/*
 
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
 
  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
 
  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
 
  Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
 
 
 
  Stockfish is free software: you can redistribute it and/or modify
 
  it under the terms of the GNU General Public License as published by
 
  the Free Software Foundation, either version 3 of the License, or
 
  (at your option) any later version.
 
 
 
  Stockfish is distributed in the hope that it will be useful,
 
  but WITHOUT ANY WARRANTY; without even the implied warranty of
 
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
  GNU General Public License for more details.
 
 
 
  You should have received a copy of the GNU General Public License
 
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 
*/
 
 
 
#include <cstring>   // For std::memset
 
#include <iostream>
 
#include <thread>
 
 
 
#include "bitboard.h"
 
#include "misc.h"
 
#include "tt.h"
 
#include "uci.h"
 
 
 
TranspositionTable TT; // Our global transposition table
 
 
 
/// TTEntry::save saves a TTEntry
 
void TTEntry::save(Key k, Value v, Bound b, Depth d, Move m, Value ev) {
 
 
 
  assert(d / ONE_PLY * ONE_PLY == d);
 
 
 
  // Preserve any existing move for the same position
 
  if (m || (k >> 48) != key16)
 
      move16 = (uint16_t)m;
 
 
 
  // Overwrite less valuable entries
 
  if (  (k >> 48) != key16
 
      || d / ONE_PLY > depth8 - 4
 
      || b == BOUND_EXACT)
 
  {
 
      key16     = (uint16_t)(k >> 48);
 
      value16   = (int16_t)v;
 
      eval16    = (int16_t)ev;
 
      genBound8 = (uint8_t)(TT.generation8 | b);
 
      depth8    = (int8_t)(d / ONE_PLY);
 
  }
 
}
 
 
 
 
 
/// TranspositionTable::resize() sets the size of the transposition table,
 
/// measured in megabytes. Transposition table consists of a power of 2 number
 
/// of clusters and each cluster consists of ClusterSize number of TTEntry.
 
 
 
void TranspositionTable::resize(size_t mbSize) {
 
 
 
  clusterCount = mbSize * 1024 * 1024 / sizeof(Cluster);
 
 
 
  free(mem);
 
  mem = malloc(clusterCount * sizeof(Cluster) + CacheLineSize - 1);
 
 
 
  if (!mem)
 
  {
 
      std::cerr << "Failed to allocate " << mbSize
 
                << "MB for transposition table." << std::endl;
 
      exit(EXIT_FAILURE);
 
  }
 
 
 
  table = (Cluster*)((uintptr_t(mem) + CacheLineSize - 1) & ~(CacheLineSize - 1));
 
  clear();
 
}
 
 
 
 
 
/// TranspositionTable::clear() initializes the entire transposition table to zero,
 
//  in a multi-threaded way.
 
 
 
void TranspositionTable::clear() {
 
 
 
  std::vector<std::thread> threads;
 
 
 
  for (size_t idx = 0; idx < Options["Threads"]; idx++)
 
  {
 
      threads.emplace_back([this, idx]() {
 
 
 
          // Thread binding gives faster search on systems with a first-touch policy
 
          if (Options["Threads"] > 8)
 
              WinProcGroup::bindThisThread(idx);
 
 
 
          // Each thread will zero its part of the hash table
 
          const size_t stride = clusterCount / Options["Threads"],
 
                       start  = stride * idx,
 
                       len    = idx != Options["Threads"] - 1 ?
 
                                stride : clusterCount - start;
 
 
 
          std::memset(&table[start], 0, len * sizeof(Cluster));
 
      });
 
  }
 
 
 
  for (std::thread& th: threads)
 
      th.join();
 
}
 
 
 
/// TranspositionTable::probe() looks up the current position in the transposition
 
/// table. It returns true and a pointer to the TTEntry if the position is found.
 
/// Otherwise, it returns false and a pointer to an empty or least valuable TTEntry
 
/// to be replaced later. The replace value of an entry is calculated as its depth
 
/// minus 8 times its relative age. TTEntry t1 is considered more valuable than
 
/// TTEntry t2 if its replace value is greater than that of t2.
 
 
 
TTEntry* TranspositionTable::probe(const Key key, bool& found) const {
 
 
 
  TTEntry* const tte = first_entry(key);
 
  const uint16_t key16 = key >> 48;  // Use the high 16 bits as key inside the cluster
 
 
 
  for (int i = 0; i < ClusterSize; ++i)
 
      if (!tte[i].key16 || tte[i].key16 == key16)
 
      {
 
          tte[i].genBound8 = uint8_t(generation8 | tte[i].bound()); // Refresh
 
 
 
          return found = (bool)tte[i].key16, &tte[i];
 
      }
 
 
 
  // Find an entry to be replaced according to the replacement strategy
 
  TTEntry* replace = tte;
 
  for (int i = 1; i < ClusterSize; ++i)
 
      // Due to our packed storage format for generation and its cyclic
 
      // nature we add 259 (256 is the modulus plus 3 to keep the lowest
 
      // two bound bits from affecting the result) to calculate the entry
 
      // age correctly even after generation8 overflows into the next cycle.
 
      if (  replace->depth8 - ((259 + generation8 - replace->genBound8) & 0xFC) * 2
 
          >   tte[i].depth8 - ((259 + generation8 -   tte[i].genBound8) & 0xFC) * 2)
 
          replace = &tte[i];
 
 
 
  return found = false, replace;
 
}
 
 
 
 
 
/// TranspositionTable::hashfull() returns an approximation of the hashtable
 
/// occupation during a search. The hash is x permill full, as per UCI protocol.
 
 
 
int TranspositionTable::hashfull() const {
 
 
 
  int cnt = 0;
 
  for (int i = 0; i < 1000 / ClusterSize; i++)
 
  {
 
      const TTEntry* tte = &table[i].entry[0];
 
      for (int j = 0; j < ClusterSize; j++)
 
          if ((tte[j].genBound8 & 0xFC) == generation8)
 
              cnt++;
 
  }
 
  return cnt;
 
}