//===--- StmtCXX.h - Classes for representing C++ statements ----*- C++ -*-===//
 
//
 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 
// See https://llvm.org/LICENSE.txt for license information.
 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 
//
 
//===----------------------------------------------------------------------===//
 
//
 
// This file defines the C++ statement AST node classes.
 
//
 
//===----------------------------------------------------------------------===//
 
 
 
#ifndef LLVM_CLANG_AST_STMTCXX_H
 
#define LLVM_CLANG_AST_STMTCXX_H
 
 
 
#include "clang/AST/DeclarationName.h"
 
#include "clang/AST/Expr.h"
 
#include "clang/AST/NestedNameSpecifier.h"
 
#include "clang/AST/Stmt.h"
 
#include "llvm/Support/Compiler.h"
 
 
 
namespace clang {
 
 
 
class VarDecl;
 
 
 
/// CXXCatchStmt - This represents a C++ catch block.
 
///
 
class CXXCatchStmt : public Stmt {
 
  SourceLocation CatchLoc;
 
  /// The exception-declaration of the type.
 
  VarDecl *ExceptionDecl;
 
  /// The handler block.
 
  Stmt *HandlerBlock;
 
 
 
public:
 
  CXXCatchStmt(SourceLocation catchLoc, VarDecl *exDecl, Stmt *handlerBlock)
 
  : Stmt(CXXCatchStmtClass), CatchLoc(catchLoc), ExceptionDecl(exDecl),
 
    HandlerBlock(handlerBlock) {}
 
 
 
  CXXCatchStmt(EmptyShell Empty)
 
  : Stmt(CXXCatchStmtClass), ExceptionDecl(nullptr), HandlerBlock(nullptr) {}
 
 
 
  SourceLocation getBeginLoc() const LLVM_READONLY { return CatchLoc; }
 
  SourceLocation getEndLoc() const LLVM_READONLY {
 
    return HandlerBlock->getEndLoc();
 
  }
 
 
 
  SourceLocation getCatchLoc() const { return CatchLoc; }
 
  VarDecl *getExceptionDecl() const { return ExceptionDecl; }
 
  QualType getCaughtType() const;
 
  Stmt *getHandlerBlock() const { return HandlerBlock; }
 
 
 
  static bool classof(const Stmt *T) {
 
    return T->getStmtClass() == CXXCatchStmtClass;
 
  }
 
 
 
  child_range children() { return child_range(&HandlerBlock, &HandlerBlock+1); }
 
 
 
  const_child_range children() const {
 
    return const_child_range(&HandlerBlock, &HandlerBlock + 1);
 
  }
 
 
 
  friend class ASTStmtReader;
 
};
 
 
 
/// CXXTryStmt - A C++ try block, including all handlers.
 
///
 
class CXXTryStmt final : public Stmt,
 
                         private llvm::TrailingObjects<CXXTryStmt, Stmt *> {
 
 
 
  friend TrailingObjects;
 
  friend class ASTStmtReader;
 
 
 
  SourceLocation TryLoc;
 
  unsigned NumHandlers;
 
  size_t numTrailingObjects(OverloadToken<Stmt *>) const { return NumHandlers; }
 
 
 
  CXXTryStmt(SourceLocation tryLoc, Stmt *tryBlock, ArrayRef<Stmt*> handlers);
 
  CXXTryStmt(EmptyShell Empty, unsigned numHandlers)
 
    : Stmt(CXXTryStmtClass), NumHandlers(numHandlers) { }
 
 
 
  Stmt *const *getStmts() const { return getTrailingObjects<Stmt *>(); }
 
  Stmt **getStmts() { return getTrailingObjects<Stmt *>(); }
 
 
 
public:
 
  static CXXTryStmt *Create(const ASTContext &C, SourceLocation tryLoc,
 
                            Stmt *tryBlock, ArrayRef<Stmt*> handlers);
 
 
 
  static CXXTryStmt *Create(const ASTContext &C, EmptyShell Empty,
 
                            unsigned numHandlers);
 
 
 
  SourceLocation getBeginLoc() const LLVM_READONLY { return getTryLoc(); }
 
 
 
  SourceLocation getTryLoc() const { return TryLoc; }
 
  SourceLocation getEndLoc() const {
 
    return getStmts()[NumHandlers]->getEndLoc();
 
  }
 
 
 
  CompoundStmt *getTryBlock() {
 
    return cast<CompoundStmt>(getStmts()[0]);
 
  }
 
  const CompoundStmt *getTryBlock() const {
 
    return cast<CompoundStmt>(getStmts()[0]);
 
  }
 
 
 
  unsigned getNumHandlers() const { return NumHandlers; }
 
  CXXCatchStmt *getHandler(unsigned i) {
 
    return cast<CXXCatchStmt>(getStmts()[i + 1]);
 
  }
 
  const CXXCatchStmt *getHandler(unsigned i) const {
 
    return cast<CXXCatchStmt>(getStmts()[i + 1]);
 
  }
 
 
 
  static bool classof(const Stmt *T) {
 
    return T->getStmtClass() == CXXTryStmtClass;
 
  }
 
 
 
  child_range children() {
 
    return child_range(getStmts(), getStmts() + getNumHandlers() + 1);
 
  }
 
 
 
  const_child_range children() const {
 
    return const_child_range(getStmts(), getStmts() + getNumHandlers() + 1);
 
  }
 
};
 
 
 
/// CXXForRangeStmt - This represents C++0x [stmt.ranged]'s ranged for
 
/// statement, represented as 'for (range-declarator : range-expression)'
 
/// or 'for (init-statement range-declarator : range-expression)'.
 
///
 
/// This is stored in a partially-desugared form to allow full semantic
 
/// analysis of the constituent components. The original syntactic components
 
/// can be extracted using getLoopVariable and getRangeInit.
 
class CXXForRangeStmt : public Stmt {
 
  SourceLocation ForLoc;
 
  enum { INIT, RANGE, BEGINSTMT, ENDSTMT, COND, INC, LOOPVAR, BODY, END };
 
  // SubExprs[RANGE] is an expression or declstmt.
 
  // SubExprs[COND] and SubExprs[INC] are expressions.
 
  Stmt *SubExprs[END];
 
  SourceLocation CoawaitLoc;
 
  SourceLocation ColonLoc;
 
  SourceLocation RParenLoc;
 
 
 
  friend class ASTStmtReader;
 
public:
 
  CXXForRangeStmt(Stmt *InitStmt, DeclStmt *Range, DeclStmt *Begin,
 
                  DeclStmt *End, Expr *Cond, Expr *Inc, DeclStmt *LoopVar,
 
                  Stmt *Body, SourceLocation FL, SourceLocation CAL,
 
                  SourceLocation CL, SourceLocation RPL);
 
  CXXForRangeStmt(EmptyShell Empty) : Stmt(CXXForRangeStmtClass, Empty) { }
 
 
 
  Stmt *getInit() { return SubExprs[INIT]; }
 
  VarDecl *getLoopVariable();
 
  Expr *getRangeInit();
 
 
 
  const Stmt *getInit() const { return SubExprs[INIT]; }
 
  const VarDecl *getLoopVariable() const;
 
  const Expr *getRangeInit() const;
 
 
 
 
 
  DeclStmt *getRangeStmt() { return cast<DeclStmt>(SubExprs[RANGE]); }
 
  DeclStmt *getBeginStmt() {
 
    return cast_or_null<DeclStmt>(SubExprs[BEGINSTMT]);
 
  }
 
  DeclStmt *getEndStmt() { return cast_or_null<DeclStmt>(SubExprs[ENDSTMT]); }
 
  Expr *getCond() { return cast_or_null<Expr>(SubExprs[COND]); }
 
  Expr *getInc() { return cast_or_null<Expr>(SubExprs[INC]); }
 
  DeclStmt *getLoopVarStmt() { return cast<DeclStmt>(SubExprs[LOOPVAR]); }
 
  Stmt *getBody() { return SubExprs[BODY]; }
 
 
 
  const DeclStmt *getRangeStmt() const {
 
    return cast<DeclStmt>(SubExprs[RANGE]);
 
  }
 
  const DeclStmt *getBeginStmt() const {
 
    return cast_or_null<DeclStmt>(SubExprs[BEGINSTMT]);
 
  }
 
  const DeclStmt *getEndStmt() const {
 
    return cast_or_null<DeclStmt>(SubExprs[ENDSTMT]);
 
  }
 
  const Expr *getCond() const {
 
    return cast_or_null<Expr>(SubExprs[COND]);
 
  }
 
  const Expr *getInc() const {
 
    return cast_or_null<Expr>(SubExprs[INC]);
 
  }
 
  const DeclStmt *getLoopVarStmt() const {
 
    return cast<DeclStmt>(SubExprs[LOOPVAR]);
 
  }
 
  const Stmt *getBody() const { return SubExprs[BODY]; }
 
 
 
  void setInit(Stmt *S) { SubExprs[INIT] = S; }
 
  void setRangeInit(Expr *E) { SubExprs[RANGE] = reinterpret_cast<Stmt*>(E); }
 
  void setRangeStmt(Stmt *S) { SubExprs[RANGE] = S; }
 
  void setBeginStmt(Stmt *S) { SubExprs[BEGINSTMT] = S; }
 
  void setEndStmt(Stmt *S) { SubExprs[ENDSTMT] = S; }
 
  void setCond(Expr *E) { SubExprs[COND] = reinterpret_cast<Stmt*>(E); }
 
  void setInc(Expr *E) { SubExprs[INC] = reinterpret_cast<Stmt*>(E); }
 
  void setLoopVarStmt(Stmt *S) { SubExprs[LOOPVAR] = S; }
 
  void setBody(Stmt *S) { SubExprs[BODY] = S; }
 
 
 
  SourceLocation getForLoc() const { return ForLoc; }
 
  SourceLocation getCoawaitLoc() const { return CoawaitLoc; }
 
  SourceLocation getColonLoc() const { return ColonLoc; }
 
  SourceLocation getRParenLoc() const { return RParenLoc; }
 
 
 
  SourceLocation getBeginLoc() const LLVM_READONLY { return ForLoc; }
 
  SourceLocation getEndLoc() const LLVM_READONLY {
 
    return SubExprs[BODY]->getEndLoc();
 
  }
 
 
 
  static bool classof(const Stmt *T) {
 
    return T->getStmtClass() == CXXForRangeStmtClass;
 
  }
 
 
 
  // Iterators
 
  child_range children() {
 
    return child_range(&SubExprs[0], &SubExprs[END]);
 
  }
 
 
 
  const_child_range children() const {
 
    return const_child_range(&SubExprs[0], &SubExprs[END]);
 
  }
 
};
 
 
 
/// Representation of a Microsoft __if_exists or __if_not_exists
 
/// statement with a dependent name.
 
///
 
/// The __if_exists statement can be used to include a sequence of statements
 
/// in the program only when a particular dependent name does not exist. For
 
/// example:
 
///
 
/// \code
 
/// template<typename T>
 
/// void call_foo(T &t) {
 
///   __if_exists (T::foo) {
 
///     t.foo(); // okay: only called when T::foo exists.
 
///   }
 
/// }
 
/// \endcode
 
///
 
/// Similarly, the __if_not_exists statement can be used to include the
 
/// statements when a particular name does not exist.
 
///
 
/// Note that this statement only captures __if_exists and __if_not_exists
 
/// statements whose name is dependent. All non-dependent cases are handled
 
/// directly in the parser, so that they don't introduce a new scope. Clang
 
/// introduces scopes in the dependent case to keep names inside the compound
 
/// statement from leaking out into the surround statements, which would
 
/// compromise the template instantiation model. This behavior differs from
 
/// Visual C++ (which never introduces a scope), but is a fairly reasonable
 
/// approximation of the VC++ behavior.
 
class MSDependentExistsStmt : public Stmt {
 
  SourceLocation KeywordLoc;
 
  bool IsIfExists;
 
  NestedNameSpecifierLoc QualifierLoc;
 
  DeclarationNameInfo NameInfo;
 
  Stmt *SubStmt;
 
 
 
  friend class ASTReader;
 
  friend class ASTStmtReader;
 
 
 
public:
 
  MSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists,
 
                        NestedNameSpecifierLoc QualifierLoc,
 
                        DeclarationNameInfo NameInfo,
 
                        CompoundStmt *SubStmt)
 
  : Stmt(MSDependentExistsStmtClass),
 
    KeywordLoc(KeywordLoc), IsIfExists(IsIfExists),
 
    QualifierLoc(QualifierLoc), NameInfo(NameInfo),
 
    SubStmt(reinterpret_cast<Stmt *>(SubStmt)) { }
 
 
 
  /// Retrieve the location of the __if_exists or __if_not_exists
 
  /// keyword.
 
  SourceLocation getKeywordLoc() const { return KeywordLoc; }
 
 
 
  /// Determine whether this is an __if_exists statement.
 
  bool isIfExists() const { return IsIfExists; }
 
 
 
  /// Determine whether this is an __if_exists statement.
 
  bool isIfNotExists() const { return !IsIfExists; }
 
 
 
  /// Retrieve the nested-name-specifier that qualifies this name, if
 
  /// any.
 
  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
 
 
 
  /// Retrieve the name of the entity we're testing for, along with
 
  /// location information
 
  DeclarationNameInfo getNameInfo() const { return NameInfo; }
 
 
 
  /// Retrieve the compound statement that will be included in the
 
  /// program only if the existence of the symbol matches the initial keyword.
 
  CompoundStmt *getSubStmt() const {
 
    return reinterpret_cast<CompoundStmt *>(SubStmt);
 
  }
 
 
 
  SourceLocation getBeginLoc() const LLVM_READONLY { return KeywordLoc; }
 
  SourceLocation getEndLoc() const LLVM_READONLY {
 
    return SubStmt->getEndLoc();
 
  }
 
 
 
  child_range children() {
 
    return child_range(&SubStmt, &SubStmt+1);
 
  }
 
 
 
  const_child_range children() const {
 
    return const_child_range(&SubStmt, &SubStmt + 1);
 
  }
 
 
 
  static bool classof(const Stmt *T) {
 
    return T->getStmtClass() == MSDependentExistsStmtClass;
 
  }
 
};
 
 
 
/// Represents the body of a coroutine. This wraps the normal function
 
/// body and holds the additional semantic context required to set up and tear
 
/// down the coroutine frame.
 
class CoroutineBodyStmt final
 
    : public Stmt,
 
      private llvm::TrailingObjects<CoroutineBodyStmt, Stmt *> {
 
  enum SubStmt {
 
    Body,          ///< The body of the coroutine.
 
    Promise,       ///< The promise statement.
 
    InitSuspend,   ///< The initial suspend statement, run before the body.
 
    FinalSuspend,  ///< The final suspend statement, run after the body.
 
    OnException,   ///< Handler for exceptions thrown in the body.
 
    OnFallthrough, ///< Handler for control flow falling off the body.
 
    Allocate,      ///< Coroutine frame memory allocation.
 
    Deallocate,    ///< Coroutine frame memory deallocation.
 
    ReturnValue,   ///< Return value for thunk function: p.get_return_object().
 
    ReturnStmt,    ///< Return statement for the thunk function.
 
    ReturnStmtOnAllocFailure, ///< Return statement if allocation failed.
 
    FirstParamMove ///< First offset for move construction of parameter copies.
 
  };
 
  unsigned NumParams;
 
 
 
  friend class ASTStmtReader;
 
  friend class ASTReader;
 
  friend TrailingObjects;
 
 
 
  Stmt **getStoredStmts() { return getTrailingObjects<Stmt *>(); }
 
 
 
  Stmt *const *getStoredStmts() const { return getTrailingObjects<Stmt *>(); }
 
 
 
public:
 
 
 
  struct CtorArgs {
 
    Stmt *Body = nullptr;
 
    Stmt *Promise = nullptr;
 
    Expr *InitialSuspend = nullptr;
 
    Expr *FinalSuspend = nullptr;
 
    Stmt *OnException = nullptr;
 
    Stmt *OnFallthrough = nullptr;
 
    Expr *Allocate = nullptr;
 
    Expr *Deallocate = nullptr;
 
    Expr *ReturnValue = nullptr;
 
    Stmt *ReturnStmt = nullptr;
 
    Stmt *ReturnStmtOnAllocFailure = nullptr;
 
    ArrayRef<Stmt *> ParamMoves;
 
  };
 
 
 
private:
 
 
 
  CoroutineBodyStmt(CtorArgs const& Args);
 
 
 
public:
 
  static CoroutineBodyStmt *Create(const ASTContext &C, CtorArgs const &Args);
 
  static CoroutineBodyStmt *Create(const ASTContext &C, EmptyShell,
 
                                   unsigned NumParams);
 
 
 
  bool hasDependentPromiseType() const {
 
    return getPromiseDecl()->getType()->isDependentType();
 
  }
 
 
 
  /// Retrieve the body of the coroutine as written. This will be either
 
  /// a CompoundStmt or a TryStmt.
 
  Stmt *getBody() const {
 
    return getStoredStmts()[SubStmt::Body];
 
  }
 
 
 
  Stmt *getPromiseDeclStmt() const {
 
    return getStoredStmts()[SubStmt::Promise];
 
  }
 
  VarDecl *getPromiseDecl() const {
 
    return cast<VarDecl>(cast<DeclStmt>(getPromiseDeclStmt())->getSingleDecl());
 
  }
 
 
 
  Stmt *getInitSuspendStmt() const {
 
    return getStoredStmts()[SubStmt::InitSuspend];
 
  }
 
  Stmt *getFinalSuspendStmt() const {
 
    return getStoredStmts()[SubStmt::FinalSuspend];
 
  }
 
 
 
  Stmt *getExceptionHandler() const {
 
    return getStoredStmts()[SubStmt::OnException];
 
  }
 
  Stmt *getFallthroughHandler() const {
 
    return getStoredStmts()[SubStmt::OnFallthrough];
 
  }
 
 
 
  Expr *getAllocate() const {
 
    return cast_or_null<Expr>(getStoredStmts()[SubStmt::Allocate]);
 
  }
 
  Expr *getDeallocate() const {
 
    return cast_or_null<Expr>(getStoredStmts()[SubStmt::Deallocate]);
 
  }
 
  Expr *getReturnValueInit() const {
 
    return cast<Expr>(getStoredStmts()[SubStmt::ReturnValue]);
 
  }
 
  Expr *getReturnValue() const {
 
    assert(getReturnStmt());
 
    auto *RS = cast<clang::ReturnStmt>(getReturnStmt());
 
    return RS->getRetValue();
 
  }
 
  Stmt *getReturnStmt() const { return getStoredStmts()[SubStmt::ReturnStmt]; }
 
  Stmt *getReturnStmtOnAllocFailure() const {
 
    return getStoredStmts()[SubStmt::ReturnStmtOnAllocFailure];
 
  }
 
  ArrayRef<Stmt const *> getParamMoves() const {
 
    return {getStoredStmts() + SubStmt::FirstParamMove, NumParams};
 
  }
 
 
 
  SourceLocation getBeginLoc() const LLVM_READONLY {
 
    return getBody() ? getBody()->getBeginLoc()
 
                     : getPromiseDecl()->getBeginLoc();
 
  }
 
  SourceLocation getEndLoc() const LLVM_READONLY {
 
    return getBody() ? getBody()->getEndLoc() : getPromiseDecl()->getEndLoc();
 
  }
 
 
 
  child_range children() {
 
    return child_range(getStoredStmts(),
 
                       getStoredStmts() + SubStmt::FirstParamMove + NumParams);
 
  }
 
 
 
  const_child_range children() const {
 
    return const_child_range(getStoredStmts(), getStoredStmts() +
 
                                                   SubStmt::FirstParamMove +
 
                                                   NumParams);
 
  }
 
 
 
  static bool classof(const Stmt *T) {
 
    return T->getStmtClass() == CoroutineBodyStmtClass;
 
  }
 
};
 
 
 
/// Represents a 'co_return' statement in the C++ Coroutines TS.
 
///
 
/// This statament models the initialization of the coroutine promise
 
/// (encapsulating the eventual notional return value) from an expression
 
/// (or braced-init-list), followed by termination of the coroutine.
 
///
 
/// This initialization is modeled by the evaluation of the operand
 
/// followed by a call to one of:
 
///   <promise>.return_value(<operand>)
 
///   <promise>.return_void()
 
/// which we name the "promise call".
 
class CoreturnStmt : public Stmt {
 
  SourceLocation CoreturnLoc;
 
 
 
  enum SubStmt { Operand, PromiseCall, Count };
 
  Stmt *SubStmts[SubStmt::Count];
 
 
 
  bool IsImplicit : 1;
 
 
 
  friend class ASTStmtReader;
 
public:
 
  CoreturnStmt(SourceLocation CoreturnLoc, Stmt *Operand, Stmt *PromiseCall,
 
               bool IsImplicit = false)
 
      : Stmt(CoreturnStmtClass), CoreturnLoc(CoreturnLoc),
 
        IsImplicit(IsImplicit) {
 
    SubStmts[SubStmt::Operand] = Operand;
 
    SubStmts[SubStmt::PromiseCall] = PromiseCall;
 
  }
 
 
 
  CoreturnStmt(EmptyShell) : CoreturnStmt({}, {}, {}) {}
 
 
 
  SourceLocation getKeywordLoc() const { return CoreturnLoc; }
 
 
 
  /// Retrieve the operand of the 'co_return' statement. Will be nullptr
 
  /// if none was specified.
 
  Expr *getOperand() const { return static_cast<Expr*>(SubStmts[Operand]); }
 
 
 
  /// Retrieve the promise call that results from this 'co_return'
 
  /// statement. Will be nullptr if either the coroutine has not yet been
 
  /// finalized or the coroutine has no eventual return type.
 
  Expr *getPromiseCall() const {
 
    return static_cast<Expr*>(SubStmts[PromiseCall]);
 
  }
 
 
 
  bool isImplicit() const { return IsImplicit; }
 
  void setIsImplicit(bool value = true) { IsImplicit = value; }
 
 
 
  SourceLocation getBeginLoc() const LLVM_READONLY { return CoreturnLoc; }
 
  SourceLocation getEndLoc() const LLVM_READONLY {
 
    return getOperand() ? getOperand()->getEndLoc() : getBeginLoc();
 
  }
 
 
 
  child_range children() {
 
    return child_range(SubStmts, SubStmts + SubStmt::Count);
 
  }
 
 
 
  const_child_range children() const {
 
    return const_child_range(SubStmts, SubStmts + SubStmt::Count);
 
  }
 
 
 
  static bool classof(const Stmt *T) {
 
    return T->getStmtClass() == CoreturnStmtClass;
 
  }
 
};
 
 
 
}  // end namespace clang
 
 
 
#endif