//===- ASTMatchersInternal.h - Structural query framework -------*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
//  Implements the base layer of the matcher framework.
 
//
 
//  Matchers are methods that return a Matcher<T> which provides a method
 
//  Matches(...) which is a predicate on an AST node. The Matches method's
 
//  parameters define the context of the match, which allows matchers to recurse
 
//  or store the current node as bound to a specific string, so that it can be
 
//  retrieved later.
 
//
 
//  In general, matchers have two parts:
 
//  1. A function Matcher<T> MatcherName(<arguments>) which returns a Matcher<T>
 
//     based on the arguments and optionally on template type deduction based
 
//     on the arguments. Matcher<T>s form an implicit reverse hierarchy
 
//     to clang's AST class hierarchy, meaning that you can use a Matcher<Base>
 
//     everywhere a Matcher<Derived> is required.
 
//  2. An implementation of a class derived from MatcherInterface<T>.
 
//
 
//  The matcher functions are defined in ASTMatchers.h. To make it possible
 
//  to implement both the matcher function and the implementation of the matcher
 
//  interface in one place, ASTMatcherMacros.h defines macros that allow
 
//  implementing a matcher in a single place.
 
//
 
//  This file contains the base classes needed to construct the actual matchers.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CLANG_ASTMATCHERS_ASTMATCHERSINTERNAL_H
 
#define LLVM_CLANG_ASTMATCHERS_ASTMATCHERSINTERNAL_H
 
 
 
#include "clang/AST/ASTTypeTraits.h"
 
#include "clang/AST/Decl.h"
 
#include "clang/AST/DeclCXX.h"
 
#include "clang/AST/DeclFriend.h"
 
#include "clang/AST/DeclTemplate.h"
 
#include "clang/AST/Expr.h"
 
#include "clang/AST/ExprCXX.h"
 
#include "clang/AST/ExprObjC.h"
 
#include "clang/AST/NestedNameSpecifier.h"
 
#include "clang/AST/Stmt.h"
 
#include "clang/AST/TemplateName.h"
 
#include "clang/AST/Type.h"
 
#include "clang/AST/TypeLoc.h"
 
#include "clang/Basic/LLVM.h"
 
#include "clang/Basic/OperatorKinds.h"
 
#include "llvm/ADT/APFloat.h"
 
#include "llvm/ADT/ArrayRef.h"
 
#include "llvm/ADT/IntrusiveRefCntPtr.h"
 
#include "llvm/ADT/STLExtras.h"
 
#include "llvm/ADT/SmallVector.h"
 
#include "llvm/ADT/StringRef.h"
 
#include "llvm/ADT/iterator.h"
 
#include "llvm/Support/Casting.h"
 
#include "llvm/Support/ManagedStatic.h"
 
#include "llvm/Support/Regex.h"
 
#include <algorithm>
 
#include <cassert>
 
#include <cstddef>
 
#include <cstdint>
 
#include <map>
 
#include <memory>
 
#include <optional>
 
#include <string>
 
#include <tuple>
 
#include <type_traits>
 
#include <utility>
 
#include <vector>
 
 
 
namespace clang {
 
 
 
class ASTContext;
 
 
 
namespace ast_matchers {
 
 
 
class BoundNodes;
 
 
 
namespace internal {
 
 
 
/// A type-list implementation.
 
///
 
/// A "linked list" of types, accessible by using the ::head and ::tail
 
/// typedefs.
 
template <typename... Ts> struct TypeList {}; // Empty sentinel type list.
 
 
 
template <typename T1, typename... Ts> struct TypeList<T1, Ts...> {
 
  /// The first type on the list.
 
  using head = T1;
 
 
 
  /// A sublist with the tail. ie everything but the head.
 
  ///
 
  /// This type is used to do recursion. TypeList<>/EmptyTypeList indicates the
 
  /// end of the list.
 
  using tail = TypeList<Ts...>;
 
};
 
 
 
/// The empty type list.
 
using EmptyTypeList = TypeList<>;
 
 
 
/// Helper meta-function to determine if some type \c T is present or
 
///   a parent type in the list.
 
template <typename AnyTypeList, typename T> struct TypeListContainsSuperOf {
 
  static const bool value =
 
      std::is_base_of<typename AnyTypeList::head, T>::value ||
 
      TypeListContainsSuperOf<typename AnyTypeList::tail, T>::value;
 
};
 
template <typename T> struct TypeListContainsSuperOf<EmptyTypeList, T> {
 
  static const bool value = false;
 
};
 
 
 
/// Variadic function object.
 
///
 
/// Most of the functions below that use VariadicFunction could be implemented
 
/// using plain C++11 variadic functions, but the function object allows us to
 
/// capture it on the dynamic matcher registry.
 
template <typename ResultT, typename ArgT,
 
          ResultT (*Func)(ArrayRef<const ArgT *>)>
 
struct VariadicFunction {
 
  ResultT operator()() const { return Func(std::nullopt); }
 
 
 
  template <typename... ArgsT>
 
  ResultT operator()(const ArgT &Arg1, const ArgsT &... Args) const {
 
    return Execute(Arg1, static_cast<const ArgT &>(Args)...);
 
  }
 
 
 
  // We also allow calls with an already created array, in case the caller
 
  // already had it.
 
  ResultT operator()(ArrayRef<ArgT> Args) const {
 
    return Func(llvm::to_vector<8>(llvm::make_pointer_range(Args)));
 
  }
 
 
 
private:
 
  // Trampoline function to allow for implicit conversions to take place
 
  // before we make the array.
 
  template <typename... ArgsT> ResultT Execute(const ArgsT &... Args) const {
 
    const ArgT *const ArgsArray[] = {&Args...};
 
    return Func(ArrayRef<const ArgT *>(ArgsArray, sizeof...(ArgsT)));
 
  }
 
};
 
 
 
/// Unifies obtaining the underlying type of a regular node through
 
/// `getType` and a TypedefNameDecl node through `getUnderlyingType`.
 
inline QualType getUnderlyingType(const Expr &Node) { return Node.getType(); }
 
 
 
inline QualType getUnderlyingType(const ValueDecl &Node) {
 
  return Node.getType();
 
}
 
inline QualType getUnderlyingType(const TypedefNameDecl &Node) {
 
  return Node.getUnderlyingType();
 
}
 
inline QualType getUnderlyingType(const FriendDecl &Node) {
 
  if (const TypeSourceInfo *TSI = Node.getFriendType())
 
    return TSI->getType();
 
  return QualType();
 
}
 
inline QualType getUnderlyingType(const CXXBaseSpecifier &Node) {
 
  return Node.getType();
 
}
 
 
 
/// Unifies obtaining a `TypeSourceInfo` from different node types.
 
template <typename T,
 
          std::enable_if_t<TypeListContainsSuperOf<
 
              TypeList<CXXBaseSpecifier, CXXCtorInitializer,
 
                       CXXTemporaryObjectExpr, CXXUnresolvedConstructExpr,
 
                       CompoundLiteralExpr, DeclaratorDecl, ObjCPropertyDecl,
 
                       TemplateArgumentLoc, TypedefNameDecl>,
 
              T>::value> * = nullptr>
 
inline TypeSourceInfo *GetTypeSourceInfo(const T &Node) {
 
  return Node.getTypeSourceInfo();
 
}
 
template <typename T,
 
          std::enable_if_t<TypeListContainsSuperOf<
 
              TypeList<CXXFunctionalCastExpr, ExplicitCastExpr>, T>::value> * =
 
              nullptr>
 
inline TypeSourceInfo *GetTypeSourceInfo(const T &Node) {
 
  return Node.getTypeInfoAsWritten();
 
}
 
inline TypeSourceInfo *GetTypeSourceInfo(const BlockDecl &Node) {
 
  return Node.getSignatureAsWritten();
 
}
 
inline TypeSourceInfo *GetTypeSourceInfo(const CXXNewExpr &Node) {
 
  return Node.getAllocatedTypeSourceInfo();
 
}
 
inline TypeSourceInfo *
 
GetTypeSourceInfo(const ClassTemplateSpecializationDecl &Node) {
 
  return Node.getTypeAsWritten();
 
}
 
 
 
/// Unifies obtaining the FunctionProtoType pointer from both
 
/// FunctionProtoType and FunctionDecl nodes..
 
inline const FunctionProtoType *
 
getFunctionProtoType(const FunctionProtoType &Node) {
 
  return &Node;
 
}
 
 
 
inline const FunctionProtoType *getFunctionProtoType(const FunctionDecl &Node) {
 
  return Node.getType()->getAs<FunctionProtoType>();
 
}
 
 
 
/// Unifies obtaining the access specifier from Decl and CXXBaseSpecifier nodes.
 
inline clang::AccessSpecifier getAccessSpecifier(const Decl &Node) {
 
  return Node.getAccess();
 
}
 
 
 
inline clang::AccessSpecifier getAccessSpecifier(const CXXBaseSpecifier &Node) {
 
  return Node.getAccessSpecifier();
 
}
 
 
 
/// Internal version of BoundNodes. Holds all the bound nodes.
 
class BoundNodesMap {
 
public:
 
  /// Adds \c Node to the map with key \c ID.
 
  ///
 
  /// The node's base type should be in NodeBaseType or it will be unaccessible.
 
  void addNode(StringRef ID, const DynTypedNode &DynNode) {
 
    NodeMap[std::string(ID)] = DynNode;
 
  }
 
 
 
  /// Returns the AST node bound to \c ID.
 
  ///
 
  /// Returns NULL if there was no node bound to \c ID or if there is a node but
 
  /// it cannot be converted to the specified type.
 
  template <typename T>
 
  const T *getNodeAs(StringRef ID) const {
 
    IDToNodeMap::const_iterator It = NodeMap.find(ID);
 
    if (It == NodeMap.end()) {
 
      return nullptr;
 
    }
 
    return It->second.get<T>();
 
  }
 
 
 
  DynTypedNode getNode(StringRef ID) const {
 
    IDToNodeMap::const_iterator It = NodeMap.find(ID);
 
    if (It == NodeMap.end()) {
 
      return DynTypedNode();
 
    }
 
    return It->second;
 
  }
 
 
 
  /// Imposes an order on BoundNodesMaps.
 
  bool operator<(const BoundNodesMap &Other) const {
 
    return NodeMap < Other.NodeMap;
 
  }
 
 
 
  /// A map from IDs to the bound nodes.
 
  ///
 
  /// Note that we're using std::map here, as for memoization:
 
  /// - we need a comparison operator
 
  /// - we need an assignment operator
 
  using IDToNodeMap = std::map<std::string, DynTypedNode, std::less<>>;
 
 
 
  const IDToNodeMap &getMap() const {
 
    return NodeMap;
 
  }
 
 
 
  /// Returns \c true if this \c BoundNodesMap can be compared, i.e. all
 
  /// stored nodes have memoization data.
 
  bool isComparable() const {
 
    for (const auto &IDAndNode : NodeMap) {
 
      if (!IDAndNode.second.getMemoizationData())
 
        return false;
 
    }
 
    return true;
 
  }
 
 
 
private:
 
  IDToNodeMap NodeMap;
 
};
 
 
 
/// Creates BoundNodesTree objects.
 
///
 
/// The tree builder is used during the matching process to insert the bound
 
/// nodes from the Id matcher.
 
class BoundNodesTreeBuilder {
 
public:
 
  /// A visitor interface to visit all BoundNodes results for a
 
  /// BoundNodesTree.
 
  class Visitor {
 
  public:
 
    virtual ~Visitor() = default;
 
 
 
    /// Called multiple times during a single call to VisitMatches(...).
 
    ///
 
    /// 'BoundNodesView' contains the bound nodes for a single match.
 
    virtual void visitMatch(const BoundNodes& BoundNodesView) = 0;
 
  };
 
 
 
  /// Add a binding from an id to a node.
 
  void setBinding(StringRef Id, const DynTypedNode &DynNode) {
 
    if (Bindings.empty())
 
      Bindings.emplace_back();
 
    for (BoundNodesMap &Binding : Bindings)
 
      Binding.addNode(Id, DynNode);
 
  }
 
 
 
  /// Adds a branch in the tree.
 
  void addMatch(const BoundNodesTreeBuilder &Bindings);
 
 
 
  /// Visits all matches that this BoundNodesTree represents.
 
  ///
 
  /// The ownership of 'ResultVisitor' remains at the caller.
 
  void visitMatches(Visitor* ResultVisitor);
 
 
 
  template <typename ExcludePredicate>
 
  bool removeBindings(const ExcludePredicate &Predicate) {
 
    llvm::erase_if(Bindings, Predicate);
 
    return !Bindings.empty();
 
  }
 
 
 
  /// Imposes an order on BoundNodesTreeBuilders.
 
  bool operator<(const BoundNodesTreeBuilder &Other) const {
 
    return Bindings < Other.Bindings;
 
  }
 
 
 
  /// Returns \c true if this \c BoundNodesTreeBuilder can be compared,
 
  /// i.e. all stored node maps have memoization data.
 
  bool isComparable() const {
 
    for (const BoundNodesMap &NodesMap : Bindings) {
 
      if (!NodesMap.isComparable())
 
        return false;
 
    }
 
    return true;
 
  }
 
 
 
private:
 
  SmallVector<BoundNodesMap, 1> Bindings;
 
};
 
 
 
class ASTMatchFinder;
 
 
 
/// Generic interface for all matchers.
 
///
 
/// Used by the implementation of Matcher<T> and DynTypedMatcher.
 
/// In general, implement MatcherInterface<T> or SingleNodeMatcherInterface<T>
 
/// instead.
 
class DynMatcherInterface
 
    : public llvm::ThreadSafeRefCountedBase<DynMatcherInterface> {
 
public:
 
  virtual ~DynMatcherInterface() = default;
 
 
 
  /// Returns true if \p DynNode can be matched.
 
  ///
 
  /// May bind \p DynNode to an ID via \p Builder, or recurse into
 
  /// the AST via \p Finder.
 
  virtual bool dynMatches(const DynTypedNode &DynNode, ASTMatchFinder *Finder,
 
                          BoundNodesTreeBuilder *Builder) const = 0;
 
 
 
  virtual std::optional<clang::TraversalKind> TraversalKind() const {
 
    return std::nullopt;
 
  }
 
};
 
 
 
/// Generic interface for matchers on an AST node of type T.
 
///
 
/// Implement this if your matcher may need to inspect the children or
 
/// descendants of the node or bind matched nodes to names. If you are
 
/// writing a simple matcher that only inspects properties of the
 
/// current node and doesn't care about its children or descendants,
 
/// implement SingleNodeMatcherInterface instead.
 
template <typename T>
 
class MatcherInterface : public DynMatcherInterface {
 
public:
 
  /// Returns true if 'Node' can be matched.
 
  ///
 
  /// May bind 'Node' to an ID via 'Builder', or recurse into
 
  /// the AST via 'Finder'.
 
  virtual bool matches(const T &Node,
 
                       ASTMatchFinder *Finder,
 
                       BoundNodesTreeBuilder *Builder) const = 0;
 
 
 
  bool dynMatches(const DynTypedNode &DynNode, ASTMatchFinder *Finder,
 
                  BoundNodesTreeBuilder *Builder) const override {
 
    return matches(DynNode.getUnchecked<T>(), Finder, Builder);
 
  }
 
};
 
 
 
/// Interface for matchers that only evaluate properties on a single
 
/// node.
 
template <typename T>
 
class SingleNodeMatcherInterface : public MatcherInterface<T> {
 
public:
 
  /// Returns true if the matcher matches the provided node.
 
  ///
 
  /// A subclass must implement this instead of Matches().
 
  virtual bool matchesNode(const T &Node) const = 0;
 
 
 
private:
 
  /// Implements MatcherInterface::Matches.
 
  bool matches(const T &Node,
 
               ASTMatchFinder * /* Finder */,
 
               BoundNodesTreeBuilder * /*  Builder */) const override {
 
    return matchesNode(Node);
 
  }
 
};
 
 
 
template <typename> class Matcher;
 
 
 
/// Matcher that works on a \c DynTypedNode.
 
///
 
/// It is constructed from a \c Matcher<T> object and redirects most calls to
 
/// underlying matcher.
 
/// It checks whether the \c DynTypedNode is convertible into the type of the
 
/// underlying matcher and then do the actual match on the actual node, or
 
/// return false if it is not convertible.
 
class DynTypedMatcher {
 
public:
 
  /// Takes ownership of the provided implementation pointer.
 
  template <typename T>
 
  DynTypedMatcher(MatcherInterface<T> *Implementation)
 
      : SupportedKind(ASTNodeKind::getFromNodeKind<T>()),
 
        RestrictKind(SupportedKind), Implementation(Implementation) {}
 
 
 
  /// Construct from a variadic function.
 
  enum VariadicOperator {
 
    /// Matches nodes for which all provided matchers match.
 
    VO_AllOf,
 
 
 
    /// Matches nodes for which at least one of the provided matchers
 
    /// matches.
 
    VO_AnyOf,
 
 
 
    /// Matches nodes for which at least one of the provided matchers
 
    /// matches, but doesn't stop at the first match.
 
    VO_EachOf,
 
 
 
    /// Matches any node but executes all inner matchers to find result
 
    /// bindings.
 
    VO_Optionally,
 
 
 
    /// Matches nodes that do not match the provided matcher.
 
    ///
 
    /// Uses the variadic matcher interface, but fails if
 
    /// InnerMatchers.size() != 1.
 
    VO_UnaryNot
 
  };
 
 
 
  static DynTypedMatcher
 
  constructVariadic(VariadicOperator Op, ASTNodeKind SupportedKind,
 
                    std::vector<DynTypedMatcher> InnerMatchers);
 
 
 
  static DynTypedMatcher
 
  constructRestrictedWrapper(const DynTypedMatcher &InnerMatcher,
 
                             ASTNodeKind RestrictKind);
 
 
 
  /// Get a "true" matcher for \p NodeKind.
 
  ///
 
  /// It only checks that the node is of the right kind.
 
  static DynTypedMatcher trueMatcher(ASTNodeKind NodeKind);
 
 
 
  void setAllowBind(bool AB) { AllowBind = AB; }
 
 
 
  /// Check whether this matcher could ever match a node of kind \p Kind.
 
  /// \return \c false if this matcher will never match such a node. Otherwise,
 
  /// return \c true.
 
  bool canMatchNodesOfKind(ASTNodeKind Kind) const;
 
 
 
  /// Return a matcher that points to the same implementation, but
 
  ///   restricts the node types for \p Kind.
 
  DynTypedMatcher dynCastTo(const ASTNodeKind Kind) const;
 
 
 
  /// Return a matcher that points to the same implementation, but sets the
 
  ///   traversal kind.
 
  ///
 
  /// If the traversal kind is already set, then \c TK overrides it.
 
  DynTypedMatcher withTraversalKind(TraversalKind TK);
 
 
 
  /// Returns true if the matcher matches the given \c DynNode.
 
  bool matches(const DynTypedNode &DynNode, ASTMatchFinder *Finder,
 
               BoundNodesTreeBuilder *Builder) const;
 
 
 
  /// Same as matches(), but skips the kind check.
 
  ///
 
  /// It is faster, but the caller must ensure the node is valid for the
 
  /// kind of this matcher.
 
  bool matchesNoKindCheck(const DynTypedNode &DynNode, ASTMatchFinder *Finder,
 
                          BoundNodesTreeBuilder *Builder) const;
 
 
 
  /// Bind the specified \p ID to the matcher.
 
  /// \return A new matcher with the \p ID bound to it if this matcher supports
 
  ///   binding. Otherwise, returns an empty \c std::optional<>.
 
  std::optional<DynTypedMatcher> tryBind(StringRef ID) const;
 
 
 
  /// Returns a unique \p ID for the matcher.
 
  ///
 
  /// Casting a Matcher<T> to Matcher<U> creates a matcher that has the
 
  /// same \c Implementation pointer, but different \c RestrictKind. We need to
 
  /// include both in the ID to make it unique.
 
  ///
 
  /// \c MatcherIDType supports operator< and provides strict weak ordering.
 
  using MatcherIDType = std::pair<ASTNodeKind, uint64_t>;
 
  MatcherIDType getID() const {
 
    /// FIXME: Document the requirements this imposes on matcher
 
    /// implementations (no new() implementation_ during a Matches()).
 
    return std::make_pair(RestrictKind,
 
                          reinterpret_cast<uint64_t>(Implementation.get()));
 
  }
 
 
 
  /// Returns the type this matcher works on.
 
  ///
 
  /// \c matches() will always return false unless the node passed is of this
 
  /// or a derived type.
 
  ASTNodeKind getSupportedKind() const { return SupportedKind; }
 
 
 
  /// Returns \c true if the passed \c DynTypedMatcher can be converted
 
  ///   to a \c Matcher<T>.
 
  ///
 
  /// This method verifies that the underlying matcher in \c Other can process
 
  /// nodes of types T.
 
  template <typename T> bool canConvertTo() const {
 
    return canConvertTo(ASTNodeKind::getFromNodeKind<T>());
 
  }
 
  bool canConvertTo(ASTNodeKind To) const;
 
 
 
  /// Construct a \c Matcher<T> interface around the dynamic matcher.
 
  ///
 
  /// This method asserts that \c canConvertTo() is \c true. Callers
 
  /// should call \c canConvertTo() first to make sure that \c this is
 
  /// compatible with T.
 
  template <typename T> Matcher<T> convertTo() const {
 
    assert(canConvertTo<T>());
 
    return unconditionalConvertTo<T>();
 
  }
 
 
 
  /// Same as \c convertTo(), but does not check that the underlying
 
  ///   matcher can handle a value of T.
 
  ///
 
  /// If it is not compatible, then this matcher will never match anything.
 
  template <typename T> Matcher<T> unconditionalConvertTo() const;
 
 
 
  /// Returns the \c TraversalKind respected by calls to `match()`, if any.
 
  ///
 
  /// Most matchers will not have a traversal kind set, instead relying on the
 
  /// surrounding context. For those, \c std::nullopt is returned.
 
  std::optional<clang::TraversalKind> getTraversalKind() const {
 
    return Implementation->TraversalKind();
 
  }
 
 
 
private:
 
  DynTypedMatcher(ASTNodeKind SupportedKind, ASTNodeKind RestrictKind,
 
                  IntrusiveRefCntPtr<DynMatcherInterface> Implementation)
 
      : SupportedKind(SupportedKind), RestrictKind(RestrictKind),
 
        Implementation(std::move(Implementation)) {}
 
 
 
  bool AllowBind = false;
 
  ASTNodeKind SupportedKind;
 
 
 
  /// A potentially stricter node kind.
 
  ///
 
  /// It allows to perform implicit and dynamic cast of matchers without
 
  /// needing to change \c Implementation.
 
  ASTNodeKind RestrictKind;
 
  IntrusiveRefCntPtr<DynMatcherInterface> Implementation;
 
};
 
 
 
/// Wrapper of a MatcherInterface<T> *that allows copying.
 
///
 
/// A Matcher<Base> can be used anywhere a Matcher<Derived> is
 
/// required. This establishes an is-a relationship which is reverse
 
/// to the AST hierarchy. In other words, Matcher<T> is contravariant
 
/// with respect to T. The relationship is built via a type conversion
 
/// operator rather than a type hierarchy to be able to templatize the
 
/// type hierarchy instead of spelling it out.
 
template <typename T>
 
class Matcher {
 
public:
 
  /// Takes ownership of the provided implementation pointer.
 
  explicit Matcher(MatcherInterface<T> *Implementation)
 
      : Implementation(Implementation) {}
 
 
 
  /// Implicitly converts \c Other to a Matcher<T>.
 
  ///
 
  /// Requires \c T to be derived from \c From.
 
  template <typename From>
 
  Matcher(const Matcher<From> &Other,
 
          std::enable_if_t<std::is_base_of<From, T>::value &&
 
                           !std::is_same<From, T>::value> * = nullptr)
 
      : Implementation(restrictMatcher(Other.Implementation)) {
 
    assert(Implementation.getSupportedKind().isSame(
 
        ASTNodeKind::getFromNodeKind<T>()));
 
  }
 
 
 
  /// Implicitly converts \c Matcher<Type> to \c Matcher<QualType>.
 
  ///
 
  /// The resulting matcher is not strict, i.e. ignores qualifiers.
 
  template <typename TypeT>
 
  Matcher(const Matcher<TypeT> &Other,
 
          std::enable_if_t<std::is_same<T, QualType>::value &&
 
                           std::is_same<TypeT, Type>::value> * = nullptr)
 
      : Implementation(new TypeToQualType<TypeT>(Other)) {}
 
 
 
  /// Convert \c this into a \c Matcher<T> by applying dyn_cast<> to the
 
  /// argument.
 
  /// \c To must be a base class of \c T.
 
  template <typename To> Matcher<To> dynCastTo() const & {
 
    static_assert(std::is_base_of<To, T>::value, "Invalid dynCast call.");
 
    return Matcher<To>(Implementation);
 
  }
 
 
 
  template <typename To> Matcher<To> dynCastTo() && {
 
    static_assert(std::is_base_of<To, T>::value, "Invalid dynCast call.");
 
    return Matcher<To>(std::move(Implementation));
 
  }
 
 
 
  /// Forwards the call to the underlying MatcherInterface<T> pointer.
 
  bool matches(const T &Node,
 
               ASTMatchFinder *Finder,
 
               BoundNodesTreeBuilder *Builder) const {
 
    return Implementation.matches(DynTypedNode::create(Node), Finder, Builder);
 
  }
 
 
 
  /// Returns an ID that uniquely identifies the matcher.
 
  DynTypedMatcher::MatcherIDType getID() const {
 
    return Implementation.getID();
 
  }
 
 
 
  /// Extract the dynamic matcher.
 
  ///
 
  /// The returned matcher keeps the same restrictions as \c this and remembers
 
  /// that it is meant to support nodes of type \c T.
 
  operator DynTypedMatcher() const & { return Implementation; }
 
 
 
  operator DynTypedMatcher() && { return std::move(Implementation); }
 
 
 
  /// Allows the conversion of a \c Matcher<Type> to a \c
 
  /// Matcher<QualType>.
 
  ///
 
  /// Depending on the constructor argument, the matcher is either strict, i.e.
 
  /// does only matches in the absence of qualifiers, or not, i.e. simply
 
  /// ignores any qualifiers.
 
  template <typename TypeT>
 
  class TypeToQualType : public MatcherInterface<QualType> {
 
    const DynTypedMatcher InnerMatcher;
 
 
 
  public:
 
    TypeToQualType(const Matcher<TypeT> &InnerMatcher)
 
        : InnerMatcher(InnerMatcher) {}
 
 
 
    bool matches(const QualType &Node, ASTMatchFinder *Finder,
 
                 BoundNodesTreeBuilder *Builder) const override {
 
      if (Node.isNull())
 
        return false;
 
      return this->InnerMatcher.matches(DynTypedNode::create(*Node), Finder,
 
                                        Builder);
 
    }
 
 
 
    std::optional<clang::TraversalKind> TraversalKind() const override {
 
      return this->InnerMatcher.getTraversalKind();
 
    }
 
  };
 
 
 
private:
 
  // For Matcher<T> <=> Matcher<U> conversions.
 
  template <typename U> friend class Matcher;
 
 
 
  // For DynTypedMatcher::unconditionalConvertTo<T>.
 
  friend class DynTypedMatcher;
 
 
 
  static DynTypedMatcher restrictMatcher(const DynTypedMatcher &Other) {
 
    return Other.dynCastTo(ASTNodeKind::getFromNodeKind<T>());
 
  }
 
 
 
  explicit Matcher(const DynTypedMatcher &Implementation)
 
      : Implementation(restrictMatcher(Implementation)) {
 
    assert(this->Implementation.getSupportedKind().isSame(
 
        ASTNodeKind::getFromNodeKind<T>()));
 
  }
 
 
 
  DynTypedMatcher Implementation;
 
};  // class Matcher
 
 
 
/// A convenient helper for creating a Matcher<T> without specifying
 
/// the template type argument.
 
template <typename T>
 
inline Matcher<T> makeMatcher(MatcherInterface<T> *Implementation) {
 
  return Matcher<T>(Implementation);
 
}
 
 
 
/// Interface that allows matchers to traverse the AST.
 
/// FIXME: Find a better name.
 
///
 
/// This provides three entry methods for each base node type in the AST:
 
/// - \c matchesChildOf:
 
///   Matches a matcher on every child node of the given node. Returns true
 
///   if at least one child node could be matched.
 
/// - \c matchesDescendantOf:
 
///   Matches a matcher on all descendant nodes of the given node. Returns true
 
///   if at least one descendant matched.
 
/// - \c matchesAncestorOf:
 
///   Matches a matcher on all ancestors of the given node. Returns true if
 
///   at least one ancestor matched.
 
///
 
/// FIXME: Currently we only allow Stmt and Decl nodes to start a traversal.
 
/// In the future, we want to implement this for all nodes for which it makes
 
/// sense. In the case of matchesAncestorOf, we'll want to implement it for
 
/// all nodes, as all nodes have ancestors.
 
class ASTMatchFinder {
 
public:
 
  /// Defines how bindings are processed on recursive matches.
 
  enum BindKind {
 
    /// Stop at the first match and only bind the first match.
 
    BK_First,
 
 
 
    /// Create results for all combinations of bindings that match.
 
    BK_All
 
  };
 
 
 
  /// Defines which ancestors are considered for a match.
 
  enum AncestorMatchMode {
 
    /// All ancestors.
 
    AMM_All,
 
 
 
    /// Direct parent only.
 
    AMM_ParentOnly
 
  };
 
 
 
  virtual ~ASTMatchFinder() = default;
 
 
 
  /// Returns true if the given C++ class is directly or indirectly derived
 
  /// from a base type matching \c base.
 
  ///
 
  /// A class is not considered to be derived from itself.
 
  virtual bool classIsDerivedFrom(const CXXRecordDecl *Declaration,
 
                                  const Matcher<NamedDecl> &Base,
 
                                  BoundNodesTreeBuilder *Builder,
 
                                  bool Directly) = 0;
 
 
 
  /// Returns true if the given Objective-C class is directly or indirectly
 
  /// derived from a base class matching \c base.
 
  ///
 
  /// A class is not considered to be derived from itself.
 
  virtual bool objcClassIsDerivedFrom(const ObjCInterfaceDecl *Declaration,
 
                                      const Matcher<NamedDecl> &Base,
 
                                      BoundNodesTreeBuilder *Builder,
 
                                      bool Directly) = 0;
 
 
 
  template <typename T>
 
  bool matchesChildOf(const T &Node, const DynTypedMatcher &Matcher,
 
                      BoundNodesTreeBuilder *Builder, BindKind Bind) {
 
    static_assert(std::is_base_of<Decl, T>::value ||
 
                      std::is_base_of<Stmt, T>::value ||
 
                      std::is_base_of<NestedNameSpecifier, T>::value ||
 
                      std::is_base_of<NestedNameSpecifierLoc, T>::value ||
 
                      std::is_base_of<TypeLoc, T>::value ||
 
                      std::is_base_of<QualType, T>::value ||
 
                      std::is_base_of<Attr, T>::value,
 
                  "unsupported type for recursive matching");
 
    return matchesChildOf(DynTypedNode::create(Node), getASTContext(), Matcher,
 
                          Builder, Bind);
 
  }
 
 
 
  template <typename T>
 
  bool matchesDescendantOf(const T &Node, const DynTypedMatcher &Matcher,
 
                           BoundNodesTreeBuilder *Builder, BindKind Bind) {
 
    static_assert(std::is_base_of<Decl, T>::value ||
 
                      std::is_base_of<Stmt, T>::value ||
 
                      std::is_base_of<NestedNameSpecifier, T>::value ||
 
                      std::is_base_of<NestedNameSpecifierLoc, T>::value ||
 
                      std::is_base_of<TypeLoc, T>::value ||
 
                      std::is_base_of<QualType, T>::value ||
 
                      std::is_base_of<Attr, T>::value,
 
                  "unsupported type for recursive matching");
 
    return matchesDescendantOf(DynTypedNode::create(Node), getASTContext(),
 
                               Matcher, Builder, Bind);
 
  }
 
 
 
  // FIXME: Implement support for BindKind.
 
  template <typename T>
 
  bool matchesAncestorOf(const T &Node, const DynTypedMatcher &Matcher,
 
                         BoundNodesTreeBuilder *Builder,
 
                         AncestorMatchMode MatchMode) {
 
    static_assert(std::is_base_of<Decl, T>::value ||
 
                      std::is_base_of<NestedNameSpecifierLoc, T>::value ||
 
                      std::is_base_of<Stmt, T>::value ||
 
                      std::is_base_of<TypeLoc, T>::value ||
 
                      std::is_base_of<Attr, T>::value,
 
                  "type not allowed for recursive matching");
 
    return matchesAncestorOf(DynTypedNode::create(Node), getASTContext(),
 
                             Matcher, Builder, MatchMode);
 
  }
 
 
 
  virtual ASTContext &getASTContext() const = 0;
 
 
 
  virtual bool IsMatchingInASTNodeNotSpelledInSource() const = 0;
 
 
 
  virtual bool IsMatchingInASTNodeNotAsIs() const = 0;
 
 
 
  bool isTraversalIgnoringImplicitNodes() const;
 
 
 
protected:
 
  virtual bool matchesChildOf(const DynTypedNode &Node, ASTContext &Ctx,
 
                              const DynTypedMatcher &Matcher,
 
                              BoundNodesTreeBuilder *Builder,
 
                              BindKind Bind) = 0;
 
 
 
  virtual bool matchesDescendantOf(const DynTypedNode &Node, ASTContext &Ctx,
 
                                   const DynTypedMatcher &Matcher,
 
                                   BoundNodesTreeBuilder *Builder,
 
                                   BindKind Bind) = 0;
 
 
 
  virtual bool matchesAncestorOf(const DynTypedNode &Node, ASTContext &Ctx,
 
                                 const DynTypedMatcher &Matcher,
 
                                 BoundNodesTreeBuilder *Builder,
 
                                 AncestorMatchMode MatchMode) = 0;
 
private:
 
  friend struct ASTChildrenNotSpelledInSourceScope;
 
  virtual bool isMatchingChildrenNotSpelledInSource() const = 0;
 
  virtual void setMatchingChildrenNotSpelledInSource(bool Set) = 0;
 
};
 
 
 
struct ASTChildrenNotSpelledInSourceScope {
 
  ASTChildrenNotSpelledInSourceScope(ASTMatchFinder *V, bool B)
 
      : MV(V), MB(V->isMatchingChildrenNotSpelledInSource()) {
 
    V->setMatchingChildrenNotSpelledInSource(B);
 
  }
 
  ~ASTChildrenNotSpelledInSourceScope() {
 
    MV->setMatchingChildrenNotSpelledInSource(MB);
 
  }
 
 
 
private:
 
  ASTMatchFinder *MV;
 
  bool MB;
 
};
 
 
 
/// Specialization of the conversion functions for QualType.
 
///
 
/// This specialization provides the Matcher<Type>->Matcher<QualType>
 
/// conversion that the static API does.
 
template <>
 
inline Matcher<QualType> DynTypedMatcher::convertTo<QualType>() const {
 
  assert(canConvertTo<QualType>());
 
  const ASTNodeKind SourceKind = getSupportedKind();
 
  if (SourceKind.isSame(ASTNodeKind::getFromNodeKind<Type>())) {
 
    // We support implicit conversion from Matcher<Type> to Matcher<QualType>
 
    return unconditionalConvertTo<Type>();
 
  }
 
  return unconditionalConvertTo<QualType>();
 
}
 
 
 
/// Finds the first node in a range that matches the given matcher.
 
template <typename MatcherT, typename IteratorT>
 
IteratorT matchesFirstInRange(const MatcherT &Matcher, IteratorT Start,
 
                              IteratorT End, ASTMatchFinder *Finder,
 
                              BoundNodesTreeBuilder *Builder) {
 
  for (IteratorT I = Start; I != End; ++I) {
 
    BoundNodesTreeBuilder Result(*Builder);
 
    if (Matcher.matches(*I, Finder, &Result)) {
 
      *Builder = std::move(Result);
 
      return I;
 
    }
 
  }
 
  return End;
 
}
 
 
 
/// Finds the first node in a pointer range that matches the given
 
/// matcher.
 
template <typename MatcherT, typename IteratorT>
 
IteratorT matchesFirstInPointerRange(const MatcherT &Matcher, IteratorT Start,
 
                                     IteratorT End, ASTMatchFinder *Finder,
 
                                     BoundNodesTreeBuilder *Builder) {
 
  for (IteratorT I = Start; I != End; ++I) {
 
    BoundNodesTreeBuilder Result(*Builder);
 
    if (Matcher.matches(**I, Finder, &Result)) {
 
      *Builder = std::move(Result);
 
      return I;
 
    }
 
  }
 
  return End;
 
}
 
 
 
template <typename T, std::enable_if_t<!std::is_base_of<FunctionDecl, T>::value>
 
                          * = nullptr>
 
inline bool isDefaultedHelper(const T *) {
 
  return false;
 
}
 
inline bool isDefaultedHelper(const FunctionDecl *FD) {
 
  return FD->isDefaulted();
 
}
 
 
 
// Metafunction to determine if type T has a member called getDecl.
 
template <typename Ty>
 
class has_getDecl {
 
  using yes = char[1];
 
  using no = char[2];
 
 
 
  template <typename Inner>
 
  static yes& test(Inner *I, decltype(I->getDecl()) * = nullptr);
 
 
 
  template <typename>
 
  static no& test(...);
 
 
 
public:
 
  static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
 
};
 
 
 
/// Matches overloaded operators with a specific name.
 
///
 
/// The type argument ArgT is not used by this matcher but is used by
 
/// PolymorphicMatcher and should be StringRef.
 
template <typename T, typename ArgT>
 
class HasOverloadedOperatorNameMatcher : public SingleNodeMatcherInterface<T> {
 
  static_assert(std::is_same<T, CXXOperatorCallExpr>::value ||
 
                std::is_base_of<FunctionDecl, T>::value,
 
                "unsupported class for matcher");
 
  static_assert(std::is_same<ArgT, std::vector<std::string>>::value,
 
                "argument type must be std::vector<std::string>");
 
 
 
public:
 
  explicit HasOverloadedOperatorNameMatcher(std::vector<std::string> Names)
 
      : SingleNodeMatcherInterface<T>(), Names(std::move(Names)) {}
 
 
 
  bool matchesNode(const T &Node) const override {
 
    return matchesSpecialized(Node);
 
  }
 
 
 
private:
 
 
 
  /// CXXOperatorCallExpr exist only for calls to overloaded operators
 
  /// so this function returns true if the call is to an operator of the given
 
  /// name.
 
  bool matchesSpecialized(const CXXOperatorCallExpr &Node) const {
 
    return llvm::is_contained(Names, getOperatorSpelling(Node.getOperator()));
 
  }
 
 
 
  /// Returns true only if CXXMethodDecl represents an overloaded
 
  /// operator and has the given operator name.
 
  bool matchesSpecialized(const FunctionDecl &Node) const {
 
    return Node.isOverloadedOperator() &&
 
           llvm::is_contained(
 
               Names, getOperatorSpelling(Node.getOverloadedOperator()));
 
  }
 
 
 
  std::vector<std::string> Names;
 
};
 
 
 
/// Matches named declarations with a specific name.
 
///
 
/// See \c hasName() and \c hasAnyName() in ASTMatchers.h for details.
 
class HasNameMatcher : public SingleNodeMatcherInterface<NamedDecl> {
 
 public:
 
  explicit HasNameMatcher(std::vector<std::string> Names);
 
 
 
  bool matchesNode(const NamedDecl &Node) const override;
 
 
 
private:
 
  /// Unqualified match routine.
 
  ///
 
  /// It is much faster than the full match, but it only works for unqualified
 
  /// matches.
 
  bool matchesNodeUnqualified(const NamedDecl &Node) const;
 
 
 
  /// Full match routine
 
  ///
 
  /// Fast implementation for the simple case of a named declaration at
 
  /// namespace or RecordDecl scope.
 
  /// It is slower than matchesNodeUnqualified, but faster than
 
  /// matchesNodeFullSlow.
 
  bool matchesNodeFullFast(const NamedDecl &Node) const;
 
 
 
  /// Full match routine
 
  ///
 
  /// It generates the fully qualified name of the declaration (which is
 
  /// expensive) before trying to match.
 
  /// It is slower but simple and works on all cases.
 
  bool matchesNodeFullSlow(const NamedDecl &Node) const;
 
 
 
  bool UseUnqualifiedMatch;
 
  std::vector<std::string> Names;
 
};
 
 
 
/// Trampoline function to use VariadicFunction<> to construct a
 
///        HasNameMatcher.
 
Matcher<NamedDecl> hasAnyNameFunc(ArrayRef<const StringRef *> NameRefs);
 
 
 
/// Trampoline function to use VariadicFunction<> to construct a
 
///        hasAnySelector matcher.
 
Matcher<ObjCMessageExpr> hasAnySelectorFunc(
 
    ArrayRef<const StringRef *> NameRefs);
 
 
 
/// Matches declarations for QualType and CallExpr.
 
///
 
/// Type argument DeclMatcherT is required by PolymorphicMatcher but
 
/// not actually used.
 
template <typename T, typename DeclMatcherT>
 
class HasDeclarationMatcher : public MatcherInterface<T> {
 
  static_assert(std::is_same<DeclMatcherT, Matcher<Decl>>::value,
 
                "instantiated with wrong types");
 
 
 
  DynTypedMatcher InnerMatcher;
 
 
 
public:
 
  explicit HasDeclarationMatcher(const Matcher<Decl> &InnerMatcher)
 
      : InnerMatcher(InnerMatcher) {}
 
 
 
  bool matches(const T &Node, ASTMatchFinder *Finder,
 
               BoundNodesTreeBuilder *Builder) const override {
 
    return matchesSpecialized(Node, Finder, Builder);
 
  }
 
 
 
private:
 
  /// Forwards to matching on the underlying type of the QualType.
 
  bool matchesSpecialized(const QualType &Node, ASTMatchFinder *Finder,
 
                          BoundNodesTreeBuilder *Builder) const {
 
    if (Node.isNull())
 
      return false;
 
 
 
    return matchesSpecialized(*Node, Finder, Builder);
 
  }
 
 
 
  /// Finds the best declaration for a type and returns whether the inner
 
  /// matcher matches on it.
 
  bool matchesSpecialized(const Type &Node, ASTMatchFinder *Finder,
 
                          BoundNodesTreeBuilder *Builder) const {
 
    // DeducedType does not have declarations of its own, so
 
    // match the deduced type instead.
 
    if (const auto *S = dyn_cast<DeducedType>(&Node)) {
 
      QualType DT = S->getDeducedType();
 
      return !DT.isNull() ? matchesSpecialized(*DT, Finder, Builder) : false;
 
    }
 
 
 
    // First, for any types that have a declaration, extract the declaration and
 
    // match on it.
 
    if (const auto *S = dyn_cast<TagType>(&Node)) {
 
      return matchesDecl(S->getDecl(), Finder, Builder);
 
    }
 
    if (const auto *S = dyn_cast<InjectedClassNameType>(&Node)) {
 
      return matchesDecl(S->getDecl(), Finder, Builder);
 
    }
 
    if (const auto *S = dyn_cast<TemplateTypeParmType>(&Node)) {
 
      return matchesDecl(S->getDecl(), Finder, Builder);
 
    }
 
    if (const auto *S = dyn_cast<TypedefType>(&Node)) {
 
      return matchesDecl(S->getDecl(), Finder, Builder);
 
    }
 
    if (const auto *S = dyn_cast<UnresolvedUsingType>(&Node)) {
 
      return matchesDecl(S->getDecl(), Finder, Builder);
 
    }
 
    if (const auto *S = dyn_cast<ObjCObjectType>(&Node)) {
 
      return matchesDecl(S->getInterface(), Finder, Builder);
 
    }
 
 
 
    // A SubstTemplateTypeParmType exists solely to mark a type substitution
 
    // on the instantiated template. As users usually want to match the
 
    // template parameter on the uninitialized template, we can always desugar
 
    // one level without loss of expressivness.
 
    // For example, given:
 
    //   template<typename T> struct X { T t; } class A {}; X<A> a;
 
    // The following matcher will match, which otherwise would not:
 
    //   fieldDecl(hasType(pointerType())).
 
    if (const auto *S = dyn_cast<SubstTemplateTypeParmType>(&Node)) {
 
      return matchesSpecialized(S->getReplacementType(), Finder, Builder);
 
    }
 
 
 
    // For template specialization types, we want to match the template
 
    // declaration, as long as the type is still dependent, and otherwise the
 
    // declaration of the instantiated tag type.
 
    if (const auto *S = dyn_cast<TemplateSpecializationType>(&Node)) {
 
      if (!S->isTypeAlias() && S->isSugared()) {
 
        // If the template is non-dependent, we want to match the instantiated
 
        // tag type.
 
        // For example, given:
 
        //   template<typename T> struct X {}; X<int> a;
 
        // The following matcher will match, which otherwise would not:
 
        //   templateSpecializationType(hasDeclaration(cxxRecordDecl())).
 
        return matchesSpecialized(*S->desugar(), Finder, Builder);
 
      }
 
      // If the template is dependent or an alias, match the template
 
      // declaration.
 
      return matchesDecl(S->getTemplateName().getAsTemplateDecl(), Finder,
 
                         Builder);
 
    }
 
 
 
    // FIXME: We desugar elaborated types. This makes the assumption that users
 
    // do never want to match on whether a type is elaborated - there are
 
    // arguments for both sides; for now, continue desugaring.
 
    if (const auto *S = dyn_cast<ElaboratedType>(&Node)) {
 
      return matchesSpecialized(S->desugar(), Finder, Builder);
 
    }
 
    // Similarly types found via using declarations.
 
    // These are *usually* meaningless sugar, and this matches the historical
 
    // behavior prior to the introduction of UsingType.
 
    if (const auto *S = dyn_cast<UsingType>(&Node)) {
 
      return matchesSpecialized(S->desugar(), Finder, Builder);
 
    }
 
    return false;
 
  }
 
 
 
  /// Extracts the Decl the DeclRefExpr references and returns whether
 
  /// the inner matcher matches on it.
 
  bool matchesSpecialized(const DeclRefExpr &Node, ASTMatchFinder *Finder,
 
                          BoundNodesTreeBuilder *Builder) const {
 
    return matchesDecl(Node.getDecl(), Finder, Builder);
 
  }
 
 
 
  /// Extracts the Decl of the callee of a CallExpr and returns whether
 
  /// the inner matcher matches on it.
 
  bool matchesSpecialized(const CallExpr &Node, ASTMatchFinder *Finder,
 
                          BoundNodesTreeBuilder *Builder) const {
 
    return matchesDecl(Node.getCalleeDecl(), Finder, Builder);
 
  }
 
 
 
  /// Extracts the Decl of the constructor call and returns whether the
 
  /// inner matcher matches on it.
 
  bool matchesSpecialized(const CXXConstructExpr &Node,
 
                          ASTMatchFinder *Finder,
 
                          BoundNodesTreeBuilder *Builder) const {
 
    return matchesDecl(Node.getConstructor(), Finder, Builder);
 
  }
 
 
 
  bool matchesSpecialized(const ObjCIvarRefExpr &Node,
 
                          ASTMatchFinder *Finder,
 
                          BoundNodesTreeBuilder *Builder) const {
 
    return matchesDecl(Node.getDecl(), Finder, Builder);
 
  }
 
 
 
  /// Extracts the operator new of the new call and returns whether the
 
  /// inner matcher matches on it.
 
  bool matchesSpecialized(const CXXNewExpr &Node,
 
                          ASTMatchFinder *Finder,
 
                          BoundNodesTreeBuilder *Builder) const {
 
    return matchesDecl(Node.getOperatorNew(), Finder, Builder);
 
  }
 
 
 
  /// Extracts the \c ValueDecl a \c MemberExpr refers to and returns
 
  /// whether the inner matcher matches on it.
 
  bool matchesSpecialized(const MemberExpr &Node,
 
                          ASTMatchFinder *Finder,
 
                          BoundNodesTreeBuilder *Builder) const {
 
    return matchesDecl(Node.getMemberDecl(), Finder, Builder);
 
  }
 
 
 
  /// Extracts the \c LabelDecl a \c AddrLabelExpr refers to and returns
 
  /// whether the inner matcher matches on it.
 
  bool matchesSpecialized(const AddrLabelExpr &Node,
 
                          ASTMatchFinder *Finder,
 
                          BoundNodesTreeBuilder *Builder) const {
 
    return matchesDecl(Node.getLabel(), Finder, Builder);
 
  }
 
 
 
  /// Extracts the declaration of a LabelStmt and returns whether the
 
  /// inner matcher matches on it.
 
  bool matchesSpecialized(const LabelStmt &Node, ASTMatchFinder *Finder,
 
                          BoundNodesTreeBuilder *Builder) const {
 
    return matchesDecl(Node.getDecl(), Finder, Builder);
 
  }
 
 
 
  /// Returns whether the inner matcher \c Node. Returns false if \c Node
 
  /// is \c NULL.
 
  bool matchesDecl(const Decl *Node, ASTMatchFinder *Finder,
 
                   BoundNodesTreeBuilder *Builder) const {
 
    return Node != nullptr &&
 
           !(Finder->isTraversalIgnoringImplicitNodes() &&
 
             Node->isImplicit()) &&
 
           this->InnerMatcher.matches(DynTypedNode::create(*Node), Finder,
 
                                      Builder);
 
  }
 
};
 
 
 
/// IsBaseType<T>::value is true if T is a "base" type in the AST
 
/// node class hierarchies.
 
template <typename T>
 
struct IsBaseType {
 
  static const bool value =
 
      std::is_same<T, Decl>::value || std::is_same<T, Stmt>::value ||
 
      std::is_same<T, QualType>::value || std::is_same<T, Type>::value ||
 
      std::is_same<T, TypeLoc>::value ||
 
      std::is_same<T, NestedNameSpecifier>::value ||
 
      std::is_same<T, NestedNameSpecifierLoc>::value ||
 
      std::is_same<T, CXXCtorInitializer>::value ||
 
      std::is_same<T, TemplateArgumentLoc>::value ||
 
      std::is_same<T, Attr>::value;
 
};
 
template <typename T>
 
const bool IsBaseType<T>::value;
 
 
 
/// A "type list" that contains all types.
 
///
 
/// Useful for matchers like \c anything and \c unless.
 
using AllNodeBaseTypes =
 
    TypeList<Decl, Stmt, NestedNameSpecifier, NestedNameSpecifierLoc, QualType,
 
             Type, TypeLoc, CXXCtorInitializer, Attr>;
 
 
 
/// Helper meta-function to extract the argument out of a function of
 
///   type void(Arg).
 
///
 
/// See AST_POLYMORPHIC_SUPPORTED_TYPES for details.
 
template <class T> struct ExtractFunctionArgMeta;
 
template <class T> struct ExtractFunctionArgMeta<void(T)> {
 
  using type = T;
 
};
 
 
 
template <class T, class Tuple, std::size_t... I>
 
constexpr T *new_from_tuple_impl(Tuple &&t, std::index_sequence<I...>) {
 
  return new T(std::get<I>(std::forward<Tuple>(t))...);
 
}
 
 
 
template <class T, class Tuple> constexpr T *new_from_tuple(Tuple &&t) {
 
  return new_from_tuple_impl<T>(
 
      std::forward<Tuple>(t),
 
      std::make_index_sequence<
 
          std::tuple_size<std::remove_reference_t<Tuple>>::value>{});
 
}
 
 
 
/// Default type lists for ArgumentAdaptingMatcher matchers.
 
using AdaptativeDefaultFromTypes = AllNodeBaseTypes;
 
using AdaptativeDefaultToTypes =
 
    TypeList<Decl, Stmt, NestedNameSpecifier, NestedNameSpecifierLoc, TypeLoc,
 
             QualType, Attr>;
 
 
 
/// All types that are supported by HasDeclarationMatcher above.
 
using HasDeclarationSupportedTypes =
 
    TypeList<CallExpr, CXXConstructExpr, CXXNewExpr, DeclRefExpr, EnumType,
 
             ElaboratedType, InjectedClassNameType, LabelStmt, AddrLabelExpr,
 
             MemberExpr, QualType, RecordType, TagType,
 
             TemplateSpecializationType, TemplateTypeParmType, TypedefType,
 
             UnresolvedUsingType, ObjCIvarRefExpr>;
 
 
 
/// A Matcher that allows binding the node it matches to an id.
 
///
 
/// BindableMatcher provides a \a bind() method that allows binding the
 
/// matched node to an id if the match was successful.
 
template <typename T> class BindableMatcher : public Matcher<T> {
 
public:
 
  explicit BindableMatcher(const Matcher<T> &M) : Matcher<T>(M) {}
 
  explicit BindableMatcher(MatcherInterface<T> *Implementation)
 
      : Matcher<T>(Implementation) {}
 
 
 
  /// Returns a matcher that will bind the matched node on a match.
 
  ///
 
  /// The returned matcher is equivalent to this matcher, but will
 
  /// bind the matched node on a match.
 
  Matcher<T> bind(StringRef ID) const {
 
    return DynTypedMatcher(*this)
 
        .tryBind(ID)
 
        ->template unconditionalConvertTo<T>();
 
  }
 
 
 
  /// Same as Matcher<T>'s conversion operator, but enables binding on
 
  /// the returned matcher.
 
  operator DynTypedMatcher() const {
 
    DynTypedMatcher Result = static_cast<const Matcher<T> &>(*this);
 
    Result.setAllowBind(true);
 
    return Result;
 
  }
 
};
 
 
 
/// Matches any instance of the given NodeType.
 
///
 
/// This is useful when a matcher syntactically requires a child matcher,
 
/// but the context doesn't care. See for example: anything().
 
class TrueMatcher {
 
public:
 
  using ReturnTypes = AllNodeBaseTypes;
 
 
 
  template <typename T> operator Matcher<T>() const {
 
    return DynTypedMatcher::trueMatcher(ASTNodeKind::getFromNodeKind<T>())
 
        .template unconditionalConvertTo<T>();
 
  }
 
};
 
 
 
/// Creates a Matcher<T> that matches if all inner matchers match.
 
template <typename T>
 
BindableMatcher<T>
 
makeAllOfComposite(ArrayRef<const Matcher<T> *> InnerMatchers) {
 
  // For the size() == 0 case, we return a "true" matcher.
 
  if (InnerMatchers.empty()) {
 
    return BindableMatcher<T>(TrueMatcher());
 
  }
 
  // For the size() == 1 case, we simply return that one matcher.
 
  // No need to wrap it in a variadic operation.
 
  if (InnerMatchers.size() == 1) {
 
    return BindableMatcher<T>(*InnerMatchers[0]);
 
  }
 
 
 
  using PI = llvm::pointee_iterator<const Matcher<T> *const *>;
 
 
 
  std::vector<DynTypedMatcher> DynMatchers(PI(InnerMatchers.begin()),
 
                                           PI(InnerMatchers.end()));
 
  return BindableMatcher<T>(
 
      DynTypedMatcher::constructVariadic(DynTypedMatcher::VO_AllOf,
 
                                         ASTNodeKind::getFromNodeKind<T>(),
 
                                         std::move(DynMatchers))
 
          .template unconditionalConvertTo<T>());
 
}
 
 
 
/// Creates a Matcher<T> that matches if
 
/// T is dyn_cast'able into InnerT and all inner matchers match.
 
///
 
/// Returns BindableMatcher, as matchers that use dyn_cast have
 
/// the same object both to match on and to run submatchers on,
 
/// so there is no ambiguity with what gets bound.
 
template <typename T, typename InnerT>
 
BindableMatcher<T>
 
makeDynCastAllOfComposite(ArrayRef<const Matcher<InnerT> *> InnerMatchers) {
 
  return BindableMatcher<T>(
 
      makeAllOfComposite(InnerMatchers).template dynCastTo<T>());
 
}
 
 
 
/// A VariadicDynCastAllOfMatcher<SourceT, TargetT> object is a
 
/// variadic functor that takes a number of Matcher<TargetT> and returns a
 
/// Matcher<SourceT> that matches TargetT nodes that are matched by all of the
 
/// given matchers, if SourceT can be dynamically casted into TargetT.
 
///
 
/// For example:
 
///   const VariadicDynCastAllOfMatcher<Decl, CXXRecordDecl> record;
 
/// Creates a functor record(...) that creates a Matcher<Decl> given
 
/// a variable number of arguments of type Matcher<CXXRecordDecl>.
 
/// The returned matcher matches if the given Decl can by dynamically
 
/// casted to CXXRecordDecl and all given matchers match.
 
template <typename SourceT, typename TargetT>
 
class VariadicDynCastAllOfMatcher
 
    : public VariadicFunction<BindableMatcher<SourceT>, Matcher<TargetT>,
 
                              makeDynCastAllOfComposite<SourceT, TargetT>> {
 
public:
 
  VariadicDynCastAllOfMatcher() {}
 
};
 
 
 
/// A \c VariadicAllOfMatcher<T> object is a variadic functor that takes
 
/// a number of \c Matcher<T> and returns a \c Matcher<T> that matches \c T
 
/// nodes that are matched by all of the given matchers.
 
///
 
/// For example:
 
///   const VariadicAllOfMatcher<NestedNameSpecifier> nestedNameSpecifier;
 
/// Creates a functor nestedNameSpecifier(...) that creates a
 
/// \c Matcher<NestedNameSpecifier> given a variable number of arguments of type
 
/// \c Matcher<NestedNameSpecifier>.
 
/// The returned matcher matches if all given matchers match.
 
template <typename T>
 
class VariadicAllOfMatcher
 
    : public VariadicFunction<BindableMatcher<T>, Matcher<T>,
 
                              makeAllOfComposite<T>> {
 
public:
 
  VariadicAllOfMatcher() {}
 
};
 
 
 
/// VariadicOperatorMatcher related types.
 
/// @{
 
 
 
/// Polymorphic matcher object that uses a \c
 
/// DynTypedMatcher::VariadicOperator operator.
 
///
 
/// Input matchers can have any type (including other polymorphic matcher
 
/// types), and the actual Matcher<T> is generated on demand with an implicit
 
/// conversion operator.
 
template <typename... Ps> class VariadicOperatorMatcher {
 
public:
 
  VariadicOperatorMatcher(DynTypedMatcher::VariadicOperator Op, Ps &&... Params)
 
      : Op(Op), Params(std::forward<Ps>(Params)...) {}
 
 
 
  template <typename T> operator Matcher<T>() const & {
 
    return DynTypedMatcher::constructVariadic(
 
               Op, ASTNodeKind::getFromNodeKind<T>(),
 
               getMatchers<T>(std::index_sequence_for<Ps...>()))
 
        .template unconditionalConvertTo<T>();
 
  }
 
 
 
  template <typename T> operator Matcher<T>() && {
 
    return DynTypedMatcher::constructVariadic(
 
               Op, ASTNodeKind::getFromNodeKind<T>(),
 
               getMatchers<T>(std::index_sequence_for<Ps...>()))
 
        .template unconditionalConvertTo<T>();
 
  }
 
 
 
private:
 
  // Helper method to unpack the tuple into a vector.
 
  template <typename T, std::size_t... Is>
 
  std::vector<DynTypedMatcher> getMatchers(std::index_sequence<Is...>) const & {
 
    return {Matcher<T>(std::get<Is>(Params))...};
 
  }
 
 
 
  template <typename T, std::size_t... Is>
 
  std::vector<DynTypedMatcher> getMatchers(std::index_sequence<Is...>) && {
 
    return {Matcher<T>(std::get<Is>(std::move(Params)))...};
 
  }
 
 
 
  const DynTypedMatcher::VariadicOperator Op;
 
  std::tuple<Ps...> Params;
 
};
 
 
 
/// Overloaded function object to generate VariadicOperatorMatcher
 
///   objects from arbitrary matchers.
 
template <unsigned MinCount, unsigned MaxCount>
 
struct VariadicOperatorMatcherFunc {
 
  DynTypedMatcher::VariadicOperator Op;
 
 
 
  template <typename... Ms>
 
  VariadicOperatorMatcher<Ms...> operator()(Ms &&... Ps) const {
 
    static_assert(MinCount <= sizeof...(Ms) && sizeof...(Ms) <= MaxCount,
 
                  "invalid number of parameters for variadic matcher");
 
    return VariadicOperatorMatcher<Ms...>(Op, std::forward<Ms>(Ps)...);
 
  }
 
};
 
 
 
template <typename T, bool IsBaseOf, typename Head, typename Tail>
 
struct GetCladeImpl {
 
  using Type = Head;
 
};
 
template <typename T, typename Head, typename Tail>
 
struct GetCladeImpl<T, false, Head, Tail>
 
    : GetCladeImpl<T, std::is_base_of<typename Tail::head, T>::value,
 
                   typename Tail::head, typename Tail::tail> {};
 
 
 
template <typename T, typename... U>
 
struct GetClade : GetCladeImpl<T, false, T, AllNodeBaseTypes> {};
 
 
 
template <typename CladeType, typename... MatcherTypes>
 
struct MapAnyOfMatcherImpl {
 
 
 
  template <typename... InnerMatchers>
 
  BindableMatcher<CladeType>
 
  operator()(InnerMatchers &&... InnerMatcher) const {
 
    return VariadicAllOfMatcher<CladeType>()(std::apply(
 
        internal::VariadicOperatorMatcherFunc<
 
            0, std::numeric_limits<unsigned>::max()>{
 
            internal::DynTypedMatcher::VO_AnyOf},
 
        std::apply(
 
            [&](auto... Matcher) {
 
              return std::make_tuple(Matcher(InnerMatcher...)...);
 
            },
 
            std::tuple<
 
                VariadicDynCastAllOfMatcher<CladeType, MatcherTypes>...>())));
 
  }
 
};
 
 
 
template <typename... MatcherTypes>
 
using MapAnyOfMatcher =
 
    MapAnyOfMatcherImpl<typename GetClade<MatcherTypes...>::Type,
 
                        MatcherTypes...>;
 
 
 
template <typename... MatcherTypes> struct MapAnyOfHelper {
 
  using CladeType = typename GetClade<MatcherTypes...>::Type;
 
 
 
  MapAnyOfMatcher<MatcherTypes...> with;
 
 
 
  operator BindableMatcher<CladeType>() const { return with(); }
 
 
 
  Matcher<CladeType> bind(StringRef ID) const { return with().bind(ID); }
 
};
 
 
 
template <template <typename ToArg, typename FromArg> class ArgumentAdapterT,
 
          typename T, typename ToTypes>
 
class ArgumentAdaptingMatcherFuncAdaptor {
 
public:
 
  explicit ArgumentAdaptingMatcherFuncAdaptor(const Matcher<T> &InnerMatcher)
 
      : InnerMatcher(InnerMatcher) {}
 
 
 
  using ReturnTypes = ToTypes;
 
 
 
  template <typename To> operator Matcher<To>() const & {
 
    return Matcher<To>(new ArgumentAdapterT<To, T>(InnerMatcher));
 
  }
 
 
 
  template <typename To> operator Matcher<To>() && {
 
    return Matcher<To>(new ArgumentAdapterT<To, T>(std::move(InnerMatcher)));
 
  }
 
 
 
private:
 
  Matcher<T> InnerMatcher;
 
};
 
 
 
/// Converts a \c Matcher<T> to a matcher of desired type \c To by
 
/// "adapting" a \c To into a \c T.
 
///
 
/// The \c ArgumentAdapterT argument specifies how the adaptation is done.
 
///
 
/// For example:
 
///   \c ArgumentAdaptingMatcher<HasMatcher, T>(InnerMatcher);
 
/// Given that \c InnerMatcher is of type \c Matcher<T>, this returns a matcher
 
/// that is convertible into any matcher of type \c To by constructing
 
/// \c HasMatcher<To, T>(InnerMatcher).
 
///
 
/// If a matcher does not need knowledge about the inner type, prefer to use
 
/// PolymorphicMatcher.
 
template <template <typename ToArg, typename FromArg> class ArgumentAdapterT,
 
          typename FromTypes = AdaptativeDefaultFromTypes,
 
          typename ToTypes = AdaptativeDefaultToTypes>
 
struct ArgumentAdaptingMatcherFunc {
 
  template <typename T>
 
  static ArgumentAdaptingMatcherFuncAdaptor<ArgumentAdapterT, T, ToTypes>
 
  create(const Matcher<T> &InnerMatcher) {
 
    return ArgumentAdaptingMatcherFuncAdaptor<ArgumentAdapterT, T, ToTypes>(
 
        InnerMatcher);
 
  }
 
 
 
  template <typename T>
 
  ArgumentAdaptingMatcherFuncAdaptor<ArgumentAdapterT, T, ToTypes>
 
  operator()(const Matcher<T> &InnerMatcher) const {
 
    return create(InnerMatcher);
 
  }
 
 
 
  template <typename... T>
 
  ArgumentAdaptingMatcherFuncAdaptor<ArgumentAdapterT,
 
                                     typename GetClade<T...>::Type, ToTypes>
 
  operator()(const MapAnyOfHelper<T...> &InnerMatcher) const {
 
    return create(InnerMatcher.with());
 
  }
 
};
 
 
 
template <typename T> class TraversalMatcher : public MatcherInterface<T> {
 
  DynTypedMatcher InnerMatcher;
 
  clang::TraversalKind Traversal;
 
 
 
public:
 
  explicit TraversalMatcher(clang::TraversalKind TK,
 
                            const Matcher<T> &InnerMatcher)
 
      : InnerMatcher(InnerMatcher), Traversal(TK) {}
 
 
 
  bool matches(const T &Node, ASTMatchFinder *Finder,
 
               BoundNodesTreeBuilder *Builder) const override {
 
    return this->InnerMatcher.matches(DynTypedNode::create(Node), Finder,
 
                                      Builder);
 
  }
 
 
 
  std::optional<clang::TraversalKind> TraversalKind() const override {
 
    if (auto NestedKind = this->InnerMatcher.getTraversalKind())
 
      return NestedKind;
 
    return Traversal;
 
  }
 
};
 
 
 
template <typename MatcherType> class TraversalWrapper {
 
public:
 
  TraversalWrapper(TraversalKind TK, const MatcherType &InnerMatcher)
 
      : TK(TK), InnerMatcher(InnerMatcher) {}
 
 
 
  template <typename T> operator Matcher<T>() const & {
 
    return internal::DynTypedMatcher::constructRestrictedWrapper(
 
               new internal::TraversalMatcher<T>(TK, InnerMatcher),
 
               ASTNodeKind::getFromNodeKind<T>())
 
        .template unconditionalConvertTo<T>();
 
  }
 
 
 
  template <typename T> operator Matcher<T>() && {
 
    return internal::DynTypedMatcher::constructRestrictedWrapper(
 
               new internal::TraversalMatcher<T>(TK, std::move(InnerMatcher)),
 
               ASTNodeKind::getFromNodeKind<T>())
 
        .template unconditionalConvertTo<T>();
 
  }
 
 
 
private:
 
  TraversalKind TK;
 
  MatcherType InnerMatcher;
 
};
 
 
 
/// A PolymorphicMatcher<MatcherT, P1, ..., PN> object can be
 
/// created from N parameters p1, ..., pN (of type P1, ..., PN) and
 
/// used as a Matcher<T> where a MatcherT<T, P1, ..., PN>(p1, ..., pN)
 
/// can be constructed.
 
///
 
/// For example:
 
/// - PolymorphicMatcher<IsDefinitionMatcher>()
 
///   creates an object that can be used as a Matcher<T> for any type T
 
///   where an IsDefinitionMatcher<T>() can be constructed.
 
/// - PolymorphicMatcher<ValueEqualsMatcher, int>(42)
 
///   creates an object that can be used as a Matcher<T> for any type T
 
///   where a ValueEqualsMatcher<T, int>(42) can be constructed.
 
template <template <typename T, typename... Params> class MatcherT,
 
          typename ReturnTypesF, typename... ParamTypes>
 
class PolymorphicMatcher {
 
public:
 
  PolymorphicMatcher(const ParamTypes &... Params) : Params(Params...) {}
 
 
 
  using ReturnTypes = typename ExtractFunctionArgMeta<ReturnTypesF>::type;
 
 
 
  template <typename T> operator Matcher<T>() const & {
 
    static_assert(TypeListContainsSuperOf<ReturnTypes, T>::value,
 
                  "right polymorphic conversion");
 
    return Matcher<T>(new_from_tuple<MatcherT<T, ParamTypes...>>(Params));
 
  }
 
 
 
  template <typename T> operator Matcher<T>() && {
 
    static_assert(TypeListContainsSuperOf<ReturnTypes, T>::value,
 
                  "right polymorphic conversion");
 
    return Matcher<T>(
 
        new_from_tuple<MatcherT<T, ParamTypes...>>(std::move(Params)));
 
  }
 
 
 
private:
 
  std::tuple<ParamTypes...> Params;
 
};
 
 
 
/// Matches nodes of type T that have child nodes of type ChildT for
 
/// which a specified child matcher matches.
 
///
 
/// ChildT must be an AST base type.
 
template <typename T, typename ChildT>
 
class HasMatcher : public MatcherInterface<T> {
 
  DynTypedMatcher InnerMatcher;
 
 
 
public:
 
  explicit HasMatcher(const Matcher<ChildT> &InnerMatcher)
 
      : InnerMatcher(InnerMatcher) {}
 
 
 
  bool matches(const T &Node, ASTMatchFinder *Finder,
 
               BoundNodesTreeBuilder *Builder) const override {
 
    return Finder->matchesChildOf(Node, this->InnerMatcher, Builder,
 
                                  ASTMatchFinder::BK_First);
 
  }
 
};
 
 
 
/// Matches nodes of type T that have child nodes of type ChildT for
 
/// which a specified child matcher matches. ChildT must be an AST base
 
/// type.
 
/// As opposed to the HasMatcher, the ForEachMatcher will produce a match
 
/// for each child that matches.
 
template <typename T, typename ChildT>
 
class ForEachMatcher : public MatcherInterface<T> {
 
  static_assert(IsBaseType<ChildT>::value,
 
                "for each only accepts base type matcher");
 
 
 
  DynTypedMatcher InnerMatcher;
 
 
 
public:
 
  explicit ForEachMatcher(const Matcher<ChildT> &InnerMatcher)
 
      : InnerMatcher(InnerMatcher) {}
 
 
 
  bool matches(const T &Node, ASTMatchFinder *Finder,
 
               BoundNodesTreeBuilder *Builder) const override {
 
    return Finder->matchesChildOf(
 
        Node, this->InnerMatcher, Builder,
 
        ASTMatchFinder::BK_All);
 
  }
 
};
 
 
 
/// @}
 
 
 
template <typename T>
 
inline Matcher<T> DynTypedMatcher::unconditionalConvertTo() const {
 
  return Matcher<T>(*this);
 
}
 
 
 
/// Matches nodes of type T that have at least one descendant node of
 
/// type DescendantT for which the given inner matcher matches.
 
///
 
/// DescendantT must be an AST base type.
 
template <typename T, typename DescendantT>
 
class HasDescendantMatcher : public MatcherInterface<T> {
 
  static_assert(IsBaseType<DescendantT>::value,
 
                "has descendant only accepts base type matcher");
 
 
 
  DynTypedMatcher DescendantMatcher;
 
 
 
public:
 
  explicit HasDescendantMatcher(const Matcher<DescendantT> &DescendantMatcher)
 
      : DescendantMatcher(DescendantMatcher) {}
 
 
 
  bool matches(const T &Node, ASTMatchFinder *Finder,
 
               BoundNodesTreeBuilder *Builder) const override {
 
    return Finder->matchesDescendantOf(Node, this->DescendantMatcher, Builder,
 
                                       ASTMatchFinder::BK_First);
 
  }
 
};
 
 
 
/// Matches nodes of type \c T that have a parent node of type \c ParentT
 
/// for which the given inner matcher matches.
 
///
 
/// \c ParentT must be an AST base type.
 
template <typename T, typename ParentT>
 
class HasParentMatcher : public MatcherInterface<T> {
 
  static_assert(IsBaseType<ParentT>::value,
 
                "has parent only accepts base type matcher");
 
 
 
  DynTypedMatcher ParentMatcher;
 
 
 
public:
 
  explicit HasParentMatcher(const Matcher<ParentT> &ParentMatcher)
 
      : ParentMatcher(ParentMatcher) {}
 
 
 
  bool matches(const T &Node, ASTMatchFinder *Finder,
 
               BoundNodesTreeBuilder *Builder) const override {
 
    return Finder->matchesAncestorOf(Node, this->ParentMatcher, Builder,
 
                                     ASTMatchFinder::AMM_ParentOnly);
 
  }
 
};
 
 
 
/// Matches nodes of type \c T that have at least one ancestor node of
 
/// type \c AncestorT for which the given inner matcher matches.
 
///
 
/// \c AncestorT must be an AST base type.
 
template <typename T, typename AncestorT>
 
class HasAncestorMatcher : public MatcherInterface<T> {
 
  static_assert(IsBaseType<AncestorT>::value,
 
                "has ancestor only accepts base type matcher");
 
 
 
  DynTypedMatcher AncestorMatcher;
 
 
 
public:
 
  explicit HasAncestorMatcher(const Matcher<AncestorT> &AncestorMatcher)
 
      : AncestorMatcher(AncestorMatcher) {}
 
 
 
  bool matches(const T &Node, ASTMatchFinder *Finder,
 
               BoundNodesTreeBuilder *Builder) const override {
 
    return Finder->matchesAncestorOf(Node, this->AncestorMatcher, Builder,
 
                                     ASTMatchFinder::AMM_All);
 
  }
 
};
 
 
 
/// Matches nodes of type T that have at least one descendant node of
 
/// type DescendantT for which the given inner matcher matches.
 
///
 
/// DescendantT must be an AST base type.
 
/// As opposed to HasDescendantMatcher, ForEachDescendantMatcher will match
 
/// for each descendant node that matches instead of only for the first.
 
template <typename T, typename DescendantT>
 
class ForEachDescendantMatcher : public MatcherInterface<T> {
 
  static_assert(IsBaseType<DescendantT>::value,
 
                "for each descendant only accepts base type matcher");
 
 
 
  DynTypedMatcher DescendantMatcher;
 
 
 
public:
 
  explicit ForEachDescendantMatcher(
 
      const Matcher<DescendantT> &DescendantMatcher)
 
      : DescendantMatcher(DescendantMatcher) {}
 
 
 
  bool matches(const T &Node, ASTMatchFinder *Finder,
 
               BoundNodesTreeBuilder *Builder) const override {
 
    return Finder->matchesDescendantOf(Node, this->DescendantMatcher, Builder,
 
                                       ASTMatchFinder::BK_All);
 
  }
 
};
 
 
 
/// Matches on nodes that have a getValue() method if getValue() equals
 
/// the value the ValueEqualsMatcher was constructed with.
 
template <typename T, typename ValueT>
 
class ValueEqualsMatcher : public SingleNodeMatcherInterface<T> {
 
  static_assert(std::is_base_of<CharacterLiteral, T>::value ||
 
                std::is_base_of<CXXBoolLiteralExpr, T>::value ||
 
                std::is_base_of<FloatingLiteral, T>::value ||
 
                std::is_base_of<IntegerLiteral, T>::value,
 
                "the node must have a getValue method");
 
 
 
public:
 
  explicit ValueEqualsMatcher(const ValueT &ExpectedValue)
 
      : ExpectedValue(ExpectedValue) {}
 
 
 
  bool matchesNode(const T &Node) const override {
 
    return Node.getValue() == ExpectedValue;
 
  }
 
 
 
private:
 
  ValueT ExpectedValue;
 
};
 
 
 
/// Template specializations to easily write matchers for floating point
 
/// literals.
 
template <>
 
inline bool ValueEqualsMatcher<FloatingLiteral, double>::matchesNode(
 
    const FloatingLiteral &Node) const {
 
  if ((&Node.getSemantics()) == &llvm::APFloat::IEEEsingle())
 
    return Node.getValue().convertToFloat() == ExpectedValue;
 
  if ((&Node.getSemantics()) == &llvm::APFloat::IEEEdouble())
 
    return Node.getValue().convertToDouble() == ExpectedValue;
 
  return false;
 
}
 
template <>
 
inline bool ValueEqualsMatcher<FloatingLiteral, float>::matchesNode(
 
    const FloatingLiteral &Node) const {
 
  if ((&Node.getSemantics()) == &llvm::APFloat::IEEEsingle())
 
    return Node.getValue().convertToFloat() == ExpectedValue;
 
  if ((&Node.getSemantics()) == &llvm::APFloat::IEEEdouble())
 
    return Node.getValue().convertToDouble() == ExpectedValue;
 
  return false;
 
}
 
template <>
 
inline bool ValueEqualsMatcher<FloatingLiteral, llvm::APFloat>::matchesNode(
 
    const FloatingLiteral &Node) const {
 
  return ExpectedValue.compare(Node.getValue()) == llvm::APFloat::cmpEqual;
 
}
 
 
 
/// Matches nodes of type \c TLoc for which the inner
 
/// \c Matcher<T> matches.
 
template <typename TLoc, typename T>
 
class LocMatcher : public MatcherInterface<TLoc> {
 
  DynTypedMatcher InnerMatcher;
 
 
 
public:
 
  explicit LocMatcher(const Matcher<T> &InnerMatcher)
 
      : InnerMatcher(InnerMatcher) {}
 
 
 
  bool matches(const TLoc &Node, ASTMatchFinder *Finder,
 
               BoundNodesTreeBuilder *Builder) const override {
 
    if (!Node)
 
      return false;
 
    return this->InnerMatcher.matches(extract(Node), Finder, Builder);
 
  }
 
 
 
private:
 
  static DynTypedNode extract(const NestedNameSpecifierLoc &Loc) {
 
    return DynTypedNode::create(*Loc.getNestedNameSpecifier());
 
  }
 
};
 
 
 
/// Matches \c TypeLocs based on an inner matcher matching a certain
 
/// \c QualType.
 
///
 
/// Used to implement the \c loc() matcher.
 
class TypeLocTypeMatcher : public MatcherInterface<TypeLoc> {
 
  DynTypedMatcher InnerMatcher;
 
 
 
public:
 
  explicit TypeLocTypeMatcher(const Matcher<QualType> &InnerMatcher)
 
      : InnerMatcher(InnerMatcher) {}
 
 
 
  bool matches(const TypeLoc &Node, ASTMatchFinder *Finder,
 
               BoundNodesTreeBuilder *Builder) const override {
 
    if (!Node)
 
      return false;
 
    return this->InnerMatcher.matches(DynTypedNode::create(Node.getType()),
 
                                      Finder, Builder);
 
  }
 
};
 
 
 
/// Matches nodes of type \c T for which the inner matcher matches on a
 
/// another node of type \c T that can be reached using a given traverse
 
/// function.
 
template <typename T> class TypeTraverseMatcher : public MatcherInterface<T> {
 
  DynTypedMatcher InnerMatcher;
 
 
 
public:
 
  explicit TypeTraverseMatcher(const Matcher<QualType> &InnerMatcher,
 
                               QualType (T::*TraverseFunction)() const)
 
      : InnerMatcher(InnerMatcher), TraverseFunction(TraverseFunction) {}
 
 
 
  bool matches(const T &Node, ASTMatchFinder *Finder,
 
               BoundNodesTreeBuilder *Builder) const override {
 
    QualType NextNode = (Node.*TraverseFunction)();
 
    if (NextNode.isNull())
 
      return false;
 
    return this->InnerMatcher.matches(DynTypedNode::create(NextNode), Finder,
 
                                      Builder);
 
  }
 
 
 
private:
 
  QualType (T::*TraverseFunction)() const;
 
};
 
 
 
/// Matches nodes of type \c T in a ..Loc hierarchy, for which the inner
 
/// matcher matches on a another node of type \c T that can be reached using a
 
/// given traverse function.
 
template <typename T>
 
class TypeLocTraverseMatcher : public MatcherInterface<T> {
 
  DynTypedMatcher InnerMatcher;
 
 
 
public:
 
  explicit TypeLocTraverseMatcher(const Matcher<TypeLoc> &InnerMatcher,
 
                                  TypeLoc (T::*TraverseFunction)() const)
 
      : InnerMatcher(InnerMatcher), TraverseFunction(TraverseFunction) {}
 
 
 
  bool matches(const T &Node, ASTMatchFinder *Finder,
 
               BoundNodesTreeBuilder *Builder) const override {
 
    TypeLoc NextNode = (Node.*TraverseFunction)();
 
    if (!NextNode)
 
      return false;
 
    return this->InnerMatcher.matches(DynTypedNode::create(NextNode), Finder,
 
                                      Builder);
 
  }
 
 
 
private:
 
  TypeLoc (T::*TraverseFunction)() const;
 
};
 
 
 
/// Converts a \c Matcher<InnerT> to a \c Matcher<OuterT>, where
 
/// \c OuterT is any type that is supported by \c Getter.
 
///
 
/// \code Getter<OuterT>::value() \endcode returns a
 
/// \code InnerTBase (OuterT::*)() \endcode, which is used to adapt a \c OuterT
 
/// object into a \c InnerT
 
template <typename InnerTBase,
 
          template <typename OuterT> class Getter,
 
          template <typename OuterT> class MatcherImpl,
 
          typename ReturnTypesF>
 
class TypeTraversePolymorphicMatcher {
 
private:
 
  using Self = TypeTraversePolymorphicMatcher<InnerTBase, Getter, MatcherImpl,
 
                                              ReturnTypesF>;
 
 
 
  static Self create(ArrayRef<const Matcher<InnerTBase> *> InnerMatchers);
 
 
 
public:
 
  using ReturnTypes = typename ExtractFunctionArgMeta<ReturnTypesF>::type;
 
 
 
  explicit TypeTraversePolymorphicMatcher(
 
      ArrayRef<const Matcher<InnerTBase> *> InnerMatchers)
 
      : InnerMatcher(makeAllOfComposite(InnerMatchers)) {}
 
 
 
  template <typename OuterT> operator Matcher<OuterT>() const {
 
    return Matcher<OuterT>(
 
        new MatcherImpl<OuterT>(InnerMatcher, Getter<OuterT>::value()));
 
  }
 
 
 
  struct Func
 
      : public VariadicFunction<Self, Matcher<InnerTBase>, &Self::create> {
 
    Func() {}
 
  };
 
 
 
private:
 
  Matcher<InnerTBase> InnerMatcher;
 
};
 
 
 
/// A simple memoizer of T(*)() functions.
 
///
 
/// It will call the passed 'Func' template parameter at most once.
 
/// Used to support AST_MATCHER_FUNCTION() macro.
 
template <typename Matcher, Matcher (*Func)()> class MemoizedMatcher {
 
  struct Wrapper {
 
    Wrapper() : M(Func()) {}
 
 
 
    Matcher M;
 
  };
 
 
 
public:
 
  static const Matcher &getInstance() {
 
    static llvm::ManagedStatic<Wrapper> Instance;
 
    return Instance->M;
 
  }
 
};
 
 
 
// Define the create() method out of line to silence a GCC warning about
 
// the struct "Func" having greater visibility than its base, which comes from
 
// using the flag -fvisibility-inlines-hidden.
 
template <typename InnerTBase, template <typename OuterT> class Getter,
 
          template <typename OuterT> class MatcherImpl, typename ReturnTypesF>
 
TypeTraversePolymorphicMatcher<InnerTBase, Getter, MatcherImpl, ReturnTypesF>
 
TypeTraversePolymorphicMatcher<
 
    InnerTBase, Getter, MatcherImpl,
 
    ReturnTypesF>::create(ArrayRef<const Matcher<InnerTBase> *> InnerMatchers) {
 
  return Self(InnerMatchers);
 
}
 
 
 
// FIXME: unify ClassTemplateSpecializationDecl and TemplateSpecializationType's
 
// APIs for accessing the template argument list.
 
inline ArrayRef<TemplateArgument>
 
getTemplateSpecializationArgs(const ClassTemplateSpecializationDecl &D) {
 
  return D.getTemplateArgs().asArray();
 
}
 
 
 
inline ArrayRef<TemplateArgument>
 
getTemplateSpecializationArgs(const TemplateSpecializationType &T) {
 
  return T.template_arguments();
 
}
 
 
 
inline ArrayRef<TemplateArgument>
 
getTemplateSpecializationArgs(const FunctionDecl &FD) {
 
  if (const auto* TemplateArgs = FD.getTemplateSpecializationArgs())
 
    return TemplateArgs->asArray();
 
  return ArrayRef<TemplateArgument>();
 
}
 
 
 
struct NotEqualsBoundNodePredicate {
 
  bool operator()(const internal::BoundNodesMap &Nodes) const {
 
    return Nodes.getNode(ID) != Node;
 
  }
 
 
 
  std::string ID;
 
  DynTypedNode Node;
 
};
 
 
 
template <typename Ty, typename Enable = void> struct GetBodyMatcher {
 
  static const Stmt *get(const Ty &Node) { return Node.getBody(); }
 
};
 
 
 
template <typename Ty>
 
struct GetBodyMatcher<
 
    Ty, std::enable_if_t<std::is_base_of<FunctionDecl, Ty>::value>> {
 
  static const Stmt *get(const Ty &Node) {
 
    return Node.doesThisDeclarationHaveABody() ? Node.getBody() : nullptr;
 
  }
 
};
 
 
 
template <typename NodeType>
 
inline std::optional<BinaryOperatorKind>
 
equivalentBinaryOperator(const NodeType &Node) {
 
  return Node.getOpcode();
 
}
 
 
 
template <>
 
inline std::optional<BinaryOperatorKind>
 
equivalentBinaryOperator<CXXOperatorCallExpr>(const CXXOperatorCallExpr &Node) {
 
  if (Node.getNumArgs() != 2)
 
    return std::nullopt;
 
  switch (Node.getOperator()) {
 
  default:
 
    return std::nullopt;
 
  case OO_ArrowStar:
 
    return BO_PtrMemI;
 
  case OO_Star:
 
    return BO_Mul;
 
  case OO_Slash:
 
    return BO_Div;
 
  case OO_Percent:
 
    return BO_Rem;
 
  case OO_Plus:
 
    return BO_Add;
 
  case OO_Minus:
 
    return BO_Sub;
 
  case OO_LessLess:
 
    return BO_Shl;
 
  case OO_GreaterGreater:
 
    return BO_Shr;
 
  case OO_Spaceship:
 
    return BO_Cmp;
 
  case OO_Less:
 
    return BO_LT;
 
  case OO_Greater:
 
    return BO_GT;
 
  case OO_LessEqual:
 
    return BO_LE;
 
  case OO_GreaterEqual:
 
    return BO_GE;
 
  case OO_EqualEqual:
 
    return BO_EQ;
 
  case OO_ExclaimEqual:
 
    return BO_NE;
 
  case OO_Amp:
 
    return BO_And;
 
  case OO_Caret:
 
    return BO_Xor;
 
  case OO_Pipe:
 
    return BO_Or;
 
  case OO_AmpAmp:
 
    return BO_LAnd;
 
  case OO_PipePipe:
 
    return BO_LOr;
 
  case OO_Equal:
 
    return BO_Assign;
 
  case OO_StarEqual:
 
    return BO_MulAssign;
 
  case OO_SlashEqual:
 
    return BO_DivAssign;
 
  case OO_PercentEqual:
 
    return BO_RemAssign;
 
  case OO_PlusEqual:
 
    return BO_AddAssign;
 
  case OO_MinusEqual:
 
    return BO_SubAssign;
 
  case OO_LessLessEqual:
 
    return BO_ShlAssign;
 
  case OO_GreaterGreaterEqual:
 
    return BO_ShrAssign;
 
  case OO_AmpEqual:
 
    return BO_AndAssign;
 
  case OO_CaretEqual:
 
    return BO_XorAssign;
 
  case OO_PipeEqual:
 
    return BO_OrAssign;
 
  case OO_Comma:
 
    return BO_Comma;
 
  }
 
}
 
 
 
template <typename NodeType>
 
inline std::optional<UnaryOperatorKind>
 
equivalentUnaryOperator(const NodeType &Node) {
 
  return Node.getOpcode();
 
}
 
 
 
template <>
 
inline std::optional<UnaryOperatorKind>
 
equivalentUnaryOperator<CXXOperatorCallExpr>(const CXXOperatorCallExpr &Node) {
 
  if (Node.getNumArgs() != 1 && Node.getOperator() != OO_PlusPlus &&
 
      Node.getOperator() != OO_MinusMinus)
 
    return std::nullopt;
 
  switch (Node.getOperator()) {
 
  default:
 
    return std::nullopt;
 
  case OO_Plus:
 
    return UO_Plus;
 
  case OO_Minus:
 
    return UO_Minus;
 
  case OO_Amp:
 
    return UO_AddrOf;
 
  case OO_Star:
 
    return UO_Deref;
 
  case OO_Tilde:
 
    return UO_Not;
 
  case OO_Exclaim:
 
    return UO_LNot;
 
  case OO_PlusPlus: {
 
    const auto *FD = Node.getDirectCallee();
 
    if (!FD)
 
      return std::nullopt;
 
    return FD->getNumParams() > 0 ? UO_PostInc : UO_PreInc;
 
  }
 
  case OO_MinusMinus: {
 
    const auto *FD = Node.getDirectCallee();
 
    if (!FD)
 
      return std::nullopt;
 
    return FD->getNumParams() > 0 ? UO_PostDec : UO_PreDec;
 
  }
 
  case OO_Coawait:
 
    return UO_Coawait;
 
  }
 
}
 
 
 
template <typename NodeType> inline const Expr *getLHS(const NodeType &Node) {
 
  return Node.getLHS();
 
}
 
template <>
 
inline const Expr *
 
getLHS<CXXOperatorCallExpr>(const CXXOperatorCallExpr &Node) {
 
  if (!internal::equivalentBinaryOperator(Node))
 
    return nullptr;
 
  return Node.getArg(0);
 
}
 
template <typename NodeType> inline const Expr *getRHS(const NodeType &Node) {
 
  return Node.getRHS();
 
}
 
template <>
 
inline const Expr *
 
getRHS<CXXOperatorCallExpr>(const CXXOperatorCallExpr &Node) {
 
  if (!internal::equivalentBinaryOperator(Node))
 
    return nullptr;
 
  return Node.getArg(1);
 
}
 
template <typename NodeType>
 
inline const Expr *getSubExpr(const NodeType &Node) {
 
  return Node.getSubExpr();
 
}
 
template <>
 
inline const Expr *
 
getSubExpr<CXXOperatorCallExpr>(const CXXOperatorCallExpr &Node) {
 
  if (!internal::equivalentUnaryOperator(Node))
 
    return nullptr;
 
  return Node.getArg(0);
 
}
 
 
 
template <typename Ty>
 
struct HasSizeMatcher {
 
  static bool hasSize(const Ty &Node, unsigned int N) {
 
    return Node.getSize() == N;
 
  }
 
};
 
 
 
template <>
 
inline bool HasSizeMatcher<StringLiteral>::hasSize(
 
    const StringLiteral &Node, unsigned int N) {
 
  return Node.getLength() == N;
 
}
 
 
 
template <typename Ty>
 
struct GetSourceExpressionMatcher {
 
  static const Expr *get(const Ty &Node) {
 
    return Node.getSubExpr();
 
  }
 
};
 
 
 
template <>
 
inline const Expr *GetSourceExpressionMatcher<OpaqueValueExpr>::get(
 
    const OpaqueValueExpr &Node) {
 
  return Node.getSourceExpr();
 
}
 
 
 
template <typename Ty>
 
struct CompoundStmtMatcher {
 
  static const CompoundStmt *get(const Ty &Node) {
 
    return &Node;
 
  }
 
};
 
 
 
template <>
 
inline const CompoundStmt *
 
CompoundStmtMatcher<StmtExpr>::get(const StmtExpr &Node) {
 
  return Node.getSubStmt();
 
}
 
 
 
/// If \p Loc is (transitively) expanded from macro \p MacroName, returns the
 
/// location (in the chain of expansions) at which \p MacroName was
 
/// expanded. Since the macro may have been expanded inside a series of
 
/// expansions, that location may itself be a MacroID.
 
std::optional<SourceLocation> getExpansionLocOfMacro(StringRef MacroName,
 
                                                     SourceLocation Loc,
 
                                                     const ASTContext &Context);
 
 
 
inline std::optional<StringRef> getOpName(const UnaryOperator &Node) {
 
  return Node.getOpcodeStr(Node.getOpcode());
 
}
 
inline std::optional<StringRef> getOpName(const BinaryOperator &Node) {
 
  return Node.getOpcodeStr();
 
}
 
inline StringRef getOpName(const CXXRewrittenBinaryOperator &Node) {
 
  return Node.getOpcodeStr();
 
}
 
inline std::optional<StringRef> getOpName(const CXXOperatorCallExpr &Node) {
 
  auto optBinaryOpcode = equivalentBinaryOperator(Node);
 
  if (!optBinaryOpcode) {
 
    auto optUnaryOpcode = equivalentUnaryOperator(Node);
 
    if (!optUnaryOpcode)
 
      return std::nullopt;
 
    return UnaryOperator::getOpcodeStr(*optUnaryOpcode);
 
  }
 
  return BinaryOperator::getOpcodeStr(*optBinaryOpcode);
 
}
 
 
 
/// Matches overloaded operators with a specific name.
 
///
 
/// The type argument ArgT is not used by this matcher but is used by
 
/// PolymorphicMatcher and should be std::vector<std::string>>.
 
template <typename T, typename ArgT = std::vector<std::string>>
 
class HasAnyOperatorNameMatcher : public SingleNodeMatcherInterface<T> {
 
  static_assert(std::is_same<T, BinaryOperator>::value ||
 
                    std::is_same<T, CXXOperatorCallExpr>::value ||
 
                    std::is_same<T, CXXRewrittenBinaryOperator>::value ||
 
                    std::is_same<T, UnaryOperator>::value,
 
                "Matcher only supports `BinaryOperator`, `UnaryOperator`, "
 
                "`CXXOperatorCallExpr` and `CXXRewrittenBinaryOperator`");
 
  static_assert(std::is_same<ArgT, std::vector<std::string>>::value,
 
                "Matcher ArgT must be std::vector<std::string>");
 
 
 
public:
 
  explicit HasAnyOperatorNameMatcher(std::vector<std::string> Names)
 
      : SingleNodeMatcherInterface<T>(), Names(std::move(Names)) {}
 
 
 
  bool matchesNode(const T &Node) const override {
 
    std::optional<StringRef> OptOpName = getOpName(Node);
 
    return OptOpName && llvm::is_contained(Names, *OptOpName);
 
  }
 
 
 
private:
 
  static std::optional<StringRef> getOpName(const UnaryOperator &Node) {
 
    return Node.getOpcodeStr(Node.getOpcode());
 
  }
 
  static std::optional<StringRef> getOpName(const BinaryOperator &Node) {
 
    return Node.getOpcodeStr();
 
  }
 
  static StringRef getOpName(const CXXRewrittenBinaryOperator &Node) {
 
    return Node.getOpcodeStr();
 
  }
 
  static std::optional<StringRef> getOpName(const CXXOperatorCallExpr &Node) {
 
    auto optBinaryOpcode = equivalentBinaryOperator(Node);
 
    if (!optBinaryOpcode) {
 
      auto optUnaryOpcode = equivalentUnaryOperator(Node);
 
      if (!optUnaryOpcode)
 
        return std::nullopt;
 
      return UnaryOperator::getOpcodeStr(*optUnaryOpcode);
 
    }
 
    return BinaryOperator::getOpcodeStr(*optBinaryOpcode);
 
  }
 
 
 
  std::vector<std::string> Names;
 
};
 
 
 
using HasOpNameMatcher =
 
    PolymorphicMatcher<HasAnyOperatorNameMatcher,
 
                       void(
 
                           TypeList<BinaryOperator, CXXOperatorCallExpr,
 
                                    CXXRewrittenBinaryOperator, UnaryOperator>),
 
                       std::vector<std::string>>;
 
 
 
HasOpNameMatcher hasAnyOperatorNameFunc(ArrayRef<const StringRef *> NameRefs);
 
 
 
using HasOverloadOpNameMatcher =
 
    PolymorphicMatcher<HasOverloadedOperatorNameMatcher,
 
                       void(TypeList<CXXOperatorCallExpr, FunctionDecl>),
 
                       std::vector<std::string>>;
 
 
 
HasOverloadOpNameMatcher
 
hasAnyOverloadedOperatorNameFunc(ArrayRef<const StringRef *> NameRefs);
 
 
 
/// Returns true if \p Node has a base specifier matching \p BaseSpec.
 
///
 
/// A class is not considered to be derived from itself.
 
bool matchesAnyBase(const CXXRecordDecl &Node,
 
                    const Matcher<CXXBaseSpecifier> &BaseSpecMatcher,
 
                    ASTMatchFinder *Finder, BoundNodesTreeBuilder *Builder);
 
 
 
std::shared_ptr<llvm::Regex> createAndVerifyRegex(StringRef Regex,
 
                                                  llvm::Regex::RegexFlags Flags,
 
                                                  StringRef MatcherID);
 
 
 
inline bool
 
MatchTemplateArgLocAt(const DeclRefExpr &Node, unsigned int Index,
 
                      internal::Matcher<TemplateArgumentLoc> InnerMatcher,
 
                      internal::ASTMatchFinder *Finder,
 
                      internal::BoundNodesTreeBuilder *Builder) {
 
  llvm::ArrayRef<TemplateArgumentLoc> ArgLocs = Node.template_arguments();
 
  return Index < ArgLocs.size() &&
 
         InnerMatcher.matches(ArgLocs[Index], Finder, Builder);
 
}
 
 
 
inline bool
 
MatchTemplateArgLocAt(const TemplateSpecializationTypeLoc &Node,
 
                      unsigned int Index,
 
                      internal::Matcher<TemplateArgumentLoc> InnerMatcher,
 
                      internal::ASTMatchFinder *Finder,
 
                      internal::BoundNodesTreeBuilder *Builder) {
 
  return !Node.isNull() && Index < Node.getNumArgs() &&
 
         InnerMatcher.matches(Node.getArgLoc(Index), Finder, Builder);
 
}
 
 
 
} // namespace internal
 
 
 
} // namespace ast_matchers
 
 
 
} // namespace clang
 
 
 
#endif // LLVM_CLANG_ASTMATCHERS_ASTMATCHERSINTERNAL_H