- /* 
-   Stockfish, a UCI chess playing engine derived from Glaurung 2.1 
-   Copyright (c) 2013 Ronald de Man 
-   Copyright (C) 2016-2018 Marco Costalba, Lucas Braesch 
-   
-   Stockfish is free software: you can redistribute it and/or modify 
-   it under the terms of the GNU General Public License as published by 
-   the Free Software Foundation, either version 3 of the License, or 
-   (at your option) any later version. 
-   
-   Stockfish is distributed in the hope that it will be useful, 
-   but WITHOUT ANY WARRANTY; without even the implied warranty of 
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
-   GNU General Public License for more details. 
-   
-   You should have received a copy of the GNU General Public License 
-   along with this program.  If not, see <http://www.gnu.org/licenses/>. 
- */ 
-   
- #include <algorithm> 
- #include <atomic> 
- #include <cstdint> 
- #include <cstring>   // For std::memset and std::memcpy 
- #include <deque> 
- #include <fstream> 
- #include <iostream> 
- #include <list> 
- #include <sstream> 
- #include <type_traits> 
-   
- #include "../bitboard.h" 
- #include "../movegen.h" 
- #include "../position.h" 
- #include "../search.h" 
- #include "../thread_win32.h" 
- #include "../types.h" 
- #include "../uci.h" 
-   
- #include "tbprobe.h" 
-   
- #ifndef _WIN32 
- #include <fcntl.h> 
- #include <unistd.h> 
- #include <sys/mman.h> 
- #include <sys/stat.h> 
- #else 
- #define WIN32_LEAN_AND_MEAN 
- #define NOMINMAX 
- #include <windows.h> 
- #endif 
-   
- using namespace Tablebases; 
-   
- int Tablebases::MaxCardinality; 
-   
- namespace { 
-   
- constexpr int TBPIECES = 7; // Max number of supported pieces 
-   
- enum { BigEndian, LittleEndian }; 
- enum TBType { KEY, WDL, DTZ }; // Used as template parameter 
-   
- // Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables 
- enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, Wide = 16, SingleValue = 128 }; 
-   
- inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); } 
- inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); } 
- inline Square operator^(Square s, int i) { return Square(int(s) ^ i); } 
-   
- const std::string PieceToChar = " PNBRQK  pnbrqk"; 
-   
- int MapPawns[SQUARE_NB]; 
- int MapB1H1H7[SQUARE_NB]; 
- int MapA1D1D4[SQUARE_NB]; 
- int MapKK[10][SQUARE_NB]; // [MapA1D1D4][SQUARE_NB] 
-   
- int Binomial[6][SQUARE_NB];    // [k][n] k elements from a set of n elements 
- int LeadPawnIdx[6][SQUARE_NB]; // [leadPawnsCnt][SQUARE_NB] 
- int LeadPawnsSize[6][4];       // [leadPawnsCnt][FILE_A..FILE_D] 
-   
- // Comparison function to sort leading pawns in ascending MapPawns[] order 
- bool pawns_comp(Square i, Square j) { return MapPawns[i] < MapPawns[j]; } 
- int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); } 
-   
- constexpr Value WDL_to_value[] = { 
-    -VALUE_MATE + MAX_PLY + 1, 
-     VALUE_DRAW - 2, 
-     VALUE_DRAW, 
-     VALUE_DRAW + 2, 
-     VALUE_MATE - MAX_PLY - 1 
- }; 
-   
- template<typename T, int Half = sizeof(T) / 2, int End = sizeof(T) - 1> 
- inline void swap_endian(T& x) 
- { 
-     static_assert(std::is_unsigned<T>::value, "Argument of swap_endian not unsigned"); 
-   
-     uint8_t tmp, *c = (uint8_t*)&x; 
-     for (int i = 0; i < Half; ++i) 
-         tmp = c[i], c[i] = c[End - i], c[End - i] = tmp; 
- } 
- template<> inline void swap_endian<uint8_t>(uint8_t&) {} 
-   
- template<typename T, int LE> T number(void* addr) 
- { 
-     static const union { uint32_t i; char c[4]; } Le = { 0x01020304 }; 
-     static const bool IsLittleEndian = (Le.c[0] == 4); 
-   
-     T v; 
-   
-     if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare) 
-         std::memcpy(&v, addr, sizeof(T)); 
-     else 
-         v = *((T*)addr); 
-   
-     if (LE != IsLittleEndian) 
-         swap_endian(v); 
-     return v; 
- } 
-   
- // DTZ tables don't store valid scores for moves that reset the rule50 counter 
- // like captures and pawn moves but we can easily recover the correct dtz of the 
- // previous move if we know the position's WDL score. 
- int dtz_before_zeroing(WDLScore wdl) { 
-     return wdl == WDLWin         ?  1   : 
-            wdl == WDLCursedWin   ?  101 : 
-            wdl == WDLBlessedLoss ? -101 : 
-            wdl == WDLLoss        ? -1   : 0; 
- } 
-   
- // Return the sign of a number (-1, 0, 1) 
- template <typename T> int sign_of(T val) { 
-     return (T(0) < val) - (val < T(0)); 
- } 
-   
- // Numbers in little endian used by sparseIndex[] to point into blockLength[] 
- struct SparseEntry { 
-     char block[4];   // Number of block 
-     char offset[2];  // Offset within the block 
- }; 
-   
- static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes"); 
-   
- typedef uint16_t Sym; // Huffman symbol 
-   
- struct LR { 
-     enum Side { Left, Right }; 
-   
-     uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12 
-                    // bits is the right-hand symbol. If symbol has length 1, 
-                    // then the left-hand symbol is the stored value. 
-     template<Side S> 
-     Sym get() { 
-         return S == Left  ? ((lr[1] & 0xF) << 8) | lr[0] : 
-                S == Right ?  (lr[2] << 4) | (lr[1] >> 4) : (assert(false), Sym(-1)); 
-     } 
- }; 
-   
- static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes"); 
-   
- // Tablebases data layout is structured as following: 
- // 
- //  TBFile:   memory maps/unmaps the physical .rtbw and .rtbz files 
- //  TBTable:  one object for each file with corresponding indexing information 
- //  TBTables: has ownership of TBTable objects, keeping a list and a hash 
-   
- // class TBFile memory maps/unmaps the single .rtbw and .rtbz files. Files are 
- // memory mapped for best performance. Files are mapped at first access: at init 
- // time only existence of the file is checked. 
- class TBFile : public std::ifstream { 
-   
-     std::string fname; 
-   
- public: 
-     // Look for and open the file among the Paths directories where the .rtbw 
-     // and .rtbz files can be found. Multiple directories are separated by ";" 
-     // on Windows and by ":" on Unix-based operating systems. 
-     // 
-     // Example: 
-     // C:\tb\wdl345;C:\tb\wdl6;D:\tb\dtz345;D:\tb\dtz6 
-     static std::string Paths; 
-   
-     TBFile(const std::string& f) { 
-   
- #ifndef _WIN32 
-         constexpr char SepChar = ':'; 
- #else 
-         constexpr char SepChar = ';'; 
- #endif 
-         std::stringstream ss(Paths); 
-         std::string path; 
-   
-         while (std::getline(ss, path, SepChar)) { 
-             fname = path + "/" + f; 
-             std::ifstream::open(fname); 
-             if (is_open()) 
-                 return; 
-         } 
-     } 
-   
-     // Memory map the file and check it. File should be already open and will be 
-     // closed after mapping. 
-     uint8_t* map(void** baseAddress, uint64_t* mapping, TBType type) { 
-   
-         assert(is_open()); 
-   
-         close(); // Need to re-open to get native file descriptor 
-   
- #ifndef _WIN32 
-         struct stat statbuf; 
-         int fd = ::open(fname.c_str(), O_RDONLY); 
-   
-         if (fd == -1) 
-             return *baseAddress = nullptr, nullptr; 
-   
-         fstat(fd, &statbuf); 
-         *mapping = statbuf.st_size; 
-         *baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0); 
-         madvise(*baseAddress, statbuf.st_size, MADV_RANDOM); 
-         ::close(fd); 
-   
-         if (*baseAddress == MAP_FAILED) { 
-             std::cerr << "Could not mmap() " << fname << std::endl; 
-             exit(1); 
-         } 
- #else 
-         HANDLE fd = CreateFile(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr, 
-                                OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr); 
-   
-         if (fd == INVALID_HANDLE_VALUE) 
-             return *baseAddress = nullptr, nullptr; 
-   
-         DWORD size_high; 
-         DWORD size_low = GetFileSize(fd, &size_high); 
-         HANDLE mmap = CreateFileMapping(fd, nullptr, PAGE_READONLY, size_high, size_low, nullptr); 
-         CloseHandle(fd); 
-   
-         if (!mmap) { 
-             std::cerr << "CreateFileMapping() failed" << std::endl; 
-             exit(1); 
-         } 
-   
-         *mapping = (uint64_t)mmap; 
-         *baseAddress = MapViewOfFile(mmap, FILE_MAP_READ, 0, 0, 0); 
-   
-         if (!*baseAddress) { 
-             std::cerr << "MapViewOfFile() failed, name = " << fname 
-                       << ", error = " << GetLastError() << std::endl; 
-             exit(1); 
-         } 
- #endif 
-         uint8_t* data = (uint8_t*)*baseAddress; 
-   
-         constexpr uint8_t Magics[][4] = { { 0xD7, 0x66, 0x0C, 0xA5 }, 
-                                           { 0x71, 0xE8, 0x23, 0x5D } }; 
-   
-         if (memcmp(data, Magics[type == WDL], 4)) { 
-             std::cerr << "Corrupted table in file " << fname << std::endl; 
-             unmap(*baseAddress, *mapping); 
-             return *baseAddress = nullptr, nullptr; 
-         } 
-   
-         return data + 4; // Skip Magics's header 
-     } 
-   
-     static void unmap(void* baseAddress, uint64_t mapping) { 
-   
- #ifndef _WIN32 
-         munmap(baseAddress, mapping); 
- #else 
-         UnmapViewOfFile(baseAddress); 
-         CloseHandle((HANDLE)mapping); 
- #endif 
-     } 
- }; 
-   
- std::string TBFile::Paths; 
-   
- // struct PairsData contains low level indexing information to access TB data. 
- // There are 8, 4 or 2 PairsData records for each TBTable, according to type of 
- // table and if positions have pawns or not. It is populated at first access. 
- struct PairsData { 
-     uint8_t flags;                 // Table flags, see enum TBFlag 
-     uint8_t maxSymLen;             // Maximum length in bits of the Huffman symbols 
-     uint8_t minSymLen;             // Minimum length in bits of the Huffman symbols 
-     uint32_t blocksNum;            // Number of blocks in the TB file 
-     size_t sizeofBlock;            // Block size in bytes 
-     size_t span;                   // About every span values there is a SparseIndex[] entry 
-     Sym* lowestSym;                // lowestSym[l] is the symbol of length l with the lowest value 
-     LR* btree;                     // btree[sym] stores the left and right symbols that expand sym 
-     uint16_t* blockLength;         // Number of stored positions (minus one) for each block: 1..65536 
-     uint32_t blockLengthSize;      // Size of blockLength[] table: padded so it's bigger than blocksNum 
-     SparseEntry* sparseIndex;      // Partial indices into blockLength[] 
-     size_t sparseIndexSize;        // Size of SparseIndex[] table 
-     uint8_t* data;                 // Start of Huffman compressed data 
-     std::vector<uint64_t> base64;  // base64[l - min_sym_len] is the 64bit-padded lowest symbol of length l 
-     std::vector<uint8_t> symlen;   // Number of values (-1) represented by a given Huffman symbol: 1..256 
-     Piece pieces[TBPIECES];        // Position pieces: the order of pieces defines the groups 
-     uint64_t groupIdx[TBPIECES+1]; // Start index used for the encoding of the group's pieces 
-     int groupLen[TBPIECES+1];      // Number of pieces in a given group: KRKN -> (3, 1) 
-     uint16_t map_idx[4];           // WDLWin, WDLLoss, WDLCursedWin, WDLBlessedLoss (used in DTZ) 
- }; 
-   
- // struct TBTable contains indexing information to access the corresponding TBFile. 
- // There are 2 types of TBTable, corresponding to a WDL or a DTZ file. TBTable 
- // is populated at init time but the nested PairsData records are populated at 
- // first access, when the corresponding file is memory mapped. 
- template<TBType Type> 
- struct TBTable { 
-     typedef typename std::conditional<Type == WDL, WDLScore, int>::type Ret; 
-   
-     static constexpr int Sides = Type == WDL ? 2 : 1; 
-   
-     std::atomic_bool ready; 
-     void* baseAddress; 
-     uint8_t* map; 
-     uint64_t mapping; 
-     Key key; 
-     Key key2; 
-     int pieceCount; 
-     bool hasPawns; 
-     bool hasUniquePieces; 
-     uint8_t pawnCount[2]; // [Lead color / other color] 
-     PairsData items[Sides][4]; // [wtm / btm][FILE_A..FILE_D or 0] 
-   
-     PairsData* get(int stm, int f) { 
-         return &items[stm % Sides][hasPawns ? f : 0]; 
-     } 
-   
-     TBTable() : ready(false), baseAddress(nullptr) {} 
-     explicit TBTable(const std::string& code); 
-     explicit TBTable(const TBTable<WDL>& wdl); 
-   
-     ~TBTable() { 
-         if (baseAddress) 
-             TBFile::unmap(baseAddress, mapping); 
-     } 
- }; 
-   
- template<> 
- TBTable<WDL>::TBTable(const std::string& code) : TBTable() { 
-   
-     StateInfo st; 
-     Position pos; 
-   
-     key = pos.set(code, WHITE, &st).material_key(); 
-     pieceCount = pos.count<ALL_PIECES>(); 
-     hasPawns = pos.pieces(PAWN); 
-   
-     hasUniquePieces = false; 
-     for (Color c = WHITE; c <= BLACK; ++c) 
-         for (PieceType pt = PAWN; pt < KING; ++pt) 
-             if (popcount(pos.pieces(c, pt)) == 1) 
-                 hasUniquePieces = true; 
-   
-     // Set the leading color. In case both sides have pawns the leading color 
-     // is the side with less pawns because this leads to better compression. 
-     bool c =   !pos.count<PAWN>(BLACK) 
-             || (   pos.count<PAWN>(WHITE) 
-                 && pos.count<PAWN>(BLACK) >= pos.count<PAWN>(WHITE)); 
-   
-     pawnCount[0] = pos.count<PAWN>(c ? WHITE : BLACK); 
-     pawnCount[1] = pos.count<PAWN>(c ? BLACK : WHITE); 
-   
-     key2 = pos.set(code, BLACK, &st).material_key(); 
- } 
-   
- template<> 
- TBTable<DTZ>::TBTable(const TBTable<WDL>& wdl) : TBTable() { 
-   
-     // Use the corresponding WDL table to avoid recalculating all from scratch 
-     key = wdl.key; 
-     key2 = wdl.key2; 
-     pieceCount = wdl.pieceCount; 
-     hasPawns = wdl.hasPawns; 
-     hasUniquePieces = wdl.hasUniquePieces; 
-     pawnCount[0] = wdl.pawnCount[0]; 
-     pawnCount[1] = wdl.pawnCount[1]; 
- } 
-   
- // class TBTables creates and keeps ownership of the TBTable objects, one for 
- // each TB file found. It supports a fast, hash based, table lookup. Populated 
- // at init time, accessed at probe time. 
- class TBTables { 
-   
-     typedef std::tuple<Key, TBTable<WDL>*, TBTable<DTZ>*> Entry; 
-   
-     static constexpr int Size = 1 << 12; // 4K table, indexed by key's 12 lsb 
-     static constexpr int Overflow = 1;  // Number of elements allowed to map to the last bucket 
-   
-     Entry hashTable[Size + Overflow]; 
-   
-     std::deque<TBTable<WDL>> wdlTable; 
-     std::deque<TBTable<DTZ>> dtzTable; 
-   
-     void insert(Key key, TBTable<WDL>* wdl, TBTable<DTZ>* dtz) { 
-         uint32_t homeBucket = (uint32_t)key & (Size - 1); 
-         Entry entry = std::make_tuple(key, wdl, dtz); 
-   
-         // Ensure last element is empty to avoid overflow when looking up 
-         for (uint32_t bucket = homeBucket; bucket < Size + Overflow - 1; ++bucket) { 
-             Key otherKey = std::get<KEY>(hashTable[bucket]); 
-             if (otherKey == key || !std::get<WDL>(hashTable[bucket])) { 
-                 hashTable[bucket] = entry; 
-                 return; 
-             } 
-   
-             // Robin Hood hashing: If we've probed for longer than this element, 
-             // insert here and search for a new spot for the other element instead. 
-             uint32_t otherHomeBucket = (uint32_t)otherKey & (Size - 1); 
-             if (otherHomeBucket > homeBucket) { 
-                 swap(entry, hashTable[bucket]); 
-                 key = otherKey; 
-                 homeBucket = otherHomeBucket; 
-             } 
-         } 
-         std::cerr << "TB hash table size too low!" << std::endl; 
-         exit(1); 
-     } 
-   
- public: 
-     template<TBType Type> 
-     TBTable<Type>* get(Key key) { 
-         for (const Entry* entry = &hashTable[(uint32_t)key & (Size - 1)]; ; ++entry) { 
-             if (std::get<KEY>(*entry) == key || !std::get<Type>(*entry)) 
-                 return std::get<Type>(*entry); 
-         } 
-     } 
-   
-     void clear() { 
-         memset(hashTable, 0, sizeof(hashTable)); 
-         wdlTable.clear(); 
-         dtzTable.clear(); 
-     } 
-     size_t size() const { return wdlTable.size(); } 
-     void add(const std::vector<PieceType>& pieces); 
- }; 
-   
- TBTables TBTables; 
-   
- // If the corresponding file exists two new objects TBTable<WDL> and TBTable<DTZ> 
- // are created and added to the lists and hash table. Called at init time. 
- void TBTables::add(const std::vector<PieceType>& pieces) { 
-   
-     std::string code; 
-   
-     for (PieceType pt : pieces) 
-         code += PieceToChar[pt]; 
-   
-     TBFile file(code.insert(code.find('K', 1), "v") + ".rtbw"); // KRK -> KRvK 
-   
-     if (!file.is_open()) // Only WDL file is checked 
-         return; 
-   
-     file.close(); 
-   
-     MaxCardinality = std::max((int)pieces.size(), MaxCardinality); 
-   
-     wdlTable.emplace_back(code); 
-     dtzTable.emplace_back(wdlTable.back()); 
-   
-     // Insert into the hash keys for both colors: KRvK with KR white and black 
-     insert(wdlTable.back().key , &wdlTable.back(), &dtzTable.back()); 
-     insert(wdlTable.back().key2, &wdlTable.back(), &dtzTable.back()); 
- } 
-   
- // TB tables are compressed with canonical Huffman code. The compressed data is divided into 
- // blocks of size d->sizeofBlock, and each block stores a variable number of symbols. 
- // Each symbol represents either a WDL or a (remapped) DTZ value, or a pair of other symbols 
- // (recursively). If you keep expanding the symbols in a block, you end up with up to 65536 
- // WDL or DTZ values. Each symbol represents up to 256 values and will correspond after 
- // Huffman coding to at least 1 bit. So a block of 32 bytes corresponds to at most 
- // 32 x 8 x 256 = 65536 values. This maximum is only reached for tables that consist mostly 
- // of draws or mostly of wins, but such tables are actually quite common. In principle, the 
- // blocks in WDL tables are 64 bytes long (and will be aligned on cache lines). But for 
- // mostly-draw or mostly-win tables this can leave many 64-byte blocks only half-filled, so 
- // in such cases blocks are 32 bytes long. The blocks of DTZ tables are up to 1024 bytes long. 
- // The generator picks the size that leads to the smallest table. The "book" of symbols and 
- // Huffman codes is the same for all blocks in the table. A non-symmetric pawnless TB file 
- // will have one table for wtm and one for btm, a TB file with pawns will have tables per 
- // file a,b,c,d also in this case one set for wtm and one for btm. 
- int decompress_pairs(PairsData* d, uint64_t idx) { 
-   
-     // Special case where all table positions store the same value 
-     if (d->flags & TBFlag::SingleValue) 
-         return d->minSymLen; 
-   
-     // First we need to locate the right block that stores the value at index "idx". 
-     // Because each block n stores blockLength[n] + 1 values, the index i of the block 
-     // that contains the value at position idx is: 
-     // 
-     //                    for (i = -1, sum = 0; sum <= idx; i++) 
-     //                        sum += blockLength[i + 1] + 1; 
-     // 
-     // This can be slow, so we use SparseIndex[] populated with a set of SparseEntry that 
-     // point to known indices into blockLength[]. Namely SparseIndex[k] is a SparseEntry 
-     // that stores the blockLength[] index and the offset within that block of the value 
-     // with index I(k), where: 
-     // 
-     //       I(k) = k * d->span + d->span / 2      (1) 
-   
-     // First step is to get the 'k' of the I(k) nearest to our idx, using definition (1) 
-     uint32_t k = idx / d->span; 
-   
-     // Then we read the corresponding SparseIndex[] entry 
-     uint32_t block = number<uint32_t, LittleEndian>(&d->sparseIndex[k].block); 
-     int offset     = number<uint16_t, LittleEndian>(&d->sparseIndex[k].offset); 
-   
-     // Now compute the difference idx - I(k). From definition of k we know that 
-     // 
-     //       idx = k * d->span + idx % d->span    (2) 
-     // 
-     // So from (1) and (2) we can compute idx - I(K): 
-     int diff = idx % d->span - d->span / 2; 
-   
-     // Sum the above to offset to find the offset corresponding to our idx 
-     offset += diff; 
-   
-     // Move to previous/next block, until we reach the correct block that contains idx, 
-     // that is when 0 <= offset <= d->blockLength[block] 
-     while (offset < 0) 
-         offset += d->blockLength[--block] + 1; 
-   
-     while (offset > d->blockLength[block]) 
-         offset -= d->blockLength[block++] + 1; 
-   
-     // Finally, we find the start address of our block of canonical Huffman symbols 
-     uint32_t* ptr = (uint32_t*)(d->data + ((uint64_t)block * d->sizeofBlock)); 
-   
-     // Read the first 64 bits in our block, this is a (truncated) sequence of 
-     // unknown number of symbols of unknown length but we know the first one 
-     // is at the beginning of this 64 bits sequence. 
-     uint64_t buf64 = number<uint64_t, BigEndian>(ptr); ptr += 2; 
-     int buf64Size = 64; 
-     Sym sym; 
-   
-     while (true) { 
-         int len = 0; // This is the symbol length - d->min_sym_len 
-   
-         // Now get the symbol length. For any symbol s64 of length l right-padded 
-         // to 64 bits we know that d->base64[l-1] >= s64 >= d->base64[l] so we 
-         // can find the symbol length iterating through base64[]. 
-         while (buf64 < d->base64[len]) 
-             ++len; 
-   
-         // All the symbols of a given length are consecutive integers (numerical 
-         // sequence property), so we can compute the offset of our symbol of 
-         // length len, stored at the beginning of buf64. 
-         sym = (buf64 - d->base64[len]) >> (64 - len - d->minSymLen); 
-   
-         // Now add the value of the lowest symbol of length len to get our symbol 
-         sym += number<Sym, LittleEndian>(&d->lowestSym[len]); 
-   
-         // If our offset is within the number of values represented by symbol sym 
-         // we are done... 
-         if (offset < d->symlen[sym] + 1) 
-             break; 
-   
-         // ...otherwise update the offset and continue to iterate 
-         offset -= d->symlen[sym] + 1; 
-         len += d->minSymLen; // Get the real length 
-         buf64 <<= len;       // Consume the just processed symbol 
-         buf64Size -= len; 
-   
-         if (buf64Size <= 32) { // Refill the buffer 
-             buf64Size += 32; 
-             buf64 |= (uint64_t)number<uint32_t, BigEndian>(ptr++) << (64 - buf64Size); 
-         } 
-     } 
-   
-     // Ok, now we have our symbol that expands into d->symlen[sym] + 1 symbols. 
-     // We binary-search for our value recursively expanding into the left and 
-     // right child symbols until we reach a leaf node where symlen[sym] + 1 == 1 
-     // that will store the value we need. 
-     while (d->symlen[sym]) { 
-   
-         Sym left = d->btree[sym].get<LR::Left>(); 
-   
-         // If a symbol contains 36 sub-symbols (d->symlen[sym] + 1 = 36) and 
-         // expands in a pair (d->symlen[left] = 23, d->symlen[right] = 11), then 
-         // we know that, for instance the ten-th value (offset = 10) will be on 
-         // the left side because in Recursive Pairing child symbols are adjacent. 
-         if (offset < d->symlen[left] + 1) 
-             sym = left; 
-         else { 
-             offset -= d->symlen[left] + 1; 
-             sym = d->btree[sym].get<LR::Right>(); 
-         } 
-     } 
-   
-     return d->btree[sym].get<LR::Left>(); 
- } 
-   
- bool check_dtz_stm(TBTable<WDL>*, int, File) { return true; } 
-   
- bool check_dtz_stm(TBTable<DTZ>* entry, int stm, File f) { 
-   
-     auto flags = entry->get(stm, f)->flags; 
-     return   (flags & TBFlag::STM) == stm 
-           || ((entry->key == entry->key2) && !entry->hasPawns); 
- } 
-   
- // DTZ scores are sorted by frequency of occurrence and then assigned the 
- // values 0, 1, 2, ... in order of decreasing frequency. This is done for each 
- // of the four WDLScore values. The mapping information necessary to reconstruct 
- // the original values is stored in the TB file and read during map[] init. 
- WDLScore map_score(TBTable<WDL>*, File, int value, WDLScore) { return WDLScore(value - 2); } 
-   
- int map_score(TBTable<DTZ>* entry, File f, int value, WDLScore wdl) { 
-   
-     constexpr int WDLMap[] = { 1, 3, 0, 2, 0 }; 
-   
-     auto flags = entry->get(0, f)->flags; 
-   
-     uint8_t* map = entry->map; 
-     uint16_t* idx = entry->get(0, f)->map_idx; 
-     if (flags & TBFlag::Mapped) { 
-         if (flags & TBFlag::Wide) 
-             value = ((uint16_t *)map)[idx[WDLMap[wdl + 2]] + value]; 
-         else 
-             value = map[idx[WDLMap[wdl + 2]] + value]; 
-     } 
-   
-     // DTZ tables store distance to zero in number of moves or plies. We 
-     // want to return plies, so we have convert to plies when needed. 
-     if (   (wdl == WDLWin  && !(flags & TBFlag::WinPlies)) 
-         || (wdl == WDLLoss && !(flags & TBFlag::LossPlies)) 
-         ||  wdl == WDLCursedWin 
-         ||  wdl == WDLBlessedLoss) 
-         value *= 2; 
-   
-     return value + 1; 
- } 
-   
- // Compute a unique index out of a position and use it to probe the TB file. To 
- // encode k pieces of same type and color, first sort the pieces by square in 
- // ascending order s1 <= s2 <= ... <= sk then compute the unique index as: 
- // 
- //      idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk] 
- // 
- template<typename T, typename Ret = typename T::Ret> 
- Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* result) { 
-   
-     Square squares[TBPIECES]; 
-     Piece pieces[TBPIECES]; 
-     uint64_t idx; 
-     int next = 0, size = 0, leadPawnsCnt = 0; 
-     PairsData* d; 
-     Bitboard b, leadPawns = 0; 
-     File tbFile = FILE_A; 
-   
-     // A given TB entry like KRK has associated two material keys: KRvk and Kvkr. 
-     // If both sides have the same pieces keys are equal. In this case TB tables 
-     // only store the 'white to move' case, so if the position to lookup has black 
-     // to move, we need to switch the color and flip the squares before to lookup. 
-     bool symmetricBlackToMove = (entry->key == entry->key2 && pos.side_to_move()); 
-   
-     // TB files are calculated for white as stronger side. For instance we have 
-     // KRvK, not KvKR. A position where stronger side is white will have its 
-     // material key == entry->key, otherwise we have to switch the color and 
-     // flip the squares before to lookup. 
-     bool blackStronger = (pos.material_key() != entry->key); 
-   
-     int flipColor   = (symmetricBlackToMove || blackStronger) * 8; 
-     int flipSquares = (symmetricBlackToMove || blackStronger) * 070; 
-     int stm         = (symmetricBlackToMove || blackStronger) ^ pos.side_to_move(); 
-   
-     // For pawns, TB files store 4 separate tables according if leading pawn is on 
-     // file a, b, c or d after reordering. The leading pawn is the one with maximum 
-     // MapPawns[] value, that is the one most toward the edges and with lowest rank. 
-     if (entry->hasPawns) { 
-   
-         // In all the 4 tables, pawns are at the beginning of the piece sequence and 
-         // their color is the reference one. So we just pick the first one. 
-         Piece pc = Piece(entry->get(0, 0)->pieces[0] ^ flipColor); 
-   
-         assert(type_of(pc) == PAWN); 
-   
-         leadPawns = b = pos.pieces(color_of(pc), PAWN); 
-         do 
-             squares[size++] = pop_lsb(&b) ^ flipSquares; 
-         while (b); 
-   
-         leadPawnsCnt = size; 
-   
-         std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp)); 
-   
-         tbFile = file_of(squares[0]); 
-         if (tbFile > FILE_D) 
-             tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1 
-     } 
-   
-     // DTZ tables are one-sided, i.e. they store positions only for white to 
-     // move or only for black to move, so check for side to move to be stm, 
-     // early exit otherwise. 
-     if (!check_dtz_stm(entry, stm, tbFile)) 
-         return *result = CHANGE_STM, Ret(); 
-   
-     // Now we are ready to get all the position pieces (but the lead pawns) and 
-     // directly map them to the correct color and square. 
-     b = pos.pieces() ^ leadPawns; 
-     do { 
-         Square s = pop_lsb(&b); 
-         squares[size] = s ^ flipSquares; 
-         pieces[size++] = Piece(pos.piece_on(s) ^ flipColor); 
-     } while (b); 
-   
-     assert(size >= 2); 
-   
-     d = entry->get(stm, tbFile); 
-   
-     // Then we reorder the pieces to have the same sequence as the one stored 
-     // in pieces[i]: the sequence that ensures the best compression. 
-     for (int i = leadPawnsCnt; i < size; ++i) 
-         for (int j = i; j < size; ++j) 
-             if (d->pieces[i] == pieces[j]) 
-             { 
-                 std::swap(pieces[i], pieces[j]); 
-                 std::swap(squares[i], squares[j]); 
-                 break; 
-             } 
-   
-     // Now we map again the squares so that the square of the lead piece is in 
-     // the triangle A1-D1-D4. 
-     if (file_of(squares[0]) > FILE_D) 
-         for (int i = 0; i < size; ++i) 
-             squares[i] ^= 7; // Horizontal flip: SQ_H1 -> SQ_A1 
-   
-     // Encode leading pawns starting with the one with minimum MapPawns[] and 
-     // proceeding in ascending order. 
-     if (entry->hasPawns) { 
-         idx = LeadPawnIdx[leadPawnsCnt][squares[0]]; 
-   
-         std::sort(squares + 1, squares + leadPawnsCnt, pawns_comp); 
-   
-         for (int i = 1; i < leadPawnsCnt; ++i) 
-             idx += Binomial[i][MapPawns[squares[i]]]; 
-   
-         goto encode_remaining; // With pawns we have finished special treatments 
-     } 
-   
-     // In positions withouth pawns, we further flip the squares to ensure leading 
-     // piece is below RANK_5. 
-     if (rank_of(squares[0]) > RANK_4) 
-         for (int i = 0; i < size; ++i) 
-             squares[i] ^= 070; // Vertical flip: SQ_A8 -> SQ_A1 
-   
-     // Look for the first piece of the leading group not on the A1-D4 diagonal 
-     // and ensure it is mapped below the diagonal. 
-     for (int i = 0; i < d->groupLen[0]; ++i) { 
-         if (!off_A1H8(squares[i])) 
-             continue; 
-   
-         if (off_A1H8(squares[i]) > 0) // A1-H8 diagonal flip: SQ_A3 -> SQ_C3 
-             for (int j = i; j < size; ++j) 
-                 squares[j] = Square(((squares[j] >> 3) | (squares[j] << 3)) & 63); 
-         break; 
-     } 
-   
-     // Encode the leading group. 
-     // 
-     // Suppose we have KRvK. Let's say the pieces are on square numbers wK, wR 
-     // and bK (each 0...63). The simplest way to map this position to an index 
-     // is like this: 
-     // 
-     //   index = wK * 64 * 64 + wR * 64 + bK; 
-     // 
-     // But this way the TB is going to have 64*64*64 = 262144 positions, with 
-     // lots of positions being equivalent (because they are mirrors of each 
-     // other) and lots of positions being invalid (two pieces on one square, 
-     // adjacent kings, etc.). 
-     // Usually the first step is to take the wK and bK together. There are just 
-     // 462 ways legal and not-mirrored ways to place the wK and bK on the board. 
-     // Once we have placed the wK and bK, there are 62 squares left for the wR 
-     // Mapping its square from 0..63 to available squares 0..61 can be done like: 
-     // 
-     //   wR -= (wR > wK) + (wR > bK); 
-     // 
-     // In words: if wR "comes later" than wK, we deduct 1, and the same if wR 
-     // "comes later" than bK. In case of two same pieces like KRRvK we want to 
-     // place the two Rs "together". If we have 62 squares left, we can place two 
-     // Rs "together" in 62 * 61 / 2 ways (we divide by 2 because rooks can be 
-     // swapped and still get the same position.) 
-     // 
-     // In case we have at least 3 unique pieces (inlcuded kings) we encode them 
-     // together. 
-     if (entry->hasUniquePieces) { 
-   
-         int adjust1 =  squares[1] > squares[0]; 
-         int adjust2 = (squares[2] > squares[0]) + (squares[2] > squares[1]); 
-   
-         // First piece is below a1-h8 diagonal. MapA1D1D4[] maps the b1-d1-d3 
-         // triangle to 0...5. There are 63 squares for second piece and and 62 
-         // (mapped to 0...61) for the third. 
-         if (off_A1H8(squares[0])) 
-             idx = (   MapA1D1D4[squares[0]]  * 63 
-                    + (squares[1] - adjust1)) * 62 
-                    +  squares[2] - adjust2; 
-   
-         // First piece is on a1-h8 diagonal, second below: map this occurence to 
-         // 6 to differentiate from the above case, rank_of() maps a1-d4 diagonal 
-         // to 0...3 and finally MapB1H1H7[] maps the b1-h1-h7 triangle to 0..27. 
-         else if (off_A1H8(squares[1])) 
-             idx = (  6 * 63 + rank_of(squares[0]) * 28 
-                    + MapB1H1H7[squares[1]])       * 62 
-                    + squares[2] - adjust2; 
-   
-         // First two pieces are on a1-h8 diagonal, third below 
-         else if (off_A1H8(squares[2])) 
-             idx =  6 * 63 * 62 + 4 * 28 * 62 
-                  +  rank_of(squares[0])        * 7 * 28 
-                  + (rank_of(squares[1]) - adjust1) * 28 
-                  +  MapB1H1H7[squares[2]]; 
-   
-         // All 3 pieces on the diagonal a1-h8 
-         else 
-             idx = 6 * 63 * 62 + 4 * 28 * 62 + 4 * 7 * 28 
-                  +  rank_of(squares[0])         * 7 * 6 
-                  + (rank_of(squares[1]) - adjust1)  * 6 
-                  + (rank_of(squares[2]) - adjust2); 
-     } else 
-         // We don't have at least 3 unique pieces, like in KRRvKBB, just map 
-         // the kings. 
-         idx = MapKK[MapA1D1D4[squares[0]]][squares[1]]; 
-   
- encode_remaining: 
-     idx *= d->groupIdx[0]; 
-     Square* groupSq = squares + d->groupLen[0]; 
-   
-     // Encode remainig pawns then pieces according to square, in ascending order 
-     bool remainingPawns = entry->hasPawns && entry->pawnCount[1]; 
-   
-     while (d->groupLen[++next]) 
-     { 
-         std::sort(groupSq, groupSq + d->groupLen[next]); 
-         uint64_t n = 0; 
-   
-         // Map down a square if "comes later" than a square in the previous 
-         // groups (similar to what done earlier for leading group pieces). 
-         for (int i = 0; i < d->groupLen[next]; ++i) 
-         { 
-             auto f = [&](Square s) { return groupSq[i] > s; }; 
-             auto adjust = std::count_if(squares, groupSq, f); 
-             n += Binomial[i + 1][groupSq[i] - adjust - 8 * remainingPawns]; 
-         } 
-   
-         remainingPawns = false; 
-         idx += n * d->groupIdx[next]; 
-         groupSq += d->groupLen[next]; 
-     } 
-   
-     // Now that we have the index, decompress the pair and get the score 
-     return map_score(entry, tbFile, decompress_pairs(d, idx), wdl); 
- } 
-   
- // Group together pieces that will be encoded together. The general rule is that 
- // a group contains pieces of same type and color. The exception is the leading 
- // group that, in case of positions withouth pawns, can be formed by 3 different 
- // pieces (default) or by the king pair when there is not a unique piece apart 
- // from the kings. When there are pawns, pawns are always first in pieces[]. 
- // 
- // As example KRKN -> KRK + N, KNNK -> KK + NN, KPPKP -> P + PP + K + K 
- // 
- // The actual grouping depends on the TB generator and can be inferred from the 
- // sequence of pieces in piece[] array. 
- template<typename T> 
- void set_groups(T& e, PairsData* d, int order[], File f) { 
-   
-     int n = 0, firstLen = e.hasPawns ? 0 : e.hasUniquePieces ? 3 : 2; 
-     d->groupLen[n] = 1; 
-   
-     // Number of pieces per group is stored in groupLen[], for instance in KRKN 
-     // the encoder will default on '111', so groupLen[] will be (3, 1). 
-     for (int i = 1; i < e.pieceCount; ++i) 
-         if (--firstLen > 0 || d->pieces[i] == d->pieces[i - 1]) 
-             d->groupLen[n]++; 
-         else 
-             d->groupLen[++n] = 1; 
-   
-     d->groupLen[++n] = 0; // Zero-terminated 
-   
-     // The sequence in pieces[] defines the groups, but not the order in which 
-     // they are encoded. If the pieces in a group g can be combined on the board 
-     // in N(g) different ways, then the position encoding will be of the form: 
-     // 
-     //           g1 * N(g2) * N(g3) + g2 * N(g3) + g3 
-     // 
-     // This ensures unique encoding for the whole position. The order of the 
-     // groups is a per-table parameter and could not follow the canonical leading 
-     // pawns/pieces -> remainig pawns -> remaining pieces. In particular the 
-     // first group is at order[0] position and the remaining pawns, when present, 
-     // are at order[1] position. 
-     bool pp = e.hasPawns && e.pawnCount[1]; // Pawns on both sides 
-     int next = pp ? 2 : 1; 
-     int freeSquares = 64 - d->groupLen[0] - (pp ? d->groupLen[1] : 0); 
-     uint64_t idx = 1; 
-   
-     for (int k = 0; next < n || k == order[0] || k == order[1]; ++k) 
-         if (k == order[0]) // Leading pawns or pieces 
-         { 
-             d->groupIdx[0] = idx; 
-             idx *=         e.hasPawns ? LeadPawnsSize[d->groupLen[0]][f] 
-                   : e.hasUniquePieces ? 31332 : 462; 
-         } 
-         else if (k == order[1]) // Remaining pawns 
-         { 
-             d->groupIdx[1] = idx; 
-             idx *= Binomial[d->groupLen[1]][48 - d->groupLen[0]]; 
-         } 
-         else // Remainig pieces 
-         { 
-             d->groupIdx[next] = idx; 
-             idx *= Binomial[d->groupLen[next]][freeSquares]; 
-             freeSquares -= d->groupLen[next++]; 
-         } 
-   
-     d->groupIdx[n] = idx; 
- } 
-   
- // In Recursive Pairing each symbol represents a pair of childern symbols. So 
- // read d->btree[] symbols data and expand each one in his left and right child 
- // symbol until reaching the leafs that represent the symbol value. 
- uint8_t set_symlen(PairsData* d, Sym s, std::vector<bool>& visited) { 
-   
-     visited[s] = true; // We can set it now because tree is acyclic 
-     Sym sr = d->btree[s].get<LR::Right>(); 
-   
-     if (sr == 0xFFF) 
-         return 0; 
-   
-     Sym sl = d->btree[s].get<LR::Left>(); 
-   
-     if (!visited[sl]) 
-         d->symlen[sl] = set_symlen(d, sl, visited); 
-   
-     if (!visited[sr]) 
-         d->symlen[sr] = set_symlen(d, sr, visited); 
-   
-     return d->symlen[sl] + d->symlen[sr] + 1; 
- } 
-   
- uint8_t* set_sizes(PairsData* d, uint8_t* data) { 
-   
-     d->flags = *data++; 
-   
-     if (d->flags & TBFlag::SingleValue) { 
-         d->blocksNum = d->blockLengthSize = 0; 
-         d->span = d->sparseIndexSize = 0; // Broken MSVC zero-init 
-         d->minSymLen = *data++; // Here we store the single value 
-         return data; 
-     } 
-   
-     // groupLen[] is a zero-terminated list of group lengths, the last groupIdx[] 
-     // element stores the biggest index that is the tb size. 
-     uint64_t tbSize = d->groupIdx[std::find(d->groupLen, d->groupLen + 7, 0) - d->groupLen]; 
-   
-     d->sizeofBlock = 1ULL << *data++; 
-     d->span = 1ULL << *data++; 
-     d->sparseIndexSize = (tbSize + d->span - 1) / d->span; // Round up 
-     auto padding = number<uint8_t, LittleEndian>(data++); 
-     d->blocksNum = number<uint32_t, LittleEndian>(data); data += sizeof(uint32_t); 
-     d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[] 
-                                                  // does not point out of range. 
-     d->maxSymLen = *data++; 
-     d->minSymLen = *data++; 
-     d->lowestSym = (Sym*)data; 
-     d->base64.resize(d->maxSymLen - d->minSymLen + 1); 
-   
-     // The canonical code is ordered such that longer symbols (in terms of 
-     // the number of bits of their Huffman code) have lower numeric value, 
-     // so that d->lowestSym[i] >= d->lowestSym[i+1] (when read as LittleEndian). 
-     // Starting from this we compute a base64[] table indexed by symbol length 
-     // and containing 64 bit values so that d->base64[i] >= d->base64[i+1]. 
-     // See http://www.eecs.harvard.edu/~michaelm/E210/huffman.pdf 
-     for (int i = d->base64.size() - 2; i >= 0; --i) { 
-         d->base64[i] = (d->base64[i + 1] + number<Sym, LittleEndian>(&d->lowestSym[i]) 
-                                          - number<Sym, LittleEndian>(&d->lowestSym[i + 1])) / 2; 
-   
-         assert(d->base64[i] * 2 >= d->base64[i+1]); 
-     } 
-   
-     // Now left-shift by an amount so that d->base64[i] gets shifted 1 bit more 
-     // than d->base64[i+1] and given the above assert condition, we ensure that 
-     // d->base64[i] >= d->base64[i+1]. Moreover for any symbol s64 of length i 
-     // and right-padded to 64 bits holds d->base64[i-1] >= s64 >= d->base64[i]. 
-     for (size_t i = 0; i < d->base64.size(); ++i) 
-         d->base64[i] <<= 64 - i - d->minSymLen; // Right-padding to 64 bits 
-   
-     data += d->base64.size() * sizeof(Sym); 
-     d->symlen.resize(number<uint16_t, LittleEndian>(data)); data += sizeof(uint16_t); 
-     d->btree = (LR*)data; 
-   
-     // The compression scheme used is "Recursive Pairing", that replaces the most 
-     // frequent adjacent pair of symbols in the source message by a new symbol, 
-     // reevaluating the frequencies of all of the symbol pairs with respect to 
-     // the extended alphabet, and then repeating the process. 
-     // See http://www.larsson.dogma.net/dcc99.pdf 
-     std::vector<bool> visited(d->symlen.size()); 
-   
-     for (Sym sym = 0; sym < d->symlen.size(); ++sym) 
-         if (!visited[sym]) 
-             d->symlen[sym] = set_symlen(d, sym, visited); 
-   
-     return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1); 
- } 
-   
- uint8_t* set_dtz_map(TBTable<WDL>&, uint8_t* data, File) { return data; } 
-   
- uint8_t* set_dtz_map(TBTable<DTZ>& e, uint8_t* data, File maxFile) { 
-   
-     e.map = data; 
-   
-     for (File f = FILE_A; f <= maxFile; ++f) { 
-         auto flags = e.get(0, f)->flags; 
-         if (flags & TBFlag::Mapped) { 
-             if (flags & TBFlag::Wide) { 
-                 data += (uintptr_t)data & 1;  // Word alignment, we may have a mixed table 
-                 for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x 
-                     e.get(0, f)->map_idx[i] = (uint16_t)((uint16_t *)data - (uint16_t *)e.map + 1); 
-                     data += 2 * number<uint16_t, LittleEndian>(data) + 2; 
-                 } 
-             } 
-             else { 
-                 for (int i = 0; i < 4; ++i) { 
-                     e.get(0, f)->map_idx[i] = (uint16_t)(data - e.map + 1); 
-                     data += *data + 1; 
-                 } 
-             } 
-         } 
-     } 
-   
-     return data += (uintptr_t)data & 1; // Word alignment 
- } 
-   
- // Populate entry's PairsData records with data from the just memory mapped file. 
- // Called at first access. 
- template<typename T> 
- void set(T& e, uint8_t* data) { 
-   
-     PairsData* d; 
-   
-     enum { Split = 1, HasPawns = 2 }; 
-   
-     assert(e.hasPawns        == !!(*data & HasPawns)); 
-     assert((e.key != e.key2) == !!(*data & Split)); 
-   
-     data++; // First byte stores flags 
-   
-     const int sides = T::Sides == 2 && (e.key != e.key2) ? 2 : 1; 
-     const File maxFile = e.hasPawns ? FILE_D : FILE_A; 
-   
-     bool pp = e.hasPawns && e.pawnCount[1]; // Pawns on both sides 
-   
-     assert(!pp || e.pawnCount[0]); 
-   
-     for (File f = FILE_A; f <= maxFile; ++f) { 
-   
-         for (int i = 0; i < sides; i++) 
-             *e.get(i, f) = PairsData(); 
-   
-         int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF }, 
-                            { *data >>  4, pp ? *(data + 1) >>  4 : 0xF } }; 
-         data += 1 + pp; 
-   
-         for (int k = 0; k < e.pieceCount; ++k, ++data) 
-             for (int i = 0; i < sides; i++) 
-                 e.get(i, f)->pieces[k] = Piece(i ? *data >>  4 : *data & 0xF); 
-   
-         for (int i = 0; i < sides; ++i) 
-             set_groups(e, e.get(i, f), order[i], f); 
-     } 
-   
-     data += (uintptr_t)data & 1; // Word alignment 
-   
-     for (File f = FILE_A; f <= maxFile; ++f) 
-         for (int i = 0; i < sides; i++) 
-             data = set_sizes(e.get(i, f), data); 
-   
-     data = set_dtz_map(e, data, maxFile); 
-   
-     for (File f = FILE_A; f <= maxFile; ++f) 
-         for (int i = 0; i < sides; i++) { 
-             (d = e.get(i, f))->sparseIndex = (SparseEntry*)data; 
-             data += d->sparseIndexSize * sizeof(SparseEntry); 
-         } 
-   
-     for (File f = FILE_A; f <= maxFile; ++f) 
-         for (int i = 0; i < sides; i++) { 
-             (d = e.get(i, f))->blockLength = (uint16_t*)data; 
-             data += d->blockLengthSize * sizeof(uint16_t); 
-         } 
-   
-     for (File f = FILE_A; f <= maxFile; ++f) 
-         for (int i = 0; i < sides; i++) { 
-             data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment 
-             (d = e.get(i, f))->data = data; 
-             data += d->blocksNum * d->sizeofBlock; 
-         } 
- } 
-   
- // If the TB file corresponding to the given position is already memory mapped 
- // then return its base address, otherwise try to memory map and init it. Called 
- // at every probe, memory map and init only at first access. Function is thread 
- // safe and can be called concurrently. 
- template<TBType Type> 
- void* mapped(TBTable<Type>& e, const Position& pos) { 
-   
-     static Mutex mutex; 
-   
-     // Use 'aquire' to avoid a thread reads 'ready' == true while another is 
-     // still working, this could happen due to compiler reordering. 
-     if (e.ready.load(std::memory_order_acquire)) 
-         return e.baseAddress; // Could be nullptr if file does not exsist 
-   
-     std::unique_lock<Mutex> lk(mutex); 
-   
-     if (e.ready.load(std::memory_order_relaxed)) // Recheck under lock 
-         return e.baseAddress; 
-   
-     // Pieces strings in decreasing order for each color, like ("KPP","KR") 
-     std::string fname, w, b; 
-     for (PieceType pt = KING; pt >= PAWN; --pt) { 
-         w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]); 
-         b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]); 
-     } 
-   
-     fname =  (e.key == pos.material_key() ? w + 'v' + b : b + 'v' + w) 
-            + (Type == WDL ? ".rtbw" : ".rtbz"); 
-   
-     uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, Type); 
-   
-     if (data) 
-         set(e, data); 
-   
-     e.ready.store(true, std::memory_order_release); 
-     return e.baseAddress; 
- } 
-   
- template<TBType Type, typename Ret = typename TBTable<Type>::Ret> 
- Ret probe_table(const Position& pos, ProbeState* result, WDLScore wdl = WDLDraw) { 
-   
-     if (pos.count<ALL_PIECES>() == 2) // KvK 
-         return Ret(WDLDraw); 
-   
-     TBTable<Type>* entry = TBTables.get<Type>(pos.material_key()); 
-   
-     if (!entry || !mapped(*entry, pos)) 
-         return *result = FAIL, Ret(); 
-   
-     return do_probe_table(pos, entry, wdl, result); 
- } 
-   
- // For a position where the side to move has a winning capture it is not necessary 
- // to store a winning value so the generator treats such positions as "don't cares" 
- // and tries to assign to it a value that improves the compression ratio. Similarly, 
- // if the side to move has a drawing capture, then the position is at least drawn. 
- // If the position is won, then the TB needs to store a win value. But if the 
- // position is drawn, the TB may store a loss value if that is better for compression. 
- // All of this means that during probing, the engine must look at captures and probe 
- // their results and must probe the position itself. The "best" result of these 
- // probes is the correct result for the position. 
- // DTZ tables do not store values when a following move is a zeroing winning move 
- // (winning capture or winning pawn move). Also DTZ store wrong values for positions 
- // where the best move is an ep-move (even if losing). So in all these cases set 
- // the state to ZEROING_BEST_MOVE. 
- template<bool CheckZeroingMoves> 
- WDLScore search(Position& pos, ProbeState* result) { 
-   
-     WDLScore value, bestValue = WDLLoss; 
-     StateInfo st; 
-   
-     auto moveList = MoveList<LEGAL>(pos); 
-     size_t totalCount = moveList.size(), moveCount = 0; 
-   
-     for (const Move& move : moveList) 
-     { 
-         if (   !pos.capture(move) 
-             && (!CheckZeroingMoves || type_of(pos.moved_piece(move)) != PAWN)) 
-             continue; 
-   
-         moveCount++; 
-   
-         pos.do_move(move, st); 
-         value = -search<false>(pos, result); 
-         pos.undo_move(move); 
-   
-         if (*result == FAIL) 
-             return WDLDraw; 
-   
-         if (value > bestValue) 
-         { 
-             bestValue = value; 
-   
-             if (value >= WDLWin) 
-             { 
-                 *result = ZEROING_BEST_MOVE; // Winning DTZ-zeroing move 
-                 return value; 
-             } 
-         } 
-     } 
-   
-     // In case we have already searched all the legal moves we don't have to probe 
-     // the TB because the stored score could be wrong. For instance TB tables 
-     // do not contain information on position with ep rights, so in this case 
-     // the result of probe_wdl_table is wrong. Also in case of only capture 
-     // moves, for instance here 4K3/4q3/6p1/2k5/6p1/8/8/8 w - - 0 7, we have to 
-     // return with ZEROING_BEST_MOVE set. 
-     bool noMoreMoves = (moveCount && moveCount == totalCount); 
-   
-     if (noMoreMoves) 
-         value = bestValue; 
-     else 
-     { 
-         value = probe_table<WDL>(pos, result); 
-   
-         if (*result == FAIL) 
-             return WDLDraw; 
-     } 
-   
-     // DTZ stores a "don't care" value if bestValue is a win 
-     if (bestValue >= value) 
-         return *result = (   bestValue > WDLDraw 
-                           || noMoreMoves ? ZEROING_BEST_MOVE : OK), bestValue; 
-   
-     return *result = OK, value; 
- } 
-   
- } // namespace 
-   
-   
- /// Tablebases::init() is called at startup and after every change to 
- /// "SyzygyPath" UCI option to (re)create the various tables. It is not thread 
- /// safe, nor it needs to be. 
- void Tablebases::init(const std::string& paths) { 
-   
-     TBTables.clear(); 
-     MaxCardinality = 0; 
-     TBFile::Paths = paths; 
-   
-     if (paths.empty() || paths == "<empty>") 
-         return; 
-   
-     // MapB1H1H7[] encodes a square below a1-h8 diagonal to 0..27 
-     int code = 0; 
-     for (Square s = SQ_A1; s <= SQ_H8; ++s) 
-         if (off_A1H8(s) < 0) 
-             MapB1H1H7[s] = code++; 
-   
-     // MapA1D1D4[] encodes a square in the a1-d1-d4 triangle to 0..9 
-     std::vector<Square> diagonal; 
-     code = 0; 
-     for (Square s = SQ_A1; s <= SQ_D4; ++s) 
-         if (off_A1H8(s) < 0 && file_of(s) <= FILE_D) 
-             MapA1D1D4[s] = code++; 
-   
-         else if (!off_A1H8(s) && file_of(s) <= FILE_D) 
-             diagonal.push_back(s); 
-   
-     // Diagonal squares are encoded as last ones 
-     for (auto s : diagonal) 
-         MapA1D1D4[s] = code++; 
-   
-     // MapKK[] encodes all the 461 possible legal positions of two kings where 
-     // the first is in the a1-d1-d4 triangle. If the first king is on the a1-d4 
-     // diagonal, the other one shall not to be above the a1-h8 diagonal. 
-     std::vector<std::pair<int, Square>> bothOnDiagonal; 
-     code = 0; 
-     for (int idx = 0; idx < 10; idx++) 
-         for (Square s1 = SQ_A1; s1 <= SQ_D4; ++s1) 
-             if (MapA1D1D4[s1] == idx && (idx || s1 == SQ_B1)) // SQ_B1 is mapped to 0 
-             { 
-                 for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) 
-                     if ((PseudoAttacks[KING][s1] | s1) & s2) 
-                         continue; // Illegal position 
-   
-                     else if (!off_A1H8(s1) && off_A1H8(s2) > 0) 
-                         continue; // First on diagonal, second above 
-   
-                     else if (!off_A1H8(s1) && !off_A1H8(s2)) 
-                         bothOnDiagonal.emplace_back(idx, s2); 
-   
-                     else 
-                         MapKK[idx][s2] = code++; 
-             } 
-   
-     // Legal positions with both kings on diagonal are encoded as last ones 
-     for (auto p : bothOnDiagonal) 
-         MapKK[p.first][p.second] = code++; 
-   
-     // Binomial[] stores the Binomial Coefficents using Pascal rule. There 
-     // are Binomial[k][n] ways to choose k elements from a set of n elements. 
-     Binomial[0][0] = 1; 
-   
-     for (int n = 1; n < 64; n++) // Squares 
-         for (int k = 0; k < 6 && k <= n; ++k) // Pieces 
-             Binomial[k][n] =  (k > 0 ? Binomial[k - 1][n - 1] : 0) 
-                             + (k < n ? Binomial[k    ][n - 1] : 0); 
-   
-     // MapPawns[s] encodes squares a2-h7 to 0..47. This is the number of possible 
-     // available squares when the leading one is in 's'. Moreover the pawn with 
-     // highest MapPawns[] is the leading pawn, the one nearest the edge and, 
-     // among pawns with same file, the one with lowest rank. 
-     int availableSquares = 47; // Available squares when lead pawn is in a2 
-   
-     // Init the tables for the encoding of leading pawns group: with 7-men TB we 
-     // can have up to 5 leading pawns (KPPPPPK). 
-     for (int leadPawnsCnt = 1; leadPawnsCnt <= 5; ++leadPawnsCnt) 
-         for (File f = FILE_A; f <= FILE_D; ++f) 
-         { 
-             // Restart the index at every file because TB table is splitted 
-             // by file, so we can reuse the same index for different files. 
-             int idx = 0; 
-   
-             // Sum all possible combinations for a given file, starting with 
-             // the leading pawn on rank 2 and increasing the rank. 
-             for (Rank r = RANK_2; r <= RANK_7; ++r) 
-             { 
-                 Square sq = make_square(f, r); 
-   
-                 // Compute MapPawns[] at first pass. 
-                 // If sq is the leading pawn square, any other pawn cannot be 
-                 // below or more toward the edge of sq. There are 47 available 
-                 // squares when sq = a2 and reduced by 2 for any rank increase 
-                 // due to mirroring: sq == a3 -> no a2, h2, so MapPawns[a3] = 45 
-                 if (leadPawnsCnt == 1) 
-                 { 
-                     MapPawns[sq] = availableSquares--; 
-                     MapPawns[sq ^ 7] = availableSquares--; // Horizontal flip 
-                 } 
-                 LeadPawnIdx[leadPawnsCnt][sq] = idx; 
-                 idx += Binomial[leadPawnsCnt - 1][MapPawns[sq]]; 
-             } 
-             // After a file is traversed, store the cumulated per-file index 
-             LeadPawnsSize[leadPawnsCnt][f] = idx; 
-         } 
-   
-     // Add entries in TB tables if the corresponding ".rtbw" file exsists 
-     for (PieceType p1 = PAWN; p1 < KING; ++p1) { 
-         TBTables.add({KING, p1, KING}); 
-   
-         for (PieceType p2 = PAWN; p2 <= p1; ++p2) { 
-             TBTables.add({KING, p1, p2, KING}); 
-             TBTables.add({KING, p1, KING, p2}); 
-   
-             for (PieceType p3 = PAWN; p3 < KING; ++p3) 
-                 TBTables.add({KING, p1, p2, KING, p3}); 
-   
-             for (PieceType p3 = PAWN; p3 <= p2; ++p3) { 
-                 TBTables.add({KING, p1, p2, p3, KING}); 
-   
-                 for (PieceType p4 = PAWN; p4 <= p3; ++p4) { 
-                     TBTables.add({KING, p1, p2, p3, p4, KING}); 
-   
-                     for (PieceType p5 = PAWN; p5 <= p4; ++p5) 
-                         TBTables.add({KING, p1, p2, p3, p4, p5, KING}); 
-   
-                     for (PieceType p5 = PAWN; p5 < KING; ++p5) 
-                         TBTables.add({KING, p1, p2, p3, p4, KING, p5}); 
-                 } 
-   
-                 for (PieceType p4 = PAWN; p4 < KING; ++p4) { 
-                     TBTables.add({KING, p1, p2, p3, KING, p4}); 
-   
-                     for (PieceType p5 = PAWN; p5 <= p4; ++p5) 
-                         TBTables.add({KING, p1, p2, p3, KING, p4, p5}); 
-                 } 
-             } 
-   
-             for (PieceType p3 = PAWN; p3 <= p1; ++p3) 
-                 for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4) 
-                     TBTables.add({KING, p1, p2, KING, p3, p4}); 
-         } 
-     } 
-   
-     sync_cout << "info string Found " << TBTables.size() << " tablebases" << sync_endl; 
- } 
-   
- // Probe the WDL table for a particular position. 
- // If *result != FAIL, the probe was successful. 
- // The return value is from the point of view of the side to move: 
- // -2 : loss 
- // -1 : loss, but draw under 50-move rule 
- //  0 : draw 
- //  1 : win, but draw under 50-move rule 
- //  2 : win 
- WDLScore Tablebases::probe_wdl(Position& pos, ProbeState* result) { 
-   
-     *result = OK; 
-     return search<false>(pos, result); 
- } 
-   
- // Probe the DTZ table for a particular position. 
- // If *result != FAIL, the probe was successful. 
- // The return value is from the point of view of the side to move: 
- //         n < -100 : loss, but draw under 50-move rule 
- // -100 <= n < -1   : loss in n ply (assuming 50-move counter == 0) 
- //        -1        : loss, the side to move is mated 
- //         0        : draw 
- //     1 < n <= 100 : win in n ply (assuming 50-move counter == 0) 
- //   100 < n        : win, but draw under 50-move rule 
- // 
- // The return value n can be off by 1: a return value -n can mean a loss 
- // in n+1 ply and a return value +n can mean a win in n+1 ply. This 
- // cannot happen for tables with positions exactly on the "edge" of 
- // the 50-move rule. 
- // 
- // This implies that if dtz > 0 is returned, the position is certainly 
- // a win if dtz + 50-move-counter <= 99. Care must be taken that the engine 
- // picks moves that preserve dtz + 50-move-counter <= 99. 
- // 
- // If n = 100 immediately after a capture or pawn move, then the position 
- // is also certainly a win, and during the whole phase until the next 
- // capture or pawn move, the inequality to be preserved is 
- // dtz + 50-movecounter <= 100. 
- // 
- // In short, if a move is available resulting in dtz + 50-move-counter <= 99, 
- // then do not accept moves leading to dtz + 50-move-counter == 100. 
- int Tablebases::probe_dtz(Position& pos, ProbeState* result) { 
-   
-     *result = OK; 
-     WDLScore wdl = search<true>(pos, result); 
-   
-     if (*result == FAIL || wdl == WDLDraw) // DTZ tables don't store draws 
-         return 0; 
-   
-     // DTZ stores a 'don't care' value in this case, or even a plain wrong 
-     // one as in case the best move is a losing ep, so it cannot be probed. 
-     if (*result == ZEROING_BEST_MOVE) 
-         return dtz_before_zeroing(wdl); 
-   
-     int dtz = probe_table<DTZ>(pos, result, wdl); 
-   
-     if (*result == FAIL) 
-         return 0; 
-   
-     if (*result != CHANGE_STM) 
-         return (dtz + 100 * (wdl == WDLBlessedLoss || wdl == WDLCursedWin)) * sign_of(wdl); 
-   
-     // DTZ stores results for the other side, so we need to do a 1-ply search and 
-     // find the winning move that minimizes DTZ. 
-     StateInfo st; 
-     int minDTZ = 0xFFFF; 
-   
-     for (const Move& move : MoveList<LEGAL>(pos)) 
-     { 
-         bool zeroing = pos.capture(move) || type_of(pos.moved_piece(move)) == PAWN; 
-   
-         pos.do_move(move, st); 
-   
-         // For zeroing moves we want the dtz of the move _before_ doing it, 
-         // otherwise we will get the dtz of the next move sequence. Search the 
-         // position after the move to get the score sign (because even in a 
-         // winning position we could make a losing capture or going for a draw). 
-         dtz = zeroing ? -dtz_before_zeroing(search<false>(pos, result)) 
-                       : -probe_dtz(pos, result); 
-   
-         // If the move mates, force minDTZ to 1 
-         if (dtz == 1 && pos.checkers() && MoveList<LEGAL>(pos).size() == 0) 
-             minDTZ = 1; 
-   
-         // Convert result from 1-ply search. Zeroing moves are already accounted 
-         // by dtz_before_zeroing() that returns the DTZ of the previous move. 
-         if (!zeroing) 
-             dtz += sign_of(dtz); 
-   
-         // Skip the draws and if we are winning only pick positive dtz 
-         if (dtz < minDTZ && sign_of(dtz) == sign_of(wdl)) 
-             minDTZ = dtz; 
-   
-         pos.undo_move(move); 
-   
-         if (*result == FAIL) 
-             return 0; 
-     } 
-   
-     // When there are no legal moves, the position is mate: we return -1 
-     return minDTZ == 0xFFFF ? -1 : minDTZ; 
- } 
-   
-   
- // Use the DTZ tables to rank root moves. 
- // 
- // A return value false indicates that not all probes were successful. 
- bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves) { 
-   
-     ProbeState result; 
-     StateInfo st; 
-   
-     // Obtain 50-move counter for the root position 
-     int cnt50 = pos.rule50_count(); 
-   
-     // Check whether a position was repeated since the last zeroing move. 
-     bool rep = pos.has_repeated(); 
-   
-     int dtz, bound = Options["Syzygy50MoveRule"] ? 900 : 1; 
-   
-     // Probe and rank each move 
-     for (auto& m : rootMoves) 
-     { 
-         pos.do_move(m.pv[0], st); 
-   
-         // Calculate dtz for the current move counting from the root position 
-         if (pos.rule50_count() == 0) 
-         { 
-             // In case of a zeroing move, dtz is one of -101/-1/0/1/101 
-             WDLScore wdl = -probe_wdl(pos, &result); 
-             dtz = dtz_before_zeroing(wdl); 
-         } 
-         else 
-         { 
-             // Otherwise, take dtz for the new position and correct by 1 ply 
-             dtz = -probe_dtz(pos, &result); 
-             dtz =  dtz > 0 ? dtz + 1 
-                  : dtz < 0 ? dtz - 1 : dtz; 
-         } 
-   
-         // Make sure that a mating move is assigned a dtz value of 1 
-         if (   pos.checkers() 
-             && dtz == 2 
-             && MoveList<LEGAL>(pos).size() == 0) 
-             dtz = 1; 
-   
-         pos.undo_move(m.pv[0]); 
-   
-         if (result == FAIL) 
-             return false; 
-   
-         // Better moves are ranked higher. Certain wins are ranked equally. 
-         // Losing moves are ranked equally unless a 50-move draw is in sight. 
-         int r =  dtz > 0 ? (dtz + cnt50 <= 99 && !rep ? 1000 : 1000 - (dtz + cnt50)) 
-                : dtz < 0 ? (-dtz * 2 + cnt50 < 100 ? -1000 : -1000 + (-dtz + cnt50)) 
-                : 0; 
-         m.tbRank = r; 
-   
-         // Determine the score to be displayed for this move. Assign at least 
-         // 1 cp to cursed wins and let it grow to 49 cp as the positions gets 
-         // closer to a real win. 
-         m.tbScore =  r >= bound ? VALUE_MATE - MAX_PLY - 1 
-                    : r >  0     ? Value((std::max( 3, r - 800) * int(PawnValueEg)) / 200) 
-                    : r == 0     ? VALUE_DRAW 
-                    : r > -bound ? Value((std::min(-3, r + 800) * int(PawnValueEg)) / 200) 
-                    :             -VALUE_MATE + MAX_PLY + 1; 
-     } 
-   
-     return true; 
- } 
-   
-   
- // Use the WDL tables to rank root moves. 
- // This is a fallback for the case that some or all DTZ tables are missing. 
- // 
- // A return value false indicates that not all probes were successful. 
- bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves) { 
-   
-     static const int WDL_to_rank[] = { -1000, -899, 0, 899, 1000 }; 
-   
-     ProbeState result; 
-     StateInfo st; 
-   
-     bool rule50 = Options["Syzygy50MoveRule"]; 
-   
-     // Probe and rank each move 
-     for (auto& m : rootMoves) 
-     { 
-         pos.do_move(m.pv[0], st); 
-   
-         WDLScore wdl = -probe_wdl(pos, &result); 
-   
-         pos.undo_move(m.pv[0]); 
-   
-         if (result == FAIL) 
-             return false; 
-   
-         m.tbRank = WDL_to_rank[wdl + 2]; 
-   
-         if (!rule50) 
-             wdl =  wdl > WDLDraw ? WDLWin 
-                  : wdl < WDLDraw ? WDLLoss : WDLDraw; 
-         m.tbScore = WDL_to_value[wdl + 2]; 
-     } 
-   
-     return true; 
- } 
-