/* LzmaDec.c -- LZMA Decoder
 
2008-11-06 : Igor Pavlov : Public domain */
 
 
 
#include "LzmaDec.h"
 
 
 
#include <string.h>
 
 
 
#define kNumTopBits 24
 
#define kTopValue ((UInt32)1 << kNumTopBits)
 
 
 
#define kNumBitModelTotalBits 11
 
#define kBitModelTotal (1 << kNumBitModelTotalBits)
 
#define kNumMoveBits 5
 
 
 
#define RC_INIT_SIZE 5
 
 
 
#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
 
 
 
#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
 
#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
 
#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
 
#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
 
  { UPDATE_0(p); i = (i + i); A0; } else \
 
  { UPDATE_1(p); i = (i + i) + 1; A1; }
 
#define GET_BIT(p, i) GET_BIT2(p, i, ; , ;)
 
 
 
#define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); }
 
#define TREE_DECODE(probs, limit, i) \
 
  { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
 
 
 
/* #define _LZMA_SIZE_OPT */
 
 
 
#ifdef _LZMA_SIZE_OPT
 
#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
 
#else
 
#define TREE_6_DECODE(probs, i) \
 
  { i = 1; \
 
  TREE_GET_BIT(probs, i); \
 
  TREE_GET_BIT(probs, i); \
 
  TREE_GET_BIT(probs, i); \
 
  TREE_GET_BIT(probs, i); \
 
  TREE_GET_BIT(probs, i); \
 
  TREE_GET_BIT(probs, i); \
 
  i -= 0x40; }
 
#endif
 
 
 
#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
 
 
 
#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
 
#define UPDATE_0_CHECK range = bound;
 
#define UPDATE_1_CHECK range -= bound; code -= bound;
 
#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
 
  { UPDATE_0_CHECK; i = (i + i); A0; } else \
 
  { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
 
#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
 
#define TREE_DECODE_CHECK(probs, limit, i) \
 
  { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
 
 
 
 
 
#define kNumPosBitsMax 4
 
#define kNumPosStatesMax (1 << kNumPosBitsMax)
 
 
 
#define kLenNumLowBits 3
 
#define kLenNumLowSymbols (1 << kLenNumLowBits)
 
#define kLenNumMidBits 3
 
#define kLenNumMidSymbols (1 << kLenNumMidBits)
 
#define kLenNumHighBits 8
 
#define kLenNumHighSymbols (1 << kLenNumHighBits)
 
 
 
#define LenChoice 0
 
#define LenChoice2 (LenChoice + 1)
 
#define LenLow (LenChoice2 + 1)
 
#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
 
#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
 
#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
 
 
 
 
 
#define kNumStates 12
 
#define kNumLitStates 7
 
 
 
#define kStartPosModelIndex 4
 
#define kEndPosModelIndex 14
 
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
 
 
 
#define kNumPosSlotBits 6
 
#define kNumLenToPosStates 4
 
 
 
#define kNumAlignBits 4
 
#define kAlignTableSize (1 << kNumAlignBits)
 
 
 
#define kMatchMinLen 2
 
#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
 
 
 
#define IsMatch 0
 
#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
 
#define IsRepG0 (IsRep + kNumStates)
 
#define IsRepG1 (IsRepG0 + kNumStates)
 
#define IsRepG2 (IsRepG1 + kNumStates)
 
#define IsRep0Long (IsRepG2 + kNumStates)
 
#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
 
#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
 
#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
 
#define LenCoder (Align + kAlignTableSize)
 
#define RepLenCoder (LenCoder + kNumLenProbs)
 
#define Literal (RepLenCoder + kNumLenProbs)
 
 
 
#define LZMA_BASE_SIZE 1846
 
#define LZMA_LIT_SIZE 768
 
/*MAB casts next... */
 
#define LzmaProps_GetNumProbs(p) ((UInt32)LZMA_BASE_SIZE + ((unsigned)LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
 
 
 
#if Literal != LZMA_BASE_SIZE
 
StopCompilingDueBUG
 
#endif
 
 
 
static const Byte kLiteralNextStates[kNumStates * 2] =
 
{
 
  0, 0, 0, 0, 1, 2, 3,  4,  5,  6,  4,  5,
 
  7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10
 
};
 
 
 
#define LZMA_DIC_MIN (1 << 12)
 
 
 
/* First LZMA-symbol is always decoded.
 
And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization
 
Out:
 
  Result:
 
    SZ_OK - OK
 
    SZ_ERROR_DATA - Error
 
  p->remainLen:
 
    < kMatchSpecLenStart : normal remain
 
    = kMatchSpecLenStart : finished
 
    = kMatchSpecLenStart + 1 : Flush marker
 
    = kMatchSpecLenStart + 2 : State Init Marker
 
*/
 
 
 
static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
 
{
 
  CLzmaProb *probs = p->probs;
 
 
 
  unsigned state = p->state;
 
  UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
 
  unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
 
  unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1;
 
  unsigned lc = p->prop.lc;
 
 
 
  Byte *dic = p->dic;
 
  SizeT dicBufSize = p->dicBufSize;
 
  SizeT dicPos = p->dicPos;
 
  
 
  UInt32 processedPos = p->processedPos;
 
  UInt32 checkDicSize = p->checkDicSize;
 
  unsigned len = 0;
 
 
 
  const Byte *buf = p->buf;
 
  UInt32 range = p->range;
 
  UInt32 code = p->code;
 
 
 
  do
 
  {
 
    CLzmaProb *prob;
 
    UInt32 bound;
 
    unsigned ttt;
 
    unsigned posState = processedPos & pbMask;
 
 
 
    prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
 
    IF_BIT_0(prob)
 
    {
 
      unsigned symbol;
 
      UPDATE_0(prob);
 
      prob = probs + Literal;
 
      if (checkDicSize != 0 || processedPos != 0)
 
        prob += (LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) +             (UInt32)        ( /*MAB casts */
 
        (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc))))                            )
 
                ;
 
      if (state < kNumLitStates)
 
      {
 
        symbol = 1;
 
        do { GET_BIT(prob + symbol, symbol) } while (symbol < 0x100);
 
      }
 
      else
 
      {
 
        unsigned matchByte = p->dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
 
        unsigned offs = 0x100;
 
        symbol = 1;
 
        do
 
        {
 
          unsigned bit;
 
          CLzmaProb *probLit;
 
          matchByte <<= 1;
 
          bit = (matchByte & offs);
 
          probLit = prob + offs + bit + symbol;
 
          GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit)
 
        }
 
        while (symbol < 0x100);
 
      }
 
      dic[dicPos++] = (Byte)symbol;
 
      processedPos++;
 
 
 
      state = kLiteralNextStates[state];
 
      /* if (state < 4) state = 0; else if (state < 10) state -= 3; else state -= 6; */
 
      continue;
 
    }
 
    else
 
    {
 
      UPDATE_1(prob);
 
      prob = probs + IsRep + state;
 
      IF_BIT_0(prob)
 
      {
 
        UPDATE_0(prob);
 
        state += kNumStates;
 
        prob = probs + LenCoder;
 
      }
 
      else
 
      {
 
        UPDATE_1(prob);
 
        if (checkDicSize == 0 && processedPos == 0)
 
          return SZ_ERROR_DATA;
 
        prob = probs + IsRepG0 + state;
 
        IF_BIT_0(prob)
 
        {
 
          UPDATE_0(prob);
 
          prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
 
          IF_BIT_0(prob)
 
          {
 
            UPDATE_0(prob);
 
            dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
 
            dicPos++;
 
            processedPos++;
 
            state = state < kNumLitStates ? 9 : 11;
 
            continue;
 
          }
 
          UPDATE_1(prob);
 
        }
 
        else
 
        {
 
          UInt32 distance;
 
          UPDATE_1(prob);
 
          prob = probs + IsRepG1 + state;
 
          IF_BIT_0(prob)
 
          {
 
            UPDATE_0(prob);
 
            distance = rep1;
 
          }
 
          else
 
          {
 
            UPDATE_1(prob);
 
            prob = probs + IsRepG2 + state;
 
            IF_BIT_0(prob)
 
            {
 
              UPDATE_0(prob);
 
              distance = rep2;
 
            }
 
            else
 
            {
 
              UPDATE_1(prob);
 
              distance = rep3;
 
              rep3 = rep2;
 
            }
 
            rep2 = rep1;
 
          }
 
          rep1 = rep0;
 
          rep0 = distance;
 
        }
 
        state = state < kNumLitStates ? 8 : 11;
 
        prob = probs + RepLenCoder;
 
      }
 
      {
 
                /*MAB: limit changed to limit__ because it was hiding a variable limit */
 
        unsigned limit__, offset;
 
        CLzmaProb *probLen = prob + LenChoice;
 
        IF_BIT_0(probLen)
 
        {
 
          UPDATE_0(probLen);
 
          probLen = prob + LenLow + (posState << kLenNumLowBits);
 
          offset = 0;
 
          limit__ = (1 << kLenNumLowBits);
 
        }
 
        else
 
        {
 
          UPDATE_1(probLen);
 
          probLen = prob + LenChoice2;
 
          IF_BIT_0(probLen)
 
          {
 
            UPDATE_0(probLen);
 
            probLen = prob + LenMid + (posState << kLenNumMidBits);
 
            offset = kLenNumLowSymbols;
 
            limit__ = (1 << kLenNumMidBits);
 
          }
 
          else
 
          {
 
            UPDATE_1(probLen);
 
            probLen = prob + LenHigh;
 
            offset = kLenNumLowSymbols + kLenNumMidSymbols;
 
            limit__ = (1 << kLenNumHighBits);
 
          }
 
        }
 
        TREE_DECODE(probLen, limit__, len);
 
        len += offset;
 
      }
 
 
 
      if (state >= kNumStates)
 
      {
 
        UInt32 distance;
 
        prob = probs + PosSlot +
 
            ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
 
        TREE_6_DECODE(prob, distance);
 
        if (distance >= kStartPosModelIndex)
 
        {
 
          unsigned posSlot = (unsigned)distance;
 
          int numDirectBits = (int)(((distance >> 1) - 1));
 
          distance = (2 | (distance & 1));
 
          if (posSlot < kEndPosModelIndex)
 
          {
 
            distance <<= numDirectBits;
 
            prob = probs + SpecPos + distance - posSlot - 1;
 
            {
 
              UInt32 mask = 1;
 
              unsigned i = 1;
 
              do
 
              {
 
                GET_BIT2(prob + i, i, ; , distance |= mask);
 
                mask <<= 1;
 
              }
 
              while (--numDirectBits != 0);
 
            }
 
          }
 
          else
 
          {
 
            numDirectBits -= kNumAlignBits;
 
            do
 
            {
 
              NORMALIZE
 
              range >>= 1;
 
              
 
              {
 
                UInt32 t;
 
                code -= range;
 
                t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
 
                distance = (distance << 1) + (t + 1);
 
                code += range & t;
 
              }
 
              /*
 
              distance <<= 1;
 
              if (code >= range)
 
              {
 
                code -= range;
 
                distance |= 1;
 
              }
 
              */
 
            }
 
            while (--numDirectBits != 0);
 
            prob = probs + Align;
 
            distance <<= kNumAlignBits;
 
            {
 
              unsigned i = 1;
 
              GET_BIT2(prob + i, i, ; , distance |= 1);
 
              GET_BIT2(prob + i, i, ; , distance |= 2);
 
              GET_BIT2(prob + i, i, ; , distance |= 4);
 
              GET_BIT2(prob + i, i, ; , distance |= 8);
 
            }
 
            if (distance == (UInt32)0xFFFFFFFF)
 
            {
 
              len += kMatchSpecLenStart;
 
              state -= kNumStates;
 
              break;
 
            }
 
          }
 
        }
 
        rep3 = rep2;
 
        rep2 = rep1;
 
        rep1 = rep0;
 
        rep0 = distance + 1;
 
        if (checkDicSize == 0)
 
        {
 
          if (distance >= processedPos)
 
            return SZ_ERROR_DATA;
 
        }
 
        else if (distance >= checkDicSize)
 
          return SZ_ERROR_DATA;
 
        state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
 
        /* state = kLiteralNextStates[state]; */
 
      }
 
 
 
      len += kMatchMinLen;
 
 
 
      if (limit == dicPos)
 
        return SZ_ERROR_DATA;
 
      {
 
        SizeT rem = limit - dicPos;
 
        unsigned curLen = ((rem < len) ? (unsigned)rem : len);
 
        SizeT pos = (dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0);
 
 
 
        processedPos += curLen;
 
 
 
        len -= curLen;
 
        if (pos + curLen <= dicBufSize)
 
        {
 
          Byte *dest = dic + dicPos;
 
          ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
 
          const Byte *lim = dest + curLen;
 
          dicPos += curLen;
 
          do
 
            *(dest) = (Byte)*(dest + src);
 
          while (++dest != lim);
 
        }
 
        else
 
        {
 
          do
 
          {
 
            dic[dicPos++] = dic[pos];
 
            if (++pos == dicBufSize)
 
              pos = 0;
 
          }
 
          while (--curLen != 0);
 
        }
 
      }
 
    }
 
  }
 
  while (dicPos < limit && buf < bufLimit);
 
  NORMALIZE;
 
  p->buf = buf;
 
  p->range = range;
 
  p->code = code;
 
  p->remainLen = len;
 
  p->dicPos = dicPos;
 
  p->processedPos = processedPos;
 
  p->reps[0] = rep0;
 
  p->reps[1] = rep1;
 
  p->reps[2] = rep2;
 
  p->reps[3] = rep3;
 
  p->state = state;
 
 
 
  return SZ_OK;
 
}
 
 
 
static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
 
{
 
  if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
 
  {
 
    Byte *dic = p->dic;
 
    SizeT dicPos = p->dicPos;
 
    SizeT dicBufSize = p->dicBufSize;
 
    unsigned len = p->remainLen;
 
    UInt32 rep0 = p->reps[0];
 
    if (limit - dicPos < len)
 
      len = (unsigned)(limit - dicPos);
 
 
 
    if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
 
      p->checkDicSize = p->prop.dicSize;
 
 
 
    p->processedPos += len;
 
    p->remainLen -= len;
 
    while (len-- != 0)
 
    {
 
      dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
 
      dicPos++;
 
    }
 
    p->dicPos = dicPos;
 
  }
 
}
 
 
 
static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
 
{
 
  do
 
  {
 
    SizeT limit2 = limit;
 
    if (p->checkDicSize == 0)
 
    {
 
      UInt32 rem = p->prop.dicSize - p->processedPos;
 
      if (limit - p->dicPos > rem)
 
        limit2 = p->dicPos + rem;
 
    }
 
    RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit));
 
    if (p->processedPos >= p->prop.dicSize)
 
      p->checkDicSize = p->prop.dicSize;
 
    LzmaDec_WriteRem(p, limit);
 
  }
 
  while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
 
 
 
  if (p->remainLen > kMatchSpecLenStart)
 
  {
 
    p->remainLen = kMatchSpecLenStart;
 
  }
 
  return 0;
 
}
 
 
 
typedef enum ELzmaDummy
 
{
 
  DUMMY_ERROR, /* unexpected end of input stream */
 
  DUMMY_LIT,
 
  DUMMY_MATCH,
 
  DUMMY_REP
 
} ELzmaDummy;
 
 
 
static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
 
{
 
  UInt32 range = p->range;
 
  UInt32 code = p->code;
 
  const Byte *bufLimit = buf + inSize;
 
  CLzmaProb *probs = p->probs;
 
  unsigned state = p->state;
 
  ELzmaDummy res;
 
 
 
  {
 
    CLzmaProb *prob;
 
    UInt32 bound;
 
    unsigned ttt;
 
    unsigned posState = (p->processedPos) & ((1u << p->prop.pb) - 1u); /*MAB 1u */
 
 
 
    prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
 
    IF_BIT_0_CHECK(prob)
 
    {
 
      UPDATE_0_CHECK
 
 
 
      /* if (bufLimit - buf >= 7) return DUMMY_LIT; */
 
 
 
      prob = probs + Literal;
 
      if (p->checkDicSize != 0 || p->processedPos != 0)
 
        prob += (LZMA_LIT_SIZE *
 
          ( (unsigned) /*MAB casts */
 
                        (((p->processedPos) & ((1u << (p->prop.lp)) - 1u)) << p->prop.lc) +
 
                        (unsigned) /*MAB casts */
 
              (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
 
 
 
      if (state < kNumLitStates)
 
      {
 
        unsigned symbol = 1;
 
        do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
 
      }
 
      else
 
      {
 
        unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
 
            ((p->dicPos < p->reps[0]) ? p->dicBufSize : 0)];
 
        unsigned offs = 0x100;
 
        unsigned symbol = 1;
 
        do
 
        {
 
          unsigned bit;
 
          CLzmaProb *probLit;
 
          matchByte <<= 1;
 
          bit = (matchByte & offs);
 
          probLit = prob + offs + bit + symbol;
 
          GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit)
 
        }
 
        while (symbol < 0x100);
 
      }
 
      res = DUMMY_LIT;
 
    }
 
    else
 
    {
 
      unsigned len;
 
      UPDATE_1_CHECK;
 
 
 
      prob = probs + IsRep + state;
 
      IF_BIT_0_CHECK(prob)
 
      {
 
        UPDATE_0_CHECK;
 
        state = 0;
 
        prob = probs + LenCoder;
 
        res = DUMMY_MATCH;
 
      }
 
      else
 
      {
 
        UPDATE_1_CHECK;
 
        res = DUMMY_REP;
 
        prob = probs + IsRepG0 + state;
 
        IF_BIT_0_CHECK(prob)
 
        {
 
          UPDATE_0_CHECK;
 
          prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
 
          IF_BIT_0_CHECK(prob)
 
          {
 
            UPDATE_0_CHECK;
 
            NORMALIZE_CHECK;
 
            return DUMMY_REP;
 
          }
 
          else
 
          {
 
            UPDATE_1_CHECK;
 
          }
 
        }
 
        else
 
        {
 
          UPDATE_1_CHECK;
 
          prob = probs + IsRepG1 + state;
 
          IF_BIT_0_CHECK(prob)
 
          {
 
            UPDATE_0_CHECK;
 
          }
 
          else
 
          {
 
            UPDATE_1_CHECK;
 
            prob = probs + IsRepG2 + state;
 
            IF_BIT_0_CHECK(prob)
 
            {
 
              UPDATE_0_CHECK;
 
            }
 
            else
 
            {
 
              UPDATE_1_CHECK;
 
            }
 
          }
 
        }
 
        state = kNumStates;
 
        prob = probs + RepLenCoder;
 
      }
 
      {
 
        unsigned limit, offset;
 
        CLzmaProb *probLen = prob + LenChoice;
 
        IF_BIT_0_CHECK(probLen)
 
        {
 
          UPDATE_0_CHECK;
 
          probLen = prob + LenLow + (posState << kLenNumLowBits);
 
          offset = 0;
 
          limit = 1 << kLenNumLowBits;
 
        }
 
        else
 
        {
 
          UPDATE_1_CHECK;
 
          probLen = prob + LenChoice2;
 
          IF_BIT_0_CHECK(probLen)
 
          {
 
            UPDATE_0_CHECK;
 
            probLen = prob + LenMid + (posState << kLenNumMidBits);
 
            offset = kLenNumLowSymbols;
 
            limit = 1 << kLenNumMidBits;
 
          }
 
          else
 
          {
 
            UPDATE_1_CHECK;
 
            probLen = prob + LenHigh;
 
            offset = kLenNumLowSymbols + kLenNumMidSymbols;
 
            limit = 1 << kLenNumHighBits;
 
          }
 
        }
 
        TREE_DECODE_CHECK(probLen, limit, len);
 
        len += offset;
 
      }
 
 
 
      if (state < 4)
 
      {
 
        unsigned posSlot;
 
        prob = probs + PosSlot +
 
            ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
 
            kNumPosSlotBits);
 
        TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
 
        if (posSlot >= kStartPosModelIndex)
 
        {
 
          int numDirectBits = (int)((posSlot >> 1) - 1); /*MAB casts */
 
 
 
          /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
 
 
 
          if (posSlot < kEndPosModelIndex)
 
          {
 
            prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1;
 
          }
 
          else
 
          {
 
            numDirectBits -= kNumAlignBits;
 
            do
 
            {
 
              NORMALIZE_CHECK
 
              range >>= 1;
 
              code -= range & (((code - range) >> 31) - 1);
 
              /* if (code >= range) code -= range; */
 
            }
 
            while (--numDirectBits != 0);
 
            prob = probs + Align;
 
            numDirectBits = kNumAlignBits;
 
          }
 
          {
 
            unsigned i = 1;
 
            do
 
            {
 
              GET_BIT_CHECK(prob + i, i);
 
            }
 
            while (--numDirectBits != 0);
 
          }
 
        }
 
      }
 
    }
 
  }
 
  NORMALIZE_CHECK;
 
  return res;
 
}
 
 
 
 
 
static void LzmaDec_InitRc(CLzmaDec *p, const Byte *data)
 
{
 
  p->code = ((UInt32)data[1] << 24) | ((UInt32)data[2] << 16) | ((UInt32)data[3] << 8) | ((UInt32)data[4]);
 
  p->range = 0xFFFFFFFF;
 
  p->needFlush = 0;
 
}
 
 
 
/*MAB: static added because it is not used externally */
 
static
 
void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState)
 
{
 
  p->needFlush = 1;
 
  p->remainLen = 0;
 
  p->tempBufSize = 0;
 
 
 
  if (initDic)
 
  {
 
    p->processedPos = 0;
 
    p->checkDicSize = 0;
 
    p->needInitState = 1;
 
  }
 
  if (initState)
 
    p->needInitState = 1;
 
}
 
 
 
void LzmaDec_Init(CLzmaDec *p)
 
{
 
  p->dicPos = 0;
 
  LzmaDec_InitDicAndState(p, True, True);
 
}
 
 
 
static void LzmaDec_InitStateReal(CLzmaDec *p)
 
{
 
  UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (p->prop.lc + p->prop.lp));
 
  UInt32 i;
 
  CLzmaProb *probs = p->probs;
 
  for (i = 0; i < numProbs; i++)
 
    probs[i] = kBitModelTotal >> 1;
 
  p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
 
  p->state = 0;
 
  p->needInitState = 0;
 
}
 
 
 
SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
 
    ELzmaFinishMode finishMode, ELzmaStatus *status)
 
{
 
  SizeT inSize = *srcLen;
 
  (*srcLen) = 0;
 
  LzmaDec_WriteRem(p, dicLimit);
 
  
 
  *status = LZMA_STATUS_NOT_SPECIFIED;
 
 
 
  while (p->remainLen != kMatchSpecLenStart)
 
  {
 
      int checkEndMarkNow;
 
 
 
      if (p->needFlush != 0)
 
      {
 
        for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
 
          p->tempBuf[p->tempBufSize++] = *src++;
 
        if (p->tempBufSize < RC_INIT_SIZE)
 
        {
 
          *status = LZMA_STATUS_NEEDS_MORE_INPUT;
 
          return SZ_OK;
 
        }
 
        if (p->tempBuf[0] != 0)
 
          return SZ_ERROR_DATA;
 
 
 
        LzmaDec_InitRc(p, p->tempBuf);
 
        p->tempBufSize = 0;
 
      }
 
 
 
      checkEndMarkNow = 0;
 
      if (p->dicPos >= dicLimit)
 
      {
 
        if (p->remainLen == 0 && p->code == 0)
 
        {
 
          *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
 
          return SZ_OK;
 
        }
 
        if (finishMode == LZMA_FINISH_ANY)
 
        {
 
          *status = LZMA_STATUS_NOT_FINISHED;
 
          return SZ_OK;
 
        }
 
        if (p->remainLen != 0)
 
        {
 
          *status = LZMA_STATUS_NOT_FINISHED;
 
          return SZ_ERROR_DATA;
 
        }
 
        checkEndMarkNow = 1;
 
      }
 
 
 
      if (p->needInitState)
 
        LzmaDec_InitStateReal(p);
 
  
 
      if (p->tempBufSize == 0)
 
      {
 
        SizeT processed;
 
        const Byte *bufLimit;
 
        if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
 
        {
 
          int dummyRes = LzmaDec_TryDummy(p, src, inSize);
 
          if (dummyRes == DUMMY_ERROR)
 
          {
 
            memcpy(p
->tempBuf
, src
, inSize
);  
            p->tempBufSize = (unsigned)inSize;
 
            (*srcLen) += inSize;
 
            *status = LZMA_STATUS_NEEDS_MORE_INPUT;
 
            return SZ_OK;
 
          }
 
          if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
 
          {
 
            *status = LZMA_STATUS_NOT_FINISHED;
 
            return SZ_ERROR_DATA;
 
          }
 
          bufLimit = src;
 
        }
 
        else
 
          bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
 
        p->buf = src;
 
        if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
 
          return SZ_ERROR_DATA;
 
        processed = (SizeT)(p->buf - src);
 
        (*srcLen) += processed;
 
        src += processed;
 
        inSize -= processed;
 
      }
 
      else
 
      {
 
        unsigned rem = p->tempBufSize, lookAhead = 0;
 
        while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
 
          p->tempBuf[rem++] = src[lookAhead++];
 
        p->tempBufSize = rem;
 
        if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
 
        {
 
          int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem);
 
          if (dummyRes == DUMMY_ERROR)
 
          {
 
            (*srcLen) += lookAhead;
 
            *status = LZMA_STATUS_NEEDS_MORE_INPUT;
 
            return SZ_OK;
 
          }
 
          if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
 
          {
 
            *status = LZMA_STATUS_NOT_FINISHED;
 
            return SZ_ERROR_DATA;
 
          }
 
        }
 
        p->buf = p->tempBuf;
 
        if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
 
          return SZ_ERROR_DATA;
 
        lookAhead -= (rem - (unsigned)(p->buf - p->tempBuf));
 
        (*srcLen) += lookAhead;
 
        src += lookAhead;
 
        inSize -= lookAhead;
 
        p->tempBufSize = 0;
 
      }
 
  }
 
  if (p->code == 0)
 
    *status = LZMA_STATUS_FINISHED_WITH_MARK;
 
  return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA;
 
}
 
 
 
SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
 
{
 
  SizeT outSize = *destLen;
 
  SizeT inSize = *srcLen;
 
  *srcLen = *destLen = 0;
 
  for (;;)
 
  {
 
    SizeT inSizeCur = inSize, outSizeCur, dicPos;
 
    ELzmaFinishMode curFinishMode;
 
    SRes res;
 
    if (p->dicPos == p->dicBufSize)
 
      p->dicPos = 0;
 
    dicPos = p->dicPos;
 
    if (outSize > p->dicBufSize - dicPos)
 
    {
 
      outSizeCur = p->dicBufSize;
 
      curFinishMode = LZMA_FINISH_ANY;
 
    }
 
    else
 
    {
 
      outSizeCur = dicPos + outSize;
 
      curFinishMode = finishMode;
 
    }
 
 
 
    res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
 
    src += inSizeCur;
 
    inSize -= inSizeCur;
 
    *srcLen += inSizeCur;
 
    outSizeCur = p->dicPos - dicPos;
 
    memcpy(dest
, p
->dic 
+ dicPos
, outSizeCur
);  
    dest += outSizeCur;
 
    outSize -= outSizeCur;
 
    *destLen += outSizeCur;
 
    if (res != 0)
 
      return res;
 
    if (outSizeCur == 0 || outSize == 0)
 
      return SZ_OK;
 
  }
 
}
 
 
 
void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc)
 
{
 
  alloc->Free(alloc, p->probs);
 
  p->probs = 0;
 
}
 
 
 
static void LzmaDec_FreeDict(CLzmaDec *p, ISzAlloc *alloc)
 
{
 
  alloc->Free(alloc, p->dic);
 
  p->dic = 0;
 
}
 
 
 
void LzmaDec_Free(CLzmaDec *p, ISzAlloc *alloc)
 
{
 
  LzmaDec_FreeProbs(p, alloc);
 
  LzmaDec_FreeDict(p, alloc);
 
}
 
 
 
SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
 
{
 
  UInt32 dicSize;
 
  Byte d;
 
  
 
  if (size < LZMA_PROPS_SIZE)
 
    return SZ_ERROR_UNSUPPORTED;
 
  else
 
    dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
 
 
 
  if (dicSize < LZMA_DIC_MIN)
 
    dicSize = LZMA_DIC_MIN;
 
  p->dicSize = dicSize;
 
 
 
  d = data[0];
 
  if (d >= (9 * 5 * 5))
 
    return SZ_ERROR_UNSUPPORTED;
 
 
 
  p->lc = d % 9;
 
  d /= 9;
 
  p->pb = d / 5;
 
  p->lp = d % 5;
 
 
 
  return SZ_OK;
 
}
 
 
 
static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAlloc *alloc)
 
{
 
  UInt32 numProbs = (UInt32) (LzmaProps_GetNumProbs(propNew)); /*MAB casts */
 
  if (p->probs == 0 || numProbs != p->numProbs)
 
  {
 
    LzmaDec_FreeProbs(p, alloc);
 
    p->probs = (CLzmaProb *)alloc->Alloc(alloc, numProbs * sizeof(CLzmaProb));
 
    p->numProbs = numProbs;
 
    if (p->probs == 0)
 
      return SZ_ERROR_MEM;
 
  }
 
  return SZ_OK;
 
}
 
 
 
SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
 
{
 
  CLzmaProps propNew;
 
  RINOK(LzmaProps_Decode(&propNew, props, propsSize));
 
  RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
 
  p->prop = propNew;
 
  return SZ_OK;
 
}
 
 
 
SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
 
{
 
  CLzmaProps propNew;
 
  SizeT dicBufSize;
 
  RINOK(LzmaProps_Decode(&propNew, props, propsSize));
 
  RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
 
  dicBufSize = propNew.dicSize;
 
  if (p->dic == 0 || dicBufSize != p->dicBufSize)
 
  {
 
    LzmaDec_FreeDict(p, alloc);
 
    p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize);
 
    if (p->dic == 0)
 
    {
 
      LzmaDec_FreeProbs(p, alloc);
 
      return SZ_ERROR_MEM;
 
    }
 
  }
 
  p->dicBufSize = dicBufSize;
 
  p->prop = propNew;
 
  return SZ_OK;
 
}
 
 
 
SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
 
    const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
 
    ELzmaStatus *status, ISzAlloc *alloc)
 
{
 
  CLzmaDec p;
 
  SRes res;
 
  SizeT inSize = *srcLen;
 
  SizeT outSize = *destLen;
 
  *srcLen = *destLen = 0;
 
  if (inSize < RC_INIT_SIZE)
 
    return SZ_ERROR_INPUT_EOF;
 
 
 
  LzmaDec_Construct(&p);
 
  res = LzmaDec_AllocateProbs(&p, propData, propSize, alloc);
 
  if (res != 0)
 
    return res;
 
  p.dic = dest;
 
  p.dicBufSize = outSize;
 
 
 
  LzmaDec_Init(&p);
 
  
 
  *srcLen = inSize;
 
  res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
 
 
 
  if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
 
    res = SZ_ERROR_INPUT_EOF;
 
 
 
  (*destLen) = p.dicPos;
 
  LzmaDec_FreeProbs(&p, alloc);
 
  return res;
 
}