/*
 
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
 
  Copyright (c) 2013 Ronald de Man
 
  Copyright (C) 2016-2018 Marco Costalba, Lucas Braesch
 
 
 
  Stockfish is free software: you can redistribute it and/or modify
 
  it under the terms of the GNU General Public License as published by
 
  the Free Software Foundation, either version 3 of the License, or
 
  (at your option) any later version.
 
 
 
  Stockfish is distributed in the hope that it will be useful,
 
  but WITHOUT ANY WARRANTY; without even the implied warranty of
 
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
  GNU General Public License for more details.
 
 
 
  You should have received a copy of the GNU General Public License
 
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 
*/
 
 
 
#include <algorithm>
 
#include <atomic>
 
#include <cstdint>
 
#include <cstring>   // For std::memset
 
#include <deque>
 
#include <fstream>
 
#include <iostream>
 
#include <list>
 
#include <sstream>
 
#include <type_traits>
 
 
 
#include "../bitboard.h"
 
#include "../movegen.h"
 
#include "../position.h"
 
#include "../search.h"
 
#include "../thread_win32.h"
 
#include "../types.h"
 
 
 
#include "tbprobe.h"
 
 
 
#ifndef _WIN32
 
#include <fcntl.h>
 
#include <unistd.h>
 
#include <sys/mman.h>
 
#include <sys/stat.h>
 
#else
 
#define WIN32_LEAN_AND_MEAN
 
#define NOMINMAX
 
#include <windows.h>
 
#endif
 
 
 
using namespace Tablebases;
 
 
 
int Tablebases::MaxCardinality;
 
 
 
namespace {
 
 
 
// Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables
 
enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, SingleValue = 128 };
 
 
 
inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); }
 
inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); }
 
inline Square operator^(Square s, int i) { return Square(int(s) ^ i); }
 
 
 
// DTZ tables don't store valid scores for moves that reset the rule50 counter
 
// like captures and pawn moves but we can easily recover the correct dtz of the
 
// previous move if we know the position's WDL score.
 
int dtz_before_zeroing(WDLScore wdl) {
 
    return wdl == WDLWin         ?  1   :
 
           wdl == WDLCursedWin   ?  101 :
 
           wdl == WDLBlessedLoss ? -101 :
 
           wdl == WDLLoss        ? -1   : 0;
 
}
 
 
 
// Return the sign of a number (-1, 0, 1)
 
template <typename T> int sign_of(T val) {
 
    return (T(0) < val) - (val < T(0));
 
}
 
 
 
// Numbers in little endian used by sparseIndex[] to point into blockLength[]
 
struct SparseEntry {
 
    char block[4];   // Number of block
 
    char offset[2];  // Offset within the block
 
};
 
 
 
static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes");
 
 
 
typedef uint16_t Sym; // Huffman symbol
 
 
 
struct LR {
 
    enum Side { Left, Right, Value };
 
 
 
    uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12
 
                   // bits is the right-hand symbol. If symbol has length 1,
 
                   // then the first byte is the stored value.
 
    template<Side S>
 
    Sym get() {
 
        return S == Left  ? ((lr[1] & 0xF) << 8) | lr[0] :
 
               S == Right ?  (lr[2] << 4) | (lr[1] >> 4) :
 
               S == Value ?   lr[0] : (assert(false), Sym(-1));
 
    }
 
};
 
 
 
static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes");
 
 
 
const int TBPIECES = 6;
 
 
 
struct PairsData {
 
    int flags;
 
    size_t sizeofBlock;            // Block size in bytes
 
    size_t span;                   // About every span values there is a SparseIndex[] entry
 
    int blocksNum;                 // Number of blocks in the TB file
 
    int maxSymLen;                 // Maximum length in bits of the Huffman symbols
 
    int minSymLen;                 // Minimum length in bits of the Huffman symbols
 
    Sym* lowestSym;                // lowestSym[l] is the symbol of length l with the lowest value
 
    LR* btree;                     // btree[sym] stores the left and right symbols that expand sym
 
    uint16_t* blockLength;         // Number of stored positions (minus one) for each block: 1..65536
 
    int blockLengthSize;           // Size of blockLength[] table: padded so it's bigger than blocksNum
 
    SparseEntry* sparseIndex;      // Partial indices into blockLength[]
 
    size_t sparseIndexSize;        // Size of SparseIndex[] table
 
    uint8_t* data;                 // Start of Huffman compressed data
 
    std::vector<uint64_t> base64;  // base64[l - min_sym_len] is the 64bit-padded lowest symbol of length l
 
    std::vector<uint8_t> symlen;   // Number of values (-1) represented by a given Huffman symbol: 1..256
 
    Piece pieces[TBPIECES];        // Position pieces: the order of pieces defines the groups
 
    uint64_t groupIdx[TBPIECES+1]; // Start index used for the encoding of the group's pieces
 
    int groupLen[TBPIECES+1];      // Number of pieces in a given group: KRKN -> (3, 1)
 
};
 
 
 
// Helper struct to avoid manually defining entry copy constructor as we
 
// should because the default one is not compatible with std::atomic_bool.
 
struct Atomic {
 
    Atomic() = default;
 
    Atomic(const Atomic& e) { ready = e.ready.load(); } // MSVC 2013 wants assignment within body
 
    std::atomic_bool ready;
 
};
 
 
 
// We define types for the different parts of the WDLEntry and DTZEntry with
 
// corresponding specializations for pieces or pawns.
 
 
 
struct WDLEntryPiece {
 
    PairsData* precomp;
 
};
 
 
 
struct WDLEntryPawn {
 
    uint8_t pawnCount[2];     // [Lead color / other color]
 
    WDLEntryPiece file[2][4]; // [wtm / btm][FILE_A..FILE_D]
 
};
 
 
 
struct DTZEntryPiece {
 
    PairsData* precomp;
 
    uint16_t map_idx[4]; // WDLWin, WDLLoss, WDLCursedWin, WDLBlessedLoss
 
    uint8_t* map;
 
};
 
 
 
struct DTZEntryPawn {
 
    uint8_t pawnCount[2];
 
    DTZEntryPiece file[4];
 
    uint8_t* map;
 
};
 
 
 
struct TBEntry : public Atomic {
 
    void* baseAddress;
 
    uint64_t mapping;
 
    Key key;
 
    Key key2;
 
    int pieceCount;
 
    bool hasPawns;
 
    bool hasUniquePieces;
 
};
 
 
 
// Now the main types: WDLEntry and DTZEntry
 
struct WDLEntry : public TBEntry {
 
    WDLEntry(const std::string& code);
 
   ~WDLEntry();
 
    union {
 
        WDLEntryPiece pieceTable[2]; // [wtm / btm]
 
        WDLEntryPawn  pawnTable;
 
    };
 
};
 
 
 
struct DTZEntry : public TBEntry {
 
    DTZEntry(const WDLEntry& wdl);
 
   ~DTZEntry();
 
    union {
 
        DTZEntryPiece pieceTable;
 
        DTZEntryPawn  pawnTable;
 
    };
 
};
 
 
 
typedef decltype(WDLEntry::pieceTable) WDLPieceTable;
 
typedef decltype(DTZEntry::pieceTable) DTZPieceTable;
 
typedef decltype(WDLEntry::pawnTable ) WDLPawnTable;
 
typedef decltype(DTZEntry::pawnTable ) DTZPawnTable;
 
 
 
auto item(WDLPieceTable& e, int stm, int  ) -> decltype(e[stm])& { return e[stm]; }
 
auto item(DTZPieceTable& e, int    , int  ) -> decltype(e)& { return e; }
 
auto item(WDLPawnTable&  e, int stm, int f) -> decltype(e.file[stm][f])& { return e.file[stm][f]; }
 
auto item(DTZPawnTable&  e, int    , int f) -> decltype(e.file[f])& { return e.file[f]; }
 
 
 
template<typename E> struct Ret { typedef int type; };
 
template<> struct Ret<WDLEntry> { typedef WDLScore type; };
 
 
 
int MapPawns[SQUARE_NB];
 
int MapB1H1H7[SQUARE_NB];
 
int MapA1D1D4[SQUARE_NB];
 
int MapKK[10][SQUARE_NB]; // [MapA1D1D4][SQUARE_NB]
 
 
 
// Comparison function to sort leading pawns in ascending MapPawns[] order
 
bool pawns_comp(Square i, Square j) { return MapPawns[i] < MapPawns[j]; }
 
int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); }
 
 
 
const Value WDL_to_value[] = {
 
   -VALUE_MATE + MAX_PLY + 1,
 
    VALUE_DRAW - 2,
 
    VALUE_DRAW,
 
    VALUE_DRAW + 2,
 
    VALUE_MATE - MAX_PLY - 1
 
};
 
 
 
const std::string PieceToChar = " PNBRQK  pnbrqk";
 
 
 
int Binomial[6][SQUARE_NB];    // [k][n] k elements from a set of n elements
 
int LeadPawnIdx[5][SQUARE_NB]; // [leadPawnsCnt][SQUARE_NB]
 
int LeadPawnsSize[5][4];       // [leadPawnsCnt][FILE_A..FILE_D]
 
 
 
enum { BigEndian, LittleEndian };
 
 
 
template<typename T, int Half = sizeof(T) / 2, int End = sizeof(T) - 1>
 
inline void swap_byte(T& x)
 
{
 
    char tmp, *c = (char*)&x;
 
    for (int i = 0; i < Half; ++i)
 
        tmp = c[i], c[i] = c[End - i], c[End - i] = tmp;
 
}
 
template<> inline void swap_byte<uint8_t, 0, 0>(uint8_t&) {}
 
 
 
template<typename T, int LE> T number(void* addr)
 
{
 
    const union { uint32_t i; char c[4]; } Le = { 0x01020304 };
 
    const bool IsLittleEndian = (Le.c[0] == 4);
 
 
 
    T v;
 
 
 
    if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare)
 
        std::memcpy(&v, addr, sizeof(T));
 
    else
 
        v = *((T*)addr);
 
 
 
    if (LE != IsLittleEndian)
 
        swap_byte(v);
 
    return v;
 
}
 
 
 
class HashTable {
 
 
 
    typedef std::pair<WDLEntry*, DTZEntry*> EntryPair;
 
    typedef std::pair<Key, EntryPair> Entry;
 
 
 
    static const int TBHASHBITS = 10;
 
    static const int HSHMAX     = 5;
 
 
 
    Entry hashTable[1 << TBHASHBITS][HSHMAX];
 
 
 
    std::deque<WDLEntry> wdlTable;
 
    std::deque<DTZEntry> dtzTable;
 
 
 
    void insert(Key key, WDLEntry* wdl, DTZEntry* dtz) {
 
        Entry* entry = hashTable[key >> (64 - TBHASHBITS)];
 
 
 
        for (int i = 0; i < HSHMAX; ++i, ++entry)
 
            if (!entry->second.first || entry->first == key) {
 
                *entry = std::make_pair(key, std::make_pair(wdl, dtz));
 
                return;
 
            }
 
 
 
        std::cerr << "HSHMAX too low!" << std::endl;
 
        exit(1);
 
    }
 
 
 
public:
 
    template<typename E, int I = std::is_same<E, WDLEntry>::value ? 0 : 1>
 
    E* get(Key key) {
 
      Entry* entry = hashTable[key >> (64 - TBHASHBITS)];
 
 
 
      for (int i = 0; i < HSHMAX; ++i, ++entry)
 
          if (entry->first == key)
 
              return std::get<I>(entry->second);
 
 
 
      return nullptr;
 
  }
 
 
 
  void clear() {
 
      std::memset(hashTable, 0, sizeof(hashTable));
 
      wdlTable.clear();
 
      dtzTable.clear();
 
  }
 
  size_t size() const { return wdlTable.size(); }
 
  void insert(const std::vector<PieceType>& pieces);
 
};
 
 
 
HashTable EntryTable;
 
 
 
class TBFile : public std::ifstream {
 
 
 
    std::string fname;
 
 
 
public:
 
    // Look for and open the file among the Paths directories where the .rtbw
 
    // and .rtbz files can be found. Multiple directories are separated by ";"
 
    // on Windows and by ":" on Unix-based operating systems.
 
    //
 
    // Example:
 
    // C:\tb\wdl345;C:\tb\wdl6;D:\tb\dtz345;D:\tb\dtz6
 
    static std::string Paths;
 
 
 
    TBFile(const std::string& f) {
 
 
 
#ifndef _WIN32
 
        const char SepChar = ':';
 
#else
 
        const char SepChar = ';';
 
#endif
 
        std::stringstream ss(Paths);
 
        std::string path;
 
 
 
        while (std::getline(ss, path, SepChar)) {
 
            fname = path + "/" + f;
 
            std::ifstream::open(fname);
 
            if (is_open())
 
                return;
 
        }
 
    }
 
 
 
    // Memory map the file and check it. File should be already open and will be
 
    // closed after mapping.
 
    uint8_t* map(void** baseAddress, uint64_t* mapping, const uint8_t* TB_MAGIC) {
 
 
 
        assert(is_open());
 
 
 
        close(); // Need to re-open to get native file descriptor
 
 
 
#ifndef _WIN32
 
        struct stat statbuf;
 
        int fd = ::open(fname.c_str(), O_RDONLY);
 
 
 
        if (fd == -1)
 
            return *baseAddress = nullptr, nullptr;
 
 
 
        fstat(fd, &statbuf);
 
        *mapping = statbuf.st_size;
 
        *baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0);
 
        ::close(fd);
 
 
 
        if (*baseAddress == MAP_FAILED) {
 
            std::cerr << "Could not mmap() " << fname << std::endl;
 
            exit(1);
 
        }
 
#else
 
        HANDLE fd = CreateFile(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr,
 
                               OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
 
 
 
        if (fd == INVALID_HANDLE_VALUE)
 
            return *baseAddress = nullptr, nullptr;
 
 
 
        DWORD size_high;
 
        DWORD size_low = GetFileSize(fd, &size_high);
 
        HANDLE mmap = CreateFileMapping(fd, nullptr, PAGE_READONLY, size_high, size_low, nullptr);
 
        CloseHandle(fd);
 
 
 
        if (!mmap) {
 
            std::cerr << "CreateFileMapping() failed" << std::endl;
 
            exit(1);
 
        }
 
 
 
        *mapping = (uint64_t)mmap;
 
        *baseAddress = MapViewOfFile(mmap, FILE_MAP_READ, 0, 0, 0);
 
 
 
        if (!*baseAddress) {
 
            std::cerr << "MapViewOfFile() failed, name = " << fname
 
                      << ", error = " << GetLastError() << std::endl;
 
            exit(1);
 
        }
 
#endif
 
        uint8_t* data = (uint8_t*)*baseAddress;
 
 
 
        if (   *data++ != *TB_MAGIC++
 
            || *data++ != *TB_MAGIC++
 
            || *data++ != *TB_MAGIC++
 
            || *data++ != *TB_MAGIC) {
 
            std::cerr << "Corrupted table in file " << fname << std::endl;
 
            unmap(*baseAddress, *mapping);
 
            return *baseAddress = nullptr, nullptr;
 
        }
 
 
 
        return data;
 
    }
 
 
 
    static void unmap(void* baseAddress, uint64_t mapping) {
 
 
 
#ifndef _WIN32
 
        munmap(baseAddress, mapping);
 
#else
 
        UnmapViewOfFile(baseAddress);
 
        CloseHandle((HANDLE)mapping);
 
#endif
 
    }
 
};
 
 
 
std::string TBFile::Paths;
 
 
 
WDLEntry::WDLEntry(const std::string& code) {
 
 
 
    StateInfo st;
 
    Position pos;
 
 
 
    memset(this, 0, sizeof(WDLEntry));
 
 
 
    ready = false;
 
    key = pos.set(code, WHITE, &st).material_key();
 
    pieceCount = popcount(pos.pieces());
 
    hasPawns = pos.pieces(PAWN);
 
 
 
    for (Color c = WHITE; c <= BLACK; ++c)
 
        for (PieceType pt = PAWN; pt < KING; ++pt)
 
            if (popcount(pos.pieces(c, pt)) == 1)
 
                hasUniquePieces = true;
 
 
 
    if (hasPawns) {
 
        // Set the leading color. In case both sides have pawns the leading color
 
        // is the side with less pawns because this leads to better compression.
 
        bool c =   !pos.count<PAWN>(BLACK)
 
                || (   pos.count<PAWN>(WHITE)
 
                    && pos.count<PAWN>(BLACK) >= pos.count<PAWN>(WHITE));
 
 
 
        pawnTable.pawnCount[0] = pos.count<PAWN>(c ? WHITE : BLACK);
 
        pawnTable.pawnCount[1] = pos.count<PAWN>(c ? BLACK : WHITE);
 
    }
 
 
 
    key2 = pos.set(code, BLACK, &st).material_key();
 
}
 
 
 
WDLEntry::~WDLEntry() {
 
 
 
    if (baseAddress)
 
        TBFile::unmap(baseAddress, mapping);
 
 
 
    for (int i = 0; i < 2; ++i)
 
        if (hasPawns)
 
            for (File f = FILE_A; f <= FILE_D; ++f)
 
                delete pawnTable.file[i][f].precomp;
 
        else
 
            delete pieceTable[i].precomp;
 
}
 
 
 
DTZEntry::DTZEntry(const WDLEntry& wdl) {
 
 
 
    memset(this, 0, sizeof(DTZEntry));
 
 
 
    ready = false;
 
    key = wdl.key;
 
    key2 = wdl.key2;
 
    pieceCount = wdl.pieceCount;
 
    hasPawns = wdl.hasPawns;
 
    hasUniquePieces = wdl.hasUniquePieces;
 
 
 
    if (hasPawns) {
 
        pawnTable.pawnCount[0] = wdl.pawnTable.pawnCount[0];
 
        pawnTable.pawnCount[1] = wdl.pawnTable.pawnCount[1];
 
    }
 
}
 
 
 
DTZEntry::~DTZEntry() {
 
 
 
    if (baseAddress)
 
        TBFile::unmap(baseAddress, mapping);
 
 
 
    if (hasPawns)
 
        for (File f = FILE_A; f <= FILE_D; ++f)
 
            delete pawnTable.file[f].precomp;
 
    else
 
        delete pieceTable.precomp;
 
}
 
 
 
void HashTable::insert(const std::vector<PieceType>& pieces) {
 
 
 
    std::string code;
 
 
 
    for (PieceType pt : pieces)
 
        code += PieceToChar[pt];
 
 
 
    TBFile file(code.insert(code.find('K', 1), "v") + ".rtbw"); // KRK -> KRvK
 
 
 
    if (!file.is_open()) // Only WDL file is checked
 
        return;
 
 
 
    file.close();
 
 
 
    MaxCardinality = std::max((int)pieces.size(), MaxCardinality);
 
 
 
    wdlTable.emplace_back(code);
 
    dtzTable.emplace_back(wdlTable.back());
 
 
 
    insert(wdlTable.back().key , &wdlTable.back(), &dtzTable.back());
 
    insert(wdlTable.back().key2, &wdlTable.back(), &dtzTable.back());
 
}
 
 
 
// TB tables are compressed with canonical Huffman code. The compressed data is divided into
 
// blocks of size d->sizeofBlock, and each block stores a variable number of symbols.
 
// Each symbol represents either a WDL or a (remapped) DTZ value, or a pair of other symbols
 
// (recursively). If you keep expanding the symbols in a block, you end up with up to 65536
 
// WDL or DTZ values. Each symbol represents up to 256 values and will correspond after
 
// Huffman coding to at least 1 bit. So a block of 32 bytes corresponds to at most
 
// 32 x 8 x 256 = 65536 values. This maximum is only reached for tables that consist mostly
 
// of draws or mostly of wins, but such tables are actually quite common. In principle, the
 
// blocks in WDL tables are 64 bytes long (and will be aligned on cache lines). But for
 
// mostly-draw or mostly-win tables this can leave many 64-byte blocks only half-filled, so
 
// in such cases blocks are 32 bytes long. The blocks of DTZ tables are up to 1024 bytes long.
 
// The generator picks the size that leads to the smallest table. The "book" of symbols and
 
// Huffman codes is the same for all blocks in the table. A non-symmetric pawnless TB file
 
// will have one table for wtm and one for btm, a TB file with pawns will have tables per
 
// file a,b,c,d also in this case one set for wtm and one for btm.
 
int decompress_pairs(PairsData* d, uint64_t idx) {
 
 
 
    // Special case where all table positions store the same value
 
    if (d->flags & TBFlag::SingleValue)
 
        return d->minSymLen;
 
 
 
    // First we need to locate the right block that stores the value at index "idx".
 
    // Because each block n stores blockLength[n] + 1 values, the index i of the block
 
    // that contains the value at position idx is:
 
    //
 
    //                    for (i = -1, sum = 0; sum <= idx; i++)
 
    //                        sum += blockLength[i + 1] + 1;
 
    //
 
    // This can be slow, so we use SparseIndex[] populated with a set of SparseEntry that
 
    // point to known indices into blockLength[]. Namely SparseIndex[k] is a SparseEntry
 
    // that stores the blockLength[] index and the offset within that block of the value
 
    // with index I(k), where:
 
    //
 
    //       I(k) = k * d->span + d->span / 2      (1)
 
 
 
    // First step is to get the 'k' of the I(k) nearest to our idx, using definition (1)
 
    uint32_t k = (uint32_t) (idx / d->span); // Pierre-Marie Baty -- added type cast
 
 
 
    // Then we read the corresponding SparseIndex[] entry
 
    uint32_t block = number<uint32_t, LittleEndian>(&d->sparseIndex[k].block);
 
    int offset     = number<uint16_t, LittleEndian>(&d->sparseIndex[k].offset);
 
 
 
    // Now compute the difference idx - I(k). From definition of k we know that
 
    //
 
    //       idx = k * d->span + idx % d->span    (2)
 
    //
 
    // So from (1) and (2) we can compute idx - I(K):
 
    int diff = idx % d->span - d->span / 2;
 
 
 
    // Sum the above to offset to find the offset corresponding to our idx
 
    offset += diff;
 
 
 
    // Move to previous/next block, until we reach the correct block that contains idx,
 
    // that is when 0 <= offset <= d->blockLength[block]
 
    while (offset < 0)
 
        offset += d->blockLength[--block] + 1;
 
 
 
    while (offset > d->blockLength[block])
 
        offset -= d->blockLength[block++] + 1;
 
 
 
    // Finally, we find the start address of our block of canonical Huffman symbols
 
    uint32_t* ptr = (uint32_t*)(d->data + block * d->sizeofBlock);
 
 
 
    // Read the first 64 bits in our block, this is a (truncated) sequence of
 
    // unknown number of symbols of unknown length but we know the first one
 
    // is at the beginning of this 64 bits sequence.
 
    uint64_t buf64 = number<uint64_t, BigEndian>(ptr); ptr += 2;
 
    int buf64Size = 64;
 
    Sym sym;
 
 
 
    while (true) {
 
        int len = 0; // This is the symbol length - d->min_sym_len
 
 
 
        // Now get the symbol length. For any symbol s64 of length l right-padded
 
        // to 64 bits we know that d->base64[l-1] >= s64 >= d->base64[l] so we
 
        // can find the symbol length iterating through base64[].
 
        while (buf64 < d->base64[len])
 
            ++len;
 
 
 
        // All the symbols of a given length are consecutive integers (numerical
 
        // sequence property), so we can compute the offset of our symbol of
 
        // length len, stored at the beginning of buf64.
 
        sym = (Sym) ((buf64 - d->base64[len]) >> (64 - len - d->minSymLen)); // Pierre-Marie Baty -- added type cast
 
 
 
        // Now add the value of the lowest symbol of length len to get our symbol
 
        sym += number<Sym, LittleEndian>(&d->lowestSym[len]);
 
 
 
        // If our offset is within the number of values represented by symbol sym
 
        // we are done...
 
        if (offset < d->symlen[sym] + 1)
 
            break;
 
 
 
        // ...otherwise update the offset and continue to iterate
 
        offset -= d->symlen[sym] + 1;
 
        len += d->minSymLen; // Get the real length
 
        buf64 <<= len;       // Consume the just processed symbol
 
        buf64Size -= len;
 
 
 
        if (buf64Size <= 32) { // Refill the buffer
 
            buf64Size += 32;
 
            buf64 |= (uint64_t)number<uint32_t, BigEndian>(ptr++) << (64 - buf64Size);
 
        }
 
    }
 
 
 
    // Ok, now we have our symbol that expands into d->symlen[sym] + 1 symbols.
 
    // We binary-search for our value recursively expanding into the left and
 
    // right child symbols until we reach a leaf node where symlen[sym] + 1 == 1
 
    // that will store the value we need.
 
    while (d->symlen[sym]) {
 
 
 
        Sym left = d->btree[sym].get<LR::Left>();
 
 
 
        // If a symbol contains 36 sub-symbols (d->symlen[sym] + 1 = 36) and
 
        // expands in a pair (d->symlen[left] = 23, d->symlen[right] = 11), then
 
        // we know that, for instance the ten-th value (offset = 10) will be on
 
        // the left side because in Recursive Pairing child symbols are adjacent.
 
        if (offset < d->symlen[left] + 1)
 
            sym = left;
 
        else {
 
            offset -= d->symlen[left] + 1;
 
            sym = d->btree[sym].get<LR::Right>();
 
        }
 
    }
 
 
 
    return d->btree[sym].get<LR::Value>();
 
}
 
 
 
bool check_dtz_stm(WDLEntry*, int, File) { return true; }
 
 
 
bool check_dtz_stm(DTZEntry* entry, int stm, File f) {
 
 
 
    int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags
 
                                : entry->pieceTable.precomp->flags;
 
 
 
    return   (flags & TBFlag::STM) == stm
 
          || ((entry->key == entry->key2) && !entry->hasPawns);
 
}
 
 
 
// DTZ scores are sorted by frequency of occurrence and then assigned the
 
// values 0, 1, 2, ... in order of decreasing frequency. This is done for each
 
// of the four WDLScore values. The mapping information necessary to reconstruct
 
// the original values is stored in the TB file and read during map[] init.
 
WDLScore map_score(WDLEntry*, File, int value, WDLScore) { return WDLScore(value - 2); }
 
 
 
int map_score(DTZEntry* entry, File f, int value, WDLScore wdl) {
 
 
 
    const int WDLMap[] = { 1, 3, 0, 2, 0 };
 
 
 
    int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags
 
                                : entry->pieceTable.precomp->flags;
 
 
 
    uint8_t* map = entry->hasPawns ? entry->pawnTable.map
 
                                   : entry->pieceTable.map;
 
 
 
    uint16_t* idx = entry->hasPawns ? entry->pawnTable.file[f].map_idx
 
                                    : entry->pieceTable.map_idx;
 
    if (flags & TBFlag::Mapped)
 
        value = map[idx[WDLMap[wdl + 2]] + value];
 
 
 
    // DTZ tables store distance to zero in number of moves or plies. We
 
    // want to return plies, so we have convert to plies when needed.
 
    if (   (wdl == WDLWin  && !(flags & TBFlag::WinPlies))
 
        || (wdl == WDLLoss && !(flags & TBFlag::LossPlies))
 
        ||  wdl == WDLCursedWin
 
        ||  wdl == WDLBlessedLoss)
 
        value *= 2;
 
 
 
    return value + 1;
 
}
 
 
 
// Compute a unique index out of a position and use it to probe the TB file. To
 
// encode k pieces of same type and color, first sort the pieces by square in
 
// ascending order s1 <= s2 <= ... <= sk then compute the unique index as:
 
//
 
//      idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk]
 
//
 
template<typename Entry, typename T = typename Ret<Entry>::type>
 
T do_probe_table(const Position& pos, Entry* entry, WDLScore wdl, ProbeState* result) {
 
 
 
    const bool IsWDL = std::is_same<Entry, WDLEntry>::value;
 
 
 
    Square squares[TBPIECES];
 
    Piece pieces[TBPIECES];
 
    uint64_t idx;
 
    int next = 0, size = 0, leadPawnsCnt = 0;
 
    PairsData* d;
 
    Bitboard b, leadPawns = 0;
 
    File tbFile = FILE_A;
 
 
 
    // A given TB entry like KRK has associated two material keys: KRvk and Kvkr.
 
    // If both sides have the same pieces keys are equal. In this case TB tables
 
    // only store the 'white to move' case, so if the position to lookup has black
 
    // to move, we need to switch the color and flip the squares before to lookup.
 
    bool symmetricBlackToMove = (entry->key == entry->key2 && pos.side_to_move());
 
 
 
    // TB files are calculated for white as stronger side. For instance we have
 
    // KRvK, not KvKR. A position where stronger side is white will have its
 
    // material key == entry->key, otherwise we have to switch the color and
 
    // flip the squares before to lookup.
 
    bool blackStronger = (pos.material_key() != entry->key);
 
 
 
    int flipColor   = (symmetricBlackToMove || blackStronger) * 8;
 
    int flipSquares = (symmetricBlackToMove || blackStronger) * 070;
 
    int stm         = (symmetricBlackToMove || blackStronger) ^ pos.side_to_move();
 
 
 
    // For pawns, TB files store 4 separate tables according if leading pawn is on
 
    // file a, b, c or d after reordering. The leading pawn is the one with maximum
 
    // MapPawns[] value, that is the one most toward the edges and with lowest rank.
 
    if (entry->hasPawns) {
 
 
 
        // In all the 4 tables, pawns are at the beginning of the piece sequence and
 
        // their color is the reference one. So we just pick the first one.
 
        Piece pc = Piece(item(entry->pawnTable, 0, 0).precomp->pieces[0] ^ flipColor);
 
 
 
        assert(type_of(pc) == PAWN);
 
 
 
        leadPawns = b = pos.pieces(color_of(pc), PAWN);
 
        do
 
            squares[size++] = pop_lsb(&b) ^ flipSquares;
 
        while (b);
 
 
 
        leadPawnsCnt = size;
 
 
 
        std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp));
 
 
 
        tbFile = file_of(squares[0]);
 
        if (tbFile > FILE_D)
 
            tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1
 
 
 
        d = item(entry->pawnTable , stm, tbFile).precomp;
 
    } else
 
        d = item(entry->pieceTable, stm, tbFile).precomp;
 
 
 
    // DTZ tables are one-sided, i.e. they store positions only for white to
 
    // move or only for black to move, so check for side to move to be stm,
 
    // early exit otherwise.
 
    if (!IsWDL && !check_dtz_stm(entry, stm, tbFile))
 
        return *result = CHANGE_STM, T();
 
 
 
    // Now we are ready to get all the position pieces (but the lead pawns) and
 
    // directly map them to the correct color and square.
 
    b = pos.pieces() ^ leadPawns;
 
    do {
 
        Square s = pop_lsb(&b);
 
        squares[size] = s ^ flipSquares;
 
        pieces[size++] = Piece(pos.piece_on(s) ^ flipColor);
 
    } while (b);
 
 
 
    assert(size >= 2);
 
 
 
    // Then we reorder the pieces to have the same sequence as the one stored
 
    // in precomp->pieces[i]: the sequence that ensures the best compression.
 
    for (int i = leadPawnsCnt; i < size; ++i)
 
        for (int j = i; j < size; ++j)
 
            if (d->pieces[i] == pieces[j])
 
            {
 
                std::swap(pieces[i], pieces[j]);
 
                std::swap(squares[i], squares[j]);
 
                break;
 
            }
 
 
 
    // Now we map again the squares so that the square of the lead piece is in
 
    // the triangle A1-D1-D4.
 
    if (file_of(squares[0]) > FILE_D)
 
        for (int i = 0; i < size; ++i)
 
            squares[i] ^= 7; // Horizontal flip: SQ_H1 -> SQ_A1
 
 
 
    // Encode leading pawns starting with the one with minimum MapPawns[] and
 
    // proceeding in ascending order.
 
    if (entry->hasPawns) {
 
        idx = LeadPawnIdx[leadPawnsCnt][squares[0]];
 
 
 
        std::sort(squares + 1, squares + leadPawnsCnt, pawns_comp);
 
 
 
        for (int i = 1; i < leadPawnsCnt; ++i)
 
            idx += Binomial[i][MapPawns[squares[i]]];
 
 
 
        goto encode_remaining; // With pawns we have finished special treatments
 
    }
 
 
 
    // In positions withouth pawns, we further flip the squares to ensure leading
 
    // piece is below RANK_5.
 
    if (rank_of(squares[0]) > RANK_4)
 
        for (int i = 0; i < size; ++i)
 
            squares[i] ^= 070; // Vertical flip: SQ_A8 -> SQ_A1
 
 
 
    // Look for the first piece of the leading group not on the A1-D4 diagonal
 
    // and ensure it is mapped below the diagonal.
 
    for (int i = 0; i < d->groupLen[0]; ++i) {
 
        if (!off_A1H8(squares[i]))
 
            continue;
 
 
 
        if (off_A1H8(squares[i]) > 0) // A1-H8 diagonal flip: SQ_A3 -> SQ_C3
 
            for (int j = i; j < size; ++j)
 
                squares[j] = Square(((squares[j] >> 3) | (squares[j] << 3)) & 63);
 
        break;
 
    }
 
 
 
    // Encode the leading group.
 
    //
 
    // Suppose we have KRvK. Let's say the pieces are on square numbers wK, wR
 
    // and bK (each 0...63). The simplest way to map this position to an index
 
    // is like this:
 
    //
 
    //   index = wK * 64 * 64 + wR * 64 + bK;
 
    //
 
    // But this way the TB is going to have 64*64*64 = 262144 positions, with
 
    // lots of positions being equivalent (because they are mirrors of each
 
    // other) and lots of positions being invalid (two pieces on one square,
 
    // adjacent kings, etc.).
 
    // Usually the first step is to take the wK and bK together. There are just
 
    // 462 ways legal and not-mirrored ways to place the wK and bK on the board.
 
    // Once we have placed the wK and bK, there are 62 squares left for the wR
 
    // Mapping its square from 0..63 to available squares 0..61 can be done like:
 
    //
 
    //   wR -= (wR > wK) + (wR > bK);
 
    //
 
    // In words: if wR "comes later" than wK, we deduct 1, and the same if wR
 
    // "comes later" than bK. In case of two same pieces like KRRvK we want to
 
    // place the two Rs "together". If we have 62 squares left, we can place two
 
    // Rs "together" in 62 * 61 / 2 ways (we divide by 2 because rooks can be
 
    // swapped and still get the same position.)
 
    //
 
    // In case we have at least 3 unique pieces (inlcuded kings) we encode them
 
    // together.
 
    if (entry->hasUniquePieces) {
 
 
 
        int adjust1 =  squares[1] > squares[0];
 
        int adjust2 = (squares[2] > squares[0]) + (squares[2] > squares[1]);
 
 
 
        // First piece is below a1-h8 diagonal. MapA1D1D4[] maps the b1-d1-d3
 
        // triangle to 0...5. There are 63 squares for second piece and and 62
 
        // (mapped to 0...61) for the third.
 
        if (off_A1H8(squares[0]))
 
            idx = (   MapA1D1D4[squares[0]]  * 63
 
                   + (squares[1] - adjust1)) * 62
 
                   +  squares[2] - adjust2;
 
 
 
        // First piece is on a1-h8 diagonal, second below: map this occurence to
 
        // 6 to differentiate from the above case, rank_of() maps a1-d4 diagonal
 
        // to 0...3 and finally MapB1H1H7[] maps the b1-h1-h7 triangle to 0..27.
 
        else if (off_A1H8(squares[1]))
 
            idx = (  6 * 63 + rank_of(squares[0]) * 28
 
                   + MapB1H1H7[squares[1]])       * 62
 
                   + squares[2] - adjust2;
 
 
 
        // First two pieces are on a1-h8 diagonal, third below
 
        else if (off_A1H8(squares[2]))
 
            idx =  6 * 63 * 62 + 4 * 28 * 62
 
                 +  rank_of(squares[0])        * 7 * 28
 
                 + (rank_of(squares[1]) - adjust1) * 28
 
                 +  MapB1H1H7[squares[2]];
 
 
 
        // All 3 pieces on the diagonal a1-h8
 
        else
 
            idx = 6 * 63 * 62 + 4 * 28 * 62 + 4 * 7 * 28
 
                 +  rank_of(squares[0])         * 7 * 6
 
                 + (rank_of(squares[1]) - adjust1)  * 6
 
                 + (rank_of(squares[2]) - adjust2);
 
    } else
 
        // We don't have at least 3 unique pieces, like in KRRvKBB, just map
 
        // the kings.
 
        idx = MapKK[MapA1D1D4[squares[0]]][squares[1]];
 
 
 
encode_remaining:
 
    idx *= d->groupIdx[0];
 
    Square* groupSq = squares + d->groupLen[0];
 
 
 
    // Encode remainig pawns then pieces according to square, in ascending order
 
    bool remainingPawns = entry->hasPawns && entry->pawnTable.pawnCount[1];
 
 
 
    while (d->groupLen[++next])
 
    {
 
        std::sort(groupSq, groupSq + d->groupLen[next]);
 
        uint64_t n = 0;
 
 
 
        // Map down a square if "comes later" than a square in the previous
 
        // groups (similar to what done earlier for leading group pieces).
 
        for (int i = 0; i < d->groupLen[next]; ++i)
 
        {
 
            auto f = [&](Square s) { return groupSq[i] > s; };
 
            auto adjust = std::count_if(squares, groupSq, f);
 
            n += Binomial[i + 1][groupSq[i] - adjust - 8 * remainingPawns];
 
        }
 
 
 
        remainingPawns = false;
 
        idx += n * d->groupIdx[next];
 
        groupSq += d->groupLen[next];
 
    }
 
 
 
    // Now that we have the index, decompress the pair and get the score
 
    return map_score(entry, tbFile, decompress_pairs(d, idx), wdl);
 
}
 
 
 
// Group together pieces that will be encoded together. The general rule is that
 
// a group contains pieces of same type and color. The exception is the leading
 
// group that, in case of positions withouth pawns, can be formed by 3 different
 
// pieces (default) or by the king pair when there is not a unique piece apart
 
// from the kings. When there are pawns, pawns are always first in pieces[].
 
//
 
// As example KRKN -> KRK + N, KNNK -> KK + NN, KPPKP -> P + PP + K + K
 
//
 
// The actual grouping depends on the TB generator and can be inferred from the
 
// sequence of pieces in piece[] array.
 
template<typename T>
 
void set_groups(T& e, PairsData* d, int order[], File f) {
 
 
 
    int n = 0, firstLen = e.hasPawns ? 0 : e.hasUniquePieces ? 3 : 2;
 
    d->groupLen[n] = 1;
 
 
 
    // Number of pieces per group is stored in groupLen[], for instance in KRKN
 
    // the encoder will default on '111', so groupLen[] will be (3, 1).
 
    for (int i = 1; i < e.pieceCount; ++i)
 
        if (--firstLen > 0 || d->pieces[i] == d->pieces[i - 1])
 
            d->groupLen[n]++;
 
        else
 
            d->groupLen[++n] = 1;
 
 
 
    d->groupLen[++n] = 0; // Zero-terminated
 
 
 
    // The sequence in pieces[] defines the groups, but not the order in which
 
    // they are encoded. If the pieces in a group g can be combined on the board
 
    // in N(g) different ways, then the position encoding will be of the form:
 
    //
 
    //           g1 * N(g2) * N(g3) + g2 * N(g3) + g3
 
    //
 
    // This ensures unique encoding for the whole position. The order of the
 
    // groups is a per-table parameter and could not follow the canonical leading
 
    // pawns/pieces -> remainig pawns -> remaining pieces. In particular the
 
    // first group is at order[0] position and the remaining pawns, when present,
 
    // are at order[1] position.
 
    bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides
 
    int next = pp ? 2 : 1;
 
    int freeSquares = 64 - d->groupLen[0] - (pp ? d->groupLen[1] : 0);
 
    uint64_t idx = 1;
 
 
 
    for (int k = 0; next < n || k == order[0] || k == order[1]; ++k)
 
        if (k == order[0]) // Leading pawns or pieces
 
        {
 
            d->groupIdx[0] = idx;
 
            idx *=         e.hasPawns ? LeadPawnsSize[d->groupLen[0]][f]
 
                  : e.hasUniquePieces ? 31332 : 462;
 
        }
 
        else if (k == order[1]) // Remaining pawns
 
        {
 
            d->groupIdx[1] = idx;
 
            idx *= Binomial[d->groupLen[1]][48 - d->groupLen[0]];
 
        }
 
        else // Remainig pieces
 
        {
 
            d->groupIdx[next] = idx;
 
            idx *= Binomial[d->groupLen[next]][freeSquares];
 
            freeSquares -= d->groupLen[next++];
 
        }
 
 
 
    d->groupIdx[n] = idx;
 
}
 
 
 
// In Recursive Pairing each symbol represents a pair of childern symbols. So
 
// read d->btree[] symbols data and expand each one in his left and right child
 
// symbol until reaching the leafs that represent the symbol value.
 
uint8_t set_symlen(PairsData* d, Sym s, std::vector<bool>& visited) {
 
 
 
    visited[s] = true; // We can set it now because tree is acyclic
 
    Sym sr = d->btree[s].get<LR::Right>();
 
 
 
    if (sr == 0xFFF)
 
        return 0;
 
 
 
    Sym sl = d->btree[s].get<LR::Left>();
 
 
 
    if (!visited[sl])
 
        d->symlen[sl] = set_symlen(d, sl, visited);
 
 
 
    if (!visited[sr])
 
        d->symlen[sr] = set_symlen(d, sr, visited);
 
 
 
    return d->symlen[sl] + d->symlen[sr] + 1;
 
}
 
 
 
uint8_t* set_sizes(PairsData* d, uint8_t* data) {
 
 
 
    d->flags = *data++;
 
 
 
    if (d->flags & TBFlag::SingleValue) {
 
        d->blocksNum = d->blockLengthSize = 0;
 
        d->span = d->sparseIndexSize = 0; // Broken MSVC zero-init
 
        d->minSymLen = *data++; // Here we store the single value
 
        return data;
 
    }
 
 
 
    // groupLen[] is a zero-terminated list of group lengths, the last groupIdx[]
 
    // element stores the biggest index that is the tb size.
 
    uint64_t tbSize = d->groupIdx[std::find(d->groupLen, d->groupLen + 7, 0) - d->groupLen];
 
 
 
    d->sizeofBlock = 1ULL << *data++;
 
    d->span = 1ULL << *data++;
 
    d->sparseIndexSize = (size_t) ((tbSize + d->span - 1) / d->span); // Round up // Pierre-Marie Baty -- added type cast
 
    int padding = number<uint8_t, LittleEndian>(data++);
 
    d->blocksNum = number<uint32_t, LittleEndian>(data); data += sizeof(uint32_t);
 
    d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[]
 
                                                 // does not point out of range.
 
    d->maxSymLen = *data++;
 
    d->minSymLen = *data++;
 
    d->lowestSym = (Sym*)data;
 
    d->base64.resize(d->maxSymLen - d->minSymLen + 1);
 
 
 
    // The canonical code is ordered such that longer symbols (in terms of
 
    // the number of bits of their Huffman code) have lower numeric value,
 
    // so that d->lowestSym[i] >= d->lowestSym[i+1] (when read as LittleEndian).
 
    // Starting from this we compute a base64[] table indexed by symbol length
 
    // and containing 64 bit values so that d->base64[i] >= d->base64[i+1].
 
    // See http://www.eecs.harvard.edu/~michaelm/E210/huffman.pdf
 
    for (int i = d->base64.size() - 2; i >= 0; --i) {
 
        d->base64[i] = (d->base64[i + 1] + number<Sym, LittleEndian>(&d->lowestSym[i])
 
                                         - number<Sym, LittleEndian>(&d->lowestSym[i + 1])) / 2;
 
 
 
        assert(d->base64[i] * 2 >= d->base64[i+1]);
 
    }
 
 
 
    // Now left-shift by an amount so that d->base64[i] gets shifted 1 bit more
 
    // than d->base64[i+1] and given the above assert condition, we ensure that
 
    // d->base64[i] >= d->base64[i+1]. Moreover for any symbol s64 of length i
 
    // and right-padded to 64 bits holds d->base64[i-1] >= s64 >= d->base64[i].
 
    for (size_t i = 0; i < d->base64.size(); ++i)
 
        d->base64[i] <<= 64 - i - d->minSymLen; // Right-padding to 64 bits
 
 
 
    data += d->base64.size() * sizeof(Sym);
 
    d->symlen.resize(number<uint16_t, LittleEndian>(data)); data += sizeof(uint16_t);
 
    d->btree = (LR*)data;
 
 
 
    // The comrpession scheme used is "Recursive Pairing", that replaces the most
 
    // frequent adjacent pair of symbols in the source message by a new symbol,
 
    // reevaluating the frequencies of all of the symbol pairs with respect to
 
    // the extended alphabet, and then repeating the process.
 
    // See http://www.larsson.dogma.net/dcc99.pdf
 
    std::vector<bool> visited(d->symlen.size());
 
 
 
    for (Sym sym = 0; sym < d->symlen.size(); ++sym)
 
        if (!visited[sym])
 
            d->symlen[sym] = set_symlen(d, sym, visited);
 
 
 
    return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1);
 
}
 
 
 
template<typename T>
 
uint8_t* set_dtz_map(WDLEntry&, T&, uint8_t*, File) { return nullptr; }
 
 
 
template<typename T>
 
uint8_t* set_dtz_map(DTZEntry&, T& p, uint8_t* data, File maxFile) {
 
 
 
    p.map = data;
 
 
 
    for (File f = FILE_A; f <= maxFile; ++f) {
 
        if (item(p, 0, f).precomp->flags & TBFlag::Mapped)
 
            for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x
 
                item(p, 0, f).map_idx[i] = (uint16_t)(data - p.map + 1);
 
                data += *data + 1;
 
            }
 
    }
 
 
 
    return data += (uintptr_t)data & 1; // Word alignment
 
}
 
 
 
template<typename Entry, typename T>
 
void do_init(Entry& e, T& p, uint8_t* data) {
 
 
 
    const bool IsWDL = std::is_same<Entry, WDLEntry>::value;
 
 
 
    PairsData* d;
 
 
 
    enum { Split = 1, HasPawns = 2 };
 
 
 
    assert(e.hasPawns        == !!(*data & HasPawns));
 
    assert((e.key != e.key2) == !!(*data & Split));
 
 
 
    data++; // First byte stores flags
 
 
 
    const int Sides = IsWDL && (e.key != e.key2) ? 2 : 1;
 
    const File MaxFile = e.hasPawns ? FILE_D : FILE_A;
 
 
 
    bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides
 
 
 
    assert(!pp || e.pawnTable.pawnCount[0]);
 
 
 
    for (File f = FILE_A; f <= MaxFile; ++f) {
 
 
 
        for (int i = 0; i < Sides; i++)
 
            item(p, i, f).precomp = new PairsData();
 
 
 
        int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF },
 
                           { *data >>  4, pp ? *(data + 1) >>  4 : 0xF } };
 
        data += 1 + pp;
 
 
 
        for (int k = 0; k < e.pieceCount; ++k, ++data)
 
            for (int i = 0; i < Sides; i++)
 
                item(p, i, f).precomp->pieces[k] = Piece(i ? *data >>  4 : *data & 0xF);
 
 
 
        for (int i = 0; i < Sides; ++i)
 
            set_groups(e, item(p, i, f).precomp, order[i], f);
 
    }
 
 
 
    data += (uintptr_t)data & 1; // Word alignment
 
 
 
    for (File f = FILE_A; f <= MaxFile; ++f)
 
        for (int i = 0; i < Sides; i++)
 
            data = set_sizes(item(p, i, f).precomp, data);
 
 
 
    if (!IsWDL)
 
        data = set_dtz_map(e, p, data, MaxFile);
 
 
 
    for (File f = FILE_A; f <= MaxFile; ++f)
 
        for (int i = 0; i < Sides; i++) {
 
            (d = item(p, i, f).precomp)->sparseIndex = (SparseEntry*)data;
 
            data += d->sparseIndexSize * sizeof(SparseEntry);
 
        }
 
 
 
    for (File f = FILE_A; f <= MaxFile; ++f)
 
        for (int i = 0; i < Sides; i++) {
 
            (d = item(p, i, f).precomp)->blockLength = (uint16_t*)data;
 
            data += d->blockLengthSize * sizeof(uint16_t);
 
        }
 
 
 
    for (File f = FILE_A; f <= MaxFile; ++f)
 
        for (int i = 0; i < Sides; i++) {
 
            data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment
 
            (d = item(p, i, f).precomp)->data = data;
 
            data += d->blocksNum * d->sizeofBlock;
 
        }
 
}
 
 
 
template<typename Entry>
 
void* init(Entry& e, const Position& pos) {
 
 
 
    const bool IsWDL = std::is_same<Entry, WDLEntry>::value;
 
 
 
    static Mutex mutex;
 
 
 
    // Avoid a thread reads 'ready' == true while another is still in do_init(),
 
    // this could happen due to compiler reordering.
 
    if (e.ready.load(std::memory_order_acquire))
 
        return e.baseAddress;
 
 
 
    std::unique_lock<Mutex> lk(mutex);
 
 
 
    if (e.ready.load(std::memory_order_relaxed)) // Recheck under lock
 
        return e.baseAddress;
 
 
 
    // Pieces strings in decreasing order for each color, like ("KPP","KR")
 
    std::string fname, w, b;
 
    for (PieceType pt = KING; pt >= PAWN; --pt) {
 
        w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]);
 
        b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]);
 
    }
 
 
 
    const uint8_t TB_MAGIC[][4] = { { 0xD7, 0x66, 0x0C, 0xA5 },
 
                                    { 0x71, 0xE8, 0x23, 0x5D } };
 
 
 
    fname =  (e.key == pos.material_key() ? w + 'v' + b : b + 'v' + w)
 
           + (IsWDL ? ".rtbw" : ".rtbz");
 
 
 
    uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, TB_MAGIC[IsWDL]);
 
    if (data)
 
        e.hasPawns ? do_init(e, e.pawnTable, data) : do_init(e, e.pieceTable, data);
 
 
 
    e.ready.store(true, std::memory_order_release);
 
    return e.baseAddress;
 
}
 
 
 
template<typename E, typename T = typename Ret<E>::type>
 
T probe_table(const Position& pos, ProbeState* result, WDLScore wdl = WDLDraw) {
 
 
 
    if (!(pos.pieces() ^ pos.pieces(KING)))
 
        return T(WDLDraw); // KvK
 
 
 
    E* entry = EntryTable.get<E>(pos.material_key());
 
 
 
    if (!entry || !init(*entry, pos))
 
        return *result = FAIL, T();
 
 
 
    return do_probe_table(pos, entry, wdl, result);
 
}
 
 
 
// For a position where the side to move has a winning capture it is not necessary
 
// to store a winning value so the generator treats such positions as "don't cares"
 
// and tries to assign to it a value that improves the compression ratio. Similarly,
 
// if the side to move has a drawing capture, then the position is at least drawn.
 
// If the position is won, then the TB needs to store a win value. But if the
 
// position is drawn, the TB may store a loss value if that is better for compression.
 
// All of this means that during probing, the engine must look at captures and probe
 
// their results and must probe the position itself. The "best" result of these
 
// probes is the correct result for the position.
 
// DTZ table don't store values when a following move is a zeroing winning move
 
// (winning capture or winning pawn move). Also DTZ store wrong values for positions
 
// where the best move is an ep-move (even if losing). So in all these cases set
 
// the state to ZEROING_BEST_MOVE.
 
template<bool CheckZeroingMoves = false>
 
WDLScore search(Position& pos, ProbeState* result) {
 
 
 
    WDLScore value, bestValue = WDLLoss;
 
    StateInfo st;
 
 
 
    auto moveList = MoveList<LEGAL>(pos);
 
    size_t totalCount = moveList.size(), moveCount = 0;
 
 
 
    for (const Move& move : moveList)
 
    {
 
        if (   !pos.capture(move)
 
            && (!CheckZeroingMoves || type_of(pos.moved_piece(move)) != PAWN))
 
            continue;
 
 
 
        moveCount++;
 
 
 
        pos.do_move(move, st);
 
        value = -search(pos, result);
 
        pos.undo_move(move);
 
 
 
        if (*result == FAIL)
 
            return WDLDraw;
 
 
 
        if (value > bestValue)
 
        {
 
            bestValue = value;
 
 
 
            if (value >= WDLWin)
 
            {
 
                *result = ZEROING_BEST_MOVE; // Winning DTZ-zeroing move
 
                return value;
 
            }
 
        }
 
    }
 
 
 
    // In case we have already searched all the legal moves we don't have to probe
 
    // the TB because the stored score could be wrong. For instance TB tables
 
    // do not contain information on position with ep rights, so in this case
 
    // the result of probe_wdl_table is wrong. Also in case of only capture
 
    // moves, for instance here 4K3/4q3/6p1/2k5/6p1/8/8/8 w - - 0 7, we have to
 
    // return with ZEROING_BEST_MOVE set.
 
    bool noMoreMoves = (moveCount && moveCount == totalCount);
 
 
 
    if (noMoreMoves)
 
        value = bestValue;
 
    else
 
    {
 
        value = probe_table<WDLEntry>(pos, result);
 
 
 
        if (*result == FAIL)
 
            return WDLDraw;
 
    }
 
 
 
    // DTZ stores a "don't care" value if bestValue is a win
 
    if (bestValue >= value)
 
        return *result = (   bestValue > WDLDraw
 
                          || noMoreMoves ? ZEROING_BEST_MOVE : OK), bestValue;
 
 
 
    return *result = OK, value;
 
}
 
 
 
} // namespace
 
 
 
void Tablebases::init(const std::string& paths) {
 
 
 
    EntryTable.clear();
 
    MaxCardinality = 0;
 
    TBFile::Paths = paths;
 
 
 
    if (paths.empty() || paths == "") // Pierre-Marie Baty -- was: || paths == "<empty>"
 
        return;
 
 
 
    // MapB1H1H7[] encodes a square below a1-h8 diagonal to 0..27
 
    int code = 0;
 
    for (Square s = SQ_A1; s <= SQ_H8; ++s)
 
        if (off_A1H8(s) < 0)
 
            MapB1H1H7[s] = code++;
 
 
 
    // MapA1D1D4[] encodes a square in the a1-d1-d4 triangle to 0..9
 
    std::vector<Square> diagonal;
 
    code = 0;
 
    for (Square s = SQ_A1; s <= SQ_D4; ++s)
 
        if (off_A1H8(s) < 0 && file_of(s) <= FILE_D)
 
            MapA1D1D4[s] = code++;
 
 
 
        else if (!off_A1H8(s) && file_of(s) <= FILE_D)
 
            diagonal.push_back(s);
 
 
 
    // Diagonal squares are encoded as last ones
 
    for (auto s : diagonal)
 
        MapA1D1D4[s] = code++;
 
 
 
    // MapKK[] encodes all the 461 possible legal positions of two kings where
 
    // the first is in the a1-d1-d4 triangle. If the first king is on the a1-d4
 
    // diagonal, the other one shall not to be above the a1-h8 diagonal.
 
    std::vector<std::pair<int, Square>> bothOnDiagonal;
 
    code = 0;
 
    for (int idx = 0; idx < 10; idx++)
 
        for (Square s1 = SQ_A1; s1 <= SQ_D4; ++s1)
 
            if (MapA1D1D4[s1] == idx && (idx || s1 == SQ_B1)) // SQ_B1 is mapped to 0
 
            {
 
                for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
 
                    if ((PseudoAttacks[KING][s1] | s1) & s2)
 
                        continue; // Illegal position
 
 
 
                    else if (!off_A1H8(s1) && off_A1H8(s2) > 0)
 
                        continue; // First on diagonal, second above
 
 
 
                    else if (!off_A1H8(s1) && !off_A1H8(s2))
 
                        bothOnDiagonal.push_back(std::make_pair(idx, s2));
 
 
 
                    else
 
                        MapKK[idx][s2] = code++;
 
            }
 
 
 
    // Legal positions with both kings on diagonal are encoded as last ones
 
    for (auto p : bothOnDiagonal)
 
        MapKK[p.first][p.second] = code++;
 
 
 
    // Binomial[] stores the Binomial Coefficents using Pascal rule. There
 
    // are Binomial[k][n] ways to choose k elements from a set of n elements.
 
    Binomial[0][0] = 1;
 
 
 
    for (int n = 1; n < 64; n++) // Squares
 
        for (int k = 0; k < 6 && k <= n; ++k) // Pieces
 
            Binomial[k][n] =  (k > 0 ? Binomial[k - 1][n - 1] : 0)
 
                            + (k < n ? Binomial[k    ][n - 1] : 0);
 
 
 
    // MapPawns[s] encodes squares a2-h7 to 0..47. This is the number of possible
 
    // available squares when the leading one is in 's'. Moreover the pawn with
 
    // highest MapPawns[] is the leading pawn, the one nearest the edge and,
 
    // among pawns with same file, the one with lowest rank.
 
    int availableSquares = 47; // Available squares when lead pawn is in a2
 
 
 
    // Init the tables for the encoding of leading pawns group: with 6-men TB we
 
    // can have up to 4 leading pawns (KPPPPK).
 
    for (int leadPawnsCnt = 1; leadPawnsCnt <= 4; ++leadPawnsCnt)
 
        for (File f = FILE_A; f <= FILE_D; ++f)
 
        {
 
            // Restart the index at every file because TB table is splitted
 
            // by file, so we can reuse the same index for different files.
 
            int idx = 0;
 
 
 
            // Sum all possible combinations for a given file, starting with
 
            // the leading pawn on rank 2 and increasing the rank.
 
            for (Rank r = RANK_2; r <= RANK_7; ++r)
 
            {
 
                Square sq = make_square(f, r);
 
 
 
                // Compute MapPawns[] at first pass.
 
                // If sq is the leading pawn square, any other pawn cannot be
 
                // below or more toward the edge of sq. There are 47 available
 
                // squares when sq = a2 and reduced by 2 for any rank increase
 
                // due to mirroring: sq == a3 -> no a2, h2, so MapPawns[a3] = 45
 
                if (leadPawnsCnt == 1)
 
                {
 
                    MapPawns[sq] = availableSquares--;
 
                    MapPawns[sq ^ 7] = availableSquares--; // Horizontal flip
 
                }
 
                LeadPawnIdx[leadPawnsCnt][sq] = idx;
 
                idx += Binomial[leadPawnsCnt - 1][MapPawns[sq]];
 
            }
 
            // After a file is traversed, store the cumulated per-file index
 
            LeadPawnsSize[leadPawnsCnt][f] = idx;
 
        }
 
 
 
    for (PieceType p1 = PAWN; p1 < KING; ++p1) {
 
        EntryTable.insert({KING, p1, KING});
 
 
 
        for (PieceType p2 = PAWN; p2 <= p1; ++p2) {
 
            EntryTable.insert({KING, p1, p2, KING});
 
            EntryTable.insert({KING, p1, KING, p2});
 
 
 
            for (PieceType p3 = PAWN; p3 < KING; ++p3)
 
                EntryTable.insert({KING, p1, p2, KING, p3});
 
 
 
            for (PieceType p3 = PAWN; p3 <= p2; ++p3) {
 
                EntryTable.insert({KING, p1, p2, p3, KING});
 
 
 
                for (PieceType p4 = PAWN; p4 <= p3; ++p4)
 
                    EntryTable.insert({KING, p1, p2, p3, p4, KING});
 
 
 
                for (PieceType p4 = PAWN; p4 < KING; ++p4)
 
                    EntryTable.insert({KING, p1, p2, p3, KING, p4});
 
            }
 
 
 
            for (PieceType p3 = PAWN; p3 <= p1; ++p3)
 
                for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4)
 
                    EntryTable.insert({KING, p1, p2, KING, p3, p4});
 
        }
 
    }
 
 
 
    sync_cout << "info string Found " << EntryTable.size() << " tablebases" << sync_endl;
 
}
 
 
 
// Probe the WDL table for a particular position.
 
// If *result != FAIL, the probe was successful.
 
// The return value is from the point of view of the side to move:
 
// -2 : loss
 
// -1 : loss, but draw under 50-move rule
 
//  0 : draw
 
//  1 : win, but draw under 50-move rule
 
//  2 : win
 
WDLScore Tablebases::probe_wdl(Position& pos, ProbeState* result) {
 
 
 
    *result = OK;
 
    return search(pos, result);
 
}
 
 
 
// Probe the DTZ table for a particular position.
 
// If *result != FAIL, the probe was successful.
 
// The return value is from the point of view of the side to move:
 
//         n < -100 : loss, but draw under 50-move rule
 
// -100 <= n < -1   : loss in n ply (assuming 50-move counter == 0)
 
//         0        : draw
 
//     1 < n <= 100 : win in n ply (assuming 50-move counter == 0)
 
//   100 < n        : win, but draw under 50-move rule
 
//
 
// The return value n can be off by 1: a return value -n can mean a loss
 
// in n+1 ply and a return value +n can mean a win in n+1 ply. This
 
// cannot happen for tables with positions exactly on the "edge" of
 
// the 50-move rule.
 
//
 
// This implies that if dtz > 0 is returned, the position is certainly
 
// a win if dtz + 50-move-counter <= 99. Care must be taken that the engine
 
// picks moves that preserve dtz + 50-move-counter <= 99.
 
//
 
// If n = 100 immediately after a capture or pawn move, then the position
 
// is also certainly a win, and during the whole phase until the next
 
// capture or pawn move, the inequality to be preserved is
 
// dtz + 50-movecounter <= 100.
 
//
 
// In short, if a move is available resulting in dtz + 50-move-counter <= 99,
 
// then do not accept moves leading to dtz + 50-move-counter == 100.
 
int Tablebases::probe_dtz(Position& pos, ProbeState* result) {
 
 
 
    *result = OK;
 
    WDLScore wdl = search<true>(pos, result);
 
 
 
    if (*result == FAIL || wdl == WDLDraw) // DTZ tables don't store draws
 
        return 0;
 
 
 
    // DTZ stores a 'don't care' value in this case, or even a plain wrong
 
    // one as in case the best move is a losing ep, so it cannot be probed.
 
    if (*result == ZEROING_BEST_MOVE)
 
        return dtz_before_zeroing(wdl);
 
 
 
    int dtz = probe_table<DTZEntry>(pos, result, wdl);
 
 
 
    if (*result == FAIL)
 
        return 0;
 
 
 
    if (*result != CHANGE_STM)
 
        return (dtz + 100 * (wdl == WDLBlessedLoss || wdl == WDLCursedWin)) * sign_of(wdl);
 
 
 
    // DTZ stores results for the other side, so we need to do a 1-ply search and
 
    // find the winning move that minimizes DTZ.
 
    StateInfo st;
 
    int minDTZ = 0xFFFF;
 
 
 
    for (const Move& move : MoveList<LEGAL>(pos))
 
    {
 
        bool zeroing = pos.capture(move) || type_of(pos.moved_piece(move)) == PAWN;
 
 
 
        pos.do_move(move, st);
 
 
 
        // For zeroing moves we want the dtz of the move _before_ doing it,
 
        // otherwise we will get the dtz of the next move sequence. Search the
 
        // position after the move to get the score sign (because even in a
 
        // winning position we could make a losing capture or going for a draw).
 
        dtz = zeroing ? -dtz_before_zeroing(search(pos, result))
 
                      : -probe_dtz(pos, result);
 
 
 
        pos.undo_move(move);
 
 
 
        if (*result == FAIL)
 
            return 0;
 
 
 
        // Convert result from 1-ply search. Zeroing moves are already accounted
 
        // by dtz_before_zeroing() that returns the DTZ of the previous move.
 
        if (!zeroing)
 
            dtz += sign_of(dtz);
 
 
 
        // Skip the draws and if we are winning only pick positive dtz
 
        if (dtz < minDTZ && sign_of(dtz) == sign_of(wdl))
 
            minDTZ = dtz;
 
    }
 
 
 
    // Special handle a mate position, when there are no legal moves, in this
 
    // case return value is somewhat arbitrary, so stick to the original TB code
 
    // that returns -1 in this case.
 
    return minDTZ == 0xFFFF ? -1 : minDTZ;
 
}
 
 
 
// Check whether there has been at least one repetition of positions
 
// since the last capture or pawn move.
 
static int has_repeated(StateInfo *st)
 
{
 
    while (1) {
 
        int i = 4, e = std::min(st->rule50, st->pliesFromNull);
 
 
 
        if (e < i)
 
            return 0;
 
 
 
        StateInfo *stp = st->previous->previous;
 
 
 
        do {
 
            stp = stp->previous->previous;
 
 
 
            if (stp->key == st->key)
 
                return 1;
 
 
 
            i += 2;
 
        } while (i <= e);
 
 
 
        st = st->previous;
 
    }
 
}
 
 
 
// Use the DTZ tables to filter out moves that don't preserve the win or draw.
 
// If the position is lost, but DTZ is fairly high, only keep moves that
 
// maximise DTZ.
 
//
 
// A return value false indicates that not all probes were successful and that
 
// no moves were filtered out.
 
bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves, Value& score)
 
{
 
    assert(rootMoves.size());
 
 
 
    ProbeState result;
 
    int dtz = probe_dtz(pos, &result);
 
 
 
    if (result == FAIL)
 
        return false;
 
 
 
    StateInfo st;
 
 
 
    // Probe each move
 
    for (size_t i = 0; i < rootMoves.size(); ++i) {
 
        Move move = rootMoves[i].pv[0];
 
        pos.do_move(move, st);
 
        int v = 0;
 
 
 
        if (pos.checkers() && dtz > 0) {
 
            ExtMove s[MAX_MOVES];
 
 
 
            if (generate<LEGAL>(pos, s) == s)
 
                v = 1;
 
        }
 
 
 
        if (!v) {
 
            if (st.rule50 != 0) {
 
                v = -probe_dtz(pos, &result);
 
 
 
                if (v > 0)
 
                    ++v;
 
                else if (v < 0)
 
                    --v;
 
            } else {
 
                v = -probe_wdl(pos, &result);
 
                v = dtz_before_zeroing(WDLScore(v));
 
            }
 
        }
 
 
 
        pos.undo_move(move);
 
 
 
        if (result == FAIL)
 
            return false;
 
 
 
        rootMoves[i].score = (Value)v;
 
    }
 
 
 
    // Obtain 50-move counter for the root position.
 
    // In Stockfish there seems to be no clean way, so we do it like this:
 
    int cnt50 = st.previous ? st.previous->rule50 : 0;
 
 
 
    // Use 50-move counter to determine whether the root position is
 
    // won, lost or drawn.
 
    WDLScore wdl = WDLDraw;
 
 
 
    if (dtz > 0)
 
        wdl = (dtz + cnt50 <= 100) ? WDLWin : WDLCursedWin;
 
    else if (dtz < 0)
 
        wdl = (-dtz + cnt50 <= 100) ? WDLLoss : WDLBlessedLoss;
 
 
 
    // Determine the score to report to the user.
 
    score = WDL_to_value[wdl + 2];
 
 
 
    // If the position is winning or losing, but too few moves left, adjust the
 
    // score to show how close it is to winning or losing.
 
    // NOTE: int(PawnValueEg) is used as scaling factor in score_to_uci().
 
    if (wdl == WDLCursedWin && dtz <= 100)
 
        score = (Value)(((200 - dtz - cnt50) * int(PawnValueEg)) / 200);
 
    else if (wdl == WDLBlessedLoss && dtz >= -100)
 
        score = -(Value)(((200 + dtz - cnt50) * int(PawnValueEg)) / 200);
 
 
 
    // Now be a bit smart about filtering out moves.
 
    size_t j = 0;
 
 
 
    if (dtz > 0) { // winning (or 50-move rule draw)
 
        int best = 0xffff;
 
 
 
        for (size_t i = 0; i < rootMoves.size(); ++i) {
 
            int v = rootMoves[i].score;
 
 
 
            if (v > 0 && v < best)
 
                best = v;
 
        }
 
 
 
        int max = best;
 
 
 
        // If the current phase has not seen repetitions, then try all moves
 
        // that stay safely within the 50-move budget, if there are any.
 
        if (!has_repeated(st.previous) && best + cnt50 <= 99)
 
            max = 99 - cnt50;
 
 
 
        for (size_t i = 0; i < rootMoves.size(); ++i) {
 
            int v = rootMoves[i].score;
 
 
 
            if (v > 0 && v <= max)
 
                rootMoves[j++] = rootMoves[i];
 
        }
 
    } else if (dtz < 0) { // losing (or 50-move rule draw)
 
        int best = 0;
 
 
 
        for (size_t i = 0; i < rootMoves.size(); ++i) {
 
            int v = rootMoves[i].score;
 
 
 
            if (v < best)
 
                best = v;
 
        }
 
 
 
        // Try all moves, unless we approach or have a 50-move rule draw.
 
        if (-best * 2 + cnt50 < 100)
 
            return true;
 
 
 
        for (size_t i = 0; i < rootMoves.size(); ++i) {
 
            if (rootMoves[i].score == best)
 
                rootMoves[j++] = rootMoves[i];
 
        }
 
    } else { // drawing
 
        // Try all moves that preserve the draw.
 
        for (size_t i = 0; i < rootMoves.size(); ++i) {
 
            if (rootMoves[i].score == 0)
 
                rootMoves[j++] = rootMoves[i];
 
        }
 
    }
 
 
 
    rootMoves.resize(j, Search::RootMove(MOVE_NONE));
 
 
 
    return true;
 
}
 
 
 
// Use the WDL tables to filter out moves that don't preserve the win or draw.
 
// This is a fallback for the case that some or all DTZ tables are missing.
 
//
 
// A return value false indicates that not all probes were successful and that
 
// no moves were filtered out.
 
bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves, Value& score)
 
{
 
    ProbeState result;
 
 
 
    WDLScore wdl = Tablebases::probe_wdl(pos, &result);
 
 
 
    if (result == FAIL)
 
        return false;
 
 
 
    score = WDL_to_value[wdl + 2];
 
 
 
    StateInfo st;
 
 
 
    int best = WDLLoss;
 
 
 
    // Probe each move
 
    for (size_t i = 0; i < rootMoves.size(); ++i) {
 
        Move move = rootMoves[i].pv[0];
 
        pos.do_move(move, st);
 
        WDLScore v = -Tablebases::probe_wdl(pos, &result);
 
        pos.undo_move(move);
 
 
 
        if (result == FAIL)
 
            return false;
 
 
 
        rootMoves[i].score = (Value)v;
 
 
 
        if (v > best)
 
            best = v;
 
    }
 
 
 
    size_t j = 0;
 
 
 
    for (size_t i = 0; i < rootMoves.size(); ++i) {
 
        if (rootMoves[i].score == best)
 
            rootMoves[j++] = rootMoves[i];
 
    }
 
 
 
    rootMoves.resize(j, Search::RootMove(MOVE_NONE));
 
 
 
    return true;
 
}