//===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
/// \file
 
///
 
/// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
 
/// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
 
/// algorithm.
 
///
 
/// The SCC iterator has the important property that if a node in SCC S1 has an
 
/// edge to a node in SCC S2, then it visits S1 *after* S2.
 
///
 
/// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
 
/// This requires some simple wrappers and is not supported yet.)
 
///
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_ADT_SCCITERATOR_H
 
#define LLVM_ADT_SCCITERATOR_H
 
 
 
#include "llvm/ADT/DenseMap.h"
 
#include "llvm/ADT/GraphTraits.h"
 
#include "llvm/ADT/iterator.h"
 
#include <cassert>
 
#include <cstddef>
 
#include <iterator>
 
#include <queue>
 
#include <set>
 
#include <unordered_map>
 
#include <unordered_set>
 
#include <vector>
 
 
 
namespace llvm {
 
 
 
/// Enumerate the SCCs of a directed graph in reverse topological order
 
/// of the SCC DAG.
 
///
 
/// This is implemented using Tarjan's DFS algorithm using an internal stack to
 
/// build up a vector of nodes in a particular SCC. Note that it is a forward
 
/// iterator and thus you cannot backtrack or re-visit nodes.
 
template <class GraphT, class GT = GraphTraits<GraphT>>
 
class scc_iterator : public iterator_facade_base<
 
                         scc_iterator<GraphT, GT>, std::forward_iterator_tag,
 
                         const std::vector<typename GT::NodeRef>, ptrdiff_t> {
 
  using NodeRef = typename GT::NodeRef;
 
  using ChildItTy = typename GT::ChildIteratorType;
 
  using SccTy = std::vector<NodeRef>;
 
  using reference = typename scc_iterator::reference;
 
 
 
  /// Element of VisitStack during DFS.
 
  struct StackElement {
 
    NodeRef Node;         ///< The current node pointer.
 
    ChildItTy NextChild;  ///< The next child, modified inplace during DFS.
 
    unsigned MinVisited;  ///< Minimum uplink value of all children of Node.
 
 
 
    StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min)
 
        : Node(Node), NextChild(Child), MinVisited(Min) {}
 
 
 
    bool operator==(const StackElement &Other) const {
 
      return Node == Other.Node &&
 
             NextChild == Other.NextChild &&
 
             MinVisited == Other.MinVisited;
 
    }
 
  };
 
 
 
  /// The visit counters used to detect when a complete SCC is on the stack.
 
  /// visitNum is the global counter.
 
  ///
 
  /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
 
  unsigned visitNum;
 
  DenseMap<NodeRef, unsigned> nodeVisitNumbers;
 
 
 
  /// Stack holding nodes of the SCC.
 
  std::vector<NodeRef> SCCNodeStack;
 
 
 
  /// The current SCC, retrieved using operator*().
 
  SccTy CurrentSCC;
 
 
 
  /// DFS stack, Used to maintain the ordering.  The top contains the current
 
  /// node, the next child to visit, and the minimum uplink value of all child
 
  std::vector<StackElement> VisitStack;
 
 
 
  /// A single "visit" within the non-recursive DFS traversal.
 
  void DFSVisitOne(NodeRef N);
 
 
 
  /// The stack-based DFS traversal; defined below.
 
  void DFSVisitChildren();
 
 
 
  /// Compute the next SCC using the DFS traversal.
 
  void GetNextSCC();
 
 
 
  scc_iterator(NodeRef entryN) : visitNum(0) {
 
    DFSVisitOne(entryN);
 
    GetNextSCC();
 
  }
 
 
 
  /// End is when the DFS stack is empty.
 
  scc_iterator() = default;
 
 
 
public:
 
  static scc_iterator begin(const GraphT &G) {
 
    return scc_iterator(GT::getEntryNode(G));
 
  }
 
  static scc_iterator end(const GraphT &) { return scc_iterator(); }
 
 
 
  /// Direct loop termination test which is more efficient than
 
  /// comparison with \c end().
 
  bool isAtEnd() const {
 
    assert(!CurrentSCC.empty() || VisitStack.empty());
 
    return CurrentSCC.empty();
 
  }
 
 
 
  bool operator==(const scc_iterator &x) const {
 
    return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
 
  }
 
 
 
  scc_iterator &operator++() {
 
    GetNextSCC();
 
    return *this;
 
  }
 
 
 
  reference operator*() const {
 
    assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
 
    return CurrentSCC;
 
  }
 
 
 
  /// Test if the current SCC has a cycle.
 
  ///
 
  /// If the SCC has more than one node, this is trivially true.  If not, it may
 
  /// still contain a cycle if the node has an edge back to itself.
 
  bool hasCycle() const;
 
 
 
  /// This informs the \c scc_iterator that the specified \c Old node
 
  /// has been deleted, and \c New is to be used in its place.
 
  void ReplaceNode(NodeRef Old, NodeRef New) {
 
    assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
 
    // Do the assignment in two steps, in case 'New' is not yet in the map, and
 
    // inserting it causes the map to grow.
 
    auto tempVal = nodeVisitNumbers[Old];
 
    nodeVisitNumbers[New] = tempVal;
 
    nodeVisitNumbers.erase(Old);
 
  }
 
};
 
 
 
template <class GraphT, class GT>
 
void scc_iterator<GraphT, GT>::DFSVisitOne(NodeRef N) {
 
  ++visitNum;
 
  nodeVisitNumbers[N] = visitNum;
 
  SCCNodeStack.push_back(N);
 
  VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
 
#if 0 // Enable if needed when debugging.
 
  dbgs() << "TarjanSCC: Node " << N <<
 
        " : visitNum = " << visitNum << "\n";
 
#endif
 
}
 
 
 
template <class GraphT, class GT>
 
void scc_iterator<GraphT, GT>::DFSVisitChildren() {
 
  assert(!VisitStack.empty());
 
  while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
 
    // TOS has at least one more child so continue DFS
 
    NodeRef childN = *VisitStack.back().NextChild++;
 
    typename DenseMap<NodeRef, unsigned>::iterator Visited =
 
        nodeVisitNumbers.find(childN);
 
    if (Visited == nodeVisitNumbers.end()) {
 
      // this node has never been seen.
 
      DFSVisitOne(childN);
 
      continue;
 
    }
 
 
 
    unsigned childNum = Visited->second;
 
    if (VisitStack.back().MinVisited > childNum)
 
      VisitStack.back().MinVisited = childNum;
 
  }
 
}
 
 
 
template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
 
  CurrentSCC.clear(); // Prepare to compute the next SCC
 
  while (!VisitStack.empty()) {
 
    DFSVisitChildren();
 
 
 
    // Pop the leaf on top of the VisitStack.
 
    NodeRef visitingN = VisitStack.back().Node;
 
    unsigned minVisitNum = VisitStack.back().MinVisited;
 
    assert(VisitStack.back().NextChild == GT::child_end(visitingN));
 
    VisitStack.pop_back();
 
 
 
    // Propagate MinVisitNum to parent so we can detect the SCC starting node.
 
    if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
 
      VisitStack.back().MinVisited = minVisitNum;
 
 
 
#if 0 // Enable if needed when debugging.
 
    dbgs() << "TarjanSCC: Popped node " << visitingN <<
 
          " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
 
          nodeVisitNumbers[visitingN] << "\n";
 
#endif
 
 
 
    if (minVisitNum != nodeVisitNumbers[visitingN])
 
      continue;
 
 
 
    // A full SCC is on the SCCNodeStack!  It includes all nodes below
 
    // visitingN on the stack.  Copy those nodes to CurrentSCC,
 
    // reset their minVisit values, and return (this suspends
 
    // the DFS traversal till the next ++).
 
    do {
 
      CurrentSCC.push_back(SCCNodeStack.back());
 
      SCCNodeStack.pop_back();
 
      nodeVisitNumbers[CurrentSCC.back()] = ~0U;
 
    } while (CurrentSCC.back() != visitingN);
 
    return;
 
  }
 
}
 
 
 
template <class GraphT, class GT>
 
bool scc_iterator<GraphT, GT>::hasCycle() const {
 
    assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
 
    if (CurrentSCC.size() > 1)
 
      return true;
 
    NodeRef N = CurrentSCC.front();
 
    for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
 
         ++CI)
 
      if (*CI == N)
 
        return true;
 
    return false;
 
  }
 
 
 
/// Construct the begin iterator for a deduced graph type T.
 
template <class T> scc_iterator<T> scc_begin(const T &G) {
 
  return scc_iterator<T>::begin(G);
 
}
 
 
 
/// Construct the end iterator for a deduced graph type T.
 
template <class T> scc_iterator<T> scc_end(const T &G) {
 
  return scc_iterator<T>::end(G);
 
}
 
 
 
/// Sort the nodes of a directed SCC in the decreasing order of the edge
 
/// weights. The instantiating GraphT type should have weighted edge type
 
/// declared in its graph traits in order to use this iterator.
 
///
 
/// This is implemented using Kruskal's minimal spanning tree algorithm followed
 
/// by a BFS walk. First a maximum spanning tree (forest) is built based on all
 
/// edges within the SCC collection. Then a BFS walk is initiated on tree nodes
 
/// that do not have a predecessor. Finally, the BFS order computed is the
 
/// traversal order of the nodes of the SCC. Such order ensures that
 
/// high-weighted edges are visited first during the tranversal.
 
template <class GraphT, class GT = GraphTraits<GraphT>>
 
class scc_member_iterator {
 
  using NodeType = typename GT::NodeType;
 
  using EdgeType = typename GT::EdgeType;
 
  using NodesType = std::vector<NodeType *>;
 
 
 
  // Auxilary node information used during the MST calculation.
 
  struct NodeInfo {
 
    NodeInfo *Group = this;
 
    uint32_t Rank = 0;
 
    bool Visited = true;
 
  };
 
 
 
  // Find the root group of the node and compress the path from node to the
 
  // root.
 
  NodeInfo *find(NodeInfo *Node) {
 
    if (Node->Group != Node)
 
      Node->Group = find(Node->Group);
 
    return Node->Group;
 
  }
 
 
 
  // Union the source and target node into the same group and return true.
 
  // Returns false if they are already in the same group.
 
  bool unionGroups(const EdgeType *Edge) {
 
    NodeInfo *G1 = find(&NodeInfoMap[Edge->Source]);
 
    NodeInfo *G2 = find(&NodeInfoMap[Edge->Target]);
 
 
 
    // If the edge forms a cycle, do not add it to MST
 
    if (G1 == G2)
 
      return false;
 
 
 
    // Make the smaller rank tree a direct child or the root of high rank tree.
 
    if (G1->Rank < G1->Rank)
 
      G1->Group = G2;
 
    else {
 
      G2->Group = G1;
 
      // If the ranks are the same, increment root of one tree by one.
 
      if (G1->Rank == G2->Rank)
 
        G2->Rank++;
 
    }
 
    return true;
 
  }
 
 
 
  std::unordered_map<NodeType *, NodeInfo> NodeInfoMap;
 
  NodesType Nodes;
 
 
 
public:
 
  scc_member_iterator(const NodesType &InputNodes);
 
 
 
  NodesType &operator*() { return Nodes; }
 
};
 
 
 
template <class GraphT, class GT>
 
scc_member_iterator<GraphT, GT>::scc_member_iterator(
 
    const NodesType &InputNodes) {
 
  if (InputNodes.size() <= 1) {
 
    Nodes = InputNodes;
 
    return;
 
  }
 
 
 
  // Initialize auxilary node information.
 
  NodeInfoMap.clear();
 
  for (auto *Node : InputNodes) {
 
    // This is specifically used to construct a `NodeInfo` object in place. An
 
    // insert operation will involve a copy construction which invalidate the
 
    // initial value of the `Group` field which should be `this`.
 
    (void)NodeInfoMap[Node].Group;
 
  }
 
 
 
  // Sort edges by weights.
 
  struct EdgeComparer {
 
    bool operator()(const EdgeType *L, const EdgeType *R) const {
 
      return L->Weight > R->Weight;
 
    }
 
  };
 
 
 
  std::multiset<const EdgeType *, EdgeComparer> SortedEdges;
 
  for (auto *Node : InputNodes) {
 
    for (auto &Edge : Node->Edges) {
 
      if (NodeInfoMap.count(Edge.Target))
 
        SortedEdges.insert(&Edge);
 
    }
 
  }
 
 
 
  // Traverse all the edges and compute the Maximum Weight Spanning Tree
 
  // using Kruskal's algorithm.
 
  std::unordered_set<const EdgeType *> MSTEdges;
 
  for (auto *Edge : SortedEdges) {
 
    if (unionGroups(Edge))
 
      MSTEdges.insert(Edge);
 
  }
 
 
 
  // Do BFS on MST, starting from nodes that have no incoming edge. These nodes
 
  // are "roots" of the MST forest. This ensures that nodes are visited before
 
  // their decsendents are, thus ensures hot edges are processed before cold
 
  // edges, based on how MST is computed.
 
  for (const auto *Edge : MSTEdges)
 
    NodeInfoMap[Edge->Target].Visited = false;
 
 
 
  std::queue<NodeType *> Queue;
 
  // Initialze the queue with MST roots. Note that walking through SortedEdges
 
  // instead of NodeInfoMap ensures an ordered deterministic push.
 
  for (auto *Edge : SortedEdges) {
 
    if (NodeInfoMap[Edge->Source].Visited) {
 
      Queue.push(Edge->Source);
 
      NodeInfoMap[Edge->Source].Visited = false;
 
    }
 
  }
 
 
 
  while (!Queue.empty()) {
 
    auto *Node = Queue.front();
 
    Queue.pop();
 
    Nodes.push_back(Node);
 
    for (auto &Edge : Node->Edges) {
 
      if (MSTEdges.count(&Edge) && !NodeInfoMap[Edge.Target].Visited) {
 
        NodeInfoMap[Edge.Target].Visited = true;
 
        Queue.push(Edge.Target);
 
      }
 
    }
 
  }
 
 
 
  assert(InputNodes.size() == Nodes.size() && "missing nodes in MST");
 
  std::reverse(Nodes.begin(), Nodes.end());
 
}
 
} // end namespace llvm
 
 
 
#endif // LLVM_ADT_SCCITERATOR_H