------------------------------------===//
 
 
 
// We have a copy here so that LLVM behaves the same when using different
 
// standard libraries.
 
template <class Iterator, class RNG>
 
void shuffle(Iterator first, Iterator last, RNG &&g) {
 
  // It would be better to use a std::uniform_int_distribution,
 
  // but that would be stdlib dependent.
 
  typedef
 
      typename std::iterator_traits<Iterator>::difference_type difference_type;
 
  for (auto size = last - first; size > 1; ++first, (void)--size) {
 
    difference_type offset = g() % size;
 
    // Avoid self-assignment due to incorrect assertions in libstdc++
 
    // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828).
 
    if (offset != difference_type(0))
 
      std::iter_swap(first, first + offset);
 
  }
 
}
 
 
 
/// Adapt std::less<T> for array_pod_sort.
 
template<typename T>
 
inline int array_pod_sort_comparator(const void *P1, const void *P2) {
 
  if (std::less<T>()(*reinterpret_cast<const T*>(P1),
 
                     *reinterpret_cast<const T*>(P2)))
 
    return -1;
 
  if (std::less<T>()(*reinterpret_cast<const T*>(P2),
 
                     *reinterpret_cast<const T*>(P1)))
 
    return 1;
 
  return 0;
 
}
 
 
 
/// get_array_pod_sort_comparator - This is an internal helper function used to
 
/// get type deduction of T right.
 
template<typename T>
 
inline int (*get_array_pod_sort_comparator(const T &))
 
             (const void*, const void*) {
 
  return array_pod_sort_comparator<T>;
 
}
 
 
 
#ifdef EXPENSIVE_CHECKS
 
namespace detail {
 
 
 
inline unsigned presortShuffleEntropy() {
 
  static unsigned Result(std::random_device{}());
 
  return Result;
 
}
 
 
 
template <class IteratorTy>
 
inline void presortShuffle(IteratorTy Start, IteratorTy End) {
 
  std::mt19937 Generator(presortShuffleEntropy());
 
  llvm::shuffle(Start, End, Generator);
 
}
 
 
 
} // end namespace detail
 
#endif
 
 
 
/// array_pod_sort - This sorts an array with the specified start and end
 
/// extent.  This is just like std::sort, except that it calls qsort instead of
 
/// using an inlined template.  qsort is slightly slower than std::sort, but
 
/// most sorts are not performance critical in LLVM and std::sort has to be
 
/// template instantiated for each type, leading to significant measured code
 
/// bloat.  This function should generally be used instead of std::sort where
 
/// possible.
 
///
 
/// This function assumes that you have simple POD-like types that can be
 
/// compared with std::less and can be moved with memcpy.  If this isn't true,
 
/// you should use std::sort.
 
///
 
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
 
/// default to std::less.
 
template<class IteratorTy>
 
inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
 
  // Don't inefficiently call qsort with one element or trigger undefined
 
  // behavior with an empty sequence.
 
  auto NElts = End - Start;
 
  if (NElts <= 1) return;
 
#ifdef EXPENSIVE_CHECKS
 
  detail::presortShuffle<IteratorTy>(Start, End);
 
#endif
 
  qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
 
}
 
 
 
template <class IteratorTy>
 
inline void array_pod_sort(
 
    IteratorTy Start, IteratorTy End,
 
    int (*Compare)(
 
        const typename std::iterator_traits<IteratorTy>::value_type *,
 
        const typename std::iterator_traits<IteratorTy>::value_type *)) {
 
  // Don't inefficiently call qsort with one element or trigger undefined
 
  // behavior with an empty sequence.
 
  auto NElts = End - Start;
 
  if (NElts <= 1) return;
 
#ifdef EXPENSIVE_CHECKS
 
  detail::presortShuffle<IteratorTy>(Start, End);
 
#endif
 
  qsort(&*Start, NElts, sizeof(*Start),
 
        reinterpret_cast<int (*)(const void *, const void *)>(Compare));
 
}
 
 
 
namespace detail {
 
template <typename T>
 
// We can use qsort if the iterator type is a pointer and the underlying value
 
// is trivially copyable.
 
using sort_trivially_copyable = std::conjunction<
 
    std::is_pointer<T>,
 
    std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>;
 
} // namespace detail
 
 
 
// Provide wrappers to std::sort which shuffle the elements before sorting
 
// to help uncover non-deterministic behavior (PR35135).
 
template <typename IteratorTy>
 
inline void sort(IteratorTy Start, IteratorTy End) {
 
  if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) {
 
    // Forward trivially copyable types to array_pod_sort. This avoids a large
 
    // amount of code bloat for a minor performance hit.
 
    array_pod_sort(Start, End);
 
  } else {
 
#ifdef EXPENSIVE_CHECKS
 
    detail::presortShuffle<IteratorTy>(Start, End);
 
#endif
 
    std::sort(Start, End);
 
  }
 
}
 
 
 
template <typename Container> inline void sort(Container &&C) {
 
  llvm::sort(adl_begin(C), adl_end(C));
 
}
 
 
 
template <typename IteratorTy, typename Compare>
 
inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
 
#ifdef EXPENSIVE_CHECKS
 
  detail::presortShuffle<IteratorTy>(Start, End);
 
#endif
 
  std::sort(Start, End, Comp);
 
}
 
 
 
template <typename Container, typename Compare>
 
inline void sort(Container &&C, Compare Comp) {
 
  llvm::sort(adl_begin(C), adl_end(C), Comp);
 
}
 
 
 
/// Get the size of a range. This is a wrapper function around std::distance
 
/// which is only enabled when the operation is O(1).
 
template <typename R>
 
auto size(R &&Range,
 
          std::enable_if_t<
 
              std::is_base_of<std::random_access_iterator_tag,
 
                              typename std::iterator_traits<decltype(
 
                                  Range.begin())>::iterator_category>::value,
 
              void> * = nullptr) {
 
  return std::distance(Range.begin(), Range.end());
 
}
 
 
 
/// Provide wrappers to std::for_each which take ranges instead of having to
 
/// pass begin/end explicitly.
 
template <typename R, typename UnaryFunction>
 
UnaryFunction for_each(R &&Range, UnaryFunction F) {
 
  return std::for_each(adl_begin(Range), adl_end(Range), F);
 
}
 
 
 
/// Provide wrappers to std::all_of which take ranges instead of having to pass
 
/// begin/end explicitly.
 
template <typename R, typename UnaryPredicate>
 
bool all_of(R &&Range, UnaryPredicate P) {
 
  return std::all_of(adl_begin(Range), adl_end(Range), P);
 
}
 
 
 
/// Provide wrappers to std::any_of which take ranges instead of having to pass
 
/// begin/end explicitly.
 
template <typename R, typename UnaryPredicate>
 
bool any_of(R &&Range, UnaryPredicate P) {
 
  return std::any_of(adl_begin(Range), adl_end(Range), P);
 
}
 
 
 
/// Provide wrappers to std::none_of which take ranges instead of having to pass
 
/// begin/end explicitly.
 
template <typename R, typename UnaryPredicate>
 
bool none_of(R &&Range, UnaryPredicate P) {
 
  return std::none_of(adl_begin(Range), adl_end(Range), P);
 
}
 
 
 
/// Provide wrappers to std::find which take ranges instead of having to pass
 
/// begin/end explicitly.
 
template <typename R, typename T> auto find(R &&Range, const T &Val) {
 
  return std::find(adl_begin(Range), adl_end(Range), Val);
 
}
 
 
 
/// Provide wrappers to std::find_if which take ranges instead of having to pass
 
/// begin/end explicitly.
 
template <typename R, typename UnaryPredicate>
 
auto find_if(R &&Range, UnaryPredicate P) {
 
  return std::find_if(adl_begin(Range), adl_end(Range), P);
 
}
 
 
 
template <typename R, typename UnaryPredicate>
 
auto find_if_not(R &&Range, UnaryPredicate P) {
 
  return std::find_if_not(adl_begin(Range), adl_end(Range), P);
 
}
 
 
 
/// Provide wrappers to std::remove_if which take ranges instead of having to
 
/// pass begin/end explicitly.
 
template <typename R, typename UnaryPredicate>
 
auto remove_if(R &&Range, UnaryPredicate P) {
 
  return std::remove_if(adl_begin(Range), adl_end(Range), P);
 
}
 
 
 
/// Provide wrappers to std::copy_if which take ranges instead of having to
 
/// pass begin/end explicitly.
 
template <typename R, typename OutputIt, typename UnaryPredicate>
 
OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
 
  return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
 
}
 
 
 
/// Return the single value in \p Range that satisfies
 
/// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr
 
/// when no values or multiple values were found.
 
/// When \p AllowRepeats is true, multiple values that compare equal
 
/// are allowed.
 
template <typename T, typename R, typename Predicate>
 
T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) {
 
  T *RC = nullptr;
 
  for (auto *A : Range) {
 
    if (T *PRC = P(A, AllowRepeats)) {
 
      if (RC) {
 
        if (!AllowRepeats || PRC != RC)
 
          return nullptr;
 
      } else
 
        RC = PRC;
 
    }
 
  }
 
  return RC;
 
}
 
 
 
/// Return a pair consisting of the single value in \p Range that satisfies
 
/// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning
 
/// nullptr when no values or multiple values were found, and a bool indicating
 
/// whether multiple values were found to cause the nullptr.
 
/// When \p AllowRepeats is true, multiple values that compare equal are
 
/// allowed.  The predicate \p P returns a pair<T *, bool> where T is the
 
/// singleton while the bool indicates whether multiples have already been
 
/// found.  It is expected that first will be nullptr when second is true.
 
/// This allows using find_singleton_nested within the predicate \P.
 
template <typename T, typename R, typename Predicate>
 
std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P,
 
                                           bool AllowRepeats = false) {
 
  T *RC = nullptr;
 
  for (auto *A : Range) {
 
    std::pair<T *, bool> PRC = P(A, AllowRepeats);
 
    if (PRC.second) {
 
      assert(PRC.first == nullptr &&
 
             "Inconsistent return values in find_singleton_nested.");
 
      return PRC;
 
    }
 
    if (PRC.first) {
 
      if (RC) {
 
        if (!AllowRepeats || PRC.first != RC)
 
          return {nullptr, true};
 
      } else
 
        RC = PRC.first;
 
    }
 
  }
 
  return {RC, false};
 
}
 
 
 
template <typename R, typename OutputIt>
 
OutputIt copy(R &&Range, OutputIt Out) {
 
  return std::copy(adl_begin(Range), adl_end(Range), Out);
 
}
 
 
 
/// Provide wrappers to std::replace_copy_if which take ranges instead of having
 
/// to pass begin/end explicitly.
 
template <typename R, typename OutputIt, typename UnaryPredicate, typename T>
 
OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P,
 
                         const T &NewValue) {
 
  return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P,
 
                              NewValue);
 
}
 
 
 
/// Provide wrappers to std::replace_copy which take ranges instead of having to
 
/// pass begin/end explicitly.
 
template <typename R, typename OutputIt, typename T>
 
OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue,
 
                      const T &NewValue) {
 
  return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue,
 
                           NewValue);
 
}
 
 
 
/// Provide wrappers to std::move which take ranges instead of having to
 
/// pass begin/end explicitly.
 
template <typename R, typename OutputIt>
 
OutputIt move(R &&Range, OutputIt Out) {
 
  return std::move(adl_begin(Range), adl_end(Range), Out);
 
}
 
 
 
/// Wrapper function around std::find to detect if an element exists
 
/// in a container.
 
template <typename R, typename E>
 
bool is_contained(R &&Range, const E &Element) {
 
  return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
 
}
 
 
 
template <typename T>
 
constexpr bool is_contained(std::initializer_list<T> Set, T Value) {
 
  // TODO: Use std::find when we switch to C++20.
 
  for (T V : Set)
 
    if (V == Value)
 
      return true;
 
  return false;
 
}
 
 
 
/// Wrapper function around std::is_sorted to check if elements in a range \p R
 
/// are sorted with respect to a comparator \p C.
 
template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
 
  return std::is_sorted(adl_begin(Range), adl_end(Range), C);
 
}
 
 
 
/// Wrapper function around std::is_sorted to check if elements in a range \p R
 
/// are sorted in non-descending order.
 
template <typename R> bool is_sorted(R &&Range) {
 
  return std::is_sorted(adl_begin(Range), adl_end(Range));
 
}
 
 
 
/// Wrapper function around std::count to count the number of times an element
 
/// \p Element occurs in the given range \p Range.
 
template <typename R, typename E> auto count(R &&Range, const E &Element) {
 
  return std::count(adl_begin(Range), adl_end(Range), Element);
 
}
 
 
 
/// Wrapper function around std::count_if to count the number of times an
 
/// element satisfying a given predicate occurs in a range.
 
template <typename R, typename UnaryPredicate>
 
auto count_if(R &&Range, UnaryPredicate P) {
 
  return std::count_if(adl_begin(Range), adl_end(Range), P);
 
}
 
 
 
/// Wrapper function around std::transform to apply a function to a range and
 
/// store the result elsewhere.
 
template <typename R, typename OutputIt, typename UnaryFunction>
 
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) {
 
  return std::transform(adl_begin(Range), adl_end(Range), d_first, F);
 
}
 
 
 
/// Provide wrappers to std::partition which take ranges instead of having to
 
/// pass begin/end explicitly.
 
template <typename R, typename UnaryPredicate>
 
auto partition(R &&Range, UnaryPredicate P) {
 
  return std::partition(adl_begin(Range), adl_end(Range), P);
 
}
 
 
 
/// Provide wrappers to std::lower_bound which take ranges instead of having to
 
/// pass begin/end explicitly.
 
template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
 
  return std::lower_bound(adl_begin(Range), adl_end(Range),
 
                          std::forward<T>(Value));
 
}
 
 
 
template <typename R, typename T, typename Compare>
 
auto lower_bound(R &&Range, T &&Value, Compare C) {
 
  return std::lower_bound(adl_begin(Range), adl_end(Range),
 
                          std::forward<T>(Value), C);
 
}
 
 
 
/// Provide wrappers to std::upper_bound which take ranges instead of having to
 
/// pass begin/end explicitly.
 
template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
 
  return std::upper_bound(adl_begin(Range), adl_end(Range),
 
                          std::forward<T>(Value));
 
}
 
 
 
template <typename R, typename T, typename Compare>
 
auto upper_bound(R &&Range, T &&Value, Compare C) {
 
  return std::upper_bound(adl_begin(Range), adl_end(Range),
 
                          std::forward<T>(Value), C);
 
}
 
 
 
template <typename R>
 
void stable_sort(R &&Range) {
 
  std::stable_sort(adl_begin(Range), adl_end(Range));
 
}
 
 
 
template <typename R, typename Compare>
 
void stable_sort(R &&Range, Compare C) {
 
  std::stable_sort(adl_begin(Range), adl_end(Range), C);
 
}
 
 
 
/// Binary search for the first iterator in a range where a predicate is false.
 
/// Requires that C is always true below some limit, and always false above it.
 
template <typename R, typename Predicate,
 
          typename Val = decltype(*adl_begin(std::declval<R>()))>
 
auto partition_point(R &&Range, Predicate P) {
 
  return std::partition_point(adl_begin(Range), adl_end(Range), P);
 
}
 
 
 
template<typename Range, typename Predicate>
 
auto unique(Range &&R, Predicate P) {
 
  return std::unique(adl_begin(R), adl_end(R), P);
 
}
 
 
 
/// Wrapper function around std::equal to detect if pair-wise elements between
 
/// two ranges are the same.
 
template <typename L, typename R> bool equal(L &&LRange, R &&RRange) {
 
  return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange),
 
                    adl_end(RRange));
 
}
 
 
 
/// Returns true if all elements in Range are equal or when the Range is empty.
 
template <typename R> bool all_equal(R &&Range) {
 
  auto Begin = adl_begin(Range);
 
  auto End = adl_end(Range);
 
  return Begin == End || std::equal(Begin + 1, End, Begin);
 
}
 
 
 
/// Returns true if all Values in the initializer lists are equal or the list
 
// is empty.
 
template <typename T> bool all_equal(std::initializer_list<T> Values) {
 
  return all_equal<std::initializer_list<T>>(std::move(Values));
 
}
 
 
 
/// Provide a container algorithm similar to C++ Library Fundamentals v2's
 
/// `erase_if` which is equivalent to:
 
///
 
///   C.erase(remove_if(C, pred), C.end());
 
///
 
/// This version works for any container with an erase method call accepting
 
/// two iterators.
 
template <typename Container, typename UnaryPredicate>
 
void erase_if(Container &C, UnaryPredicate P) {
 
  C.erase(remove_if(C, P), C.end());
 
}
 
 
 
/// Wrapper function to remove a value from a container:
 
///
 
/// C.erase(remove(C.begin(), C.end(), V), C.end());
 
template <typename Container, typename ValueType>
 
void erase_value(Container &C, ValueType V) {
 
  C.erase(std::remove(C.begin(), C.end(), V), C.end());
 
}
 
 
 
/// Wrapper function to append a range to a container.
 
///
 
/// C.insert(C.end(), R.begin(), R.end());
 
template <typename Container, typename Range>
 
inline void append_range(Container &C, Range &&R) {
 
  C.insert(C.end(), R.begin(), R.end());
 
}
 
 
 
/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
 
/// the range [ValIt, ValEnd) (which is not from the same container).
 
template<typename Container, typename RandomAccessIterator>
 
void replace(Container &Cont, typename Container::iterator ContIt,
 
             typename Container::iterator ContEnd, RandomAccessIterator ValIt,
 
             RandomAccessIterator ValEnd) {
 
  while (true) {
 
    if (ValIt == ValEnd) {
 
      Cont.erase(ContIt, ContEnd);
 
      return;
 
    } else if (ContIt == ContEnd) {
 
      Cont.insert(ContIt, ValIt, ValEnd);
 
      return;
 
    }
 
    *ContIt++ = *ValIt++;
 
  }
 
}
 
 
 
/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
 
/// the range R.
 
template<typename Container, typename Range = std::initializer_list<
 
                                 typename Container::value_type>>
 
void replace(Container &Cont, typename Container::iterator ContIt,
 
             typename Container::iterator ContEnd, Range R) {
 
  replace(Cont, ContIt, ContEnd, R.begin(), R.end());
 
}
 
 
 
/// An STL-style algorithm similar to std::for_each that applies a second
 
/// functor between every pair of elements.
 
///
 
/// This provides the control flow logic to, for example, print a
 
/// comma-separated list:
 
/// \code
 
///   interleave(names.begin(), names.end(),
 
///              [&](StringRef name) { os << name; },
 
///              [&] { os << ", "; });
 
/// \endcode
 
template <typename ForwardIterator, typename UnaryFunctor,
 
          typename NullaryFunctor,
 
          typename = std::enable_if_t<
 
              !std::is_constructible<StringRef, UnaryFunctor>::value &&
 
              !std::is_constructible<StringRef, NullaryFunctor>::value>>
 
inline void interleave(ForwardIterator begin, ForwardIterator end,
 
                       UnaryFunctor each_fn, NullaryFunctor between_fn) {
 
  if (begin == end)
 
    return;
 
  each_fn(*begin);
 
  ++begin;
 
  for (; begin != end; ++begin) {
 
    between_fn();
 
    each_fn(*begin);
 
  }
 
}
 
 
 
template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
 
          typename = std::enable_if_t<
 
              !std::is_constructible<StringRef, UnaryFunctor>::value &&
 
              !std::is_constructible<StringRef, NullaryFunctor>::value>>
 
inline void interleave(const Container &c, UnaryFunctor each_fn,
 
                       NullaryFunctor between_fn) {
 
  interleave(c.begin(), c.end(), each_fn, between_fn);
 
}
 
 
 
/// Overload of interleave for the common case of string separator.
 
template <typename Container, typename UnaryFunctor, typename StreamT,
 
          typename T = detail::ValueOfRange<Container>>
 
inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
 
                       const StringRef &separator) {
 
  interleave(c.begin(), c.end(), each_fn, [&] { os << separator; });
 
}
 
template <typename Container, typename StreamT,
 
          typename T = detail::ValueOfRange<Container>>
 
inline void interleave(const Container &c, StreamT &os,
 
                       const StringRef &separator) {
 
  interleave(
 
      c, os, [&](const T &a) { os << a; }, separator);
 
}
 
 
 
template <typename Container, typename UnaryFunctor, typename StreamT,
 
          typename T = detail::ValueOfRange<Container>>
 
inline void interleaveComma(const Container &c, StreamT &os,
 
                            UnaryFunctor each_fn) {
 
  interleave(c, os, each_fn, ", ");
 
}
 
template <typename Container, typename StreamT,
 
          typename T = detail::ValueOfRange<Container>>
 
inline void interleaveComma(const Container &c, StreamT &os) {
 
  interleaveComma(c, os, [&](const T &a) { os << a; });
 
}
 
 
 
//===----------------------------------------------------------------------===//
 
//     Extra additions to <memory>
 
//===----------------------------------------------------------------------===//
 
 
 
struct FreeDeleter {
 
  void operator()(void* v) {
 
    ::free(v);
 
  }
 
};
 
 
 
template<typename First, typename Second>
 
struct pair_hash {
 
  size_t operator()(const std::pair<First, Second> &P) const {
 
    return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
 
  }
 
};
 
 
 
/// Binary functor that adapts to any other binary functor after dereferencing
 
/// operands.
 
template <typename T> struct deref {
 
  T func;
 
 
 
  // Could be further improved to cope with non-derivable functors and
 
  // non-binary functors (should be a variadic template member function
 
  // operator()).
 
  template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
 
    assert(lhs);
 
    assert(rhs);
 
    return func(*lhs, *rhs);
 
  }
 
};
 
 
 
namespace detail {
 
 
 
template <typename R> class enumerator_iter;
 
 
 
template <typename R> struct result_pair {
 
  using value_reference =
 
      typename std::iterator_traits<IterOfRange<R>>::reference;
 
 
 
  friend class enumerator_iter<R>;
 
 
 
  result_pair() = default;
 
  result_pair(std::size_t Index, IterOfRange<R> Iter)
 
      : Index(Index), Iter(Iter) {}
 
 
 
  result_pair(const result_pair<R> &Other)
 
      : Index(Other.Index), Iter(Other.Iter) {}
 
  result_pair &operator=(const result_pair &Other) {
 
    Index = Other.Index;
 
    Iter = Other.Iter;
 
    return *this;
 
  }
 
 
 
  std::size_t index() const { return Index; }
 
  value_reference value() const { return *Iter; }
 
 
 
private:
 
  std::size_t Index = std::numeric_limits<std::size_t>::max();
 
  IterOfRange<R> Iter;
 
};
 
 
 
template <std::size_t i, typename R>
 
decltype(auto) get(const result_pair<R> &Pair) {
 
  static_assert(i < 2);
 
  if constexpr (i == 0) {
 
    return Pair.index();
 
  } else {
 
    return Pair.value();
 
  }
 
}
 
 
 
template <typename R>
 
class enumerator_iter
 
    : public iterator_facade_base<enumerator_iter<R>, std::forward_iterator_tag,
 
                                  const result_pair<R>> {
 
  using result_type = result_pair<R>;
 
 
 
public:
 
  explicit enumerator_iter(IterOfRange<R> EndIter)
 
      : Result(std::numeric_limits<size_t>::max(), EndIter) {}
 
 
 
  enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
 
      : Result(Index, Iter) {}
 
 
 
  const result_type &operator*() const { return Result; }
 
 
 
  enumerator_iter &operator++() {
 
    assert(Result.Index != std::numeric_limits<size_t>::max());
 
    ++Result.Iter;
 
    ++Result.Index;
 
    return *this;
 
  }
 
 
 
  bool operator==(const enumerator_iter &RHS) const {
 
    // Don't compare indices here, only iterators.  It's possible for an end
 
    // iterator to have different indices depending on whether it was created
 
    // by calling std::end() versus incrementing a valid iterator.
 
    return Result.Iter == RHS.Result.Iter;
 
  }
 
 
 
  enumerator_iter(const enumerator_iter &Other) : Result(Other.Result) {}
 
  enumerator_iter &operator=(const enumerator_iter &Other) {
 
    Result = Other.Result;
 
    return *this;
 
  }
 
 
 
private:
 
  result_type Result;
 
};
 
 
 
template <typename R> class enumerator {
 
public:
 
  explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
 
 
 
  enumerator_iter<R> begin() {
 
    return enumerator_iter<R>(0, std::begin(TheRange));
 
  }
 
  enumerator_iter<R> begin() const {
 
    return enumerator_iter<R>(0, std::begin(TheRange));
 
  }
 
 
 
  enumerator_iter<R> end() {
 
    return enumerator_iter<R>(std::end(TheRange));
 
  }
 
  enumerator_iter<R> end() const {
 
    return enumerator_iter<R>(std::end(TheRange));
 
  }
 
 
 
private:
 
  R TheRange;
 
};
 
 
 
} // end namespace detail
 
 
 
/// Given an input range, returns a new range whose values are are pair (A,B)
 
/// such that A is the 0-based index of the item in the sequence, and B is
 
/// the value from the original sequence.  Example:
 
///
 
/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
 
/// for (auto X : enumerate(Items)) {
 
///   printf("Item %d - %c\n", X.index(), X.value());
 
/// }
 
///
 
/// or using structured bindings:
 
///
 
/// for (auto [Index, Value] : enumerate(Items)) {
 
///   printf("Item %d - %c\n", Index, Value);
 
/// }
 
///
 
/// Output:
 
///   Item 0 - A
 
///   Item 1 - B
 
///   Item 2 - C
 
///   Item 3 - D
 
///
 
template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
 
  return detail::enumerator<R>(std::forward<R>(TheRange));
 
}
 
 
 
namespace detail {
 
 
 
template <typename Predicate, typename... Args>
 
bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) {
 
  auto z = zip(args...);
 
  auto it = z.begin();
 
  auto end = z.end();
 
  while (it != end) {
 
    if (!std::apply([&](auto &&...args) { return P(args...); }, *it))
 
      return false;
 
    ++it;
 
  }
 
  return it.all_equals(end);
 
}
 
 
 
// Just an adaptor to switch the order of argument and have the predicate before
 
// the zipped inputs.
 
template <typename... ArgsThenPredicate, size_t... InputIndexes>
 
bool all_of_zip_predicate_last(
 
    std::tuple<ArgsThenPredicate...> argsThenPredicate,
 
    std::index_sequence<InputIndexes...>) {
 
  auto constexpr OutputIndex =
 
      std::tuple_size<decltype(argsThenPredicate)>::value - 1;
 
  return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate),
 
                             std::get<InputIndexes>(argsThenPredicate)...);
 
}
 
 
 
} // end namespace detail
 
 
 
/// Compare two zipped ranges using the provided predicate (as last argument).
 
/// Return true if all elements satisfy the predicate and false otherwise.
 
//  Return false if the zipped iterator aren't all at end (size mismatch).
 
template <typename... ArgsAndPredicate>
 
bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) {
 
  return detail::all_of_zip_predicate_last(
 
      std::forward_as_tuple(argsAndPredicate...),
 
      std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{});
 
}
 
 
 
/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
 
/// time. Not meant for use with random-access iterators.
 
/// Can optionally take a predicate to filter lazily some items.
 
template <typename IterTy,
 
          typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
 
bool hasNItems(
 
    IterTy &&Begin, IterTy &&End, unsigned N,
 
    Pred &&ShouldBeCounted =
 
        [](const decltype(*std::declval<IterTy>()) &) { return true; },
 
    std::enable_if_t<
 
        !std::is_base_of<std::random_access_iterator_tag,
 
                         typename std::iterator_traits<std::remove_reference_t<
 
                             decltype(Begin)>>::iterator_category>::value,
 
        void> * = nullptr) {
 
  for (; N; ++Begin) {
 
    if (Begin == End)
 
      return false; // Too few.
 
    N -= ShouldBeCounted(*Begin);
 
  }
 
  for (; Begin != End; ++Begin)
 
    if (ShouldBeCounted(*Begin))
 
      return false; // Too many.
 
  return true;
 
}
 
 
 
/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
 
/// time. Not meant for use with random-access iterators.
 
/// Can optionally take a predicate to lazily filter some items.
 
template <typename IterTy,
 
          typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
 
bool hasNItemsOrMore(
 
    IterTy &&Begin, IterTy &&End, unsigned N,
 
    Pred &&ShouldBeCounted =
 
        [](const decltype(*std::declval<IterTy>()) &) { return true; },
 
    std::enable_if_t<
 
        !std::is_base_of<std::random_access_iterator_tag,
 
                         typename std::iterator_traits<std::remove_reference_t<
 
                             decltype(Begin)>>::iterator_category>::value,
 
        void> * = nullptr) {
 
  for (; N; ++Begin) {
 
    if (Begin == End)
 
      return false; // Too few.
 
    N -= ShouldBeCounted(*Begin);
 
  }
 
  return true;
 
}
 
 
 
/// Returns true if the sequence [Begin, End) has N or less items. Can
 
/// optionally take a predicate to lazily filter some items.
 
template <typename IterTy,
 
          typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
 
bool hasNItemsOrLess(
 
    IterTy &&Begin, IterTy &&End, unsigned N,
 
    Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
 
      return true;
 
    }) {
 
  assert(N != std::numeric_limits<unsigned>::max());
 
  return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
 
}
 
 
 
/// Returns true if the given container has exactly N items
 
template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
 
  return hasNItems(std::begin(C), std::end(C), N);
 
}
 
 
 
/// Returns true if the given container has N or more items
 
template <typename ContainerTy>
 
bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
 
  return hasNItemsOrMore(std::begin(C), std::end(C), N);
 
}
 
 
 
/// Returns true if the given container has N or less items
 
template <typename ContainerTy>
 
bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
 
  return hasNItemsOrLess(std::begin(C), std::end(C), N);
 
}
 
 
 
/// Returns a raw pointer that represents the same address as the argument.
 
///
 
/// This implementation can be removed once we move to C++20 where it's defined
 
/// as std::to_address().
 
///
 
/// The std::pointer_traits<>::to_address(p) variations of these overloads has
 
/// not been implemented.
 
template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
 
template <class T> constexpr T *to_address(T *P) { return P; }
 
 
 
} // end namespace llvm
 
 
 
namespace std {
 
template <typename R>
 
struct tuple_size<llvm::detail::result_pair<R>>
 
    : std::integral_constant<std::size_t, 2> {};
 
 
 
template <std::size_t i, typename R>
 
struct tuple_element<i, llvm::detail::result_pair<R>>
 
    : std::conditional<i == 0, std::size_t,
 
                       typename llvm::detail::result_pair<R>::value_reference> {
 
};
 
 
 
} // namespace std
 
 
 
#endif // LLVM_ADT_STLEXTRAS_H