// ifstool.c -- portable reimplementation of QNX's mkifs by Pierre-Marie Baty <pm@pmbaty.com>
 
 
 
#include <stdint.h>
 
#include <stdbool.h>
 
#include <stdlib.h>
 
#include <stdarg.h>
 
#include <stdio.h>
 
#include <string.h>
 
#include <errno.h>
 
#include <sys/stat.h>
 
#include <ctype.h>
 
#include <time.h>
 
 
 
 
 
#ifdef _MSC_VER
 
#include <io.h>
 
#define __x86_64__ 1
 
#define __ORDER_BIG_ENDIAN__    4321
 
#define __ORDER_LITTLE_ENDIAN__ 1234
 
#define __BYTE_ORDER__ __ORDER_LITTLE_ENDIAN__
 
#define __attribute__(x)
 
#define __builtin_bswap16(x) _byteswap_ushort ((unsigned short) (x))
 
#define __builtin_bswap32(x) _byteswap_ulong ((unsigned long) (x))
 
#define __builtin_bswap64(x) _byteswap_uint64 ((unsigned long long) (x))
 
#define S_IFIFO 0x1000
 
#define S_IFLNK 0xa000
 
#define S_ISDIR(m) (((m) & S_IFMT) == S_IFDIR)
 
#define S_ISREG(m) (((m) & S_IFMT) == S_IFREG)
 
#define S_ISLNK(m) (((m) & S_IFMT) == S_IFLNK)
 
#define strdup(s) _strdup ((s))
 
#define strcasecmp(s1,s2) _stricmp ((s1), (s2))
 
#define fseek(fp,off,m) _fseeki64 ((fp), (off), (m))
 
#define access(p,m) _access ((p), (m))
 
#define MAXPATHLEN 1024
 
#ifndef thread_local
 
#define thread_local __declspec(thread) // the thread_local keyword wasn't defined before C++11 and C23
 
#endif // !thread_local
 
#else // !_MSC_VER
 
#include <sys/param.h>
 
#include <unistd.h>
 
#ifndef thread_local
 
#define thread_local __thread // the thread_local keyword wasn't defined before C++11 and C23
 
#endif // !thread_local
 
#endif // _MSC_VER
 
 
 
 
 
// handy macros that generate a version number in the format "YYYYMMDD" corresponding to the build date. Usage: printf ("version " VERSION_FMT_YYYYMMDD "\n", VERSION_ARG_YYYYMMDD);
 
#ifndef VERSION_ARG_YYYYMMDD
 
#define BUILDDATE_YEAR  (&__DATE__[7]) // compiler will optimize this into a const string, e.g. "2021"
 
#define BUILDDATE_MONTH (*((uint32_t *) __DATE__) == *((uint32_t *) "Jan ") ? "01" : \
 
                         (*((uint32_t *) __DATE__) == *((uint32_t *) "Feb ") ? "02" : \
 
                          (*((uint32_t *) __DATE__) == *((uint32_t *) "Mar ") ? "03" : \
 
                           (*((uint32_t *) __DATE__) == *((uint32_t *) "Apr ") ? "04" : \
 
                            (*((uint32_t *) __DATE__) == *((uint32_t *) "May ") ? "05" : \
 
                             (*((uint32_t *) __DATE__) == *((uint32_t *) "Jun ") ? "06" : \
 
                              (*((uint32_t *) __DATE__) == *((uint32_t *) "Jul ") ? "07" : \
 
                               (*((uint32_t *) __DATE__) == *((uint32_t *) "Aug ") ? "08" : \
 
                                (*((uint32_t *) __DATE__) == *((uint32_t *) "Sep ") ? "09" : \
 
                                 (*((uint32_t *) __DATE__) == *((uint32_t *) "Oct ") ? "10" : \
 
                                  (*((uint32_t *) __DATE__) == *((uint32_t *) "Nov ") ? "11" : \
 
                                   (*((uint32_t *) __DATE__) == *((uint32_t *) "Dec ") ? "12" : "XX")))))))))))) // compiler will optimize this into a const string, e.g. "11"
 
#define BUILDDATE_DAY   (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  1 ") ? "01" : \
 
                         (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  2 ") ? "02" : \
 
                          (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  3 ") ? "03" : \
 
                           (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  4 ") ? "04" : \
 
                            (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  5 ") ? "05" : \
 
                             (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  6 ") ? "06" : \
 
                              (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  7 ") ? "07" : \
 
                               (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  8 ") ? "08" : \
 
                                (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) "  9 ") ? "09" : \
 
                                 (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 10 ") ? "10" : \
 
                                  (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 11 ") ? "11" : \
 
                                   (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 12 ") ? "12" : \
 
                                    (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 13 ") ? "13" : \
 
                                     (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 14 ") ? "14" : \
 
                                      (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 15 ") ? "15" : \
 
                                       (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 16 ") ? "16" : \
 
                                        (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 17 ") ? "17" : \
 
                                         (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 18 ") ? "18" : \
 
                                          (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 19 ") ? "19" : \
 
                                           (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 20 ") ? "20" : \
 
                                            (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 21 ") ? "21" : \
 
                                             (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 22 ") ? "22" : \
 
                                              (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 23 ") ? "23" : \
 
                                               (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 24 ") ? "24" : \
 
                                                (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 25 ") ? "25" : \
 
                                                 (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 26 ") ? "26" : \
 
                                                  (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 27 ") ? "27" : \
 
                                                   (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 28 ") ? "28" : \
 
                                                    (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 29 ") ? "29" : \
 
                                                     (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 30 ") ? "30" : \
 
                                                      (*((uint32_t *) &__DATE__[3]) == *((uint32_t *) " 31 ") ? "31" : "XX"))))))))))))))))))))))))))))))) // compiler will optimize this into a const string, e.g. "14"
 
#define VERSION_FMT_YYYYMMDD "%04s%02s%02s"
 
#define VERSION_ARG_YYYYMMDD BUILDDATE_YEAR, BUILDDATE_MONTH, BUILDDATE_DAY
 
#endif // !VERSION_ARG_YYYYMMDD
 
 
 
 
 
// we don't mind about this macro's efficiency...
 
#define __FILENAME__ (strrchr (__FILE__, '\\') ? strrchr (__FILE__, '\\') + 1 : (strrchr (__FILE__, '/') ? strrchr (__FILE__, '/') + 1 : __FILE__))
 
 
 
 
 
// exit less brutally than with abort() if something doesn't go the way we'd like to
 
#define WELLMANNERED_ASSERT(is_is_true,...) do { if (!(is_is_true)) { fprintf (stderr, "ifstool: fatal error: assertion within %s() in %s line %d failed: ", __FUNCTION__, __FILENAME__, __LINE__); fprintf (stderr, __VA_ARGS__); fputc ('\n', stderr); exit (1); } } while (0)
 
 
 
 
 
// checked read/write/seek operations
 
#define fseek_or_die(fp,pos,mode) do { if (fseek ((fp), (pos), (mode)) != 0) { fprintf (stderr, "ifstool: fatal error: fseek() failure within %s() in %s line %d: errno %d (%s)\n", __FUNCTION__, __FILENAME__, __LINE__, errno, strerror (errno)); exit (1); } } while (0)
 
#define fread_or_die(buf,sz,len,fp) do { if (fread ((buf), (sz), (len), (fp)) != (len)) { fprintf (stderr, "ifstool: fatal error: fread() failure within %s() in %s line %d: errno %d (%s)\n", __FUNCTION__, __FILENAME__, __LINE__, errno, strerror (errno)); exit (1); } } while (0)
 
#define fwrite_or_die(buf,sz,len,fp) do { if ((fwrite ((buf), (sz), (len), (fp)) != (len)) || (fflush ((fp)) != 0)) { fprintf (stderr, "ifstool: fatal error: fwrite() failure within %s() in %s line %d: errno %d (%s)\n", __FUNCTION__, __FILENAME__, __LINE__, errno, strerror (errno)); exit (1); } } while (0)
 
 
 
 
 
#define ROUND_TO_UPPER_MULTIPLE(val,multiple) ((((val) + (size_t) (multiple) - 1) / (multiple)) * (multiple)) // note that val is being evaluated once, so it can be the result of a function call
 
#ifdef _WIN32
 
#define IS_DIRSEP(c) (((c) == '/') || ((c) == '\\'))
 
#define PATH_SEP ';'
 
#define PATH_SEP_STR ";"
 
#else // !_WIN32, thus POSIX
 
#define IS_DIRSEP(c) ((c) == '/')
 
#define PATH_SEP ':'
 
#define PATH_SEP_STR ":"
 
#endif // _WIN32
 
#define RECORD_SEP '\x1e' // ASCII record separator
 
#define RECORD_SEP_STR "\x1e" // ASCII record separator (as string)
 
 
 
// macros for accessing ELF files
 
#define ELF_MAGIC_STR "\x7f" "ELF"
 
#define ELF_ENDIAN_LITTLE 1 // ELF file is little endian
 
#define ELF_ENDIAN_BIG    2 // ELF file is big endian
 
#define ELF_DT_NULL    0 // marks end of dynamic section
 
#define ELF_DT_SONAME 14 // canonical name of shared object
 
#define ELF_STRUCT_MEMBER_NUMERIC(elfhdr,elfstruct,member) ((elfhdr)->u.elf.platform_size == 2 ? /* is it a 64-bit ELF file ? */ \
 
   ( \
 
      (sizeof ((elfstruct)->u.elf64.member) == 1) || (((elfhdr)->u.elf.endianness == 1) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || (((elfhdr)->u.elf.endianness == 2) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)) ? /* single-byte, or same endianness ? */ \
 
         (elfstruct)->u.elf64.member /* same endianness, or single byte required: don't swap */ \
 
      : /* else */ \
 
         (sizeof ((elfstruct)->u.elf64.member) == 8 ? __builtin_bswap64 ((elfstruct)->u.elf64.member) : (sizeof ((elfstruct)->u.elf64.member) == 4 ? __builtin_bswap32 ((elfstruct)->u.elf64.member) : __builtin_bswap16 ((elfstruct)->u.elf64.member))) /* different endianness: swap */ \
 
   ) \
 
   : /* else peek at 32-bit ELF */ \
 
   ( \
 
      (sizeof ((elfstruct)->u.elf32.member) == 1) || (((elfhdr)->u.elf.endianness == 1) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || (((elfhdr)->u.elf.endianness == 2) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)) ? /* single-byte, or same endianness ? */ \
 
         (elfstruct)->u.elf32.member /* same endianness, or single byte required: don't swap */ \
 
      : /* else */ \
 
         (sizeof ((elfstruct)->u.elf32.member) == 4 ? __builtin_bswap32 ((elfstruct)->u.elf32.member) : __builtin_bswap16 ((elfstruct)->u.elf32.member)) /* different endianness: swap */ \
 
   ) \
 
) // this macro supports 32- and 64-bit ELF files in low and big endianness transparently
 
#define ELF_STRUCT_MEMBER_STRING(elfhdr,elfstruct,member) ((elfhdr)->u.elf.platform_size == 2 ? (elfstruct)->u.elf64.member : (elfstruct)->u.elf32.member) // this macro supports 32- and 64-bit ELF files transparently
 
#define ELF_STRUCT_SIZE(elfhdr,elfstruct) ((elfhdr)->u.elf.platform_size == 2 ? sizeof ((elfstruct)->u.elf64) : sizeof ((elfstruct)->u.elf32)) // this macro supports 32- and 64-bit ELF files transparently
 
 
 
#define WILL_BE_FILLED_LATER 0xbaadf00d
 
 
 
 
 
// bitmapped flags used in the flags1 member of the startup header
 
#define STARTUP_HDR_FLAGS1_VIRTUAL        (1 << 0)
 
#define STARTUP_HDR_FLAGS1_BIGENDIAN      (1 << 1)
 
//#define STARTUP_HDR_FLAGS1_COMPRESS_MASK  0x1c
 
//#define STARTUP_HDR_FLAGS1_COMPRESS_SHIFT 0x02
 
//#define STARTUP_HDR_FLAGS1_COMPRESS_NONE  0x00
 
//#define STARTUP_HDR_FLAGS1_COMPRESS_ZLIB  0x04
 
//#define STARTUP_HDR_FLAGS1_COMPRESS_LZO   0x08
 
//#define STARTUP_HDR_FLAGS1_COMPRESS_UCL   0x0c
 
#define STARTUP_HDR_FLAGS1_TRAILER_V2     (1 << 5) // if set, then a struct startup_trailer_v2 follows the startup. If the image is compressed, then the compressed imagefs is followed by a struct image_trailer_v2
 
 
 
 
 
#define STARTUP_HDR_MACHINE_X86_64  0x3e
 
#define STARTUP_HDR_MACHINE_AARCH64 0xb7
 
 
 
 
 
// bitmapped flags used in the flags member of the image header
 
#define IMAGE_FLAGS_BIGENDIAN  (1 << 0) // header, trailer, dirents in big-endian format
 
#define IMAGE_FLAGS_READONLY   (1 << 1) // do not try to write to image (rom/flash)
 
#define IMAGE_FLAGS_INO_BITS   (1 << 2) // inode bits valid
 
#define IMAGE_FLAGS_SORTED     (1 << 3) // dirent section is sorted (by pathname)
 
#define IMAGE_FLAGS_TRAILER_V2 (1 << 4) // image uses struct image_trailer_v2
 
 
 
 
 
// bitmapped flags superposed to a filesystem entry's inode number
 
#define IFS_INO_PROCESSED_ELF 0x80000000
 
#define IFS_INO_RUNONCE_ELF   0x40000000
 
#define IFS_INO_BOOTSTRAP_EXE 0x20000000
 
 
 
 
 
// SHA-512 block and digest sizes
 
#define SHA512_BLOCK_LENGTH 128 // in bytes
 
#define SHA512_DIGEST_LENGTH 64 // in bytes
 
 
 
 
 
// SHA-512 computation context structure type definition
 
typedef struct sha512_ctx_s
 
{
 
   uint64_t state[8];
 
   uint64_t bitcount[2];
 
   uint8_t buffer[SHA512_BLOCK_LENGTH];
 
} SHA512_CTX;
 
 
 
 
 
#ifdef _MSC_VER
 
#pragma pack(push)
 
#pragma pack(1)
 
#endif // _MSC_VER
 
 
 
 
 
#if 0 // TODO: startup script compiler. Someday.
 
#define SCRIPT_FLAGS_EXTSCHED   0x01
 
#define SCRIPT_FLAGS_SESSION    0x02
 
#define SCRIPT_FLAGS_SCHED_SET  0x04
 
#define SCRIPT_FLAGS_CPU_SET    0x08
 
#define SCRIPT_FLAGS_BACKGROUND 0x20
 
#define SCRIPT_FLAGS_KDEBUG     0x40
 
 
 
#define SCRIPT_POLICY_NOCHANGE 0
 
#define SCRIPT_POLICY_FIFO     1
 
#define SCRIPT_POLICY_RR       2
 
#define SCRIPT_POLICY_OTHER    3
 
 
 
#define SCRIPT_TYPE_EXTERNAL        0
 
#define SCRIPT_TYPE_WAITFOR         1
 
#define SCRIPT_TYPE_REOPEN          2
 
#define SCRIPT_TYPE_DISPLAY_MSG     3
 
#define SCRIPT_TYPE_PROCMGR_SYMLINK 4
 
#define SCRIPT_TYPE_EXTSCHED_APS    5
 
 
 
#define SCRIPT_CHECKS_MS 100
 
 
 
#define SCRIPT_SCHED_EXT_NONE 0
 
#define SCRIPT_SCHED_EXT_APS  1
 
 
 
#define SCRIPT_APS_SYSTEM_PARTITION_ID   0
 
#define SCRIPT_APS_SYSTEM_PARTITION_NAME "System"
 
#define SCRIPT_APS_PARTITION_NAME_LENGTH 15
 
#define SCRIPT_APS_MAX_PARTITIONS        8
 
 
 
 
 
typedef struct __attribute__((packed)) bootscriptcmd_header_s
 
{
 
   uint16_t size; // size of cmd entry
 
   uint8_t type;
 
   uint8_t spare;
 
} bootscriptcmd_header_t;
 
 
 
 
 
typedef union bootscriptcmd_s
 
{
 
   struct __attribute__((packed)) script_external
 
   {
 
      bootscriptcmd_header_t hdr;
 
      uint8_t cpu; // CPU (turn into runmask)
 
      uint8_t flags;
 
      union script_external_extsched
 
      {
 
         uint8_t reserved[2];
 
         struct __attribute__((packed))
 
         {
 
            uint8_t id;
 
            uint8_t reserved[1];
 
         } aps;
 
      } extsched; // extended scheduler
 
      uint8_t policy; // POLICY_FIFO, POLICY_RR, ...
 
      uint8_t priority; // priority to run cmd at
 
      uint8_t argc; // # of args
 
      uint8_t envc; // # of environment entries
 
      char args[0]; // executable, argv, envp (null padded to 32-bit align)
 
   } external;
 
   struct __attribute__((packed)) script_waitfor_reopen
 
   {
 
      bootscriptcmd_header_t hdr;
 
      uint16_t checks;
 
      char fname[0]; // char fname[] (null padded to 32-bit align)
 
   } waitfor_reopen;
 
   struct __attribute__((packed)) script_display_msg
 
   {
 
      bootscriptcmd_header_t hdr;
 
      char msg[0]; // char msg[] (null padded to 32-bit align)
 
   } display_msg;
 
   struct __attribute__((packed)) script_procmgr_symlink
 
   {
 
      bootscriptcmd_header_t hdr;
 
      char src_dest[0]; // <src_name>, '\0', <dest_name> '\0' (null padded to 32-bit align)
 
   } procmgr_symlink;
 
   struct __attribute__((packed)) script_extsched_aps
 
   {
 
      bootscriptcmd_header_t hdr;
 
      uint8_t parent;
 
      uint8_t budget;
 
      uint16_t critical;
 
      uint8_t id;
 
      char pname[0]; // char pname[] (null padded to 32-bit align)
 
   } extsched_aps;
 
} bootscriptcmd_t;
 
#endif // 0
 
 
 
 
 
#define INITIAL_STARTUP_SCRIPT \
 
   /* procmgr_symlink /proc/boot/ldqnx-64.so.2 /usr/lib/ldqnx-64.so.2 */ \
 
   "\x34\x00" /*size*/ "\x04" /*type*/ "\x00" /*spare*/ "/proc/boot/ldqnx-64.so.2\0" "/usr/lib/ldqnx-64.so.2\0" \
 
   /* sh /proc/boot/startup.sh */ \
 
   "\x88\x00" /*size*/ "\x00" /*type*/ "\x00" /*spare*/ "\x00" /*CPU mask*/ "\x00" /*flags*/ "\x00\x00" /*reserved*/ "\x00" /*policy*/ "\x00" /*priority*/ "\02" /*argc*/ "\x02" /*envc*/ "sh\0" /*executable*/ "sh\0" "/proc/boot/startup.sh\0" /*argv*/ "PATH=/sbin:/usr/sbin:/bin:/usr/bin:/proc/boot\0" "LD_LIBRARY_PATH=/proc/boot:/lib:/lib/dll:/usr/lib\0" /*envp*/ \
 
   /* display_msg "Startup complete */ \
 
   "\x18\x00" /*size*/ "\x03" /*type*/ "\x00" /*spare*/ "Startup complete\n\0" "\x00\00" /*padding*/ \
 
   /* trailer */ \
 
   "\x00\x00\x00\x00"
 
 
 
 
 
typedef struct __attribute__((packed)) fsentry_s
 
{
 
   struct __attribute__((packed)) fsentry_header_s
 
   {
 
      uint16_t size; // size of dirent
 
      uint16_t extattr_offset; // if zero, no extattr data
 
      uint32_t ino; // if zero, skip entry
 
      uint32_t mode; // mode and perms of entry
 
      uint32_t gid;
 
      uint32_t uid;
 
      uint32_t mtime;
 
   } header;
 
   union __attribute__((packed)) fsentry_specific_u
 
   {
 
      struct __attribute__((packed)) fsentry_file_s // when (mode & S_IFMT) == S_IFREG
 
      {
 
         uint32_t offset; // offset from header
 
         uint32_t size;
 
         char *path; // null terminated path (no leading slash)
 
         char *UNSAVED_databuf; // file data blob buffer (NOT SAVED IN THE IFS)
 
      } file;
 
      struct __attribute__((packed)) fsentry_dir_s // when (mode & S_IFMT) == S_IFDIR
 
      {
 
         char *path; // null terminated path (no leading slash)
 
      } dir;
 
      struct __attribute__((packed)) fsentry_symlink_s // when (mode & S_IFMT) == S_IFLNK
 
      {
 
         uint16_t sym_offset; // offset to 'contents' from 'path'
 
         uint16_t sym_size; // strlen (contents)
 
         char *path; // null terminated path (no leading slash)
 
         char *contents; // null terminated symlink contents
 
      } symlink;
 
      struct __attribute__((packed)) fsentry_device_s // when (mode & S_IFMT) == S_IF<CHR|BLK|FIFO|NAM|SOCK>
 
      {
 
         uint32_t dev;
 
         uint32_t rdev;
 
         char *path; // null terminated path (no leading slash)
 
      } device;
 
   } u;
 
   bool UNSAVED_was_data_written; // whether this entry's data was written to the image (NOT SAVED IN THE IFS)
 
} fsentry_t;
 
 
 
 
 
typedef struct __attribute__((packed)) startup_header_s // size 256 bytes
 
{
 
                           // I - used by the QNX IPL
 
                           // S - used by the startup program
 
   uint8_t signature[4];   // [I ] Header signature, "\xeb\x7e\xff\x00"
 
   uint16_t version;       // [I ] Header version, i.e. 1
 
   uint8_t flags1;         // [IS] Misc flags, 0x21 (= 0x20 | STARTUP_HDR_FLAGS1_VIRTUAL)
 
   uint8_t flags2;         // [  ] No flags defined yet (0)
 
   uint16_t header_size;   // [ S] sizeof(struct startup_header), i.e. 256
 
   uint16_t machine;       // [IS] Machine type from elfdefinitions.h, i.e. 0x003E --> _ELF_DEFINE_EM(EM_X86_64, 62, "AMD x86-64 architecture")
 
   uint32_t startup_vaddr; // [I ] Virtual Address to transfer to after IPL is done, here 0x01403008 (appears in "Entry" column for "startup.*")
 
   uint32_t paddr_bias;    // [ S] Value to add to physical address to get a value to put into a pointer and indirected through, here 0 (no indirections)
 
   uint32_t image_paddr;   // [IS] Physical address of image, here 0x01400f30 (appears in "Offset" column for "startup-header" which is the first entry/start of file)
 
   uint32_t ram_paddr;     // [IS] Physical address of RAM to copy image to (startup_size bytes copied), here 0x01400f30 (same as above)
 
   uint32_t ram_size;      // [ S] Amount of RAM used by the startup program and executables contained in the file system, here 0x00cd6128 i.e. 13 459 752 dec. which is 13 Mb. i.e. IFS file size minus 0x9eee
 
   uint32_t startup_size;  // [I ] Size of startup (never compressed), here 0x02f148 or 192 840 bytes
 
   uint32_t stored_size;   // [I ] Size of entire image, here 0x00cd6128 (same as ram_size)
 
   uint32_t imagefs_paddr; // [IS] Set by IPL to where the imagefs is when startup runs (0)
 
   uint32_t imagefs_size;  // [ S] Size of uncompressed imagefs, here 0x00ca6fe0 or 13 266 912 bytes
 
   uint16_t preboot_size;  // [I ] Size of loaded before header, here 0xf30 or 3888 bytes (size of "bios.boot" file))
 
   uint16_t zero0;         // [  ] Zeros
 
   uint32_t zero[1];       // [  ] Zeros
 
   uint64_t addr_off;      // [ S] Offset to add to startup_vaddr, image_paddr, ram_paddr, and imagefs_paddr members, here zero (0)
 
   uint32_t info[48];      // [IS] Array of startup_info* structures (zero filled)
 
} startup_header_t;
 
 
 
 
 
typedef struct __attribute__((packed)) startup_trailer_s
 
{
 
   uint32_t cksum; // checksum from start of header to start of trailer
 
} startup_trailer_v1_t;
 
 
 
 
 
// NOTE: The checksums in this trailer will only be valid prior to entering startup.
 
// Because the startup binary is executed in-place, its data segment will change once the program is running.
 
// Hence, any checksum validation would need to be done by the boot loader / IFS.
 
typedef struct __attribute__((packed)) startup_trailer_v2_s
 
{
 
   uint8_t sha512[64]; // SHA512 from start of header to start of trailer
 
   uint32_t cksum; // checksum from start of header to start of this member
 
} startup_trailer_v2_t;
 
 
 
 
 
typedef struct __attribute__((packed)) image_header_s
 
{
 
   uint8_t signature[7]; // image filesystem signature, i.e. "imagefs"
 
   uint8_t flags; // endian neutral flags, 0x1c
 
   uint32_t image_size; // size from start of header to end of trailer (here 0xca6fe0 or 13 266 912)
 
   uint32_t hdr_dir_size; // size from start of header to last dirent (here 0x12b8 or 4792)
 
   uint32_t dir_offset; // offset from start of header to start of first dirent (here 0x5c or 92)
 
   uint32_t boot_ino[4]; // inode of files for bootstrap pgms (here 0xa0000002, 0, 0, 0)
 
   uint32_t script_ino; // inode of file for script (here 3)
 
   uint32_t chain_paddr; // offset to next filesystem signature (0)
 
   uint32_t spare[10]; // zerofill
 
   uint32_t mountflags; // default _MOUNT_* from sys/iomsg.h (0)
 
   char mountpoint[4]; // default mountpoint for image ("/" + "\0\0\0")
 
} image_header_t;
 
 
 
 
 
typedef struct __attribute__((packed)) image_trailer_v1_s
 
{
 
   uint32_t cksum; // checksum from start of header to start of trailer
 
} image_trailer_v1_t; // NOTE: this is the same structure as startup_trailer_v1_t
 
 
 
 
 
// NOTE: the checksums in this trailer will only be valid until the first non-startup bootstrap binary (e.g., startup-verifier, procnto, ...) is invoked.
 
// Because bootstrap binaries execute in-place, their data segments will change once the programs are running.
 
// Hence, any checksum validation would need to be done either by the boot loader / IFS or by the startup.
 
typedef struct __attribute__((packed)) image_trailer_v2_s
 
{
 
   uint8_t sha512[64]; // SHA512 from start of image header to start of trailer
 
   uint32_t cksum; // checksum from start of header to start of this member
 
} image_trailer_v2_t; // NOTE: this is the same structure as startup_trailer_v2_t
 
 
 
 
 
// Executable and Linkable Format master header structure type definition
 
typedef struct __attribute__((packed)) elf_header_s
 
{
 
   union __attribute__((packed))
 
   {
 
      struct __attribute__((packed))
 
      {
 
         uint8_t magic[4];                     // offset 0: "\x07" + "ELF"
 
         uint8_t platform_size;                // offset 4: 1 = 32-bit, 2 = 64-bit
 
         uint8_t endianness;                   // offset 5: 1 = little endian, 2 = big endian
 
         uint8_t header_version;               // offset 6: typically 1
 
         uint8_t os_abi;                       // offset 7: 0 = SysV, 1 = HP/UX, 2 = NetBSD, 3 = Linux, 4 = GNU/Hurd, 6 = Solaris, 7 = AIX, 8 = IRIX, 9 = FreeBSD, 10 = Tru64, 11 = Novell, 12 = OpenBSD, 13 = OpenVMS, 14 = NonStop kernel, 15 = AROS, 16 = FenixOS, 17 = Nuxi CloudABI, 18 = OpenVOS
 
         uint8_t spare[8];                     // offset 8: zeroes
 
         uint16_t type;                        // offset 16: 1 = relocatable, 2 = executable, 3 = shared, 4 = core dump
 
         uint16_t instruction_set;             // offset 18: 2 = Sparc, 3 = i386, 8 = MIPS, 20 = PowerPC, 40 = ARM, 42 = SuperH, 50 = IA-64, 62 = x86_64, 183 = AArch64, 243 = RISC-V
 
         uint32_t elf_version;                 // offset 20: typically 1
 
      } elf;
 
      struct __attribute__((packed))
 
      {
 
         uint8_t magic[4];                     // offset 0: "\x07" + "ELF"
 
         uint8_t platform_size;                // offset 4: 1 = 32-bit, 2 = 64-bit
 
         uint8_t endianness;                   // offset 5: 1 = little endian, 2 = big endian
 
         uint8_t header_version;               // offset 6: typically 1
 
         uint8_t os_abi;                       // offset 7: 0 = SysV, 1 = HP/UX, 2 = NetBSD, 3 = Linux, 4 = GNU/Hurd, 6 = Solaris, 7 = AIX, 8 = IRIX, 9 = FreeBSD, 10 = Tru64, 11 = Novell, 12 = OpenBSD, 13 = OpenVMS, 14 = NonStop kernel, 15 = AROS, 16 = FenixOS, 17 = Nuxi CloudABI, 18 = OpenVOS
 
         uint8_t spare[8];                     // offset 8: zeroes
 
         uint16_t type;                        // offset 16: 1 = relocatable, 2 = executable, 3 = shared, 4 = core dump
 
         uint16_t instruction_set;             // offset 18: 2 = Sparc, 3 = i386, 8 = MIPS, 20 = PowerPC, 40 = ARM, 42 = SuperH, 50 = IA-64, 62 = x86_64, 183 = AArch64, 243 = RISC-V
 
         uint32_t elf_version;                 // offset 20: typically 1
 
         uint32_t entrypoint_offset;           // offset 24: offset to program entrypoint
 
         uint32_t program_header_table_offset; // offset 28: offset to program header table
 
         uint32_t section_header_table_offset; // offset 32: offset to section header table
 
         uint32_t flags;                       // offset 36: flags (architecture-dependent, none for x86)
 
         uint16_t header_size;                 // offset 40: size of ELF header, 52 for 32-bit ELF and 64 for 64-bit ELF -- DO NOT USE sizeof() ON THE elf_header_s STRUCT BECAUSE OF THE UNION! WRITE THE CORRECT SIZE YOURSELF!
 
         uint16_t program_header_item_size;    // offset 42: size of an entry in the program header table
 
         uint16_t program_header_table_len;    // offset 44: number of entries in the program header table
 
         uint16_t section_header_item_size;    // offset 46: size of an entry in the section header table
 
         uint16_t section_header_table_len;    // offset 48: number of entries in the section header table
 
         uint16_t section_header_names_idx;    // offset 50: index of the entry in the section header table that contains the section names
 
      } elf32;
 
      struct __attribute__((packed))
 
      {
 
         uint8_t magic[4];                     // offset 0: "\x07" + "ELF"
 
         uint8_t platform_size;                // offset 4: 1 = 32-bit, 2 = 64-bit
 
         uint8_t endianness;                   // offset 5: 1 = little endian, 2 = big endian
 
         uint8_t header_version;               // offset 6: typically 1
 
         uint8_t os_abi;                       // offset 7: 0 = SysV, 1 = HP/UX, 2 = NetBSD, 3 = Linux, 4 = GNU/Hurd, 6 = Solaris, 7 = AIX, 8 = IRIX, 9 = FreeBSD, 10 = Tru64, 11 = Novell, 12 = OpenBSD, 13 = OpenVMS, 14 = NonStop kernel, 15 = AROS, 16 = FenixOS, 17 = Nuxi CloudABI, 18 = OpenVOS
 
         uint8_t spare[8];                     // offset 8: zeroes
 
         uint16_t type;                        // offset 16: 1 = relocatable, 2 = executable, 3 = shared, 4 = core dump
 
         uint16_t instruction_set;             // offset 18: 2 = Sparc, 3 = i386, 8 = MIPS, 20 = PowerPC, 40 = ARM, 42 = SuperH, 50 = IA-64, 62 = x86_64, 183 = AArch64, 243 = RISC-V
 
         uint32_t elf_version;                 // offset 20: typically 1
 
         uint64_t entrypoint_offset;           // offset 24: program entry offset
 
         uint64_t program_header_table_offset; // offset 32: offset to program header table
 
         uint64_t section_header_table_offset; // offset 40: offset to section header table
 
         uint32_t flags;                       // offset 48: flags (architecture-dependent, none for x86)
 
         uint16_t header_size;                 // offset 52: size of ELF header, 52 for 32-bit ELF and 64 for 64-bit ELF
 
         uint16_t program_header_item_size;    // offset 54: size of an entry in the program header table
 
         uint16_t program_header_table_len;    // offset 56: number of entries in the program header table
 
         uint16_t section_header_item_size;    // offset 58: size of an entry in the section header table
 
         uint16_t section_header_table_len;    // offset 60: number of entries in the section header table
 
         uint16_t section_header_names_idx;    // offset 62: index of the entry in the section header table that contains the section names
 
      } elf64;
 
   } u;
 
} elf_header_t;
 
 
 
 
 
// Executable and Linkable Format section header structure type definition
 
typedef struct __attribute__((packed)) elf_section_header_s
 
{
 
   union __attribute__((packed))
 
   {
 
      struct __attribute__((packed))
 
      {
 
         uint32_t name_offset;  // offset 0: offset in the string table of the name of this section
 
         uint32_t type;         // offset 4:
 
         uint32_t flags;        // offset 8:
 
         uint32_t virtual_addr; // offset 12: address in virtual memory where this section may be loaded
 
         uint32_t file_offset;  // offset 16: offset of this section in the ELF file
 
         uint32_t size;         // offset 20: size of this section
 
         uint32_t linked_index; // offset 24: optional section index of an associated section
 
         uint32_t info;         // offset 28: optional extra information
 
         uint32_t alignment;    // offset 32: required memory alignment (must be a power of 2)
 
         uint32_t entry_size;   // offset 36: for table-like sections, size of an element in the table
 
      } elf32;
 
      struct __attribute__((packed))
 
      {
 
         uint32_t name_offset;  // offset 0: offset in the string table of the name of this section
 
         uint32_t type;         // offset 4:
 
         uint64_t flags;        // offset 8:
 
         uint64_t virtual_addr; // offset 16: address in virtual memory where this section may be loaded
 
         uint64_t file_offset;  // offset 24: offset of this section in the ELF file
 
         uint64_t size;         // offset 32: size of this section
 
         uint32_t linked_index; // offset 40: optional section index of an associated section
 
         uint32_t info;         // offset 44: optional extra information
 
         uint64_t alignment;    // offset 48: required memory alignment (must be a power of 2)
 
         uint64_t entry_size;   // offset 56: for table-like sections, size of an element in the table
 
      } elf64;
 
   } u;
 
} elf_section_header_t;
 
 
 
 
 
// Executable and Linkable Format dynamic section entry structure type definition
 
typedef struct __attribute__((packed)) elf_dynamic_section_entry_s
 
{
 
   union __attribute__((packed))
 
   {
 
      struct __attribute__((packet))
 
      {
 
         int32_t tag; // dynamic entry type (one of ELF_DT_xxx #defines)
 
         union
 
         {
 
            uint32_t as_integer; // value as integer
 
            uint32_t as_pointer; // value as address
 
         } value;
 
      } elf32;
 
      struct __attribute__((packed))
 
      {
 
         int64_t tag; // dynamic entry type (one of ELF_DT_xxx #defines)
 
         union
 
         {
 
            uint64_t as_integer; // value as intege
 
            uint64_t as_pointer; // value as address
 
         } value;
 
      } elf64;
 
   } u;
 
} elf_dynamic_section_entry_t;
 
 
 
 
 
#ifdef _MSC_VER
 
#pragma pack(pop)
 
#endif // _MSC_VER
 
 
 
 
 
typedef struct parms_s
 
{
 
   int dperms; // directory permissions (e.g. 0755)
 
   int perms; // file permissions (e.g. 0644)
 
   int uid; // owner user ID (e.g. 0 = root)
 
   int gid; // owner group ID (e.g. 0 = root)
 
   int st_mode; // entry type (e.g. S_IFREG for files) and permissions
 
   uint32_t mtime; // entry's modification time POSIX timestamp - set to UINT32_MAX to use the concerned files' mtime on the build host
 
   uint32_t mtime_for_inline_files; // same as above but only for files that don't exist on the build host (i.e. files with an explicit content blob)
 
   char prefix[MAXPATHLEN]; // install path (e.g. "proc/boot")
 
   bool should_follow_symlinks; // follow symlinks
 
   bool should_autosymlink_dylib; // dynamic libraries should be written under their official SONAME and a named symlink be created pointing at them
 
   bool is_compiled_bootscript; // entry has [+script] attribute
 
   char search[10 * MAXPATHLEN]; // binary search path (the default one will be constructed at startup)
 
 
 
   uint8_t *data;
 
   size_t datalen;
 
} parms_t;
 
 
 
 
 
// global variables
 
static char line_buffer[4096]; // scrap buffer for the IFS build file parser
 
static uint32_t image_base = 4 * 1024 * 1024; // default image base, as per QNX docs -- can be changed with the [image=XXXX] attribute in the IFS build file
 
static uint32_t image_end = UINT32_MAX; // default image end (no limit)
 
static uint32_t image_maxsize = UINT32_MAX; // default image max size (no limit)
 
static uint32_t image_totalsize = 0; // image total size, measured once all the blocks have been written to the output IFS file
 
static uint32_t image_align = 4; // default image alignment, as per QNX docs
 
static uint32_t image_kernel_ino = 0;
 
static uint32_t image_bootscript_ino = 0;
 
#if defined(__x86_64__)
 
static char image_processor[16] = "x86_64"; // default CPU type for which this image is built, either "x86_64" or "aarch64le" (will be used to find out the right include paths under $QNX_TARGET)
 
#elif defined(__aarch64__)
 
static char image_processor[16] = "aarch64le"; // default CPU type for which this image is built, either "x86_64" or "aarch64le" (will be used to find out the right include paths under $QNX_TARGET)
 
#else // unknown platform
 
#error Please port ifstool to this platform
 
#endif
 
static char *buildfile_pathname = NULL; // pathname of IFS build file
 
static char *current_line = NULL; // copy of current line in IFS build file
 
static int lineno = 0; // current line number in IFS build file
 
static char *QNX_TARGET = NULL; // value of the $QNX_TARGET environment variable
 
static char *MKIFS_PATH = NULL; // value of the $MKIFS_PATH environment variable (may contain references to $QNX_TARGET). Initialized by this program if empty.
 
 
 
 
 
// prototypes of local functions
 
static void sha512_private_transform (SHA512_CTX *context, const uint64_t *data); // used internally in SHA512_Update() and SHA512_Final()
 
static void SHA512_Init (SHA512_CTX *context);
 
static void SHA512_Update (SHA512_CTX *context, void *data, size_t len);
 
static void SHA512_Final (uint8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context);
 
static uint8_t *SHA512 (void *data, size_t data_len, uint8_t *digest); // computes a SHA-512 in one pass (shortcut for SHA512_Init(), SHA512_Update() N times and SHA512_Final())
 
static int32_t update_checksum (const void *data, const size_t data_len, const bool is_foreign_endianness); // compute an IFS image or startup checksum to store in the trailer
 
static long long read_integer (const char *str); // reads an integer number for a string that may be specified in either hex, octal or decimal base, and may have an optional unit suffix (k, m, g, t)
 
static void hex_fprintf (FILE *fp, const uint8_t *data, size_t data_size, int howmany_columns, const char *fmt, ...); // hexdump-style formatted output to a file stream (which may be stdout/stderr)
 
static char *binary (const uint8_t x, char char_for_zero, char char_for_one); // returns the binary representation of byte 'x' as a string
 
static char *describe_uint8 (const uint8_t x, const char *bitwise_stringdescs[8]); // returns the ORed description of byte 'x' according to the description strings for each bit
 
static char *read_filecontents (const char *pathname, const char *search_path, uint8_t **databuf, size_t *datalen); // locates pathname among MKIFS_PATH, reads it, places its contents in a buffer (caller frees) and returns a pointer to the resolved pathname (static string)
 
static int fwrite_filecontents (const char *pathname, FILE *fp); // dumps the contents of pathname into fp
 
static size_t fwrite_fsentry (const fsentry_t *fsentry, FILE *fp); // writes the given filesystem entry into fp (without its contents)
 
static size_t add_fsentry (fsentry_t **fsentries, size_t *fsentry_count, parms_t *entry_parms, const char *stored_pathname, const char *buildhost_pathname); // stack up a new filesystem entry
 
static int fsentry_compare_pathnames_cb (const void *a, const void *b); // qsort() comparison callback that sorts filesystem entries by pathnames
 
static void update_MKIFS_PATH (const char *processor);
 
static int dump_ifs_info (const char *ifs_pathname); // dumps detailed info about a particular IFS file on the standard output, returns 0 on success and >0 on error
 
 
 
 
 
static void sha512_private_transform (SHA512_CTX *context, const uint64_t *data)
 
{
 
   // logical functions used in SHA-384 and SHA-512
 
   #define S64(b,x)      (((x) >> (b)) | ((x) << (64 - (b)))) // 64-bit rotate right
 
   #define Ch(x,y,z)     (((x) & (y)) ^ ((~(x)) & (z)))
 
   #define Maj(x,y,z)    (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
 
   #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
 
   #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
 
   #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ ((x) >> 7))
 
   #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ ((x) >> 6))
 
 
 
   // hash constant words K for SHA-384 and SHA-512
 
   static const uint64_t K512[80] = {
 
      0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
 
      0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
 
      0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
 
      0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
 
      0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
 
      0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
 
      0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
 
      0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
 
      0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
 
      0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
 
   };
 
 
 
   uint64_t     a, b, c, d, e, f, g, h, s0, s1;
 
   uint64_t     T1, T2, *W512 = (uint64_t *) context->buffer;
 
   int j;
 
 
 
   // initialize registers with the prev. intermediate value
 
   a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7];
 
 
 
   for (j = 0; j < 16; j++)
 
   {
 
#if __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
 
      W512[j] = __builtin_bswap64 (*data); // convert to host byte order
 
#elif // __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
 
      W512[j] = *data;
 
#else // __BYTE_ORDER__ == ???
 
#error Please port this SHA-512 code to your exotic endianness platform. What are you compiling this on? PDP? Honeywell?
 
#endif // __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
 
 
 
      // apply the SHA-512 compression function to update a..h
 
      T1 = h + Sigma1_512 (e) + Ch (e, f, g) + K512[j] + W512[j];
 
      T2 = Sigma0_512 (a) + Maj (a, b, c);
 
 
 
      // update registers
 
      h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2;
 
 
 
      data++;
 
   }
 
 
 
   for (; j < 80; j++)
 
   {
 
      // part of the message block expansion
 
      s0 = W512[(j + 1) & 0x0f];
 
      s0 = sigma0_512 (s0);
 
      s1 = W512[(j + 14) & 0x0f];
 
      s1 = sigma1_512 (s1);
 
 
 
      // apply the SHA-512 compression function to update a..h
 
      T1 = h + Sigma1_512 (e) + Ch (e, f, g) + K512[j] + (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0);
 
      T2 = Sigma0_512 (a) + Maj (a, b, c);
 
 
 
      // update registers
 
      h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2;
 
   }
 
 
 
   // compute the current intermediate hash value
 
   context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h;
 
 
 
   // clean up
 
   a = b = c = d = e = f = g = h = T1 = T2 = 0;
 
   #undef sigma1_512
 
   #undef sigma0_512
 
   #undef Sigma1_512
 
   #undef Sigma0_512
 
   #undef Maj
 
   #undef Ch
 
   #undef S64
 
   return;
 
}
 
 
 
 
 
static void SHA512_Init (SHA512_CTX *context)
 
{
 
   // initial hash value H for SHA-512
 
   static const uint64_t sha512_initial_hash_value[8] = {
 
      0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
 
   };
 
 
 
   memcpy (context
->state
, sha512_initial_hash_value
, SHA512_DIGEST_LENGTH
);  
   memset (context
->buffer
, 0, SHA512_BLOCK_LENGTH
);  
   context->bitcount[0] = context->bitcount[1] = 0;
 
}
 
 
 
 
 
void SHA512_Update (SHA512_CTX *context, void *datain, size_t len)
 
{
 
   #define ADDINC128(w,n) do { \
 
           (w)[0] += (uint64_t) (n); \
 
           if ((w)[0] < (n)) \
 
                   (w)[1]++; \
 
   } while (0) // macro for incrementally adding the unsigned 64-bit integer n to the unsigned 128-bit integer (represented using a two-element array of 64-bit words
 
 
 
   size_t freespace, usedspace;
 
   const uint8_t *data = (const uint8_t *) datain;
 
 
 
   if (len == 0)
 
      return; // calling with empty data is valid - we do nothing
 
 
 
   usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
 
   if (usedspace > 0)
 
   {
 
      // calculate how much free space is available in the buffer
 
      freespace = SHA512_BLOCK_LENGTH - usedspace;
 
 
 
      if (len >= freespace)
 
      {
 
         // fill the buffer completely and process it
 
         memcpy (&context
->buffer
[usedspace
], data
, freespace
);  
         ADDINC128 (context->bitcount, freespace << 3);
 
         len -= freespace;
 
         data += freespace;
 
         sha512_private_transform (context, (uint64_t *) context->buffer);
 
      }
 
      else
 
      {
 
         // the buffer is not full yet
 
         memcpy (&context
->buffer
[usedspace
], data
, len
);  
         ADDINC128 (context->bitcount, len << 3);
 
 
 
         // clean up
 
         usedspace = freespace = 0;
 
         return;
 
      }
 
   }
 
 
 
   while (len >= SHA512_BLOCK_LENGTH)
 
   {
 
      // process as many complete blocks as we can
 
      sha512_private_transform (context, (uint64_t *) data);
 
      ADDINC128 (context->bitcount, SHA512_BLOCK_LENGTH << 3);
 
      len -= SHA512_BLOCK_LENGTH;
 
      data += SHA512_BLOCK_LENGTH;
 
   }
 
 
 
   if (len > 0)
 
   {
 
      // save leftovers
 
      memcpy (context
->buffer
, data
, len
);  
      ADDINC128 (context->bitcount, len << 3);
 
   }
 
 
 
   // clean up
 
   usedspace = freespace = 0;
 
   #undef ADDINC128
 
   return;
 
}
 
 
 
 
 
static void SHA512_Final (uint8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context)
 
{
 
   #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
 
 
 
   size_t usedspace;
 
   union { uint8_t *as_bytes; uint64_t *as_uint64s; } cast_var = { NULL };
 
 
 
   // if no digest buffer is passed, don't bother finalizing the computation
 
   if (digest != NULL)
 
   {
 
      usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
 
 
 
#if __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
 
      context->bitcount[0] = __builtin_bswap64 (context->bitcount[0]); // convert from host byte order
 
      context->bitcount[1] = __builtin_bswap64 (context->bitcount[1]); // convert from host byte order
 
#endif // __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
 
 
 
      if (usedspace > 0)
 
      {
 
         // begin padding with a 1 bit
 
         context->buffer[usedspace++] = 0x80;
 
 
 
         if (usedspace <= SHA512_SHORT_BLOCK_LENGTH)
 
            memset (&context
->buffer
[usedspace
], 0, SHA512_SHORT_BLOCK_LENGTH 
- usedspace
); // set-up for the last transform  
         else
 
         {
 
            if (usedspace < SHA512_BLOCK_LENGTH)
 
               memset (&context
->buffer
[usedspace
], 0, SHA512_BLOCK_LENGTH 
- usedspace
);  
 
 
            sha512_private_transform (context, (uint64_t *) context->buffer); // do second-to-last transform
 
            memset (context
->buffer
, 0, SHA512_BLOCK_LENGTH 
- 2); // and set-up for the last transform  
         }
 
      }
 
      else // usedspace == 0
 
      {
 
         memset (context
->buffer
, 0, SHA512_SHORT_BLOCK_LENGTH
); // prepare for final transform  
         *context->buffer = 0x80; // begin padding with a 1 bit
 
      }
 
 
 
      // store the length of input data (in bits)
 
      cast_var.as_bytes = context->buffer;
 
      cast_var.as_uint64s[SHA512_SHORT_BLOCK_LENGTH / 8 + 0] = context->bitcount[1];
 
      cast_var.as_uint64s[SHA512_SHORT_BLOCK_LENGTH / 8 + 1] = context->bitcount[0];
 
 
 
      // final transform
 
      sha512_private_transform (context, (uint64_t *) context->buffer);
 
 
 
      // save the hash data for output
 
#if __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
 
      for (int j = 0; j < 8; j++)
 
         context->state[j] = __builtin_bswap64 (context->state[j]); // convert to host byte order
 
#endif // __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
 
      memcpy (digest
, context
->state
, SHA512_DIGEST_LENGTH
);  
   }
 
 
 
   // zero out state data
 
   memset (context
, 0, sizeof (SHA512_CTX
));  
   #undef SHA512_SHORT_BLOCK_LENGTH
 
   return;
 
}
 
 
 
 
 
static uint8_t *SHA512 (void *data, size_t data_len, uint8_t *digest_or_NULL)
 
{
 
   // computes the SHA-512 hash of a block of data in one pass and write it to digest, or to a static buffer if NULL
 
   // returns the STRING REPRESENTATION of digest in a statically-allocated string
 
 
 
   static thread_local uint8_t static_digest[SHA512_DIGEST_LENGTH] = "";
 
   static thread_local char digest_as_string[2 * SHA512_DIGEST_LENGTH + 1] = "";
 
 
 
   SHA512_CTX ctx;
 
   size_t byte_index;
 
 
 
   SHA512_Init (&ctx);
 
   SHA512_Update (&ctx, data, data_len);
 
   if (digest_or_NULL == NULL)
 
      digest_or_NULL = static_digest;
 
   SHA512_Final (digest_or_NULL, &ctx);
 
 
 
   for (byte_index = 0; byte_index < SHA512_DIGEST_LENGTH; byte_index++)
 
      sprintf (&digest_as_string
[2 * byte_index
], "%02x", digest_or_NULL
[byte_index
]);  
   return (digest_as_string);
 
}
 
 
 
 
 
static int32_t update_checksum (const void *data, const size_t data_len, const bool is_foreign_endianness)
 
{
 
   // computes the checksum of an IFS image or startup section, i.e. from the start of the header to the end of the trailer minus the last 4 bytes where the checksum is stored
 
 
 
   uint8_t accumulator[4] = { 0, 0, 0, 0 };
 
   const char *current_char_ptr;
 
   int32_t image_cksum;
 
   size_t i;
 
 
 
   image_cksum = 0;
 
   current_char_ptr = data;
 
   for (i = 0; i < data_len; i++)
 
   {
 
      accumulator[i % 4] = *current_char_ptr;
 
      if (i % 4 == 3)
 
         if (is_foreign_endianness)
 
            image_cksum += (accumulator[3] << 0) + (accumulator[2] << 8) + (accumulator[1] << 16) + (accumulator[0] << 24);
 
         else
 
            image_cksum += (accumulator[0] << 0) + (accumulator[1] << 8) + (accumulator[2] << 16) + (accumulator[3] << 24);
 
      current_char_ptr++;
 
   }
 
 
 
   return (is_foreign_endianness ? __builtin_bswap32 (-image_cksum) : -image_cksum);
 
}
 
 
 
 
 
static long long read_integer (const char *str)
 
{
 
   // reads a number for a string that may be specified in either hex, octal or decimal base, and may have an optional unit suffix (k, m, g, t)
 
 
 
   char *endptr = NULL;
 
   long long ret = strtoll (str, &endptr, 0); // use strtoll() to handle hexadecimal (0x...), octal (0...) and decimal (...) bases
 
   if (endptr != NULL)
 
   {
 
      if ((*endptr == 'k') || (*endptr == 'K')) ret *= (size_t) 1024;
 
      else if ((*endptr == 'm') || (*endptr == 'M')) ret *= (size_t) 1024 * 1024;
 
      else if ((*endptr == 'g') || (*endptr == 'G')) ret *= (size_t) 1024 * 1024 * 1024;
 
      else if ((*endptr == 't') || (*endptr == 'T')) ret *= (size_t) 1024 * 1024 * 1024 * 1024; // future-proof enough, I suppose?
 
   }
 
   return (ret);
 
}
 
 
 
 
 
static void hex_fprintf (FILE *fp, const uint8_t *data, size_t data_size, int howmany_columns, const char *fmt, ...)
 
{
 
   // this function logs hexadecimal data to an opened file pointer (or to stdout/stderr)
 
 
 
   va_list argptr;
 
   size_t index;
 
   int i;
 
 
 
   // concatenate all the arguments in one string and write it to the file
 
 
 
   // for each row of howmany_columns bytes of data...
 
   for (index = 0; index < data_size; index += howmany_columns)
 
   {
 
      fprintf (fp
, "    %05zu  ", index
); // print array address of row  
      for (i = 0; i < howmany_columns; i++)
 
         if (index + i < data_size)
 
            fprintf (fp
, " %02X", data
[index 
+ i
]); // if row contains data, print data as hex bytes  
         else
 
            fprintf (fp
, "   "); // else fill the space with blanks  
      for (i = 0; i < howmany_columns; i++)
 
         if (index + i < data_size)
 
            fputc ((data
[index 
+ i
] >= 32) && (data
[index 
+ i
] < 127) ? data
[index 
+ i
] : '.', fp
); // now if row contains data, print data as ASCII  
         else
 
            fputc (' ', fp
); // else fill the space with blanks  
   }
 
 
 
   return; // and return
 
}
 
 
 
 
 
static char *binary (const uint8_t x, char char_for_zero, char char_for_one)
 
{
 
   // returns the binary representation of x as a string
 
 
 
   static thread_local char outstr[9] = "00000000";
 
   for (int i = 0; i < 8; i++)
 
      outstr[i] = (x & (0x80 >> i) ? char_for_one : char_for_zero);
 
   return (outstr);
 
}
 
 
 
 
 
static char *describe_uint8 (const uint8_t x, const char *bitwise_stringdescs[8])
 
{
 
   // returns the ORed description of byte 'x' according to the description strings for each bit
 
 
 
   static thread_local char *default_bitstrings[8] = { "bit0", "bit1", "bit2", "bit3", "bit4", "bit5", "bit6", "bit7" };
 
   static thread_local char outstr[8 * 64] = "";
 
 
 
   outstr[0] = 0;
 
   for (int i = 0; i < 8; i++)
 
      if (x & (1 << i))
 
      {
 
         if (outstr[0] != 0)
 
         strcat (outstr
, ((bitwise_stringdescs 
!= NULL
) && (*bitwise_stringdescs
[i
] != 0) ? bitwise_stringdescs
[i
] : default_bitstrings
[i
]));  
      }
 
   return (outstr);
 
}
 
 
 
 
 
static char *read_filecontents (const char *pathname, const char *search_path, uint8_t **databuf, size_t *datalen)
 
{
 
   // locates pathname among MKIFS_PATH, and places its contents in a buffer (caller frees). Returns resolved pathname (static buffer) or NULL.
 
 
 
   static thread_local char final_pathname[MAXPATHLEN];
 
 
 
   const char *nextsep;
 
   const char *token;
 
   FILE *fp;
 
 
 
   // is it an absolute pathname (POSIX and Windows variants) ?
 
   if (IS_DIRSEP 
(pathname
[0]) || (isalpha (pathname
[0]) && (pathname
[1] == ':') && IS_DIRSEP 
(pathname
[2])))  
      strcpy (final_pathname
, pathname
); // in this case, it MUST exist at its designated location (either absolute or relative to the current working directory)  
   else // the path is relative, search it among the search paths we have
 
   {
 
      // construct a potential final path using each element of the search path
 
      token = (*search_path != 0 ? search_path : NULL);
 
      nextsep 
= (token 
!= NULL 
? &token
[strcspn (token
, PATH_SEP_STR
)] : NULL
); 
      while (token != NULL)
 
      {
 
         sprintf (final_pathname
, "%.*s/%s", (int) (nextsep 
- token
), token
, pathname
);  
         if (access (final_pathname, 0) == 0)
 
            break; // if a file can indeed be found at this location, stop searching
 
 
 
         token = (*nextsep != 0 ? nextsep + 1 : NULL);
 
         nextsep 
= (token 
!= NULL 
? &token
[strcspn (token
, PATH_SEP_STR
)] : NULL
); 
      }
 
 
 
      // have we exhausted all possibilities ?
 
      if (token == NULL)
 
      {
 
         errno = ENOENT;
 
         return (NULL); // file not found, return with ENOENT
 
      }
 
   }
 
 
 
   // now open and read the file
 
   fp 
= fopen (final_pathname
, "rb"); 
   if (fp == NULL)
 
      return (NULL); // unexistent file (errno is set to ENOENT)
 
 
 
   *datalen 
= ftell (fp
); // measure file length  
   if (*databuf == NULL)
 
   {
 
      *datalen = 0;
 
      return (NULL); // out of memory (errno is set to ENOMEM)
 
   }
 
   if (fread (*databuf
, 1, *datalen
, fp
) != *datalen
) // read the file in whole  
   {
 
      *datalen = 0;
 
      return (NULL); // short read (errno is set)
 
   }
 
   fclose (fp
); // close the file  
 
 
   return (final_pathname); // file was read successfully and its content put in databuf with size datalen
 
}
 
 
 
 
 
static int fwrite_filecontents (const char *pathname, FILE *fp)
 
{
 
   // dumps the binary contents of pathname to fp
 
 
 
   uint8_t *blob_buffer;
 
   size_t blob_size;
 
   FILE *blob_fp;
 
   int ret;
 
 
 
   blob_fp 
= fopen (pathname
, "rb"); 
   if (blob_fp == NULL)
 
      return (-1); // errno is set
 
 
 
   fseek (blob_fp
, 0, SEEK_END
);  
   blob_size 
= ftell (blob_fp
); 
   blob_buffer 
= malloc (blob_size
); 
   if (blob_buffer == NULL)
 
   {
 
      return (-1); // errno is set to ENOMEM
 
   }
 
   fseek (blob_fp
, 0, SEEK_SET
);  
   fread (blob_buffer
, 1, blob_size
, blob_fp
);  
 
 
   ret 
= (int) fwrite (blob_buffer
, 1, blob_size
, fp
); 
   fflush (fp
); // force flush to disk, because the C stream API is *buffered*  
   return (ret);
 
}
 
 
 
 
 
static size_t fwrite_fsentry (const fsentry_t *fsentry, FILE *fp)
 
{
 
   // writes a directory entry in the image filesystem file pointed to by fp (or fakes so if fp is NULL)
 
   // and return the number of bytes written (or that would have been written)
 
 
 
   static const uint8_t zeropad_buffer[] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
 
 
 
   size_t datalen;
 
   size_t count;
 
 
 
   count = 0;
 
   if (fp != NULL)
 
      fwrite_or_die (&fsentry->header, 1, sizeof (fsentry->header), fp); // write the entry header (PACKED STRUCT)
 
   count += sizeof (fsentry->header);
 
   if (S_ISREG (fsentry->header.mode))
 
   {
 
      if (fp != NULL)
 
      {
 
         fwrite_or_die (&fsentry->u.file.offset, 1, sizeof (uint32_t), fp); // write offset
 
         fwrite_or_die (&fsentry->u.file.size,   1, sizeof (uint32_t), fp); // write size
 
      }
 
      count += 2 * sizeof (uint32_t);
 
      datalen 
= strlen (fsentry
->u.
file.
path) + 1; 
      if (fp != NULL)
 
         fwrite_or_die (fsentry->u.file.path, 1, (size_t) datalen, fp); // write null-terminated path (no leading slash)
 
      count += datalen;
 
   }
 
   else if (S_ISDIR (fsentry->header.mode))
 
   {
 
      datalen 
= strlen (fsentry
->u.
dir.
path) + 1; 
      if (fp != NULL)
 
         fwrite_or_die (fsentry->u.dir.path, 1, (size_t) datalen, fp); // write null-terminated path (no leading slash)
 
      count += datalen;
 
   }
 
   else if (S_ISLNK (fsentry->header.mode))
 
   {
 
      if (fp != NULL)
 
      {
 
         fwrite_or_die (&fsentry->u.symlink.sym_offset, 1, sizeof (uint16_t), fp); // write offset
 
         fwrite_or_die (&fsentry->u.symlink.sym_size,   1, sizeof (uint16_t), fp); // write size
 
      }
 
      count += 2 * sizeof (uint16_t);
 
      datalen 
= strlen (fsentry
->u.
symlink.
path) + 1; 
      if (fp != NULL)
 
         fwrite_or_die (fsentry->u.symlink.path, 1, (size_t) datalen, fp); // write null-terminated path (no leading slash)
 
      count += datalen;
 
      datalen 
= strlen (fsentry
->u.
symlink.
contents) + 1; 
      if (fp != NULL)
 
         fwrite_or_die (fsentry->u.symlink.contents, 1, (size_t) datalen, fp); // write null-terminated symlink contents
 
      count += datalen;
 
   }
 
   else
 
   {
 
      if (fp != NULL)
 
      {
 
         fwrite_or_die (&fsentry->u.device.dev,  1, sizeof (uint32_t), fp); // write dev number
 
         fwrite_or_die (&fsentry->u.device.rdev, 1, sizeof (uint32_t), fp); // write rdev number
 
      }
 
      count += 2 * sizeof (uint32_t);
 
      datalen 
= strlen (fsentry
->u.
device.
path) + 1; 
      if (fp != NULL)
 
         fwrite_or_die (fsentry->u.device.path, 1, (size_t) datalen, fp); // write null-terminated path (no leading slash)
 
      count += datalen;
 
   }
 
 
 
   if (count < fsentry->header.size)
 
   {
 
      if (fp != NULL)
 
         fwrite_or_die (zeropad_buffer, 1, fsentry->header.size - count, fp); // pad as necessary
 
      count += fsentry->header.size - count;
 
   }
 
   else if (count > fsentry->header.size)
 
   {
 
      fprintf (stderr
, "ERROR: attempt to write invalid dirent (claimed size %zd, written size %zd). Aborting.\n", (size_t) fsentry
->header.
size, count
);  
   }
 
 
 
   return (count);
 
}
 
 
 
 
 
static size_t add_fsentry (fsentry_t **fsentries, size_t *fsentry_count, parms_t *entry_parms, const char *stored_pathname, const char *buildhost_pathname)
 
{
 
   static thread_local char candidate_pathname[1024];
 
   static int inode_count = 0; // will be preincremented each time this function is called
 
 
 
   const char *original_stored_pathname = NULL;
 
   const elf_dynamic_section_entry_t *dynamic_entry; // dynamic section entry
 
   const elf_section_header_t *shdr_shstr; // section headers strings (containing ELF sections names)
 
   const elf_section_header_t *shdr_dynstr; // dynamic strings
 
   const elf_section_header_t *shdr_dynamic; // dynamic section
 
   const elf_section_header_t *shdr;
 
   const char *canonical_dylib_name;
 
   const char *elf_section_name;
 
   const char *dynamic_strings; // strings table of the ".dynamic" section
 
   const char *shtable_strings; // strings table of the section headers table
 
   const char *last_dirsep;
 
   const elf_header_t *elf;
 
   char *resolved_pathname;
 
   void *reallocated_ptr;
 
   void *old_data;
 
   struct stat stat_buf;
 
   size_t table_index;
 
   size_t table_count;
 
   //uint32_t mtime = (entry_parms->m(uint32_t) time (NULL);
 
   uint32_t extra_ino_flags = 0;
 
   fsentry_t *fsentry;
 
 
 
   if (S_ISDIR (entry_parms->st_mode)) // are we storing a directory ?
 
   {
 
      fprintf (stderr
, "directory: ino 0x%x uid %d gid %d mode 0%o path \"%s\"\n", inode_count 
+ 1, entry_parms
->uid
, entry_parms
->gid
, entry_parms
->st_mode
, stored_pathname
);  
   }
 
   else if (S_ISREG (entry_parms->st_mode)) // else are we storing a regular file ?
 
   {
 
      if (strcmp (stored_pathname
, "/proc/boot/boot") == 0) // is it the kernel ?  
      {
 
         // HACK: for now just consider the kernel as a binary blob
 
         // FIXME: reimplement properly
 
         sprintf (candidate_pathname
, "%s/procnto-smp-instr", entry_parms
->prefix
); // fix the entry name  
         stored_pathname = candidate_pathname;
 
         extra_ino_flags = IFS_INO_PROCESSED_ELF | IFS_INO_BOOTSTRAP_EXE; // procnto needs to have these flags stamped on the inode
 
         entry_parms->st_mode = S_IFREG | 0700; // procnto requires 0700 permissions
 
         image_kernel_ino = extra_ino_flags | (inode_count + 1);
 
      }
 
      else if (entry_parms->is_compiled_bootscript) // else is it a startup script ?
 
         image_bootscript_ino = inode_count + 1; // save boot script inode number for image header
 
 
 
      // do we already know the data for this data blob ?
 
      if (entry_parms->data != NULL)
 
      {
 
         entry_parms->mtime = entry_parms->mtime_for_inline_files;
 
         fprintf (stderr
, "file: ino 0x%x uid %d gid %d mode 0%o path \"%s\" blob (len %zd)\n", extra_ino_flags 
| (inode_count 
+ 1), entry_parms
->uid
, entry_parms
->gid
, entry_parms
->st_mode
, stored_pathname
, entry_parms
->datalen
);  
      }
 
      else if (buildhost_pathname != NULL) // else was a source file pathname supplied ?
 
      {
 
         resolved_pathname = read_filecontents (buildhost_pathname, (entry_parms->search[0] != 0 ? entry_parms->search : MKIFS_PATH), &entry_parms->data, &entry_parms->datalen); // locate the file
 
         if (resolved_pathname == NULL)
 
         {
 
            fprintf (stderr
, "fatal error: filesystem entry \"%s\" specified in \"%s\" line %d not found on build host: %s\n", buildhost_pathname
, buildfile_pathname
, lineno
, strerror (errno
));  
         }
 
         stat (resolved_pathname, &stat_buf); // can't fail
 
         if (entry_parms->mtime == UINT32_MAX)
 
            entry_parms->mtime = (uint32_t) stat_buf.st_mtime;
 
         fprintf (stderr
, "file: ino 0x%x uid %d gid %d mode 0%o path \"%s\" buildhost_file \"%s\" (len %zd)\n", inode_count 
+ 1, entry_parms
->uid
, entry_parms
->gid
, entry_parms
->st_mode
, stored_pathname
, buildhost_pathname
, entry_parms
->datalen
);  
      }
 
 
 
      // is the file we're storing an ELF file ?
 
      if ((entry_parms->datalen > 52) // file is big enough to contain an ELF header
 
          && ((elf = (elf_header_t *) entry_parms->data) != NULL) // cast (necessary true)
 
          && (memcmp (ELF_STRUCT_MEMBER_STRING 
(elf
, elf
, magic
), ELF_MAGIC_STR
, 4) == 0)) // file starts with the ELF magic  
      {
 
         shdr_shstr = (elf_section_header_t *) &entry_parms->data[ELF_STRUCT_MEMBER_NUMERIC (elf, elf, section_header_table_offset) + (size_t) ELF_STRUCT_MEMBER_NUMERIC (elf, elf, section_header_item_size) * ELF_STRUCT_MEMBER_NUMERIC (elf, elf, section_header_names_idx)]; // quick access to section header for the section that contains the section names
 
         shtable_strings = &entry_parms->data[ELF_STRUCT_MEMBER_NUMERIC (elf, shdr_shstr, file_offset)]; // locate the start of the strings table that contains the section names
 
 
 
         // strip this ELF file
 
 
 
         // is the file we're storing a relocatable executable (i.e. a dynamic library) and should we check for its canonical name ?
 
         if ((ELF_STRUCT_MEMBER_NUMERIC (elf, elf, type) == 3) && entry_parms->should_autosymlink_dylib)
 
         {
 
            // we need to find the SONAME of this library
 
            canonical_dylib_name = NULL;
 
 
 
            // locate the sections we need (the dynamic section and its strings table)
 
            table_count = ELF_STRUCT_MEMBER_NUMERIC (elf, elf, section_header_table_len);
 
            shdr_dynamic = NULL;
 
            shdr_dynstr = NULL;
 
            for (table_index = 0; table_index < table_count; table_index++)
 
            {
 
               shdr = (elf_section_header_t *) &entry_parms->data[ELF_STRUCT_MEMBER_NUMERIC (elf, elf, section_header_table_offset) + (size_t) ELF_STRUCT_MEMBER_NUMERIC (elf, elf, section_header_item_size) * table_index]; // quick access to section header
 
               elf_section_name = &shtable_strings[ELF_STRUCT_MEMBER_NUMERIC (elf, shdr, name_offset)];
 
               if (strcmp (elf_section_name
, ".dynamic") == 0)  
                  shdr_dynamic = shdr;
 
               else if (strcmp (elf_section_name
, ".dynstr") == 0)  
                  shdr_dynstr = shdr;
 
            }
 
 
 
            // make sure we have both the dynamic section header and its own strings table header
 
            if ((shdr_dynamic != NULL) && (shdr_dynstr != NULL))
 
            {
 
               dynamic_strings = (char *) &entry_parms->data[ELF_STRUCT_MEMBER_NUMERIC (elf, shdr_dynstr, file_offset)]; // quick access to dynamic sections strings table
 
 
 
               // walk through the dynamic section, look for the DT_SONAME entry
 
               for (dynamic_entry = (elf_dynamic_section_entry_t *) &entry_parms->data[ELF_STRUCT_MEMBER_NUMERIC (elf, shdr_dynamic, file_offset)];
 
                    (ELF_STRUCT_MEMBER_NUMERIC (elf, dynamic_entry, tag) != ELF_DT_NULL);
 
                    dynamic_entry = (elf_dynamic_section_entry_t *) ((uint8_t *) dynamic_entry + ELF_STRUCT_SIZE (elf, dynamic_entry)))
 
                  if (ELF_STRUCT_MEMBER_NUMERIC (elf, dynamic_entry, tag) == ELF_DT_SONAME)
 
                  {
 
                     canonical_dylib_name = dynamic_strings + ELF_STRUCT_MEMBER_NUMERIC (elf, dynamic_entry, value.as_integer);
 
                     break;
 
                  }
 
 
 
               // do we have it ?
 
               if ((canonical_dylib_name != NULL) && (canonical_dylib_name[0] != 0))
 
               {
 
                  sprintf (candidate_pathname
, "%s/%s", entry_parms
->prefix
, canonical_dylib_name
);  
                  if (strcmp (candidate_pathname
, stored_pathname
) != 0) // claimed dylib name differs from passed name ?  
                  {
 
                     original_stored_pathname = stored_pathname; // if so, remember to create a symlink here
 
                     stored_pathname = candidate_pathname;
 
                  }
 
               }
 
            }
 
         } // end if the file we're storing is a dylib
 
      } // end if the file we're storing is an ELF file
 
   }
 
   else if (S_ISLNK (entry_parms->st_mode)) // else are we storing a symbolic link ?
 
      fprintf (stderr
, "symlink: ino 0x%x uid %d gid %d mode 0%o path \"%s\" -> \"%s\"\n", inode_count 
+ 1, entry_parms
->uid
, entry_parms
->gid
, entry_parms
->st_mode
, stored_pathname
, entry_parms
->data
);  
   else // we must be storing a FIFO
 
   {
 
      if (strchr (entry_parms
->data
, ':') == NULL
)  
      {
 
         fprintf (stderr
, "fatal error: device entry \"%s\" malformed (no 'dev:rdev' pair)\n", stored_pathname
);  
      }
 
      fprintf (stderr
, "fifo: ino 0x%x uid %d gid %d mode 0%o path \"%s\" dev rdev %s)\n", inode_count 
+ 1, entry_parms
->uid
, entry_parms
->gid
, entry_parms
->st_mode
, stored_pathname
, entry_parms
->data
);  
   }
 
 
 
   // grow filesystem entries array to hold one more slot
 
   reallocated_ptr 
= realloc (*fsentries
, (*fsentry_count 
+ 1) * sizeof (fsentry_t
)); // attempt to reallocate 
   if (reallocated_ptr == NULL)
 
   {
 
      fprintf (stderr
, "fatal error: out of memory\n");  
   }
 
   *fsentries = reallocated_ptr; // save reallocated pointer
 
   fsentry = &(*fsentries)[*fsentry_count]; // quick access to fs entry slot
 
   //fsentry->header.size = 0; // will be filled once we know it
 
   fsentry->header.extattr_offset = 0;
 
   fsentry->header.ino = extra_ino_flags | (++inode_count);
 
   fsentry->header.mode = entry_parms->st_mode;
 
   fsentry->header.gid = entry_parms->gid;
 
   fsentry->header.uid = entry_parms->uid;
 
   fsentry
->header.
mtime = (entry_parms
->mtime 
== UINT32_MAX 
? (uint32_t) time (NULL
) : entry_parms
->mtime
); 
   if (S_ISDIR (entry_parms->st_mode))
 
   {
 
      fsentry->u.dir.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
 
      fsentry
->header.
size = (uint16_t) ROUND_TO_UPPER_MULTIPLE 
(sizeof (fsentry
->header
) + strlen (fsentry
->u.
dir.
path) + 1, image_align
); // now we can set the size 
      fsentry->UNSAVED_was_data_written = true; // no data to save
 
   }
 
   else if (S_ISREG (entry_parms->st_mode))
 
   {
 
      fsentry->u.file.offset = WILL_BE_FILLED_LATER; // will be filled later in main() when the file's data blob will be written to the output file
 
      fsentry->u.file.size = (uint32_t) entry_parms->datalen;
 
      fsentry->u.file.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
 
      fsentry
->u.
file.
UNSAVED_databuf = malloc (entry_parms
->datalen
); 
      WELLMANNERED_ASSERT (fsentry->u.file.UNSAVED_databuf, "out of memory");
 
      memcpy (fsentry
->u.
file.
UNSAVED_databuf, entry_parms
->data
, entry_parms
->datalen
);  
      fsentry
->header.
size = (uint16_t) ROUND_TO_UPPER_MULTIPLE 
(sizeof (fsentry
->header
) + sizeof (uint32_t) + sizeof (uint32_t) + strlen (fsentry
->u.
file.
path) + 1, image_align
); // now we can set the size 
      fsentry->UNSAVED_was_data_written = false; // there *IS* data to save
 
   }
 
   else if (S_ISLNK (entry_parms->st_mode))
 
   {
 
      fsentry
->u.
symlink.
sym_offset = (uint16_t) (strlen (stored_pathname
[0] == '/' ? &stored_pathname
[1] : stored_pathname
) + 1); 
      fsentry->u.symlink.sym_size = (uint16_t) entry_parms->datalen;
 
      fsentry->u.symlink.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
 
      fsentry->u.symlink.contents = strdup (entry_parms->data);
 
      WELLMANNERED_ASSERT (fsentry->u.symlink.contents, "out of memory");
 
      fsentry->header.size = (uint16_t) ROUND_TO_UPPER_MULTIPLE (sizeof (fsentry->header) + sizeof (uint16_t) + sizeof (uint16_t) + (size_t) fsentry->u.symlink.sym_offset + fsentry->u.symlink.sym_size + 1, image_align); // now we can set the size
 
      fsentry->UNSAVED_was_data_written = true; // no data to save
 
   }
 
   else // necessarily a device node
 
   {
 
      fsentry
->u.
device.
dev  = strtol (entry_parms
->data
, NULL
, 0); // use strtol() to parse decimal (...), hexadecimal (0x...) and octal (0...) numbers 
      fsentry
->u.
device.
rdev = strtol (strchr (entry_parms
->data
, ':') + 1, NULL
, 0); // use strtol() to parse decimal (...), hexadecimal (0x...) and octal (0...) numbers 
      fsentry->u.device.path = strdup (stored_pathname[0] == '/' ? &stored_pathname[1] : stored_pathname);
 
      fsentry
->header.
size = (uint16_t) ROUND_TO_UPPER_MULTIPLE 
(sizeof (fsentry
->header
) + sizeof (uint32_t) + sizeof (uint32_t) + strlen (fsentry
->u.
device.
path), image_align
); // now we can set the size 
      fsentry->UNSAVED_was_data_written = true; // no data to save
 
   }
 
   (*fsentry_count)++;
 
 
 
   // should we also add a symlink to this entry ? (in case we stored a dylib file under its canonical name)
 
   if (original_stored_pathname != NULL)
 
   {
 
      entry_parms->is_compiled_bootscript = false;
 
      entry_parms->should_autosymlink_dylib = false;
 
      entry_parms->should_follow_symlinks = false;
 
      entry_parms->st_mode = S_IFLNK | 0777; // NOTE: mkifs stores symlink permissions as rwxrwxrwx !
 
      last_dirsep 
= strrchr (stored_pathname
, '/'); 
      old_data = entry_parms->data; // backup previous data pointer
 
      entry_parms->data = (uint8_t *) (last_dirsep == NULL ? stored_pathname : last_dirsep + 1); // store symlink target in dirent data
 
      entry_parms
->datalen 
= strlen (entry_parms
->data
); 
      add_fsentry (fsentries, fsentry_count, entry_parms, original_stored_pathname, NULL);
 
      entry_parms->data = old_data; // restore previous data pointer so that it can be freed normally
 
   }
 
 
 
   return (*fsentry_count);
 
}
 
 
 
 
 
static int fsentry_compare_pathnames_cb (const void *a, const void *b)
 
{
 
   // qsort() callback that compares two imagefs filesystem entries and sort them alphabetically by pathname
 
 
 
   const fsentry_t *entry_a = (const fsentry_t *) a;
 
   const fsentry_t *entry_b = (const fsentry_t *) b;
 
   const char *pathname_a = (S_ISDIR (entry_a->header.mode) ? entry_a->u.dir.path : (S_ISREG (entry_a->header.mode) ? entry_a->u.file.path : (S_ISLNK (entry_a->header.mode) ? entry_a->u.symlink.path : entry_a->u.device.path)));
 
   const char *pathname_b = (S_ISDIR (entry_b->header.mode) ? entry_b->u.dir.path : (S_ISREG (entry_b->header.mode) ? entry_b->u.file.path : (S_ISLNK (entry_b->header.mode) ? entry_b->u.symlink.path : entry_b->u.device.path)));
 
   return (strcmp (pathname_a
, pathname_b
));  
}
 
 
 
 
 
static void update_MKIFS_PATH (const char *processor)
 
{
 
   // updates the value of MKIFS_PATH according to the passed processor name string, unless an environment variable already defines it
 
 
 
   char processor_base[16];
 
   size_t data_len;
 
   char *envvar;
 
   char *token;
 
   
 
   envvar 
= getenv ("MKIFS_PATH"); // look in the environment first, and construct a default one if not supplied 
   if (envvar != NULL)
 
      MKIFS_PATH = envvar; // if envvar is present, set MKIFS_PATH to point to it
 
   else // envvar not present
 
   {
 
      if (MKIFS_PATH != NULL)
 
         free (MKIFS_PATH
); // free any MKIFS_PATH that we constructed earlier  
 
 
      strcpy (processor_base
, processor
); // construct PROCESSOR_BASE  
      token 
= strchr (processor_base
, '-'); 
      if (token != NULL)
 
         *token = 0; // split anything from the first dash onwards
 
      data_len 
= strlen (processor_base
); 
      if ((data_len > 2) && ((processor_base[data_len - 2] == 'b') || (processor_base[data_len - 2] == 'l')) && (processor_base[data_len - 1] == 'e'))
 
         processor_base[data_len - 2] = 0; // if it ends with "le" or "be", strip that too
 
 
 
      MKIFS_PATH 
= malloc (10 * MAXPATHLEN
); // construct a default MKIFS_PATH now 
      WELLMANNERED_ASSERT (MKIFS_PATH, "out of memory");
 
      sprintf (MKIFS_PATH
, "." PATH_SEP_STR 
"%s/%s/sbin" PATH_SEP_STR 
"%s/%s/usr/sbin" PATH_SEP_STR 
"%s/%s/boot/sys" PATH_SEP_STR 
"%s/%s/boot/sys" PATH_SEP_STR 
"%s/%s/bin" PATH_SEP_STR 
"%s/%s/usr/bin" PATH_SEP_STR 
"%s/%s/lib" PATH_SEP_STR 
"%s/%s/lib/dll" PATH_SEP_STR 
"%s/%s/usr/lib", // use a platform-specific character as path separator  
               QNX_TARGET, processor,
 
               QNX_TARGET, processor,
 
               QNX_TARGET, processor,
 
               QNX_TARGET, processor_base,
 
               QNX_TARGET, processor,
 
               QNX_TARGET, processor,
 
               QNX_TARGET, processor,
 
               QNX_TARGET, processor,
 
               QNX_TARGET, processor);
 
   }
 
 
 
   return;
 
}
 
 
 
 
 
int main (int argc, char **argv)
 
{
 
   // program entrypoint
 
 
 
   #define PAD_OUTFILE_TO(val) do { curr_offset = ftell (fp); while (curr_offset < (val)) { putc (0, fp); curr_offset++; } } while (0)
 
 
 
   static startup_header_t startup_header = { 0 }; // output IFS's startup header
 
   static startup_trailer_v2_t startup_trailer = { 0 }; // output IFS's startup trailer (version 2, with SHA-512 checksum and int32 checksum)
 
   static image_header_t image_header = { 0 }; // output IFS's imagefs header
 
   static image_trailer_v2_t image_trailer = { 0 }; // output IFS's imagefs trailer (version 2, with SHA-512 checksum and int32 checksum)
 
   static fsentry_t *fsentries = NULL; // output IFS's filesystem entries
 
   static size_t fsentry_count = 0; // number of entries in the IFS filesystem
 
   static parms_t default_parms = { // default parameters for a filesystem entry
 
      .dperms = 0755,
 
      .perms = 0644,
 
      .uid = 0,
 
      .gid = 0,
 
      .st_mode = S_IFREG,
 
      .mtime = UINT32_MAX,
 
      .mtime_for_inline_files = UINT32_MAX,
 
      .prefix = "/proc/boot",
 
      .should_follow_symlinks = true, // [+|-followlink]
 
      .should_autosymlink_dylib = true, // [+|-autolink]
 
      .is_compiled_bootscript = false, // [+|-script]
 
      .search = "",
 
      .data = NULL,
 
      .datalen = 0
 
   };
 
   static parms_t entry_parms = { 0 }; // current parameters for a filesystem entry (will be initialized to default_parms each time a new entry is parsed in the build file)
 
 
 
   // bootable IFS support
 
   char *bootfile_pathname = NULL;           // HACK: pathname to bootcode binary blob file to put at the start of a bootable IFS
 
   size_t bootfile_size = 0;                 // HACK: size of the bootcode binary blob file to put at the start of a bootable IFS
 
   char *startupfile_pathname = NULL;        // HACK: pathname to precompiled startup file blob to put in the startup header of a bootable IFS
 
   size_t startupfile_ep_from_imagebase = 0; // HACK: startup code entrypoint offset from image base for a bootable IFS 
 
   char *kernelfile_pathname = NULL;         // HACK: pathname to precompiled kernel file blob to put in a bootable IFS
 
   size_t kernelfile_offset = 0;             // HACK: kernel file offset in bootable IFS
 
 
 
   char path_on_buildhost[MAXPATHLEN] = "";
 
   char path_in_ifs[MAXPATHLEN] = "";
 
   char *ifs_pathname = NULL;
 
   void *reallocated_ptr;
 
   struct tm utc_time;
 
   struct stat stat_buf;
 
   size_t startuptrailer_offset;
 
   size_t startupheader_offset;
 
   size_t imagetrailer_offset;
 
   size_t imageheader_offset;
 
   size_t imgdir_offset;
 
   size_t imgdir_size;
 
   size_t final_size;
 
   size_t blob_size;
 
   size_t available_space;
 
   size_t allocated_size;
 
   size_t fsentry_index;
 
   size_t largest_index;
 
   size_t largest_size;
 
   size_t curr_offset;
 
   uint8_t *blob_data;
 
   int32_t checksum;
 
   char *specifiedpathname_start;
 
   char *directiveblock_start;
 
   char *write_ptr;
 
   char *line_ptr;
 
   char *token;
 
   char *value;
 
   char *sep;
 
   //char *ctx;
 
   int arg_index;
 
   bool is_quoted_context = false;
 
   bool is_escaped_char = false;
 
   bool has_data_already = false;
 
   bool want_info = false;
 
   bool want_help = false;
 
   bool is_foreign_endianness;
 
   int string_len;
 
   int read_char;
 
   FILE *buildfile_fp;
 
   FILE *fp;
 
 
 
   // parse arguments
 
   for (arg_index = 1; arg_index < argc; arg_index++)
 
   {
 
      if ((strcmp (argv
[arg_index
], "--bootfile") == 0) && (arg_index 
+ 1 < argc
)) // --bootfile path/to/blob.bin  
         bootfile_pathname = argv[++arg_index];
 
      else if ((strcmp (argv
[arg_index
], "--startupfile") == 0) && (arg_index 
+ 1 < argc
)) // --startupfile path/to/blob.bin@0x1030  
      {
 
         sep 
= strchr (argv
[++arg_index
], '@'); 
         if ((sep == NULL) || (sep[1] == 0))
 
         {
 
            fprintf (stderr
, "error: the --startupfile arguments expects <pathname>@<entrypoint_from_image_base>\n");  
         }
 
         *sep = 0;
 
         startupfile_pathname = argv[arg_index];
 
         startupfile_ep_from_imagebase = (size_t) read_integer (sep + 1);
 
      }
 
      else if ((strcmp (argv
[arg_index
], "--kernelfile") == 0) && (arg_index 
+ 1 < argc
)) // --kernelfile path/to/blob.bin@0x32000  
      {
 
         sep 
= strchr (argv
[++arg_index
], '@'); 
         if ((sep == NULL) || (sep[1] == 0))
 
         {
 
            fprintf (stderr
, "error: the --kernelfile arguments expects <pathname>@<fileoffset>\n");  
         }
 
         *sep = 0;
 
         kernelfile_pathname = argv[arg_index];
 
         kernelfile_offset = (size_t) read_integer (sep + 1);
 
      }
 
      else if (strcmp (argv
[arg_index
], "-n") == 0)  
         default_parms.mtime_for_inline_files = 0; // inline files should have a mtime set to zero
 
      else if (strcmp (argv
[arg_index
], "-nn") == 0)  
      {
 
         default_parms.mtime = 0; // all files should have a mtime set to zero
 
         default_parms.mtime_for_inline_files = 0;
 
      }
 
      else if (strcmp (argv
[arg_index
], "--info") == 0)  
         want_info = true;
 
      else if ((strcmp (argv
[arg_index
], "-?") == 0) || (strcmp (argv
[arg_index
], "--help") == 0))  
         want_help = true;
 
      else if (buildfile_pathname == NULL)
 
         buildfile_pathname = argv[arg_index];
 
      else if (ifs_pathname == NULL)
 
         ifs_pathname = argv[arg_index];
 
   }
 
 
 
   // do we not have enough information to run ?
 
   if (want_help || (buildfile_pathname == NULL) || (!want_info && (ifs_pathname == NULL)))
 
   {
 
      fprintf ((want_help 
? stdout 
: stderr
), "ifstool - QNX in-kernel filesystem creation utility by Pierre-Marie Baty <pm@pmbaty.com>\n");  
      fprintf ((want_help 
? stdout 
: stderr
), "          version " VERSION_FMT_YYYYMMDD 
"\n", VERSION_ARG_YYYYMMDD
);  
      if (!want_help)
 
         fprintf (stderr
, "error: missing parameters\n");  
      fprintf ((want_help 
? stdout 
: stderr
), "usage:\n");  
      fprintf ((want_help 
? stdout 
: stderr
), "    ifstool [--bootfile <pathname>] [--startupfile <pathname>@<EP_from_imgbase>] [--kernelfile <pathname>@<fileoffs>] [-n[n]] <buildfile> <outfile>\n");  
      fprintf ((want_help 
? stdout 
: stderr
), "    ifstool --info <ifs file>\n");  
      fprintf ((want_help 
? stdout 
: stderr
), "    ifstool --help\n");  
      fprintf ((want_help 
? stdout 
: stderr
), "WARNING: the compilation feature is currently a work in progress (broken). Only the --info mode is usable at the moment.\n");  
      exit (want_help 
? 0 : 1);  
   }
 
 
 
   // do we want info about a particular IFS ? if so, dump it
 
   if (want_info)
 
      exit (dump_ifs_info 
(buildfile_pathname
)); // NOTE: the first argument after --info is actually the IFS file, not a build file, but the arguments are collected in this order  
 
 
   // make sure we have ${QNX_TARGET} pointing somewhere
 
   QNX_TARGET 
= getenv ("QNX_TARGET"); 
   if (QNX_TARGET == NULL)
 
   {
 
      fprintf (stderr
, "error: the QNX_TARGET environment variable is not set\n");  
   }
 
   else if (access (QNX_TARGET, 0) != 0)
 
   {
 
      fprintf (stderr
, "error: the QNX_TARGET environment variable doesn't point to an existing directory\n");  
   }
 
 
 
   // prepare a default MKIFS_PATH assuming the host processor
 
   update_MKIFS_PATH (image_processor);
 
 
 
   // open build file
 
   buildfile_fp 
= fopen (buildfile_pathname
, "rb"); 
   if (buildfile_fp == NULL)
 
   {
 
      fprintf (stderr
, "error: unable to open build file \"%s\" for reading (%s)\n", buildfile_pathname
, strerror (errno
));  
   }
 
 
 
   // stack up filesystem entries
 
   memcpy (&entry_parms
, &default_parms
, sizeof (default_parms
));  
   entry_parms.st_mode = S_IFDIR | default_parms.dperms;
 
   add_fsentry (&fsentries, &fsentry_count, &entry_parms, "", NULL); // add the root dir first
 
 
 
   while (fgets (line_buffer
, sizeof (line_buffer
), buildfile_fp
) != NULL
)  
   {
 
      if (current_line != NULL)
 
      current_line = strdup (line_buffer);
 
      WELLMANNERED_ASSERT (current_line, "out of memory");
 
      lineno++; // keep track of current line number
 
      //fprintf (stderr, "read buildfile line %d: {%s}\n", lineno, line_buffer);
 
 
 
      line_ptr = line_buffer;
 
      while ((*line_ptr 
!= 0) && isspace (*line_ptr
))  
         line_ptr++; // skip leading spaces
 
 
 
      if ((*line_ptr == 0) || (*line_ptr == '#'))
 
         continue; // skip empty or comment lines
 
 
 
      string_len 
= (int) strlen (line_buffer
); 
      if ((string_len > 0) && (line_buffer[string_len - 1] == '\n'))
 
         line_buffer[string_len - 1] = 0; // chop off newline for easier debug output
 
 
 
      // reset entry values
 
      memcpy (&entry_parms
, &default_parms
, sizeof (default_parms
));  
      path_in_ifs[0] = 0;
 
      path_on_buildhost[0] = 0;
 
      has_data_already = false;
 
 
 
      //fprintf (stderr, "parsing buildfile line %d: [%s]\n", lineno, line_ptr);
 
 
 
      // does this line start with an attribute block ?
 
      if (*line_ptr == '[')
 
      {
 
         line_ptr++; // skip the leading square bracket
 
         directiveblock_start = line_ptr; // remember where it starts
 
         is_quoted_context = false;
 
         while ((*line_ptr != 0) && !((*line_ptr == ']') && (line_ptr[-1] != '\\')))
 
         {
 
            if (*line_ptr == '"')
 
               is_quoted_context ^= true; // remember when we're between quotes
 
            else if (!is_quoted_context && (*line_ptr == ' '))
 
               *line_ptr = RECORD_SEP; // turn all spaces outside quoted contexts into an ASCII record separator to ease token splitting
 
            line_ptr++; // reach the next unescaped closing square bracket
 
         }
 
         if (*line_ptr != ']')
 
         {
 
            fprintf (stderr
, "warning: syntax error in \"%s\" line %d: unterminated attributes block (skipping)\n", buildfile_pathname
, lineno
);  
            continue; // invalid attribute block, skip line
 
         }
 
         *line_ptr = 0; // end the attribute block so that it is a parsable C string
 
 
 
         // now parse the attribute tokens
 
         // DOCUMENTATION: https://www.qnx.com/developers/docs/8.0/com.qnx.doc.neutrino.utilities/topic/m/mkifs.html#mkifs__description
 
         token 
= strtok (directiveblock_start
, RECORD_SEP_STR
); 
         while (token != NULL)
 
         {
 
            // evaluate attribute token
 
            #define REACH_TOKEN_VALUE() do { value = strchr (token, '=') + 1; if (*value == '"') value++; } while (0)
 
            if      (strncmp (token
, "uid=",     4) == 0) { REACH_TOKEN_VALUE 
(); entry_parms.
uid     = (int) read_integer 
(value
); }  
            else if (strncmp (token
, "gid=",     4) == 0) { REACH_TOKEN_VALUE 
(); entry_parms.
gid     = (int) read_integer 
(value
); }  
            else if (strncmp (token
, "dperms=",  7) == 0) { REACH_TOKEN_VALUE 
(); entry_parms.
dperms  = (int) read_integer 
(value
); }  
            else if (strncmp (token
, "perms=",   6) == 0) { REACH_TOKEN_VALUE 
(); entry_parms.
perms   = (int) read_integer 
(value
); }  
            else if (strncmp (token
, "type=",    5) == 0) { REACH_TOKEN_VALUE 
(); entry_parms.
st_mode = (strcmp (value
, "dir") == 0 ? S_IFDIR 
: (strcmp (value
, "file") == 0 ? S_IFREG 
: (strcmp (value
, "link") == 0 ? S_IFLNK 
: (strcmp (value
, "fifo") == 0 ? S_IFIFO 
: (fprintf (stderr
, "warning: invalid 'type' attribute in \"%s\" line %d: '%s', defaulting to 'file'\n", buildfile_pathname
, lineno
, value
), S_IFREG
))))); }  
            else if (strncmp (token
, "prefix=",  7) == 0) { REACH_TOKEN_VALUE 
(); strcpy (entry_parms.
prefix, (*value 
== '/' ? value 
+ 1 : value
)); } // skip possible leading slash in prefix  
            else if (strncmp (token
, "image=",   6) == 0) { REACH_TOKEN_VALUE 
();  
               image_base = (uint32_t) read_integer (value); // read image base address
 
               if ((sep 
= strchr (value
, '-')) != NULL
) image_end       
= (uint32_t) read_integer 
(sep 
+ 1); // if we have a dash, read optional image end (FIXME: check this value and produce an error in the relevant case. Not important.)  
               if ((sep 
= strchr (value
, ',')) != NULL
) image_maxsize   
= (uint32_t) read_integer 
(sep 
+ 1); // if we have a comma, read optional image max size  
               if ((sep 
= strchr (value
, '=')) != NULL
) image_totalsize 
= (uint32_t) read_integer 
(sep 
+ 1); // if we have an equal sign, read optional image padding size  
               if ((sep 
= strchr (value
, '%')) != NULL
) image_align     
= (uint32_t) read_integer 
(sep 
+ 1); // if we have a modulo sign, read optional image aligmnent  
               fprintf (stderr
, "info: image 0x%x-0x%x maxsize %d totalsize %d align %d\n", image_base
, image_end
, image_maxsize
, image_totalsize
, image_align
);  
            }
 
            else if (strncmp (token
, "virtual=", 8) == 0) { REACH_TOKEN_VALUE 
();  
               if ((bootfile_pathname == NULL) || (startupfile_pathname == NULL) || (kernelfile_pathname == NULL)) // HACK until I figure out how to re-create them
 
               {
 
                  fprintf (stderr
, "error: creating bootable images require the --bootfile, --startupfile and --kernelfile command-line options in \"%s\" line %d\n", buildfile_pathname
, lineno
);  
               }
 
               if ((sep 
= strchr (value
, ',')) != NULL
) // do we have a comma separating (optional) processor and boot file name ?  
               {
 
                  *sep = 0;
 
                  strcpy (image_processor
, value
); // save processor  
                  update_MKIFS_PATH (image_processor);
 
                  value = sep + 1;
 
               }
 
               //sprintf (image_bootfile, "%s/%s/boot/sys/%s.boot", QNX_TARGET, image_processor, value); // save preboot file name (FIXME: we should search in MKIFS_PATH instead of this. Not important.)
 
               //strcpy (image_bootfile, bootfile_pathname); // FIXME: HACK
 
               if (stat (bootfile_pathname, &stat_buf) != 0)
 
               {
 
                  fprintf (stderr
, "error: unable to stat the boot file \"%s\" specified in \"%s\" line %d: %s\n", bootfile_pathname
, buildfile_pathname
, lineno
, strerror (errno
));  
               }
 
               bootfile_size = stat_buf.st_size; // save preboot file size
 
               fprintf (stderr
, "info: processor \"%s\" bootfile \"%s\"\n", image_processor
, bootfile_pathname
);  
               if (read_filecontents (kernelfile_pathname, ".", &entry_parms.data, &entry_parms.datalen) == NULL)
 
               {
 
                  fprintf (stderr
, "fatal error: unable to read precompiled kernel file \"%s\" specified in --kernelfile argument\n", kernelfile_pathname
);  
               }
 
               has_data_already = true; // remember we already have data
 
            }
 
            else if (strncmp (token
, "mtime=", 6) == 0) { REACH_TOKEN_VALUE 
(); if (strcmp (value
, "*") == 0) entry_parms.
mtime = UINT32_MAX
; else {  
                  // value *must* be "YYYY-MM-DD-HH:MM:SS" by specification
 
                  memset (&utc_time
, 0, sizeof (utc_time
));  
                  if (sscanf (value
, "%u-%u-%u-%u:%u:%u", &utc_time.
tm_year, &utc_time.
tm_mon, &utc_time.
tm_mday, &utc_time.
tm_hour, &utc_time.
tm_min, &utc_time.
tm_sec) != 6)  
                  {
 
                     fprintf (stderr
, "warning: syntax error in \"%s\" line %d: mtime specification not in YYYY-MM-DD-HH:MM:SS format (skipping)\n", buildfile_pathname
, lineno
);  
                     continue; // invalid attribute block, skip line
 
                  }
 
                  utc_time.tm_mon--; // convert month from [1-12] to [0-11]
 
                  entry_parms.
mtime = (uint32_t) mktime (&utc_time
); 
               }
 
            }
 
            else if (strcmp (token
, "+script")     == 0) {  
               entry_parms.is_compiled_bootscript = true;
 
               entry_parms.
data = malloc (sizeof (INITIAL_STARTUP_SCRIPT
) - 1); 
               WELLMANNERED_ASSERT (entry_parms.data, "out of memory");
 
               memcpy (entry_parms.
data, INITIAL_STARTUP_SCRIPT
, sizeof (INITIAL_STARTUP_SCRIPT
) - 1); // FIXME: HACK until the script compiler is implemented  
               entry_parms.datalen = sizeof (INITIAL_STARTUP_SCRIPT) - 1;
 
               has_data_already = true; // remember we already have data
 
            }
 
            else if (strcmp (token
, "-script")     == 0) entry_parms.
is_compiled_bootscript = false;  
            else if (strcmp (token
, "+followlink") == 0) entry_parms.
should_follow_symlinks = true;  
            else if (strcmp (token
, "-followlink") == 0) entry_parms.
should_follow_symlinks = false;  
            else if (strcmp (token
, "+autolink")   == 0) entry_parms.
should_autosymlink_dylib = true;  
            else if (strcmp (token
, "-autolink")   == 0) entry_parms.
should_autosymlink_dylib = false;  
            else fprintf (stderr
, "warning: unimplemented attribute in \"%s\" line %d: '%s'\n", buildfile_pathname
, lineno
, token
);  
            #undef REACH_TOKEN_VALUE
 
 
 
            token 
= strtok (NULL
, RECORD_SEP_STR
); // proceed to next attribute token 
         }
 
 
 
         line_ptr++; // reach the next character
 
         while ((*line_ptr 
!= 0) && isspace (*line_ptr
))  
            line_ptr++; // skip leading spaces
 
 
 
         // are we at the end of the line ? if so, it means the attribute values that are set should become the default
 
         if ((*line_ptr == 0) || (*line_ptr == '#'))
 
         {
 
            #define APPLY_DEFAULT_ATTR_NUM(attr,descr,fmt) do { if (entry_parms.attr != default_parms.attr) { \
 
                  fprintf (stderr, "info: changing default " descr " from " fmt " to " fmt " by attribute at \"%s\" line %d\n", default_parms.attr, entry_parms.attr, buildfile_pathname, lineno); \
 
                  default_parms.attr = entry_parms.attr; \
 
               } } while (0)
 
            #define APPLY_DEFAULT_ATTR_STR(attr,descr,fmt) do { if (strcmp (entry_parms.attr, default_parms.attr) != 0) { \
 
                  fprintf (stderr, "info: changing default " descr " from " fmt " to " fmt " by attribute at \"%s\" line %d\n", default_parms.attr, entry_parms.attr, buildfile_pathname, lineno); \
 
                  strcpy (default_parms.attr, entry_parms.attr); \
 
               } } while (0)
 
            APPLY_DEFAULT_ATTR_NUM (dperms,                   "directory permissions",           "0%o");
 
            APPLY_DEFAULT_ATTR_NUM (perms,                    "file permissions",                "0%o");
 
            APPLY_DEFAULT_ATTR_NUM (uid,                      "owner ID",                        "%d");
 
            APPLY_DEFAULT_ATTR_NUM (gid,                      "group ID",                        "%d");
 
            APPLY_DEFAULT_ATTR_NUM (st_mode,                  "inode type",                      "0%o");
 
            APPLY_DEFAULT_ATTR_STR (prefix,                   "prefix",                          "\"%s\"");
 
            APPLY_DEFAULT_ATTR_NUM (is_compiled_bootscript,   "compiled script state",           "%d");
 
            APPLY_DEFAULT_ATTR_NUM (should_follow_symlinks,   "symlink resolution",              "%d");
 
            APPLY_DEFAULT_ATTR_NUM (should_autosymlink_dylib, "dylib canonical name symlinking", "%d");
 
            #undef APPLY_DEFAULT_ATTR_STR
 
            #undef APPLY_DEFAULT_ATTR_NUM
 
            continue; // end of line reached, proceed to the next line
 
         }
 
         // end of attributes parsing
 
      } // end of "this line starts with an attributes block"
 
 
 
      // there's data in this line. We expect a filename in the IFS. Read it and unescape escaped characters
 
      string_len 
= sprintf (path_in_ifs
, "%s", entry_parms.
prefix); 
      while ((string_len > 0) && (path_in_ifs[string_len - 1] == '/'))
 
         string_len--; // chop off any trailing slashes from prefix
 
      write_ptr = &path_in_ifs[string_len];
 
      *write_ptr++ = '/'; // add ONE trailing slash
 
      specifiedpathname_start = write_ptr; // remember the specified pathname will start here
 
      is_quoted_context = (*line_ptr == '"');
 
      if (is_quoted_context)
 
         line_ptr++; // skip a possible initial quote
 
      if (*line_ptr == '/')
 
      {
 
         fprintf (stderr
, "warning: paths in the IFS file should not begin with a leading '/' in \"%s\" line %d\n", buildfile_pathname
, lineno
);  
         line_ptr++; // consistency check: paths in the IFS should not begin with a '/'
 
      }
 
      while ((*line_ptr 
!= 0) && ((!is_quoted_context 
&& (*line_ptr 
!= '=') && !isspace (*line_ptr
)) || (is_quoted_context 
&& (*line_ptr 
== '"'))))  
      {
 
         if (*line_ptr == '\\')
 
         {
 
            line_ptr++;
 
            *write_ptr++ = *line_ptr; // unescape characters that are escaped with '\'
 
         }
 
         else
 
            *write_ptr++ = *line_ptr;
 
         line_ptr++;
 
      }
 
      *write_ptr = 0; // terminate the string
 
      if (is_quoted_context && (*line_ptr == '"'))
 
         line_ptr++; // skip a possible final quote
 
 
 
      // we reached a space OR an equal sign
 
      while ((*line_ptr 
!= 0) && isspace (*line_ptr
))  
         line_ptr++; // skip optional spaces after the filename in the IFS
 
 
 
      // do we have an equal sign ?
 
      if (*line_ptr == '=') // we must be creating either a directory or a file, do we have an equal sign ?
 
      {
 
         line_ptr++; // skip the equal sign
 
         while ((*line_ptr 
!= 0) && isspace (*line_ptr
))  
            line_ptr++; // skip optional spaces after the equal sign
 
 
 
         if (*line_ptr == 0)
 
         {
 
            fprintf (stderr
, "warning: syntax error in \"%s\" line %d: missing data specification after equal sign (skipping)\n", buildfile_pathname
, lineno
);  
            continue; // invalid symlink specification, skip line
 
         }
 
 
 
         // read the host system's path, it may be either a path or a contents definition. Is it a content definition ?
 
         if (*line_ptr == '{')
 
         {
 
            path_on_buildhost[0] = 0; // this is an inline fine, which means it doesn't exist on the build host
 
            allocated_size = 0;
 
 
 
            line_ptr++; // skip the leading content definition
 
            is_escaped_char = false;
 
            for (;;)
 
            {
 
               read_char 
= fgetc (buildfile_fp
); 
               if (read_char == EOF)
 
               {
 
                  fprintf (stderr
, "fatal error: syntax error in \"%s\" line %d: unterminated contents block (end of file reached)\n", buildfile_pathname
, lineno
);  
                  exit (1); // invalid contents block  
               }
 
               else if ((read_char == '\\') && !is_escaped_char)
 
                  is_escaped_char = true; // remember the next char is escaped
 
               else if ((read_char == '}') && !is_escaped_char)
 
                  break; // found an unescaped closing bracked, stop parsing
 
               else
 
               {
 
                  is_escaped_char = false; // any other char, meaning the next one will not be escaped
 
                  if (!has_data_already) // only store the contents if we do NOT know the data yet
 
                  {
 
                     if (entry_parms.datalen == allocated_size) // reallocate in 4 kb blocks
 
                     {
 
                        reallocated_ptr 
= realloc (entry_parms.
data, allocated_size 
+ 4096); 
                        WELLMANNERED_ASSERT (reallocated_ptr, "out of memory");
 
                        entry_parms.data = reallocated_ptr;
 
                        allocated_size += 4096;
 
                     }
 
                     entry_parms.data[entry_parms.datalen++] = read_char;
 
                  }
 
                  if (read_char == '\n')
 
                     lineno++; // update line counter as we parse the inline content
 
               }
 
            } // end for
 
            has_data_already = true; // remember we have data now
 
         }
 
         else // not a content definition between { brackets }, must be either a pathname on the build host, or the target of a symlink
 
         {
 
            is_quoted_context = (*line_ptr == '"');
 
            if (is_quoted_context)
 
               line_ptr++; // skip a possible initial quote
 
            specifiedpathname_start = line_ptr; // remember where the specified pathname starts
 
            write_ptr = line_ptr; // now unescape all characters
 
            while ((*line_ptr 
!= 0) && ((!is_quoted_context 
&& !isspace (*line_ptr
)) || (is_quoted_context 
&& (*line_ptr 
== '"'))))  
            {
 
               if (*line_ptr == '\\')
 
               {
 
                  line_ptr++;
 
                  *write_ptr++ = *line_ptr; // unescape characters that are escaped with '\'
 
               }
 
               else
 
                  *write_ptr++ = *line_ptr;
 
               line_ptr++;
 
            }
 
            *write_ptr = 0; // terminate the string
 
            if (is_quoted_context && (*line_ptr == '"'))
 
               line_ptr++; // skip a possible final quote
 
 
 
            if (S_ISLNK (entry_parms.st_mode)) // are we storing a symlink ?
 
            {
 
               entry_parms.data = strdup (specifiedpathname_start); // if so, store the symlink target as the dirent's blob data
 
               WELLMANNERED_ASSERT (entry_parms.data, "out of memory");
 
               entry_parms.
datalen = strlen (specifiedpathname_start
); 
               has_data_already = true; // remember we have data now
 
            }
 
            else // it's a build host filesystem path
 
               strcpy (path_on_buildhost
, line_ptr
); // the path on the build host is given after the equal sign  
         }
 
      }
 
      else // no equal sign, meaning the file will have the same name on the build host filesystem
 
      {
 
         // consistency check: symlinks MUST have an equal sign
 
         if (entry_parms.st_mode == S_IFLNK)
 
         {
 
            fprintf (stderr
, "warning: syntax error in \"%s\" line %d: missing equal sign and symlink target (skipping)\n", buildfile_pathname
, lineno
);  
            continue; // invalid symlink specification, skip line
 
         }
 
 
 
         strcpy (path_on_buildhost
, specifiedpathname_start
); // the path on the build host is the one specified  
         sep 
= strrchr (specifiedpathname_start
, '/'); 
         if (sep != NULL)
 
            memmove (specifiedpathname_start
, sep 
+ 1, strlen (sep 
+ 1) + 1); // the path in the IFS will be the BASENAME of the path specified (after the prefix)  
      }
 
 
 
      // now add this entry to the image filesystem
 
      if (S_ISDIR (entry_parms.st_mode))
 
         entry_parms.st_mode |= entry_parms.dperms;
 
      else if (S_ISLNK (entry_parms.st_mode))
 
         entry_parms.st_mode |= 0777; // NOTE: mkifs sets symlink permissions to rwxrwxrwx !?
 
      else // file or device node
 
         entry_parms.st_mode |= entry_parms.perms;
 
 
 
      add_fsentry (&fsentries, &fsentry_count, &entry_parms, path_in_ifs, path_on_buildhost); // and add filesystem entry
 
 
 
      if (entry_parms.data != NULL)
 
         free (entry_parms.
data); // if blob data was allocated, free it  
   }
 
 
 
   // write IFS file
 
   fp 
= fopen (ifs_pathname
, "w+b"); 
   if (fp == NULL)
 
   {
 
      fprintf (stderr
, "error: failed to open \"%s\" for writing (%s)\n", ifs_pathname
, strerror (errno
));  
   }
 
 
 
   // do we have a startup file ? if so, this is a bootable image
 
   if (startupfile_pathname != NULL)
 
   {
 
      // write boot prefix
 
      fwrite_filecontents (bootfile_pathname, fp);
 
      PAD_OUTFILE_TO 
(ROUND_TO_UPPER_MULTIPLE 
(ftell (fp
), image_align
)); // pad as necessary 
 
 
      startupheader_offset 
= ftell (fp
); // save startup header offset 
      memset (&startup_header
, 0, sizeof (startup_header
)); // prepare startup header  
      memcpy (startup_header.
signature, "\xeb\x7e\xff\x00", 4); // startup header signature, i.e. 0xff7eeb  
      startup_header.version       = 1;
 
      startup_header.flags1        = STARTUP_HDR_FLAGS1_VIRTUAL | STARTUP_HDR_FLAGS1_TRAILER_V2; // flags, 0x21 (STARTUP_HDR_FLAGS1_VIRTUAL | STARTUP_HDR_FLAGS1_TRAILER_V2)
 
      startup_header.header_size   = sizeof (startup_header); // 256
 
      if (strcmp (image_processor
, "x86_64") == 0)  
         startup_header.machine = STARTUP_HDR_MACHINE_X86_64; // EM_X86_64
 
      else if (strcmp (image_processor
, "aarch64le") == 0)  
         startup_header.machine = STARTUP_HDR_MACHINE_AARCH64; // EM_AARCH64
 
      else
 
      {
 
         fprintf (stderr
, "fatal error: unsupported processor type '%s' found in build file \"%s\"\n", image_processor
, buildfile_pathname
);  
      }
 
      startup_header.startup_vaddr = image_base + (uint32_t) startupfile_ep_from_imagebase; // [I ] Virtual Address to transfer to after IPL is done, here 0x01403008 (appears in "Entry" column for "startup.*")
 
      startup_header.image_paddr   = image_base + (uint32_t) bootfile_size;                 // F[IS] Physical address of image, here 0x01400f30 (appears in "Offset" column for "startup-header" which is the first entry/start of file)
 
      startup_header.ram_paddr     = startup_header.image_paddr;                            // [IS] Physical address of RAM to copy image to (startup_size bytes copied), here 0x01400f30 (same as above)
 
      startup_header.ram_size      = WILL_BE_FILLED_LATER;                                  // [ S] Amount of RAM used by the startup program and executables contained in the file system, here 0x00cd6128 i.e. 13 459 752 dec. which is 13 Mb. i.e. IFS file size minus 0x9eee (40686)
 
      startup_header.startup_size  = WILL_BE_FILLED_LATER;                                  // [I ] Size of startup (never compressed), here 0x02f148 or 192 840 bytes
 
      startup_header.stored_size   = WILL_BE_FILLED_LATER;                                  // [I ] Size of entire image, here 0x00cd6128 (same as ram_size)
 
      startup_header.imagefs_size  = WILL_BE_FILLED_LATER;                                  // [ S] Size of uncompressed imagefs, here 0x00ca6fe0 or 13 266 912 bytes
 
      startup_header.preboot_size  = (uint16_t) bootfile_size;                              // [I ] Size of loaded before header, here 0xf30 or 3888 bytes (size of "bios.boot" file))
 
      fwrite_or_die (&startup_header, 1, sizeof (startup_header), fp); // write startup header
 
      PAD_OUTFILE_TO 
(ROUND_TO_UPPER_MULTIPLE 
(ftell (fp
), image_align
)); // pad as necessary 
 
 
      // ######################################################################################################################################################################################################################################
 
      // # FIXME: figure out how to re-create it: linker call involved
 
      // # $ x86_64-pc-nto-qnx8.0.0-ld --sysroot=${QNX_TARGET}/x86_64/ -T${QNX_TARGET}/x86_64/lib/nto.link --section-start .text=0x1401030 --no-relax ${QNX_TARGET}/x86_64/boot/sys/startup-x86 -o startup.bin.UNSTRIPPED
 
      // ######################################################################################################################################################################################################################################
 
      fwrite_filecontents (startupfile_pathname, fp); // write startup code from blob file
 
      PAD_OUTFILE_TO 
(ROUND_TO_UPPER_MULTIPLE 
(ftell (fp
), image_align
)); // pad as necessary 
 
 
      startuptrailer_offset 
= ftell (fp
); // save startup trailer offset 
      fwrite_or_die (&startup_trailer, 1, sizeof (startup_trailer), fp); // write startup trailer
 
      PAD_OUTFILE_TO 
(ROUND_TO_UPPER_MULTIPLE 
(ftell (fp
), image_align
)); // pad as necessary 
   }
 
 
 
   imageheader_offset 
= ftell (fp
); // save image header offset 
   memset (&image_header
, 0, sizeof (image_header
)); // prepare image header  
   memcpy (&image_header.
signature, "imagefs", 7); // image filesystem signature, i.e. "imagefs"  
   image_header.flags         = IMAGE_FLAGS_TRAILER_V2 | IMAGE_FLAGS_SORTED | IMAGE_FLAGS_INO_BITS; // endian neutral flags, 0x1c (IMAGE_FLAGS_TRAILER_V2 | IMAGE_FLAGS_SORTED | IMAGE_FLAGS_INO_BITS)
 
   image_header.image_size    = WILL_BE_FILLED_LATER; // size from header to end of trailer (here 0xca6fe0 or 13 266 912)
 
   image_header.hdr_dir_size  = WILL_BE_FILLED_LATER; // size from header to last dirent (here 0x12b8 or 4792)
 
   image_header.dir_offset    = sizeof (image_header); // offset from header to first dirent (here 0x5c or 92)
 
   image_header.boot_ino[0]   = image_kernel_ino; // inode of files for bootstrap p[ro?]g[ra?]ms (here 0xa0000002, 0, 0, 0)
 
   image_header.script_ino    = image_bootscript_ino; // inode of file for script (here 3)
 
   image_header.mountpoint[0] = '/'; // default mountpoint for image ("/" + "\0\0\0")
 
   fwrite_or_die (&image_header, 1, sizeof (image_header), fp); // write image header
 
   PAD_OUTFILE_TO 
(ROUND_TO_UPPER_MULTIPLE 
(ftell (fp
), image_align
)); // pad as necessary 
 
 
   // write image directory (with the wrong file offsets)
 
   imgdir_offset 
= ftell (fp
); 
   imgdir_size = 0; // measure image dir size on the fly
 
   for (fsentry_index = 0; fsentry_index < fsentry_count; fsentry_index++)
 
      imgdir_size += fwrite_fsentry (&fsentries[fsentry_index], fp); // NOTE: padding is handled in this function
 
 
 
   fwrite_or_die ("\0\0\0\0", 1, 4, fp); // there seems to be 4 bytes of padding after the image directory
 
   imgdir_size += 4;
 
 
 
   // is it a bootable image with a kernel file ?
 
   if ((startupfile_pathname != NULL) && (kernelfile_pathname != NULL))
 
   {
 
      // start by writing the startup script data blob, if we have one
 
      for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
 
         if (fsentries[fsentry_index].header.ino == image_bootscript_ino)
 
            break; // locate the startup script directory entry
 
      if (fsentry_index < fsentry_count) // found it ?
 
      {
 
         curr_offset 
= ftell (fp
); 
         if (curr_offset + fsentries[fsentry_index].u.file.size >= kernelfile_offset)
 
         {
 
            fprintf (stderr
, "error: the compiled startup script is too big (%zd bytes, max is %zd) to fit at current offset %zd\n", (size_t) fsentries
[fsentry_index
].
u.
file.
size, kernelfile_offset 
- curr_offset
, curr_offset
);  
         }
 
         fsentries[fsentry_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
 
         fwrite_or_die (fsentries[fsentry_index].u.file.UNSAVED_databuf, 1, fsentries[fsentry_index].u.file.size, fp); // write file data blob
 
         fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
 
      }
 
 
 
      // now write the filesystem entries that may fit before the kernel
 
      for (;;)
 
      {
 
         curr_offset 
= ftell (fp
); // see where we are 
         available_space = kernelfile_offset - curr_offset; // measure the available space
 
 
 
         // look for the biggest one that can fit
 
         largest_index = 0;
 
         largest_size = 0;
 
         for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
 
         {
 
            if (!S_ISREG (fsentries[fsentry_index].header.mode) || fsentries[fsentry_index].UNSAVED_was_data_written || (fsentries[fsentry_index].u.file.size > available_space))
 
               continue; // skip all entries that don't have a separate data block, those who were written already and those that wouldn't fit
 
            if (fsentries[fsentry_index].u.file.size > largest_size)
 
            {
 
               largest_size = fsentries[fsentry_index].u.file.size;
 
               largest_index = fsentry_index;
 
            }
 
         }
 
         if (largest_size == 0)
 
            break; // found none ? if so, stop searching
 
 
 
         fsentries[largest_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
 
         fwrite_or_die (fsentries[largest_index].u.file.UNSAVED_databuf, 1, fsentries[largest_index].u.file.size, fp); // write file data blob
 
         fsentries[largest_index].UNSAVED_was_data_written = true; // and remember this file's data was written
 
      }
 
      PAD_OUTFILE_TO (kernelfile_offset); // reach the kernel offset
 
 
 
      // now write the QNX kernel
 
      for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
 
         if (fsentries[fsentry_index].header.ino == image_kernel_ino)
 
            break; // locate the kernel directory entry (can't fail)
 
      curr_offset 
= ftell (fp
); // see where we are 
      fsentries[fsentry_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
 
      // ######################################################################################################################################################################################################################################
 
      // # FIXME: figure out how to re-create it: linker call involved
 
      // # $ x86_64-pc-nto-qnx8.0.0-ld --sysroot=${QNX_TARGET}/x86_64/ -T${QNX_TARGET}/x86_64/lib/nto.link --section-start .text=0xffff800000001000 --no-relax ${QNX_TARGET}/x86_64/boot/sys/procnto-smp-instr -o procnto-smp-instr.sym.UNSTRIPPED
 
      // ######################################################################################################################################################################################################################################
 
      fwrite_filecontents (kernelfile_pathname, fp); // write kernel from blob file
 
      PAD_OUTFILE_TO 
(ROUND_TO_UPPER_MULTIPLE 
(ftell (fp
), image_align
)); // pad as necessary 
      fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
 
   }
 
 
 
   // then write all the other files by increasing inode number: ELF files first
 
   for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++)
 
   {
 
      if (!S_ISREG (fsentries[fsentry_index].header.mode) || fsentries[fsentry_index].UNSAVED_was_data_written // filter out anything that's not a file, and anything that's been already written
 
          || (fsentries
[fsentry_index
].
u.
file.
size < 4) || (memcmp (fsentries
[fsentry_index
].
u.
file.
UNSAVED_databuf, ELF_MAGIC_STR
, 4) != 0)) // filter out anything that's not an ELF file  
         continue; // skip all entries that don't have a separate data block and those who were written already
 
      curr_offset 
= ftell (fp
); 
      fsentries[fsentry_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
 
      fwrite_or_die (fsentries[fsentry_index].u.file.UNSAVED_databuf, 1, fsentries[fsentry_index].u.file.size, fp); // write file data blob
 
      fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
 
   }
 
   for (fsentry_index = 1; fsentry_index < fsentry_count; fsentry_index++) // other files (non-ELF, e.g. scripts and data files) last
 
   {
 
      if (!S_ISREG (fsentries[fsentry_index].header.mode) || fsentries[fsentry_index].UNSAVED_was_data_written) // filter out anything that's not a file, and anything that's been already written
 
         continue; // skip all entries that don't have a separate data block and those who were written already
 
      curr_offset 
= ftell (fp
); 
      fsentries[fsentry_index].u.file.offset = (uint32_t) (curr_offset - imageheader_offset); // save file data blob offset in file structure
 
      fwrite_or_die (fsentries[fsentry_index].u.file.UNSAVED_databuf, 1, fsentries[fsentry_index].u.file.size, fp); // write file data blob
 
      fsentries[fsentry_index].UNSAVED_was_data_written = true; // and remember this file's data was written
 
   }
 
   PAD_OUTFILE_TO 
(ROUND_TO_UPPER_MULTIPLE 
(ftell (fp
), image_align
)); // pad as necessary 
 
 
   // finally, write trailer (including empty checksum)
 
   imagetrailer_offset 
= ftell (fp
); // save image trailer offset 
   fwrite_or_die (&image_trailer, 1, sizeof (image_trailer), fp); // write image trailer
 
   PAD_OUTFILE_TO 
(ROUND_TO_UPPER_MULTIPLE 
(ftell (fp
), image_align
)); // pad as necessary 
 
 
   // if we need to pad it to a specific length, do so
 
   PAD_OUTFILE_TO (image_totalsize);
 
 
 
   // see if we are past the image max size, in which case it's an error
 
   if (final_size > image_maxsize)
 
   {
 
      fprintf (stderr
, "error: image file \"%s\" size %zd exceeds max size (%zd)\n", ifs_pathname
, final_size
, (size_t) image_maxsize
);  
   }
 
 
 
   // do we have a startup file ? if so, this is a bootable image
 
   if (startupfile_pathname != NULL)
 
   {
 
      // rewrite startup header with final values
 
      fseek_or_die (fp, startupheader_offset, SEEK_SET);
 
      startup_header.startup_size = (uint32_t) (imageheader_offset - startupheader_offset); // size of startup header up to image header
 
      startup_header.imagefs_size = (uint32_t) (final_size - imageheader_offset); // size of uncompressed imagefs
 
      startup_header.ram_size = (uint32_t) final_size; // FIXME: this is necessarily less, but should we really bother calculating the right size ?
 
      startup_header.stored_size = (uint32_t) final_size;
 
      fwrite_or_die (&startup_header, 1, sizeof (startup_header), fp); // write startup header
 
   }
 
 
 
   // rewrite image header with final values
 
   fseek_or_die (fp, imageheader_offset, SEEK_SET);
 
   image_header.image_size = (uint32_t) (final_size - imageheader_offset); // size of uncompressed imagefs
 
   image_header.hdr_dir_size = sizeof (image_header) + (uint32_t) imgdir_size; // size from start of image header to last dirent
 
   fwrite_or_die (&image_header, 1, sizeof (image_header), fp); // write image header
 
 
 
   // rewrite image directory with final offset values
 
   fseek_or_die (fp, imgdir_offset, SEEK_SET);
 
   if (image_header.flags & IMAGE_FLAGS_SORTED)
 
      qsort (&fsentries
[1], fsentry_count 
- 1, sizeof (fsentry_t
), fsentry_compare_pathnames_cb
); // sort the filesystem entries by pathname  
   for (fsentry_index = 0; fsentry_index < fsentry_count; fsentry_index++)
 
      fwrite_fsentry (&fsentries[fsentry_index], fp);
 
 
 
   fclose (fp
); // ensure everything is flushed  
 
 
   // ALL CHECKSUMS AT THE VERY END
 
 
 
   blob_data = NULL;
 
   read_filecontents (ifs_pathname, ".", &blob_data, &blob_size);
 
   WELLMANNERED_ASSERT 
(blob_data
, "failed to open IFS file for checksumming: %s", strerror (errno
)); 
 
 
   // do we have a startup file ? if so, this is a bootable image
 
   if (startupfile_pathname != NULL)
 
   {
 
      // compute SHA-512 checksum and V1 checksum of startup block
 
      if (   ( (startup_header.flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
 
          || (!(startup_header.flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
 
         is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
 
      else
 
         is_foreign_endianness = false; // else this header is for the same endianness as us
 
 
 
      SHA512 (&blob_data[startupheader_offset], startuptrailer_offset - startupheader_offset, &blob_data[startuptrailer_offset]); // compute SHA512 checksum and write it in place in blob data
 
      checksum = update_checksum (&blob_data[startupheader_offset], startuptrailer_offset + SHA512_DIGEST_LENGTH - startupheader_offset, is_foreign_endianness); // compute old checksum
 
      memcpy (&blob_data
[startuptrailer_offset 
+ SHA512_DIGEST_LENGTH
], &checksum
, 4); // and write it in place  
   }
 
 
 
   // compute SHA-512 checksum and V1 checksum of image block
 
   if (   ( (image_header.flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
 
       || (!(image_header.flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
 
      is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
 
   else
 
      is_foreign_endianness = false; // else this header is for the same endianness as us
 
 
 
   SHA512 (&blob_data[imageheader_offset], imagetrailer_offset - imageheader_offset, &blob_data[imagetrailer_offset]); // compute SHA512 checksum and write it in place in blob data
 
   checksum = update_checksum (&blob_data[imageheader_offset], imagetrailer_offset + SHA512_DIGEST_LENGTH - imageheader_offset, is_foreign_endianness); // compute old checksum
 
   memcpy (&blob_data
[imagetrailer_offset 
+ SHA512_DIGEST_LENGTH
], &checksum
, 4); // and write it in place  
 
 
   // now rewrite IFS with the correct checksums
 
   fp 
= fopen (ifs_pathname
, "wb"); 
   WELLMANNERED_ASSERT 
(fp
, "failed to reopen IFS file for checksumming: %s", strerror (errno
)); 
   fwrite_or_die (blob_data, 1, blob_size, fp);
 
 
 
   // finished, exit with a success code
 
}
 
 
 
 
 
static int dump_ifs_info (const char *ifs_pathname)
 
{
 
   #define hex_printf(buf,size,...) do { \
 
      if ((size) <= 16 * 1024) /* only print when it's not too big (up to 16 kb) */\
 
         hex_fprintf (stdout, (buf), (size), 16, __VA_ARGS__); /* use 16 columns in hex output to stdout */ \
 
      else { \
 
         printf (__VA_ARGS__); \
 
         printf ("   size %zd > 16kb, not printed\n", (size_t) (size)); \
 
      } \
 
   } while (0)
 
   #define BINARY(x) binary ((x), '-', 'x')
 
 
 
   static const char *startupheader_flags1_strings[8] = {
 
      "VIRTUAL", // bit 0
 
      "BIGENDIAN", // bit 1
 
      "COMPRESS_BIT1", // bit 2
 
      "COMPRESS_BIT2", // bit 3
 
      "COMPRESS_BIT3", // bit 4
 
      "TRAILER_V2", // bit 5
 
      "", // bit 6
 
      "", // bit 7
 
   };
 
   static const char *imageheader_flags_strings[8] = {
 
      "BIGENDIAN", // bit 0
 
      "READONLY", // bit 1
 
      "INO_BITS", // bit 2
 
      "SORTED", // bit 3
 
      "TRAILER_V2", // bit 4
 
      "", // bit 5
 
      "", // bit 6
 
      "", // bit 7
 
   };
 
 
 
   startup_header_t *startup_header = NULL;
 
   size_t startupheader_offset = 0;
 
   startup_trailer_v1_t *startup_trailer_v1 = NULL;
 
   startup_trailer_v2_t *startup_trailer_v2 = NULL;
 
   size_t startuptrailer_offset = 0;
 
   image_header_t *image_header = NULL;
 
   size_t imageheader_offset = 0;
 
   image_trailer_v1_t *image_trailer_v1 = NULL;
 
   image_trailer_v2_t *image_trailer_v2 = NULL;
 
   size_t imagetrailer_offset = 0;
 
   fsentry_t **fsentries = NULL; // mallocated
 
   size_t fsentry_count = 0;
 
   fsentry_t *current_fsentry = NULL;
 
   char recorded_sha512[2 * SHA512_DIGEST_LENGTH + 1] = "";
 
   char computed_sha512[2 * SHA512_DIGEST_LENGTH + 1] = "";
 
   size_t startupfile_blobsize = 0;
 
   void *reallocated_ptr;
 
   bool is_foreign_endianness;
 
   size_t bootfile_blobsize = 0;
 
   size_t current_offset;
 
   size_t fsentry_index;
 
   size_t nearest_distance;
 
   size_t nearest_index;
 
   size_t byte_index;
 
   uint32_t recorded_checksum;
 
   uint32_t computed_checksum;
 
   uint8_t *filedata;
 
   size_t filesize;
 
   time_t mtime;
 
 
 
   // open and read IFS file
 
   if (read_filecontents (ifs_pathname, ".", &filedata, &filesize) == NULL)
 
   {
 
      fprintf (stderr
, "error: can't open \"%s\" for reading: %s\n", ifs_pathname
, strerror (errno
));  
      return (1);
 
   }
 
 
 
   printf ("QNX In-kernel Filesystem analysis produced by ifstool version " VERSION_FMT_YYYYMMDD 
"\n", VERSION_ARG_YYYYMMDD
);  
   printf ("IFS file \"%s\" - size 0x%zx (%zd) bytes\n", ifs_pathname
, filesize
, filesize
);  
 
 
   // parse file from start to end
 
   current_offset = 0;
 
   for (;;)
 
   {
 
      // does a startup header start here ?
 
      if ((current_offset 
+ sizeof (startup_header_t
) < filesize
) && (memcmp (&filedata
[current_offset
], "\xeb\x7e\xff\x00", 4) == 0))  
      {
 
         startupheader_offset = current_offset;
 
         startup_header = (startup_header_t *) &filedata[startupheader_offset];
 
 
 
         // layout:
 
         // [STARTUP HEADER]
 
         // (startup file blob)
 
         // [STARTUP TRAILER v1 or v2]
 
 
 
         printf ("Startup header at offset 0x%zx (%zd):\n", current_offset
, current_offset
);  
         printf ("   signature     = %02x %02x %02x %02x - good\n", startup_header
->signature
[0], startup_header
->signature
[1], startup_header
->signature
[2], startup_header
->signature
[3]);  
         printf ("   version       = 0x%04x (%d) - %s\n", startup_header
->version
, startup_header
->version
, (startup_header
->version 
== 1 ? "looks good" : "???"));  
         printf ("   flags1        = 0x%02x (%s)\n", startup_header
->flags1
, describe_uint8 
(startup_header
->flags1
, startupheader_flags1_strings
));  
         printf ("   flags2        = 0x%02x (%s) - %s\n", startup_header
->flags2
, BINARY 
(startup_header
->flags2
), (startup_header
->flags2 
== 0 ? "looks good" : "???"));  
         printf ("   header_size   = 0x%04x (%d) - %s\n", startup_header
->header_size
, startup_header
->header_size
, (startup_header
->header_size 
== sizeof (startup_header_t
) ? "looks good" : "BAD"));  
         printf ("   machine       = 0x%04x (%d) - %s\n", startup_header
->machine
, startup_header
->machine
, (startup_header
->machine 
== STARTUP_HDR_MACHINE_X86_64 
? "x86_64" : (startup_header
->machine 
== STARTUP_HDR_MACHINE_AARCH64 
? "aarch64" : "unknown")));  
         printf ("   startup_vaddr = 0x%08x (%d) - virtual address to transfer to after IPL is done\n", startup_header
->startup_vaddr
, startup_header
->startup_vaddr
);  
         printf ("   paddr_bias    = 0x%08x (%d) - value to add to physical addresses to get an indirectable pointer value\n", startup_header
->paddr_bias
, startup_header
->paddr_bias
);  
         printf ("   image_paddr   = 0x%08x (%d) - physical address of image\n", startup_header
->image_paddr
, startup_header
->image_paddr
);  
         printf ("   ram_paddr     = 0x%08x (%d) - physical address of RAM to copy image to (startup_size bytes copied)\n", startup_header
->ram_paddr
, startup_header
->ram_paddr
);  
         printf ("   ram_size      = 0x%08x (%d) - amount of RAM used by the startup program and executables in the fs\n", startup_header
->ram_size
, startup_header
->ram_size
);  
         printf ("   startup_size  = 0x%08x (%d) - size of startup (never compressed) - %s\n", startup_header
->startup_size
, startup_header
->startup_size
, (current_offset 
+ sizeof (image_header_t
) + startup_header
->startup_size 
+ (startup_header
->flags1 
& STARTUP_HDR_FLAGS1_TRAILER_V2 
? sizeof (image_trailer_v2_t
) : sizeof (image_trailer_v1_t
)) < filesize 
? "looks good" : "BAD (IFS file too short)"));  
         printf ("   stored_size   = 0x%08x (%d) - size of entire image - %s\n", startup_header
->stored_size
, startup_header
->stored_size
, (startup_header
->stored_size 
== startup_header
->ram_size 
? "looks good" : "???"));  
         printf ("   imagefs_paddr = 0x%08x (%d) - set by IPL when startup runs - %s\n", startup_header
->imagefs_paddr
, startup_header
->imagefs_paddr
, (startup_header
->imagefs_paddr 
== 0 ? "looks good" : "??? should be zero"));  
         printf ("   imagefs_size  = 0x%08x (%d) - size of uncompressed imagefs\n", startup_header
->imagefs_size
, startup_header
->imagefs_size
);  
         printf ("   preboot_size  = 0x%04x (%d) - size of loaded before header - %s\n", startup_header
->preboot_size
, startup_header
->preboot_size
, (startup_header
->preboot_size 
== current_offset 
? "looks good" : "???"));  
         printf ("   zero0         = 0x%04x (%d) - zeros - %s\n", startup_header
->zero0
, startup_header
->zero0
, (startup_header
->zero0 
== 0 ? "looks good" : "??? should be zero"));  
         printf ("   zero[0]       = 0x%08x (%d) - zeros - %s\n", startup_header
->zero
[0], startup_header
->zero
[0], (startup_header
->zero
[0] == 0 ? "looks good" : "??? should be zero"));  
         printf ("   addr_off      = 0x%016llx (%lld) - offset for startup_vaddr and [image|ram|imagefs]_paddr - %s\n", startup_header
->addr_off
, startup_header
->addr_off
, (startup_header
->addr_off 
== 0 ? "looks good" : "??? should be zero"));  
         hex_printf ((uint8_t *) &startup_header->info[0], sizeof (startup_header->info), "   info[48] =\n");
 
 
 
         // validate that the file can contain up to the startup trailer
 
         if (current_offset + startup_header->startup_size > filesize)
 
         {
 
            printf ("WARNING: this IFS file is corrupted (startup trailer extends past end of file)\n");  
            goto endofdata;
 
         }
 
 
 
         // check if this endianness is ours
 
         if (   ( (startup_header->flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
 
             || (!(startup_header->flags1 & STARTUP_HDR_FLAGS1_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
 
            is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
 
         else
 
            is_foreign_endianness = false; // else this header is for the same endianness as us
 
 
 
         // locate the right startup trailer at the right offset
 
         if (startup_header->flags1 & STARTUP_HDR_FLAGS1_TRAILER_V2)
 
         {
 
            startuptrailer_offset = current_offset + startup_header->startup_size - sizeof (startup_trailer_v2_t);
 
            startup_trailer_v2 = (startup_trailer_v2_t *) &filedata[startuptrailer_offset];
 
            startupfile_blobsize = startup_header->startup_size - sizeof (startup_header_t) - sizeof (startup_trailer_v2_t);
 
         }
 
         else // old V1 trailer
 
         {
 
            startuptrailer_offset = current_offset + startup_header->startup_size - sizeof (startup_trailer_v1_t);
 
            startup_trailer_v1 = (startup_trailer_v1_t *) &filedata[startuptrailer_offset];
 
            startupfile_blobsize = startup_header->startup_size - sizeof (startup_header_t) - sizeof (startup_trailer_v1_t);
 
         }
 
 
 
         current_offset += sizeof (startup_header_t); // jump over the startup header and reach the startup blob
 
         printf ("Startup blob at offset 0x%zx (%zd):\n", current_offset
, current_offset
);  
         printf ("   size 0x%zx (%zd) bytes\n", startupfile_blobsize
, startupfile_blobsize
);  
         printf ("   checksum %d\n", update_checksum 
(&filedata
[current_offset
], startupfile_blobsize
, is_foreign_endianness
));  
 
 
         current_offset += startupfile_blobsize; // jump over the startup blob and reach the startup trailer
 
         printf ("Startup trailer at offset 0x%zx (%zd) - version %d:\n", current_offset
, current_offset
, (startup_header
->flags1 
& STARTUP_HDR_FLAGS1_TRAILER_V2 
? 2 : 1));  
         if (startup_header->flags1 & STARTUP_HDR_FLAGS1_TRAILER_V2)
 
         {
 
            for (byte_index = 0; byte_index < SHA512_DIGEST_LENGTH; byte_index++)
 
               sprintf (&recorded_sha512
[2 * byte_index
], "%02x", startup_trailer_v2
->sha512
[byte_index
]);  
            strcpy (computed_sha512
, SHA512 
(startup_header
, startuptrailer_offset 
- startupheader_offset
, NULL
));  
            recorded_checksum = startup_trailer_v2->cksum;
 
            computed_checksum = update_checksum (startup_header, startuptrailer_offset + SHA512_DIGEST_LENGTH - startupheader_offset, is_foreign_endianness);
 
            printf ("    sha512([0x%zx-0x%zx[) = %s - %s\n", startupheader_offset
, startuptrailer_offset
, recorded_sha512
, (strcasecmp 
(computed_sha512
, recorded_sha512
) == 0 ? "GOOD" : "BAD"));  
            printf ("    cksum([0x%zx-0x%zx[) = 0x%08x - %s\n", startupheader_offset
, startuptrailer_offset 
+ SHA512_DIGEST_LENGTH
, recorded_checksum
, (computed_checksum 
== recorded_checksum 
? "GOOD" : "BAD"));  
            if (strcasecmp (computed_sha512, recorded_sha512) != 0)
 
               printf ("Computed SHA-512: %s\n", computed_sha512
);  
            if (computed_checksum != recorded_checksum)
 
               printf ("Computed cksum: 0x%08x\n", computed_checksum
);  
         }
 
         else // old v1 trailer
 
         {
 
            recorded_checksum = startup_trailer_v1->cksum;
 
            computed_checksum = update_checksum (startup_header, sizeof (startup_header) + startupfile_blobsize, is_foreign_endianness);
 
            printf ("    cksum([0x%zx-0x%zx[) = 0x%08x - %s\n", startupheader_offset
, startuptrailer_offset
, recorded_checksum
, (computed_checksum 
== recorded_checksum 
? "GOOD" : "BAD"));  
            if (computed_checksum != recorded_checksum)
 
               printf ("Computed cksum: 0x%08x\n", computed_checksum
);  
         }
 
 
 
         current_offset += (startup_header->flags1 & STARTUP_HDR_FLAGS1_TRAILER_V2 ? sizeof (startup_trailer_v2_t) : sizeof (startup_trailer_v1_t)); // now reach the next segment
 
      }
 
 
 
      // else does an image header start here ?
 
      else if ((current_offset 
+ sizeof (image_header_t
) < filesize
) && (memcmp (&filedata
[current_offset
], "imagefs", 7) == 0))  
      {
 
         imageheader_offset = current_offset;
 
         image_header = (image_header_t *) &filedata[imageheader_offset];
 
 
 
         // layout:
 
         // [IMAGE HEADER]
 
         // [image directory entries]
 
         // [smallest file blobs up to KERNEL]
 
         // [padding]
 
         // [KERNEL]
 
         // [rest of file blobs]
 
         // [IMAGE FOOTER]
 
 
 
         printf ("Image header at offset %zx (%zd):\n", current_offset
, current_offset
);  
         printf ("   signature    = %02x %02x %02x %02x %02x %02x %02x (\"%.7s\") - good\n", image_header
->signature
[0], image_header
->signature
[1], image_header
->signature
[2], image_header
->signature
[3], image_header
->signature
[4], image_header
->signature
[5], image_header
->signature
[6], image_header
->signature
);  
         printf ("   flags        = 0x%02x (%s)\n", image_header
->flags
, describe_uint8 
(image_header
->flags
, imageheader_flags_strings
));  
         printf ("   image_size   = 0x%08x (%d) - size from header to end of trailer - %s\n", image_header
->image_size
, image_header
->image_size
, (current_offset 
+ image_header
->image_size 
<= filesize 
? "looks good" : "BAD (IFS file too short)"));  
         printf ("   hdr_dir_size = 0x%08x (%d) - size from header to last dirent - %s\n", image_header
->hdr_dir_size
, image_header
->hdr_dir_size
, (current_offset 
+ image_header
->hdr_dir_size 
< filesize 
? "looks good" : "BAD (IFS file too short)"));  
         printf ("   dir_offset   = 0x%08x (%d) - offset from header to first dirent - %s\n", image_header
->dir_offset
, image_header
->dir_offset
, (current_offset 
+ image_header
->dir_offset 
>= filesize 
? "BAD (IFS file too short)" : (image_header
->dir_offset 
> image_header
->hdr_dir_size 
? "BAD" : "looks good")));  
         printf ("   boot_ino[4]  = { 0x%08x, 0x%08x, 0x%08x, 0x%08x }\n", image_header
->boot_ino
[0], image_header
->boot_ino
[1], image_header
->boot_ino
[2], image_header
->boot_ino
[3]);  
         printf ("   script_ino   = 0x%08x (%d) - inode of compiled bootscript\n", image_header
->script_ino
, image_header
->script_ino
);  
         printf ("   chain_paddr  = 0x%08x (%d) - offset to next fs signature\n", image_header
->chain_paddr
, image_header
->chain_paddr
);  
         hex_printf ((uint8_t *) &image_header->spare[0], sizeof (image_header->spare), "   spare[10] =\n");
 
         printf ("   mountflags   = 0x%08x (%s %s %s %s)\n", image_header
->mountflags
, BINARY 
(((uint8_t *) &image_header
->mountflags
)[0]), BINARY 
(((uint8_t *) &image_header
->mountflags
)[1]), BINARY 
(((uint8_t *) &image_header
->mountflags
)[2]), BINARY 
(((uint8_t *) &image_header
->mountflags
)[3]));  
         printf ("   mountpoint   = \"%s\"\n", image_header
->mountpoint
);  
 
 
         // validate that the file can contain up to the image trailer
 
         if (current_offset + image_header->image_size > filesize)
 
         {
 
            printf ("WARNING: this IFS file is corrupted (image trailer extends past end of file)\n");  
            goto endofdata;
 
         }
 
 
 
         // check if this endianness is ours
 
         if (   ( (image_header->flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
 
             || (!(image_header->flags & IMAGE_FLAGS_BIGENDIAN) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)))
 
            is_foreign_endianness = true; // if the header is big endian and we're on a little endian machine, or the other way around, it's a foreign endianness
 
         else
 
            is_foreign_endianness = false; // else this header is for the same endianness as us
 
 
 
         // locate the image trailer at the right offset
 
         if (image_header->flags & IMAGE_FLAGS_TRAILER_V2)
 
         {
 
            imagetrailer_offset = current_offset + image_header->image_size - sizeof (image_trailer_v2_t);
 
            image_trailer_v2 = (image_trailer_v2_t *) &filedata[imagetrailer_offset];
 
         }
 
         else // old V1 trailer
 
         {
 
            imagetrailer_offset = current_offset + image_header->image_size - sizeof (image_trailer_v1_t);
 
            image_trailer_v1 = (image_trailer_v1_t *) &filedata[imagetrailer_offset];
 
         }
 
 
 
         current_offset += sizeof (image_header_t); // jump over the image header and reach the first directory entry
 
 
 
         // there may be padding before the first directory entry
 
         if (image_header->dir_offset - sizeof (image_header_t) > 0)
 
            hex_printf (&filedata[current_offset], image_header->dir_offset - sizeof (image_header_t), "\n" "%zd padding bytes at offset 0x%zd (%zd):\n", image_header->dir_offset - sizeof (image_header_t), current_offset, current_offset);
 
         current_offset += image_header->dir_offset - sizeof (image_header_t); // padding was processed, jump over it
 
 
 
         // dump all directory entries until the last one included
 
         fsentries = NULL;
 
         fsentry_count = 0;
 
         while (current_offset < imageheader_offset + image_header->hdr_dir_size)
 
         {
 
            current_fsentry = (fsentry_t *) &filedata[current_offset];
 
 
 
            if (imageheader_offset + image_header->hdr_dir_size - current_offset < sizeof (current_fsentry->header))
 
               break; // end padding reached
 
 
 
            // stack up the filesystem entry pointers in an array while we read them
 
            reallocated_ptr 
= realloc (fsentries
, (fsentry_count 
+ 1) * sizeof (fsentry_t 
*)); 
            WELLMANNERED_ASSERT (reallocated_ptr, "out of memory");
 
            fsentries = reallocated_ptr;
 
            fsentries[fsentry_count] = current_fsentry;
 
            fsentry_count++;
 
 
 
            printf ("Filesystem entry at offset 0x%zx (%zd) - last one at 0x%zd (%zd):\n", current_offset
, current_offset
, imageheader_offset 
+ image_header
->hdr_dir_size
, imageheader_offset 
+ image_header
->hdr_dir_size
);  
            printf ("   size           = 0x%04x (%d) - size of dirent - %s\n", current_fsentry
->header.
size, current_fsentry
->header.
size, ((current_fsentry
->header.
size > 0) && (current_offset 
+ current_fsentry
->header.
size < filesize
) ? "looks good" : "BAD"));  
            printf ("   extattr_offset = 0x%04x (%d) - %s\n", current_fsentry
->header.
extattr_offset, current_fsentry
->header.
extattr_offset, (current_fsentry
->header.
extattr_offset == 0 ? "no extattr" : "has extattr"));  
            printf ("   ino            = 0x%08x (%d) - inode number (%s%s%s%s)\n", current_fsentry
->header.
ino, current_fsentry
->header.
ino, (current_fsentry
->header.
ino & 0xE0000000 ? "is" : "nothing special"), (current_fsentry
->header.
ino & IFS_INO_PROCESSED_ELF 
? " PROCESSED_ELF" : ""), (current_fsentry
->header.
ino & IFS_INO_RUNONCE_ELF 
? " RUNONCE_ELF" : ""), (current_fsentry
->header.
ino & IFS_INO_BOOTSTRAP_EXE 
? " BOOTSTRAP_EXE" : ""));  
            printf ("   mode           = 0x%08x (%d) - %s (0%o), POSIX permissions 0%o\n", current_fsentry
->header.
mode, current_fsentry
->header.
mode, (S_ISDIR 
(current_fsentry
->header.
mode) ? "directory" : (S_ISREG 
(current_fsentry
->header.
mode) ? "file" : (S_ISLNK 
(current_fsentry
->header.
mode) ? "symlink" : "device"))), (current_fsentry
->header.
mode & 0xF000) >> 12, current_fsentry
->header.
mode & 0xFFF);  
            printf ("   gid            = 0x%08x (%d) - owner group ID%s\n", current_fsentry
->header.
gid, current_fsentry
->header.
gid, (current_fsentry
->header.
gid == 0 ? " (root)" : ""));  
            printf ("   uid            = 0x%08x (%d) - owner user ID%s\n", current_fsentry
->header.
uid, current_fsentry
->header.
uid, (current_fsentry
->header.
uid == 0 ? " (root)" : ""));  
            mtime = (time_t) current_fsentry->header.mtime;
 
            printf ("   mtime          = 0x%08x (%d) - POSIX timestamp: %s", current_fsentry
->header.
mtime, current_fsentry
->header.
mtime, asctime (localtime (&mtime
))); // NOTE: asctime() provides the newline  
            if (S_ISDIR (current_fsentry->header.mode))
 
               printf ("   [DIRECTORY] path = \"%s\"\n", (char *) ¤t_fsentry
->u.
dir.
path); // convert from pointer to char array  
            else if (S_ISREG (current_fsentry->header.mode))
 
            {
 
               printf ("   [FILE] offset = 0x%08x (%d) - %s\n", current_fsentry
->u.
file.
offset, current_fsentry
->u.
file.
offset, (imageheader_offset 
+ current_fsentry
->u.
file.
offset < filesize 
? "looks good" : "BAD (IFS file too short)"));  
               printf ("   [FILE] size   = 0x%08x (%d) - %s\n", current_fsentry
->u.
file.
size, current_fsentry
->u.
file.
size, (imageheader_offset 
+ current_fsentry
->u.
file.
offset + current_fsentry
->u.
file.
size < filesize 
? "looks good" : "BAD (IFS file too short)"));  
               printf ("   [FILE] path   = \"%s\"\n", (char *) ¤t_fsentry
->u.
file.
path); // convert from pointer to char array  
            }
 
            else if (S_ISLNK (current_fsentry->header.mode))
 
            {
 
               printf ("   [SYMLINK] sym_offset = 0x%04x (%d) - %s\n", current_fsentry
->u.
symlink.
sym_offset, current_fsentry
->u.
symlink.
sym_offset, (sizeof (current_fsentry
->header
) + 2 * sizeof (uint16_t) + current_fsentry
->u.
symlink.
sym_offset <= current_fsentry
->header.
size ? "looks good" : "BAD (dirent too short)"));  
               printf ("   [SYMLINK] sym_size   = 0x%04x (%d) - %s\n", current_fsentry
->u.
symlink.
sym_size, current_fsentry
->u.
symlink.
sym_size, (sizeof (current_fsentry
->header
) + 2 * sizeof (uint16_t) + current_fsentry
->u.
symlink.
sym_offset + current_fsentry
->u.
symlink.
sym_size <= current_fsentry
->header.
size ? "looks good" : "BAD (dirent too short)"));  
               printf ("   [SYMLINK] path       = \"%s\"\n", (char *) ¤t_fsentry
->u.
symlink.
path); // convert from pointer to char array  
               printf ("   [SYMLINK] contents   = \"%s\"\n", ((char *) ¤t_fsentry
->u.
symlink.
path) + current_fsentry
->u.
symlink.
sym_offset); // convert from pointer to char array  
            }
 
            else // can only be a device
 
            {
 
               printf ("   [DEVICE] dev  = 0x%08x (%d)\n", current_fsentry
->u.
device.
dev, current_fsentry
->u.
device.
dev);  
               printf ("   [DEVICE] rdev = 0x%08x (%d)\n", current_fsentry
->u.
device.
rdev, current_fsentry
->u.
device.
rdev);  
               printf ("   [DEVICE] path = \"%s\"\n", (char *) ¤t_fsentry
->u.
device.
path); // convert from pointer to char array  
            }
 
 
 
            if ((current_fsentry->header.size == 0) || (current_offset + current_fsentry->header.size >= filesize))
 
            {
 
               printf ("WARNING: this IFS file is corrupted (the size of this directory entry is invalid)\n");  
               goto endofdata;
 
            }
 
 
 
            current_offset += current_fsentry->header.size;
 
         }
 
         if (imageheader_offset + image_header->hdr_dir_size < current_offset + sizeof (current_fsentry->header))
 
            hex_printf (&filedata[current_offset], imageheader_offset + image_header->hdr_dir_size - current_offset, "\n" "%zd padding bytes at offset 0x%zx (%zd):\n", imageheader_offset + image_header->hdr_dir_size - current_offset, current_offset, current_offset);
 
         current_offset += imageheader_offset + image_header->hdr_dir_size - current_offset; // padding was processed, jump over it
 
 
 
         // at this point we are past the directory entries; what is stored now, up to and until the image trailer, is the files' data
 
         if (fsentry_count > 0)
 
         {
 
            while (current_offset < imagetrailer_offset) // and parse data up to the trailer
 
            {
 
               nearest_distance = SIZE_MAX;
 
               nearest_index = SIZE_MAX;
 
               for (fsentry_index = 0; fsentry_index < fsentry_count; fsentry_index++)
 
                  if (S_ISREG (fsentries[fsentry_index]->header.mode) // if this directory entry a file (i.e. it has a data blob)...
 
                      && (imageheader_offset + (size_t) fsentries[fsentry_index]->u.file.offset >= current_offset) // ... AND its data blob is still ahead of our current pointer ...
 
                      && (imageheader_offset + (size_t) fsentries[fsentry_index]->u.file.offset - current_offset < nearest_distance)) // ... AND it's the closest to us we've found so far
 
                  {
 
                     nearest_distance = imageheader_offset + (size_t) fsentries[fsentry_index]->u.file.offset - current_offset; // then remember it
 
                     nearest_index = fsentry_index;
 
                  }
 
               if (nearest_index == SIZE_MAX)
 
                  break; // found no file ahead, which means we've parsed the whole file data area, so stop the loop so as to proceed to the image trailer
 
 
 
               fsentry_index = nearest_index;
 
               current_fsentry = fsentries[fsentry_index]; // quick access to closest fsentry
 
 
 
               // there may be padding before the file data
 
               if (imageheader_offset + (size_t) current_fsentry->u.file.offset - current_offset > 0)
 
                  hex_printf (&filedata[current_offset], imageheader_offset + (size_t) current_fsentry->u.file.offset - current_offset, "\n" "%zd padding bytes at offset 0x%zx (%zd):\n", imageheader_offset + (size_t) current_fsentry->u.file.offset - current_offset, current_offset, current_offset);
 
               current_offset += imageheader_offset + (size_t) current_fsentry->u.file.offset - current_offset; // padding was processed, jump over it
 
 
 
               printf ("File data blob at offset 0x%zx (%zd):\n", current_offset
, current_offset
);  
               printf ("   corresponding dirent index: %zd/%zd\n", fsentry_index
, fsentry_count
);  
               printf ("   corresponding inode 0x%08x (%d) -%s%s%s%s\n", current_fsentry
->header.
ino, current_fsentry
->header.
ino, (current_fsentry
->header.
ino & 0xE0000000 ? "" : " nothing special"), (current_fsentry
->header.
ino & IFS_INO_PROCESSED_ELF 
? " PROCESSED_ELF" : ""), (current_fsentry
->header.
ino & IFS_INO_RUNONCE_ELF 
? " RUNONCE_ELF" : ""), (current_fsentry
->header.
ino & IFS_INO_BOOTSTRAP_EXE 
? " BOOTSTRAP_EXE" : ""));  
               printf ("   corresponding path: \"%s\"\n", (char *) ¤t_fsentry
->u.
file.
path); // convert from pointer to char array  
               printf ("   size 0x%zx (%zd) bytes\n", (size_t) current_fsentry
->u.
file.
size, (size_t) current_fsentry
->u.
file.
size);  
               if (current_offset + 4 < filesize)
 
               {
 
                  if ((current_fsentry->u.file.size < 16 * 1024) && (current_offset + current_fsentry->u.file.size < filesize))
 
                     hex_printf (&filedata[current_offset], current_fsentry->u.file.size, "   data:\n");
 
                  else
 
                     printf ("   first 4 bytes: %02x%02x%02x%02x \"%c%c%c%c\" (%s)\n", (uint8_t) filedata
[current_offset 
+ 0], (uint8_t) filedata
[current_offset 
+ 1], (uint8_t) filedata
[current_offset 
+ 2], (uint8_t) filedata
[current_offset 
+ 3], (isprint (filedata
[current_offset 
+ 0]) ? filedata
[current_offset 
+ 0] : '.'), (isprint (filedata
[current_offset 
+ 1]) ? filedata
[current_offset 
+ 1] : '.'), (isprint (filedata
[current_offset 
+ 2]) ? filedata
[current_offset 
+ 2] : '.'), (isprint (filedata
[current_offset 
+ 3]) ? filedata
[current_offset 
+ 3] : '.'), (memcmp (&filedata
[current_offset
], ELF_MAGIC_STR
, 4) == 0 ? "ELF binary" : (memcmp (&filedata
[current_offset
], "#!", 2) == 0 ? "shell script" : "data file")));  
               }
 
               if (current_offset + current_fsentry->u.file.size < filesize)
 
                  printf ("   checksum %d\n", update_checksum 
(&filedata
[current_offset
], current_fsentry
->u.
file.
size, is_foreign_endianness
));  
               else
 
               {
 
                  printf ("WARNING: this IFS file is corrupted (the size of this file data extends past the IFS size)\n");  
                  goto endofdata;
 
               }
 
 
 
               current_offset += current_fsentry->u.file.size; // now jump over this file's data
 
            }
 
         }
 
 
 
         // ad this point we're past the last file data, there may be padding before the image trailer
 
         if (imagetrailer_offset - current_offset > 0)
 
            hex_printf (&filedata[current_offset], imagetrailer_offset - current_offset, "\n" "%zd padding bytes at offset %zx (%zd):\n", imagetrailer_offset - current_offset, current_offset, current_offset);
 
         current_offset += imagetrailer_offset - current_offset; // padding was processed, jump over it
 
 
 
         printf ("Image trailer at offset 0x%zx (%zd) - version %d:\n", current_offset
, current_offset
, (image_header
->flags 
& IMAGE_FLAGS_TRAILER_V2 
? 2 : 1));  
         if (image_header->flags & IMAGE_FLAGS_TRAILER_V2)
 
         {
 
            for (byte_index = 0; byte_index < SHA512_DIGEST_LENGTH; byte_index++)
 
               sprintf (&recorded_sha512
[2 * byte_index
], "%02x", image_trailer_v2
->sha512
[byte_index
]);  
            strcpy (computed_sha512
, SHA512 
(image_header
, imagetrailer_offset 
- imageheader_offset
, NULL
));  
            recorded_checksum = image_trailer_v2->cksum;
 
            computed_checksum = update_checksum (image_header, imagetrailer_offset + SHA512_DIGEST_LENGTH - imageheader_offset, is_foreign_endianness);
 
            printf ("    sha512([0x%zx-0x%zx[) = %s - %s\n", imageheader_offset
, imagetrailer_offset
, recorded_sha512
, (strcasecmp 
(computed_sha512
, recorded_sha512
) == 0 ? "GOOD" : "BAD"));  
            printf ("    cksum([0x%zx-0x%zx[) = 0x%08x - %s\n", imageheader_offset
, imagetrailer_offset 
+ SHA512_DIGEST_LENGTH
, recorded_checksum
, (computed_checksum 
== recorded_checksum 
? "GOOD" : "BAD"));  
            if (strcasecmp (computed_sha512, recorded_sha512) != 0)
 
               printf ("Computed SHA-512: %s\n", computed_sha512
);  
            if (computed_checksum != recorded_checksum)
 
               printf ("Computed cksum: 0x%08x\n", computed_checksum
);  
         }
 
         else // old v1 trailer
 
         {
 
            recorded_checksum = image_trailer_v1->cksum;
 
            computed_checksum = update_checksum (image_header, image_header->image_size - sizeof (image_trailer_v1_t), is_foreign_endianness);
 
            printf ("    cksum([0x%zx-0x%zx[) = 0x%08x - %s\n", imageheader_offset
, imagetrailer_offset
, recorded_checksum
, (computed_checksum 
== recorded_checksum 
? "GOOD" : "BAD"));  
            if (computed_checksum != recorded_checksum)
 
               printf ("Computed cksum: 0x%08x\n", computed_checksum
);  
         }
 
 
 
         current_offset += (image_header->flags & IMAGE_FLAGS_TRAILER_V2 ? sizeof (image_trailer_v2_t) : sizeof (image_trailer_v1_t)); // now reach the next segment (typically end of file)
 
      }
 
 
 
      // else it has to be a boot blob, of which we don't know the size, except that it has to fit in 0xffff bytes and be immediately followed by a startup header
 
      else
 
      {
 
         // so scan for the first startup header magic and version (which makes us 6 bytes to scan for, i.e. "\xeb\x7e\xff\x00" for the magic and "\x01\x00" (LSB) for the version 1)
 
         for (byte_index = current_offset; byte_index < filesize - 6; byte_index++)
 
            if (memcmp (&filedata
[byte_index
], "\xeb\x7e\xff\x00" "\x01\x00", 4 + 2) == 0)  
               break; // stop as soon as we find it
 
 
 
         if (byte_index >= filesize - 6)
 
            break; // if not found, stop scanning
 
 
 
         bootfile_blobsize = byte_index - current_offset;
 
         printf ("Boot blob at offset 0x%zx (%zd):\n", current_offset
, current_offset
);  
         printf ("   size 0x%zx (%zd) bytes\n", bootfile_blobsize
, bootfile_blobsize
);  
         printf ("   checksum 0x%08x\n", update_checksum 
(&filedata
[current_offset
], bootfile_blobsize
, false)); // NOTE: endianness is not known yet -- assume same  
 
 
         current_offset = byte_index; // now reach the next segment
 
      }
 
   }
 
 
 
endofdata:
 
   // at this point there's nothing left we're able to parse
 
   if (current_offset < filesize)
 
   {
 
      printf ("End of identifiable data reached.\n");  
      hex_printf (&filedata[current_offset], filesize - current_offset, "\n" "%zd extra bytes at offset %zx (%zd):\n", filesize - current_offset, current_offset, current_offset);
 
   }
 
 
 
   printf ("End of file reached at offset 0x%zx (%zd)\n", filesize
, filesize
);  
   printf ("IFS dissecation complete.\n");  
   return (0);
 
}