/*
 
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
 
  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
 
  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
 
  Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
 
 
 
  Stockfish is free software: you can redistribute it and/or modify
 
  it under the terms of the GNU General Public License as published by
 
  the Free Software Foundation, either version 3 of the License, or
 
  (at your option) any later version.
 
 
 
  Stockfish is distributed in the hope that it will be useful,
 
  but WITHOUT ANY WARRANTY; without even the implied warranty of
 
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
  GNU General Public License for more details.
 
 
 
  You should have received a copy of the GNU General Public License
 
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 
*/
 
 
 
#include <algorithm>
 
#include <cassert>
 
#include <cmath>
 
#include <cstring>   // For std::memset
 
#include <iostream>
 
#include <sstream>
 
 
 
#include "evaluate.h"
 
#include "misc.h"
 
#include "movegen.h"
 
#include "movepick.h"
 
#include "search.h"
 
#include "timeman.h"
 
#include "thread.h"
 
#include "tt.h"
 
#include "uci.h"
 
#include "syzygy/tbprobe.h"
 
 
 
namespace Search {
 
 
 
  SignalsType Signals;
 
  LimitsType Limits;
 
  StateStackPtr SetupStates;
 
}
 
 
 
namespace Tablebases {
 
 
 
  int Cardinality;
 
  uint64_t Hits;
 
  bool RootInTB;
 
  bool UseRule50;
 
  Depth ProbeDepth;
 
  Value Score;
 
}
 
 
 
namespace TB = Tablebases;
 
 
 
using std::string;
 
using Eval::evaluate;
 
using namespace Search;
 
 
 
namespace {
 
 
 
  // Different node types, used as a template parameter
 
  enum NodeType { NonPV, PV };
 
 
 
  // Razoring and futility margin based on depth
 
  const int razor_margin[4] = { 483, 570, 603, 554 };
 
  Value futility_margin(Depth d) { return Value(200 * d); }
 
 
 
  // Futility and reductions lookup tables, initialized at startup
 
  int FutilityMoveCounts[2][16];  // [improving][depth]
 
  Depth Reductions[2][2][64][64]; // [pv][improving][depth][moveNumber]
 
 
 
  template <bool PvNode> Depth reduction(bool i, Depth d, int mn) {
 
    return Reductions[PvNode][i][std::min(d, 63 * ONE_PLY)][std::min(mn, 63)];
 
  }
 
 
 
  // Skill structure is used to implement strength limit
 
  struct Skill {
 
    Skill(int l) : level(l) {}
 
    bool enabled() const { return level < 20; }
 
    bool time_to_pick(Depth depth) const { return depth / ONE_PLY == 1 + level; }
 
    Move best_move(size_t multiPV) { return best ? best : pick_best(multiPV); }
 
    Move pick_best(size_t multiPV);
 
 
 
    int level;
 
    Move best = MOVE_NONE;
 
  };
 
 
 
  // EasyMoveManager structure is used to detect an 'easy move'. When the PV is
 
  // stable across multiple search iterations, we can quickly return the best move.
 
  struct EasyMoveManager {
 
 
 
    void clear() {
 
      stableCnt = 0;
 
      expectedPosKey = 0;
 
      pv[0] = pv[1] = pv[2] = MOVE_NONE;
 
    }
 
 
 
    Move get(Key key) const {
 
      return expectedPosKey == key ? pv[2] : MOVE_NONE;
 
    }
 
 
 
    void update(Position& pos, const std::vector<Move>& newPv) {
 
 
 
      assert(newPv.size() >= 3);
 
 
 
      // Keep track of how many times in a row the 3rd ply remains stable
 
      stableCnt = (newPv[2] == pv[2]) ? stableCnt + 1 : 0;
 
 
 
      if (!std::equal(newPv.begin(), newPv.begin() + 3, pv))
 
      {
 
          std::copy(newPv.begin(), newPv.begin() + 3, pv);
 
 
 
          StateInfo st[2];
 
          pos.do_move(newPv[0], st[0], pos.gives_check(newPv[0], CheckInfo(pos)));
 
          pos.do_move(newPv[1], st[1], pos.gives_check(newPv[1], CheckInfo(pos)));
 
          expectedPosKey = pos.key();
 
          pos.undo_move(newPv[1]);
 
          pos.undo_move(newPv[0]);
 
      }
 
    }
 
 
 
    int stableCnt;
 
    Key expectedPosKey;
 
    Move pv[3];
 
  };
 
 
 
  // Set of rows with half bits set to 1 and half to 0. It is used to allocate
 
  // the search depths across the threads.
 
  typedef std::vector<int> Row;
 
 
 
  const Row HalfDensity[] = {
 
    {0, 1},
 
    {1, 0},
 
    {0, 0, 1, 1},
 
    {0, 1, 1, 0},
 
    {1, 1, 0, 0},
 
    {1, 0, 0, 1},
 
    {0, 0, 0, 1, 1, 1},
 
    {0, 0, 1, 1, 1, 0},
 
    {0, 1, 1, 1, 0, 0},
 
    {1, 1, 1, 0, 0, 0},
 
    {1, 1, 0, 0, 0, 1},
 
    {1, 0, 0, 0, 1, 1},
 
    {0, 0, 0, 0, 1, 1, 1, 1},
 
    {0, 0, 0, 1, 1, 1, 1, 0},
 
    {0, 0, 1, 1, 1, 1, 0 ,0},
 
    {0, 1, 1, 1, 1, 0, 0 ,0},
 
    {1, 1, 1, 1, 0, 0, 0 ,0},
 
    {1, 1, 1, 0, 0, 0, 0 ,1},
 
    {1, 1, 0, 0, 0, 0, 1 ,1},
 
    {1, 0, 0, 0, 0, 1, 1 ,1},
 
  };
 
 
 
  const size_t HalfDensitySize = std::extent<decltype(HalfDensity)>::value;
 
 
 
  EasyMoveManager EasyMove;
 
  Value DrawValue[COLOR_NB];
 
  CounterMoveHistoryStats CounterMoveHistory;
 
 
 
  template <NodeType NT>
 
  Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode);
 
 
 
  template <NodeType NT, bool InCheck>
 
  Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
 
 
 
  Value value_to_tt(Value v, int ply);
 
  Value value_from_tt(Value v, int ply);
 
  void update_pv(Move* pv, Move move, Move* childPv);
 
  void update_stats(const Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt);
 
  void check_time();
 
 
 
} // namespace
 
 
 
 
 
/// Search::init() is called during startup to initialize various lookup tables
 
 
 
void Search::init() {
 
 
 
  const double K[][2] = {{ 0.799, 2.281 }, { 0.484, 3.023 }};
 
 
 
  for (int pv = 0; pv <= 1; ++pv)
 
      for (int imp = 0; imp <= 1; ++imp)
 
          for (int d = 1; d < 64; ++d)
 
              for (int mc = 1; mc < 64; ++mc)
 
              {
 
                  double r = K[pv][0] + log(d) * log(mc) / K[pv][1];
 
 
 
                  if (r >= 1.5)
 
                      Reductions[pv][imp][d][mc] = int(r) * ONE_PLY;
 
 
 
                  // Increase reduction when eval is not improving
 
                  if (!pv && !imp && Reductions[pv][imp][d][mc] >= 2 * ONE_PLY)
 
                      Reductions[pv][imp][d][mc] += ONE_PLY;
 
              }
 
 
 
  for (int d = 0; d < 16; ++d)
 
  {
 
      FutilityMoveCounts[0][d] = int(2.4 + 0.773 * pow(d + 0.00, 1.8));
 
      FutilityMoveCounts[1][d] = int(2.9 + 1.045 * pow(d + 0.49, 1.8));
 
  }
 
}
 
 
 
 
 
/// Search::clear() resets search state to zero, to obtain reproducible results
 
 
 
void Search::clear() {
 
 
 
  TT.clear();
 
  CounterMoveHistory.clear();
 
 
 
  for (Thread* th : Threads)
 
  {
 
      th->history.clear();
 
      th->counterMoves.clear();
 
  }
 
 
 
  Threads.main()->previousScore = VALUE_INFINITE;
 
}
 
 
 
 
 
/// Search::perft() is our utility to verify move generation. All the leaf nodes
 
/// up to the given depth are generated and counted, and the sum is returned.
 
template<bool Root>
 
uint64_t Search::perft(Position& pos, Depth depth) {
 
 
 
  StateInfo st;
 
  uint64_t cnt, nodes = 0;
 
  CheckInfo ci(pos);
 
  const bool leaf = (depth == 2 * ONE_PLY);
 
 
 
  for (const auto& m : MoveList<LEGAL>(pos))
 
  {
 
      if (Root && depth <= ONE_PLY)
 
          cnt = 1, nodes++;
 
      else
 
      {
 
          pos.do_move(m, st, pos.gives_check(m, ci));
 
          cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - ONE_PLY);
 
          nodes += cnt;
 
          pos.undo_move(m);
 
      }
 
      if (Root)
 
          sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl;
 
  }
 
  return nodes;
 
}
 
 
 
template uint64_t Search::perft<true>(Position&, Depth);
 
 
 
 
 
/// MainThread::search() is called by the main thread when the program receives
 
/// the UCI 'go' command. It searches from the root position and outputs the "bestmove".
 
 
 
void MainThread::search() {
 
 
 
  Color us = rootPos.side_to_move();
 
  Time.init(Limits, us, rootPos.game_ply());
 
 
 
  int contempt = Options["Contempt"] * PawnValueEg / 100; // From centipawns
 
  DrawValue[ us] = VALUE_DRAW - Value(contempt);
 
  DrawValue[~us] = VALUE_DRAW + Value(contempt);
 
 
 
  TB::Hits = 0;
 
  TB::RootInTB = false;
 
  TB::UseRule50 = Options["Syzygy50MoveRule"];
 
  TB::ProbeDepth = Options["SyzygyProbeDepth"] * ONE_PLY;
 
  TB::Cardinality = Options["SyzygyProbeLimit"];
 
 
 
  // Skip TB probing when no TB found: !TBLargest -> !TB::Cardinality
 
  if (TB::Cardinality > TB::MaxCardinality)
 
  {
 
      TB::Cardinality = TB::MaxCardinality;
 
      TB::ProbeDepth = DEPTH_ZERO;
 
  }
 
 
 
  if (rootMoves.empty())
 
  {
 
      rootMoves.push_back(RootMove(MOVE_NONE));
 
      sync_cout << "info depth 0 score "
 
                << UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
 
                << sync_endl;
 
  }
 
  else
 
  {
 
      if (    TB::Cardinality >=  rootPos.count<ALL_PIECES>(WHITE)
 
                                + rootPos.count<ALL_PIECES>(BLACK)
 
          && !rootPos.can_castle(ANY_CASTLING))
 
      {
 
          // If the current root position is in the tablebases, then RootMoves
 
          // contains only moves that preserve the draw or the win.
 
          TB::RootInTB = Tablebases::root_probe(rootPos, rootMoves, TB::Score);
 
 
 
          if (TB::RootInTB)
 
              TB::Cardinality = 0; // Do not probe tablebases during the search
 
 
 
          else // If DTZ tables are missing, use WDL tables as a fallback
 
          {
 
              // Filter out moves that do not preserve the draw or the win.
 
              TB::RootInTB = Tablebases::root_probe_wdl(rootPos, rootMoves, TB::Score);
 
 
 
              // Only probe during search if winning
 
              if (TB::Score <= VALUE_DRAW)
 
                  TB::Cardinality = 0;
 
          }
 
 
 
          if (TB::RootInTB)
 
          {
 
              TB::Hits = rootMoves.size();
 
 
 
              if (!TB::UseRule50)
 
                  TB::Score =  TB::Score > VALUE_DRAW ?  VALUE_MATE - MAX_PLY - 1
 
                             : TB::Score < VALUE_DRAW ? -VALUE_MATE + MAX_PLY + 1
 
                                                      :  VALUE_DRAW;
 
          }
 
      }
 
 
 
      for (Thread* th : Threads)
 
      {
 
          th->maxPly = 0;
 
          th->rootDepth = DEPTH_ZERO;
 
          if (th != this)
 
          {
 
              th->rootPos = Position(rootPos, th);
 
              th->rootMoves = rootMoves;
 
              th->start_searching();
 
          }
 
      }
 
 
 
      Thread::search(); // Let's start searching!
 
  }
 
 
 
  // When playing in 'nodes as time' mode, subtract the searched nodes from
 
  // the available ones before exiting.
 
  if (Limits.npmsec)
 
      Time.availableNodes += Limits.inc[us] - Threads.nodes_searched();
 
 
 
  // When we reach the maximum depth, we can arrive here without a raise of
 
  // Signals.stop. However, if we are pondering or in an infinite search,
 
  // the UCI protocol states that we shouldn't print the best move before the
 
  // GUI sends a "stop" or "ponderhit" command. We therefore simply wait here
 
  // until the GUI sends one of those commands (which also raises Signals.stop).
 
  if (!Signals.stop && (Limits.ponder || Limits.infinite))
 
  {
 
      Signals.stopOnPonderhit = true;
 
      wait(Signals.stop);
 
  }
 
 
 
  // Stop the threads if not already stopped
 
  Signals.stop = true;
 
 
 
  // Wait until all threads have finished
 
  for (Thread* th : Threads)
 
      if (th != this)
 
          th->wait_for_search_finished();
 
 
 
  // Check if there are threads with a better score than main thread
 
  Thread* bestThread = this;
 
  if (   !this->easyMovePlayed
 
      &&  Options["MultiPV"] == 1
 
      && !Skill(Options["Skill Level"]).enabled())
 
  {
 
      for (Thread* th : Threads)
 
          if (   th->completedDepth > bestThread->completedDepth
 
              && th->rootMoves[0].score > bestThread->rootMoves[0].score)
 
              bestThread = th;
 
  }
 
 
 
  previousScore = bestThread->rootMoves[0].score;
 
 
 
  // Send new PV when needed
 
  if (bestThread != this)
 
      sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl;
 
 
 
  sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960());
 
 
 
  if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos))
 
      std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960());
 
 
 
  std::cout << sync_endl;
 
}
 
 
 
 
 
// Thread::search() is the main iterative deepening loop. It calls search()
 
// repeatedly with increasing depth until the allocated thinking time has been
 
// consumed, the user stops the search, or the maximum search depth is reached.
 
 
 
void Thread::search() {
 
 
 
  Stack stack[MAX_PLY+4], *ss = stack+2; // To allow referencing (ss-2) and (ss+2)
 
  Value bestValue, alpha, beta, delta;
 
  Move easyMove = MOVE_NONE;
 
  MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr);
 
 
 
  std::memset(ss-2, 0, 5 * sizeof(Stack));
 
 
 
  bestValue = delta = alpha = -VALUE_INFINITE;
 
  beta = VALUE_INFINITE;
 
  completedDepth = DEPTH_ZERO;
 
 
 
  if (mainThread)
 
  {
 
      easyMove = EasyMove.get(rootPos.key());
 
      EasyMove.clear();
 
      mainThread->easyMovePlayed = mainThread->failedLow = false;
 
      mainThread->bestMoveChanges = 0;
 
      TT.new_search();
 
  }
 
 
 
  size_t multiPV = Options["MultiPV"];
 
  Skill skill(Options["Skill Level"]);
 
 
 
  // When playing with strength handicap enable MultiPV search that we will
 
  // use behind the scenes to retrieve a set of possible moves.
 
  if (skill.enabled())
 
      multiPV = std::max(multiPV, (size_t)4);
 
 
 
  multiPV = std::min(multiPV, rootMoves.size());
 
 
 
  // Iterative deepening loop until requested to stop or the target depth is reached.
 
  while (++rootDepth < DEPTH_MAX && !Signals.stop && (!Limits.depth || rootDepth <= Limits.depth))
 
  {
 
      // Set up the new depths for the helper threads skipping on average every
 
      // 2nd ply (using a half-density matrix).
 
      if (!mainThread)
 
      {
 
          const Row& row = HalfDensity[(idx - 1) % HalfDensitySize];
 
          if (row[(rootDepth + rootPos.game_ply()) % row.size()])
 
             continue;
 
      }
 
 
 
      // Age out PV variability metric
 
      if (mainThread)
 
          mainThread->bestMoveChanges *= 0.505, mainThread->failedLow = false;
 
 
 
      // Save the last iteration's scores before first PV line is searched and
 
      // all the move scores except the (new) PV are set to -VALUE_INFINITE.
 
      for (RootMove& rm : rootMoves)
 
          rm.previousScore = rm.score;
 
 
 
      // MultiPV loop. We perform a full root search for each PV line
 
      for (PVIdx = 0; PVIdx < multiPV && !Signals.stop; ++PVIdx)
 
      {
 
          // Reset aspiration window starting size
 
          if (rootDepth >= 5 * ONE_PLY)
 
          {
 
              delta = Value(18);
 
              alpha = std::max(rootMoves[PVIdx].previousScore - delta,-VALUE_INFINITE);
 
              beta  = std::min(rootMoves[PVIdx].previousScore + delta, VALUE_INFINITE);
 
          }
 
 
 
          // Start with a small aspiration window and, in the case of a fail
 
          // high/low, re-search with a bigger window until we're not failing
 
          // high/low anymore.
 
          while (true)
 
          {
 
              bestValue = ::search<PV>(rootPos, ss, alpha, beta, rootDepth, false);
 
 
 
              // Bring the best move to the front. It is critical that sorting
 
              // is done with a stable algorithm because all the values but the
 
              // first and eventually the new best one are set to -VALUE_INFINITE
 
              // and we want to keep the same order for all the moves except the
 
              // new PV that goes to the front. Note that in case of MultiPV
 
              // search the already searched PV lines are preserved.
 
              std::stable_sort(rootMoves.begin() + PVIdx, rootMoves.end());
 
 
 
              // Write PV back to the transposition table in case the relevant
 
              // entries have been overwritten during the search.
 
              for (size_t i = 0; i <= PVIdx; ++i)
 
                  rootMoves[i].insert_pv_in_tt(rootPos);
 
 
 
              // If search has been stopped, break immediately. Sorting and
 
              // writing PV back to TT is safe because RootMoves is still
 
              // valid, although it refers to the previous iteration.
 
              if (Signals.stop)
 
                  break;
 
 
 
              // When failing high/low give some update (without cluttering
 
              // the UI) before a re-search.
 
              if (   mainThread
 
                  && multiPV == 1
 
                  && (bestValue <= alpha || bestValue >= beta)
 
                  && Time.elapsed() > 3000)
 
                  sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
 
 
 
              // In case of failing low/high increase aspiration window and
 
              // re-search, otherwise exit the loop.
 
              if (bestValue <= alpha)
 
              {
 
                  beta = (alpha + beta) / 2;
 
                  alpha = std::max(bestValue - delta, -VALUE_INFINITE);
 
 
 
                  if (mainThread)
 
                  {
 
                      mainThread->failedLow = true;
 
                      Signals.stopOnPonderhit = false;
 
                  }
 
              }
 
              else if (bestValue >= beta)
 
              {
 
                  alpha = (alpha + beta) / 2;
 
                  beta = std::min(bestValue + delta, VALUE_INFINITE);
 
              }
 
              else
 
                  break;
 
 
 
              delta += delta / 4 + 5;
 
 
 
              assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
 
          }
 
 
 
          // Sort the PV lines searched so far and update the GUI
 
          std::stable_sort(rootMoves.begin(), rootMoves.begin() + PVIdx + 1);
 
 
 
          if (!mainThread)
 
              break;
 
 
 
          if (Signals.stop)
 
              sync_cout << "info nodes " << Threads.nodes_searched()
 
                        << " time " << Time.elapsed() << sync_endl;
 
 
 
          else if (PVIdx + 1 == multiPV || Time.elapsed() > 3000)
 
              sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
 
      }
 
 
 
      if (!Signals.stop)
 
          completedDepth = rootDepth;
 
 
 
      if (!mainThread)
 
          continue;
 
 
 
      // If skill level is enabled and time is up, pick a sub-optimal best move
 
      if (skill.enabled() && skill.time_to_pick(rootDepth))
 
          skill.pick_best(multiPV);
 
 
 
      // Have we found a "mate in x"?
 
      if (   Limits.mate
 
          && bestValue >= VALUE_MATE_IN_MAX_PLY
 
          && VALUE_MATE - bestValue <= 2 * Limits.mate)
 
          Signals.stop = true;
 
 
 
      // Do we have time for the next iteration? Can we stop searching now?
 
      if (Limits.use_time_management())
 
      {
 
          if (!Signals.stop && !Signals.stopOnPonderhit)
 
          {
 
              // Stop the search if only one legal move is available, or if all
 
              // of the available time has been used, or if we matched an easyMove
 
              // from the previous search and just did a fast verification.
 
              const bool F[] = { !mainThread->failedLow,
 
                                 bestValue >= mainThread->previousScore };
 
 
 
              int improvingFactor = 640 - 160*F[0] - 126*F[1] - 124*F[0]*F[1];
 
              double unstablePvFactor = 1 + mainThread->bestMoveChanges;
 
 
 
              bool doEasyMove =   rootMoves[0].pv[0] == easyMove
 
                               && mainThread->bestMoveChanges < 0.03
 
                               && Time.elapsed() > Time.optimum() * 25 / 204;
 
 
 
              if (   rootMoves.size() == 1
 
                  || Time.elapsed() > Time.optimum() * unstablePvFactor * improvingFactor / 634
 
                  || (mainThread->easyMovePlayed = doEasyMove))
 
              {
 
                  // If we are allowed to ponder do not stop the search now but
 
                  // keep pondering until the GUI sends "ponderhit" or "stop".
 
                  if (Limits.ponder)
 
                      Signals.stopOnPonderhit = true;
 
                  else
 
                      Signals.stop = true;
 
              }
 
          }
 
 
 
          if (rootMoves[0].pv.size() >= 3)
 
              EasyMove.update(rootPos, rootMoves[0].pv);
 
          else
 
              EasyMove.clear();
 
      }
 
  }
 
 
 
  if (!mainThread)
 
      return;
 
 
 
  // Clear any candidate easy move that wasn't stable for the last search
 
  // iterations; the second condition prevents consecutive fast moves.
 
  if (EasyMove.stableCnt < 6 || mainThread->easyMovePlayed)
 
      EasyMove.clear();
 
 
 
  // If skill level is enabled, swap best PV line with the sub-optimal one
 
  if (skill.enabled())
 
      std::swap(rootMoves[0], *std::find(rootMoves.begin(),
 
                rootMoves.end(), skill.best_move(multiPV)));
 
}
 
 
 
 
 
namespace {
 
 
 
  // search<>() is the main search function for both PV and non-PV nodes
 
 
 
  template <NodeType NT>
 
  Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) {
 
 
 
    const bool PvNode = NT == PV;
 
    const bool rootNode = PvNode && (ss-1)->ply == 0;
 
 
 
    assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE);
 
    assert(PvNode || (alpha == beta - 1));
 
    assert(DEPTH_ZERO < depth && depth < DEPTH_MAX);
 
 
 
    Move pv[MAX_PLY+1], quietsSearched[64];
 
    StateInfo st;
 
    TTEntry* tte;
 
    Key posKey;
 
    Move ttMove, move, excludedMove, bestMove;
 
    Depth extension, newDepth, predictedDepth;
 
    Value bestValue, value, ttValue, eval, nullValue, futilityValue;
 
    bool ttHit, inCheck, givesCheck, singularExtensionNode, improving;
 
    bool captureOrPromotion, doFullDepthSearch;
 
    int moveCount, quietCount;
 
 
 
    // Step 1. Initialize node
 
    Thread* thisThread = pos.this_thread();
 
    inCheck = pos.checkers();
 
    moveCount = quietCount =  ss->moveCount = 0;
 
    bestValue = -VALUE_INFINITE;
 
    ss->ply = (ss-1)->ply + 1;
 
 
 
    // Check for the available remaining time
 
    if (thisThread->resetCalls.load(std::memory_order_relaxed))
 
    {
 
        thisThread->resetCalls = false;
 
        thisThread->callsCnt = 0;
 
    }
 
    if (++thisThread->callsCnt > 4096)
 
    {
 
        for (Thread* th : Threads)
 
            th->resetCalls = true;
 
 
 
        check_time();
 
    }
 
 
 
    // Used to send selDepth info to GUI
 
    if (PvNode && thisThread->maxPly < ss->ply)
 
        thisThread->maxPly = ss->ply;
 
 
 
    if (!rootNode)
 
    {
 
        // Step 2. Check for aborted search and immediate draw
 
        if (Signals.stop.load(std::memory_order_relaxed) || pos.is_draw() || ss->ply >= MAX_PLY)
 
            return ss->ply >= MAX_PLY && !inCheck ? evaluate(pos)
 
                                                  : DrawValue[pos.side_to_move()];
 
 
 
        // Step 3. Mate distance pruning. Even if we mate at the next move our score
 
        // would be at best mate_in(ss->ply+1), but if alpha is already bigger because
 
        // a shorter mate was found upward in the tree then there is no need to search
 
        // because we will never beat the current alpha. Same logic but with reversed
 
        // signs applies also in the opposite condition of being mated instead of giving
 
        // mate. In this case return a fail-high score.
 
        alpha = std::max(mated_in(ss->ply), alpha);
 
        beta = std::min(mate_in(ss->ply+1), beta);
 
        if (alpha >= beta)
 
            return alpha;
 
    }
 
 
 
    assert(0 <= ss->ply && ss->ply < MAX_PLY);
 
 
 
    ss->currentMove = (ss+1)->excludedMove = bestMove = MOVE_NONE;
 
    (ss+1)->skipEarlyPruning = false;
 
    (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
 
 
 
    // Step 4. Transposition table lookup. We don't want the score of a partial
 
    // search to overwrite a previous full search TT value, so we use a different
 
    // position key in case of an excluded move.
 
    excludedMove = ss->excludedMove;
 
    posKey = excludedMove ? pos.exclusion_key() : pos.key();
 
    tte = TT.probe(posKey, ttHit);
 
    ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
 
    ttMove =  rootNode ? thisThread->rootMoves[thisThread->PVIdx].pv[0]
 
            : ttHit    ? tte->move() : MOVE_NONE;
 
 
 
    // At non-PV nodes we check for an early TT cutoff
 
    if (  !PvNode
 
        && ttHit
 
        && tte->depth() >= depth
 
        && ttValue != VALUE_NONE // Possible in case of TT access race
 
        && (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
 
                            : (tte->bound() & BOUND_UPPER)))
 
    {
 
        ss->currentMove = ttMove; // Can be MOVE_NONE
 
 
 
        // If ttMove is quiet, update killers, history, counter move on TT hit
 
        if (ttValue >= beta && ttMove && !pos.capture_or_promotion(ttMove))
 
            update_stats(pos, ss, ttMove, depth, nullptr, 0);
 
 
 
        return ttValue;
 
    }
 
 
 
    // Step 4a. Tablebase probe
 
    if (!rootNode && TB::Cardinality)
 
    {
 
        int piecesCnt = pos.count<ALL_PIECES>(WHITE) + pos.count<ALL_PIECES>(BLACK);
 
 
 
        if (    piecesCnt <= TB::Cardinality
 
            && (piecesCnt <  TB::Cardinality || depth >= TB::ProbeDepth)
 
            &&  pos.rule50_count() == 0
 
            && !pos.can_castle(ANY_CASTLING))
 
        {
 
            int found, v = Tablebases::probe_wdl(pos, &found);
 
 
 
            if (found)
 
            {
 
                TB::Hits++;
 
 
 
                int drawScore = TB::UseRule50 ? 1 : 0;
 
 
 
                value =  v < -drawScore ? -VALUE_MATE + MAX_PLY + ss->ply
 
                       : v >  drawScore ?  VALUE_MATE - MAX_PLY - ss->ply
 
                                        :  VALUE_DRAW + 2 * v * drawScore;
 
 
 
                tte->save(posKey, value_to_tt(value, ss->ply), BOUND_EXACT,
 
                          std::min(DEPTH_MAX - ONE_PLY, depth + 6 * ONE_PLY),
 
                          MOVE_NONE, VALUE_NONE, TT.generation());
 
 
 
                return value;
 
            }
 
        }
 
    }
 
 
 
    // Step 5. Evaluate the position statically
 
    if (inCheck)
 
    {
 
        ss->staticEval = eval = VALUE_NONE;
 
        goto moves_loop;
 
    }
 
 
 
    else if (ttHit)
 
    {
 
        // Never assume anything on values stored in TT
 
        if ((ss->staticEval = eval = tte->eval()) == VALUE_NONE)
 
            eval = ss->staticEval = evaluate(pos);
 
 
 
        // Can ttValue be used as a better position evaluation?
 
        if (ttValue != VALUE_NONE)
 
            if (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER))
 
                eval = ttValue;
 
    }
 
    else
 
    {
 
        eval = ss->staticEval =
 
        (ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
 
                                         : -(ss-1)->staticEval + 2 * Eval::Tempo;
 
 
 
        tte->save(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE,
 
                  ss->staticEval, TT.generation());
 
    }
 
 
 
    if (ss->skipEarlyPruning)
 
        goto moves_loop;
 
 
 
    // Step 6. Razoring (skipped when in check)
 
    if (   !PvNode
 
        &&  depth < 4 * ONE_PLY
 
        &&  eval + razor_margin[depth] <= alpha
 
        &&  ttMove == MOVE_NONE)
 
    {
 
        if (   depth <= ONE_PLY
 
            && eval + razor_margin[3 * ONE_PLY] <= alpha)
 
            return qsearch<NonPV, false>(pos, ss, alpha, beta, DEPTH_ZERO);
 
 
 
        Value ralpha = alpha - razor_margin[depth];
 
        Value v = qsearch<NonPV, false>(pos, ss, ralpha, ralpha+1, DEPTH_ZERO);
 
        if (v <= ralpha)
 
            return v;
 
    }
 
 
 
    // Step 7. Futility pruning: child node (skipped when in check)
 
    if (   !rootNode
 
        &&  depth < 7 * ONE_PLY
 
        &&  eval - futility_margin(depth) >= beta
 
        &&  eval < VALUE_KNOWN_WIN  // Do not return unproven wins
 
        &&  pos.non_pawn_material(pos.side_to_move()))
 
        return eval - futility_margin(depth);
 
 
 
    // Step 8. Null move search with verification search (is omitted in PV nodes)
 
    if (   !PvNode
 
        &&  depth >= 2 * ONE_PLY
 
        &&  eval >= beta
 
        &&  pos.non_pawn_material(pos.side_to_move()))
 
    {
 
        ss->currentMove = MOVE_NULL;
 
 
 
        assert(eval - beta >= 0);
 
 
 
        // Null move dynamic reduction based on depth and value
 
        Depth R = ((823 + 67 * depth) / 256 + std::min((eval - beta) / PawnValueMg, 3)) * ONE_PLY;
 
 
 
        pos.do_null_move(st);
 
        (ss+1)->skipEarlyPruning = true;
 
        nullValue = depth-R < ONE_PLY ? -qsearch<NonPV, false>(pos, ss+1, -beta, -beta+1, DEPTH_ZERO)
 
                                      : - search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode);
 
        (ss+1)->skipEarlyPruning = false;
 
        pos.undo_null_move();
 
 
 
        if (nullValue >= beta)
 
        {
 
            // Do not return unproven mate scores
 
            if (nullValue >= VALUE_MATE_IN_MAX_PLY)
 
                nullValue = beta;
 
 
 
            if (depth < 12 * ONE_PLY && abs(beta) < VALUE_KNOWN_WIN)
 
                return nullValue;
 
 
 
            // Do verification search at high depths
 
            ss->skipEarlyPruning = true;
 
            Value v = depth-R < ONE_PLY ? qsearch<NonPV, false>(pos, ss, beta-1, beta, DEPTH_ZERO)
 
                                        :  search<NonPV>(pos, ss, beta-1, beta, depth-R, false);
 
            ss->skipEarlyPruning = false;
 
 
 
            if (v >= beta)
 
                return nullValue;
 
        }
 
    }
 
 
 
    // Step 9. ProbCut (skipped when in check)
 
    // If we have a very good capture (i.e. SEE > seeValues[captured_piece_type])
 
    // and a reduced search returns a value much above beta, we can (almost)
 
    // safely prune the previous move.
 
    if (   !PvNode
 
        &&  depth >= 5 * ONE_PLY
 
        &&  abs(beta) < VALUE_MATE_IN_MAX_PLY)
 
    {
 
        Value rbeta = std::min(beta + 200, VALUE_INFINITE);
 
        Depth rdepth = depth - 4 * ONE_PLY;
 
 
 
        assert(rdepth >= ONE_PLY);
 
        assert((ss-1)->currentMove != MOVE_NONE);
 
        assert((ss-1)->currentMove != MOVE_NULL);
 
 
 
        MovePicker mp(pos, ttMove, thisThread->history, PieceValue[MG][pos.captured_piece_type()]);
 
        CheckInfo ci(pos);
 
 
 
        while ((move = mp.next_move()) != MOVE_NONE)
 
            if (pos.legal(move, ci.pinned))
 
            {
 
                ss->currentMove = move;
 
                pos.do_move(move, st, pos.gives_check(move, ci));
 
                value = -search<NonPV>(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode);
 
                pos.undo_move(move);
 
                if (value >= rbeta)
 
                    return value;
 
            }
 
    }
 
 
 
    // Step 10. Internal iterative deepening (skipped when in check)
 
    if (    depth >= (PvNode ? 5 * ONE_PLY : 8 * ONE_PLY)
 
        && !ttMove
 
        && (PvNode || ss->staticEval + 256 >= beta))
 
    {
 
        Depth d = depth - 2 * ONE_PLY - (PvNode ? DEPTH_ZERO : depth / 4);
 
        ss->skipEarlyPruning = true;
 
        search<NT>(pos, ss, alpha, beta, d, true);
 
        ss->skipEarlyPruning = false;
 
 
 
        tte = TT.probe(posKey, ttHit);
 
        ttMove = ttHit ? tte->move() : MOVE_NONE;
 
    }
 
 
 
moves_loop: // When in check search starts from here
 
 
 
    Square prevSq = to_sq((ss-1)->currentMove);
 
    Move cm = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq];
 
    const CounterMoveStats& cmh = CounterMoveHistory[pos.piece_on(prevSq)][prevSq];
 
 
 
    MovePicker mp(pos, ttMove, depth, thisThread->history, cmh, cm, ss);
 
    CheckInfo ci(pos);
 
    value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc
 
    improving =   ss->staticEval >= (ss-2)->staticEval
 
               || ss->staticEval == VALUE_NONE
 
               ||(ss-2)->staticEval == VALUE_NONE;
 
 
 
    singularExtensionNode =   !rootNode
 
                           &&  depth >= 8 * ONE_PLY
 
                           &&  ttMove != MOVE_NONE
 
                       /*  &&  ttValue != VALUE_NONE Already implicit in the next condition */
 
                           &&  abs(ttValue) < VALUE_KNOWN_WIN
 
                           && !excludedMove // Recursive singular search is not allowed
 
                           && (tte->bound() & BOUND_LOWER)
 
                           &&  tte->depth() >= depth - 3 * ONE_PLY;
 
 
 
    // Step 11. Loop through moves
 
    // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs
 
    while ((move = mp.next_move()) != MOVE_NONE)
 
    {
 
      assert(is_ok(move));
 
 
 
      if (move == excludedMove)
 
          continue;
 
 
 
      // At root obey the "searchmoves" option and skip moves not listed in Root
 
      // Move List. As a consequence any illegal move is also skipped. In MultiPV
 
      // mode we also skip PV moves which have been already searched.
 
      if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->PVIdx,
 
                                  thisThread->rootMoves.end(), move))
 
          continue;
 
 
 
      ss->moveCount = ++moveCount;
 
 
 
      if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000)
 
          sync_cout << "info depth " << depth / ONE_PLY
 
                    << " currmove " << UCI::move(move, pos.is_chess960())
 
                    << " currmovenumber " << moveCount + thisThread->PVIdx << sync_endl;
 
 
 
      if (PvNode)
 
          (ss+1)->pv = nullptr;
 
 
 
      extension = DEPTH_ZERO;
 
      captureOrPromotion = pos.capture_or_promotion(move);
 
 
 
      givesCheck =  type_of(move) == NORMAL && !ci.dcCandidates
 
                  ? ci.checkSquares[type_of(pos.piece_on(from_sq(move)))] & to_sq(move)
 
                  : pos.gives_check(move, ci);
 
 
 
      // Step 12. Extend checks
 
      if (givesCheck && pos.see_sign(move) >= VALUE_ZERO)
 
          extension = ONE_PLY;
 
 
 
      // Singular extension search. If all moves but one fail low on a search of
 
      // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
 
      // is singular and should be extended. To verify this we do a reduced search
 
      // on all the other moves but the ttMove and if the result is lower than
 
      // ttValue minus a margin then we extend the ttMove.
 
      if (    singularExtensionNode
 
          &&  move == ttMove
 
          && !extension
 
          &&  pos.legal(move, ci.pinned))
 
      {
 
          Value rBeta = ttValue - 2 * depth / ONE_PLY;
 
          ss->excludedMove = move;
 
          ss->skipEarlyPruning = true;
 
          value = search<NonPV>(pos, ss, rBeta - 1, rBeta, depth / 2, cutNode);
 
          ss->skipEarlyPruning = false;
 
          ss->excludedMove = MOVE_NONE;
 
 
 
          if (value < rBeta)
 
              extension = ONE_PLY;
 
      }
 
 
 
      // Update the current move (this must be done after singular extension search)
 
      newDepth = depth - ONE_PLY + extension;
 
 
 
      // Step 13. Pruning at shallow depth
 
      if (   !rootNode
 
          && !captureOrPromotion
 
          && !inCheck
 
          && !givesCheck
 
          && !pos.advanced_pawn_push(move)
 
          &&  bestValue > VALUE_MATED_IN_MAX_PLY)
 
      {
 
          // Move count based pruning
 
          if (   depth < 16 * ONE_PLY
 
              && moveCount >= FutilityMoveCounts[improving][depth])
 
              continue;
 
 
 
          // History based pruning
 
          if (   depth <= 4 * ONE_PLY
 
              && move != ss->killers[0]
 
              && thisThread->history[pos.moved_piece(move)][to_sq(move)] < VALUE_ZERO
 
              && cmh[pos.moved_piece(move)][to_sq(move)] < VALUE_ZERO)
 
              continue;
 
 
 
          predictedDepth = std::max(newDepth - reduction<PvNode>(improving, depth, moveCount), DEPTH_ZERO);
 
 
 
          // Futility pruning: parent node
 
          if (predictedDepth < 7 * ONE_PLY)
 
          {
 
              futilityValue = ss->staticEval + futility_margin(predictedDepth) + 256;
 
 
 
              if (futilityValue <= alpha)
 
              {
 
                  bestValue = std::max(bestValue, futilityValue);
 
                  continue;
 
              }
 
          }
 
 
 
          // Prune moves with negative SEE at low depths
 
          if (predictedDepth < 4 * ONE_PLY && pos.see_sign(move) < VALUE_ZERO)
 
              continue;
 
      }
 
 
 
      // Speculative prefetch as early as possible
 
      prefetch(TT.first_entry(pos.key_after(move)));
 
 
 
      // Check for legality just before making the move
 
      if (!rootNode && !pos.legal(move, ci.pinned))
 
      {
 
          ss->moveCount = --moveCount;
 
          continue;
 
      }
 
 
 
      ss->currentMove = move;
 
 
 
      // Step 14. Make the move
 
      pos.do_move(move, st, givesCheck);
 
 
 
      // Step 15. Reduced depth search (LMR). If the move fails high it will be
 
      // re-searched at full depth.
 
      if (    depth >= 3 * ONE_PLY
 
          &&  moveCount > 1
 
          && !captureOrPromotion)
 
      {
 
          Depth r = reduction<PvNode>(improving, depth, moveCount);
 
 
 
          // Increase reduction for cut nodes and moves with a bad history
 
          if (   (!PvNode && cutNode)
 
              || (   thisThread->history[pos.piece_on(to_sq(move))][to_sq(move)] < VALUE_ZERO
 
                  && cmh[pos.piece_on(to_sq(move))][to_sq(move)] <= VALUE_ZERO))
 
              r += ONE_PLY;
 
 
 
          // Decrease/increase reduction for moves with a good/bad history
 
          int rHist = (  thisThread->history[pos.piece_on(to_sq(move))][to_sq(move)]
 
                       + cmh[pos.piece_on(to_sq(move))][to_sq(move)]) / 14980;
 
          r = std::max(DEPTH_ZERO, r - rHist * ONE_PLY);
 
 
 
          // Decrease reduction for moves that escape a capture. Filter out
 
          // castling moves, because they are coded as "king captures rook" and
 
          // hence break make_move(). Also use see() instead of see_sign(),
 
          // because the destination square is empty.
 
          if (   r
 
              && type_of(move) == NORMAL
 
              && type_of(pos.piece_on(to_sq(move))) != PAWN
 
              && pos.see(make_move(to_sq(move), from_sq(move))) < VALUE_ZERO)
 
              r = std::max(DEPTH_ZERO, r - ONE_PLY);
 
 
 
          Depth d = std::max(newDepth - r, ONE_PLY);
 
 
 
          value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true);
 
 
 
          doFullDepthSearch = (value > alpha && r != DEPTH_ZERO);
 
      }
 
      else
 
          doFullDepthSearch = !PvNode || moveCount > 1;
 
 
 
      // Step 16. Full depth search when LMR is skipped or fails high
 
      if (doFullDepthSearch)
 
          value = newDepth <   ONE_PLY ?
 
                            givesCheck ? -qsearch<NonPV,  true>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
 
                                       : -qsearch<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
 
                                       : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode);
 
 
 
      // For PV nodes only, do a full PV search on the first move or after a fail
 
      // high (in the latter case search only if value < beta), otherwise let the
 
      // parent node fail low with value <= alpha and try another move.
 
      if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta))))
 
      {
 
          (ss+1)->pv = pv;
 
          (ss+1)->pv[0] = MOVE_NONE;
 
 
 
          value = newDepth <   ONE_PLY ?
 
                            givesCheck ? -qsearch<PV,  true>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
 
                                       : -qsearch<PV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
 
                                       : - search<PV>(pos, ss+1, -beta, -alpha, newDepth, false);
 
      }
 
 
 
      // Step 17. Undo move
 
      pos.undo_move(move);
 
 
 
      assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
 
 
 
      // Step 18. Check for a new best move
 
      // Finished searching the move. If a stop occurred, the return value of
 
      // the search cannot be trusted, and we return immediately without
 
      // updating best move, PV and TT.
 
      if (Signals.stop.load(std::memory_order_relaxed))
 
          return VALUE_ZERO;
 
 
 
      if (rootNode)
 
      {
 
          RootMove& rm = *std::find(thisThread->rootMoves.begin(),
 
                                    thisThread->rootMoves.end(), move);
 
 
 
          // PV move or new best move ?
 
          if (moveCount == 1 || value > alpha)
 
          {
 
              rm.score = value;
 
              rm.pv.resize(1);
 
 
 
              assert((ss+1)->pv);
 
 
 
              for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m)
 
                  rm.pv.push_back(*m);
 
 
 
              // We record how often the best move has been changed in each
 
              // iteration. This information is used for time management: When
 
              // the best move changes frequently, we allocate some more time.
 
              if (moveCount > 1 && thisThread == Threads.main())
 
                  ++static_cast<MainThread*>(thisThread)->bestMoveChanges;
 
          }
 
          else
 
              // All other moves but the PV are set to the lowest value: this is
 
              // not a problem when sorting because the sort is stable and the
 
              // move position in the list is preserved - just the PV is pushed up.
 
              rm.score = -VALUE_INFINITE;
 
      }
 
 
 
      if (value > bestValue)
 
      {
 
          bestValue = value;
 
 
 
          if (value > alpha)
 
          {
 
              // If there is an easy move for this position, clear it if unstable
 
              if (    PvNode
 
                  &&  thisThread == Threads.main()
 
                  &&  EasyMove.get(pos.key())
 
                  && (move != EasyMove.get(pos.key()) || moveCount > 1))
 
                  EasyMove.clear();
 
 
 
              bestMove = move;
 
 
 
              if (PvNode && !rootNode) // Update pv even in fail-high case
 
                  update_pv(ss->pv, move, (ss+1)->pv);
 
 
 
              if (PvNode && value < beta) // Update alpha! Always alpha < beta
 
                  alpha = value;
 
              else
 
              {
 
                  assert(value >= beta); // Fail high
 
                  break;
 
              }
 
          }
 
      }
 
 
 
      if (!captureOrPromotion && move != bestMove && quietCount < 64)
 
          quietsSearched[quietCount++] = move;
 
    }
 
 
 
    // The following condition would detect a stop only after move loop has been
 
    // completed. But in this case bestValue is valid because we have fully
 
    // searched our subtree, and we can anyhow save the result in TT.
 
    /*
 
       if (Signals.stop)
 
        return VALUE_DRAW;
 
    */
 
 
 
    // Step 20. Check for mate and stalemate
 
    // All legal moves have been searched and if there are no legal moves, it
 
    // must be a mate or a stalemate. If we are in a singular extension search then
 
    // return a fail low score.
 
    if (!moveCount)
 
        bestValue = excludedMove ? alpha
 
                   :     inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()];
 
 
 
    // Quiet best move: update killers, history and countermoves
 
    else if (bestMove && !pos.capture_or_promotion(bestMove))
 
        update_stats(pos, ss, bestMove, depth, quietsSearched, quietCount);
 
 
 
    // Bonus for prior countermove that caused the fail low
 
    else if (    depth >= 3 * ONE_PLY
 
             && !bestMove
 
             && !inCheck
 
             && !pos.captured_piece_type()
 
             && is_ok((ss - 1)->currentMove)
 
             && is_ok((ss - 2)->currentMove))
 
    {
 
        Value bonus = Value((depth / ONE_PLY) * (depth / ONE_PLY) + depth / ONE_PLY - 1);
 
        Square prevPrevSq = to_sq((ss - 2)->currentMove);
 
        CounterMoveStats& prevCmh = CounterMoveHistory[pos.piece_on(prevPrevSq)][prevPrevSq];
 
        prevCmh.update(pos.piece_on(prevSq), prevSq, bonus);
 
    }
 
 
 
    tte->save(posKey, value_to_tt(bestValue, ss->ply),
 
              bestValue >= beta ? BOUND_LOWER :
 
              PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER,
 
              depth, bestMove, ss->staticEval, TT.generation());
 
 
 
    assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
 
 
 
    return bestValue;
 
  }
 
 
 
 
 
  // qsearch() is the quiescence search function, which is called by the main
 
  // search function when the remaining depth is zero (or, to be more precise,
 
  // less than ONE_PLY).
 
 
 
  template <NodeType NT, bool InCheck>
 
  Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
 
 
 
    const bool PvNode = NT == PV;
 
 
 
    assert(InCheck == !!pos.checkers());
 
    assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
 
    assert(PvNode || (alpha == beta - 1));
 
    assert(depth <= DEPTH_ZERO);
 
 
 
    Move pv[MAX_PLY+1];
 
    StateInfo st;
 
    TTEntry* tte;
 
    Key posKey;
 
    Move ttMove, move, bestMove;
 
    Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
 
    bool ttHit, givesCheck, evasionPrunable;
 
    Depth ttDepth;
 
 
 
    if (PvNode)
 
    {
 
        oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves
 
        (ss+1)->pv = pv;
 
        ss->pv[0] = MOVE_NONE;
 
    }
 
 
 
    ss->currentMove = bestMove = MOVE_NONE;
 
    ss->ply = (ss-1)->ply + 1;
 
 
 
    // Check for an instant draw or if the maximum ply has been reached
 
    if (pos.is_draw() || ss->ply >= MAX_PLY)
 
        return ss->ply >= MAX_PLY && !InCheck ? evaluate(pos)
 
                                              : DrawValue[pos.side_to_move()];
 
 
 
    assert(0 <= ss->ply && ss->ply < MAX_PLY);
 
 
 
    // Decide whether or not to include checks: this fixes also the type of
 
    // TT entry depth that we are going to use. Note that in qsearch we use
 
    // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
 
    ttDepth = InCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
 
                                                  : DEPTH_QS_NO_CHECKS;
 
 
 
    // Transposition table lookup
 
    posKey = pos.key();
 
    tte = TT.probe(posKey, ttHit);
 
    ttMove = ttHit ? tte->move() : MOVE_NONE;
 
    ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
 
 
 
    if (  !PvNode
 
        && ttHit
 
        && tte->depth() >= ttDepth
 
        && ttValue != VALUE_NONE // Only in case of TT access race
 
        && (ttValue >= beta ? (tte->bound() &  BOUND_LOWER)
 
                            : (tte->bound() &  BOUND_UPPER)))
 
    {
 
        ss->currentMove = ttMove; // Can be MOVE_NONE
 
        return ttValue;
 
    }
 
 
 
    // Evaluate the position statically
 
    if (InCheck)
 
    {
 
        ss->staticEval = VALUE_NONE;
 
        bestValue = futilityBase = -VALUE_INFINITE;
 
    }
 
    else
 
    {
 
        if (ttHit)
 
        {
 
            // Never assume anything on values stored in TT
 
            if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE)
 
                ss->staticEval = bestValue = evaluate(pos);
 
 
 
            // Can ttValue be used as a better position evaluation?
 
            if (ttValue != VALUE_NONE)
 
                if (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER))
 
                    bestValue = ttValue;
 
        }
 
        else
 
            ss->staticEval = bestValue =
 
            (ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
 
                                             : -(ss-1)->staticEval + 2 * Eval::Tempo;
 
 
 
        // Stand pat. Return immediately if static value is at least beta
 
        if (bestValue >= beta)
 
        {
 
            if (!ttHit)
 
                tte->save(pos.key(), value_to_tt(bestValue, ss->ply), BOUND_LOWER,
 
                          DEPTH_NONE, MOVE_NONE, ss->staticEval, TT.generation());
 
 
 
            return bestValue;
 
        }
 
 
 
        if (PvNode && bestValue > alpha)
 
            alpha = bestValue;
 
 
 
        futilityBase = bestValue + 128;
 
    }
 
 
 
    // Initialize a MovePicker object for the current position, and prepare
 
    // to search the moves. Because the depth is <= 0 here, only captures,
 
    // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
 
    // be generated.
 
    MovePicker mp(pos, ttMove, depth, pos.this_thread()->history, to_sq((ss-1)->currentMove));
 
    CheckInfo ci(pos);
 
 
 
    // Loop through the moves until no moves remain or a beta cutoff occurs
 
    while ((move = mp.next_move()) != MOVE_NONE)
 
    {
 
      assert(is_ok(move));
 
 
 
      givesCheck =  type_of(move) == NORMAL && !ci.dcCandidates
 
                  ? ci.checkSquares[type_of(pos.piece_on(from_sq(move)))] & to_sq(move)
 
                  : pos.gives_check(move, ci);
 
 
 
      // Futility pruning
 
      if (   !InCheck
 
          && !givesCheck
 
          &&  futilityBase > -VALUE_KNOWN_WIN
 
          && !pos.advanced_pawn_push(move))
 
      {
 
          assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push
 
 
 
          futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))];
 
 
 
          if (futilityValue <= alpha)
 
          {
 
              bestValue = std::max(bestValue, futilityValue);
 
              continue;
 
          }
 
 
 
          if (futilityBase <= alpha && pos.see(move) <= VALUE_ZERO)
 
          {
 
              bestValue = std::max(bestValue, futilityBase);
 
              continue;
 
          }
 
      }
 
 
 
      // Detect non-capture evasions that are candidates to be pruned
 
      evasionPrunable =    InCheck
 
                       &&  bestValue > VALUE_MATED_IN_MAX_PLY
 
                       && !pos.capture(move);
 
 
 
      // Don't search moves with negative SEE values
 
      if (  (!InCheck || evasionPrunable)
 
          &&  type_of(move) != PROMOTION
 
          &&  pos.see_sign(move) < VALUE_ZERO)
 
          continue;
 
 
 
      // Speculative prefetch as early as possible
 
      prefetch(TT.first_entry(pos.key_after(move)));
 
 
 
      // Check for legality just before making the move
 
      if (!pos.legal(move, ci.pinned))
 
          continue;
 
 
 
      ss->currentMove = move;
 
 
 
      // Make and search the move
 
      pos.do_move(move, st, givesCheck);
 
      value = givesCheck ? -qsearch<NT,  true>(pos, ss+1, -beta, -alpha, depth - ONE_PLY)
 
                         : -qsearch<NT, false>(pos, ss+1, -beta, -alpha, depth - ONE_PLY);
 
      pos.undo_move(move);
 
 
 
      assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
 
 
 
      // Check for a new best move
 
      if (value > bestValue)
 
      {
 
          bestValue = value;
 
 
 
          if (value > alpha)
 
          {
 
              if (PvNode) // Update pv even in fail-high case
 
                  update_pv(ss->pv, move, (ss+1)->pv);
 
 
 
              if (PvNode && value < beta) // Update alpha here!
 
              {
 
                  alpha = value;
 
                  bestMove = move;
 
              }
 
              else // Fail high
 
              {
 
                  tte->save(posKey, value_to_tt(value, ss->ply), BOUND_LOWER,
 
                            ttDepth, move, ss->staticEval, TT.generation());
 
 
 
                  return value;
 
              }
 
          }
 
       }
 
    }
 
 
 
    // All legal moves have been searched. A special case: If we're in check
 
    // and no legal moves were found, it is checkmate.
 
    if (InCheck && bestValue == -VALUE_INFINITE)
 
        return mated_in(ss->ply); // Plies to mate from the root
 
 
 
    tte->save(posKey, value_to_tt(bestValue, ss->ply),
 
              PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER,
 
              ttDepth, bestMove, ss->staticEval, TT.generation());
 
 
 
    assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
 
 
 
    return bestValue;
 
  }
 
 
 
 
 
  // value_to_tt() adjusts a mate score from "plies to mate from the root" to
 
  // "plies to mate from the current position". Non-mate scores are unchanged.
 
  // The function is called before storing a value in the transposition table.
 
 
 
  Value value_to_tt(Value v, int ply) {
 
 
 
    assert(v != VALUE_NONE);
 
 
 
    return  v >= VALUE_MATE_IN_MAX_PLY  ? v + ply
 
          : v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v;
 
  }
 
 
 
 
 
  // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score
 
  // from the transposition table (which refers to the plies to mate/be mated
 
  // from current position) to "plies to mate/be mated from the root".
 
 
 
  Value value_from_tt(Value v, int ply) {
 
 
 
    return  v == VALUE_NONE             ? VALUE_NONE
 
          : v >= VALUE_MATE_IN_MAX_PLY  ? v - ply
 
          : v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v;
 
  }
 
 
 
 
 
  // update_pv() adds current move and appends child pv[]
 
 
 
  void update_pv(Move* pv, Move move, Move* childPv) {
 
 
 
    for (*pv++ = move; childPv && *childPv != MOVE_NONE; )
 
        *pv++ = *childPv++;
 
    *pv = MOVE_NONE;
 
  }
 
 
 
 
 
  // update_stats() updates killers, history, countermove and countermove
 
  // history when a new quiet best move is found.
 
 
 
  void update_stats(const Position& pos, Stack* ss, Move move,
 
                    Depth depth, Move* quiets, int quietsCnt) {
 
 
 
    if (ss->killers[0] != move)
 
    {
 
        ss->killers[1] = ss->killers[0];
 
        ss->killers[0] = move;
 
    }
 
 
 
    Value bonus = Value((depth / ONE_PLY) * (depth / ONE_PLY) + depth / ONE_PLY - 1);
 
 
 
    Square prevSq = to_sq((ss-1)->currentMove);
 
    CounterMoveStats& cmh = CounterMoveHistory[pos.piece_on(prevSq)][prevSq];
 
    Thread* thisThread = pos.this_thread();
 
 
 
    thisThread->history.update(pos.moved_piece(move), to_sq(move), bonus);
 
 
 
    if (is_ok((ss-1)->currentMove))
 
    {
 
        thisThread->counterMoves.update(pos.piece_on(prevSq), prevSq, move);
 
        cmh.update(pos.moved_piece(move), to_sq(move), bonus);
 
    }
 
 
 
    // Decrease all the other played quiet moves
 
    for (int i = 0; i < quietsCnt; ++i)
 
    {
 
        thisThread->history.update(pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus);
 
 
 
        if (is_ok((ss-1)->currentMove))
 
            cmh.update(pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus);
 
    }
 
 
 
    // Extra penalty for a quiet TT move in previous ply when it gets refuted
 
    if (   (ss-1)->moveCount == 1
 
        && !pos.captured_piece_type()
 
        && is_ok((ss-2)->currentMove))
 
    {
 
        Square prevPrevSq = to_sq((ss-2)->currentMove);
 
        CounterMoveStats& prevCmh = CounterMoveHistory[pos.piece_on(prevPrevSq)][prevPrevSq];
 
        prevCmh.update(pos.piece_on(prevSq), prevSq, -bonus - 2 * (depth + 1) / ONE_PLY);
 
    }
 
  }
 
 
 
 
 
  // When playing with strength handicap, choose best move among a set of RootMoves
 
  // using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
 
 
 
  Move Skill::pick_best(size_t multiPV) {
 
 
 
    const Search::RootMoveVector& rootMoves = Threads.main()->rootMoves;
 
    static PRNG rng(now()); // PRNG sequence should be non-deterministic
 
 
 
    // RootMoves are already sorted by score in descending order
 
    Value topScore = rootMoves[0].score;
 
    int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg);
 
    int weakness = 120 - 2 * level;
 
    int maxScore = -VALUE_INFINITE;
 
 
 
    // Choose best move. For each move score we add two terms, both dependent on
 
    // weakness. One is deterministic and bigger for weaker levels, and one is
 
    // random. Then we choose the move with the resulting highest score.
 
    for (size_t i = 0; i < multiPV; ++i)
 
    {
 
        // This is our magic formula
 
        int push = (  weakness * int(topScore - rootMoves[i].score)
 
                    + delta * (rng.rand<unsigned>() % weakness)) / 128;
 
 
 
        if (rootMoves[i].score + push > maxScore)
 
        {
 
            maxScore = rootMoves[i].score + push;
 
            best = rootMoves[i].pv[0];
 
        }
 
    }
 
 
 
    return best;
 
  }
 
 
 
 
 
  // check_time() is used to print debug info and, more importantly, to detect
 
  // when we are out of available time and thus stop the search.
 
 
 
  void check_time() {
 
 
 
    static TimePoint lastInfoTime = now();
 
 
 
    int elapsed = Time.elapsed();
 
    TimePoint tick = Limits.startTime + elapsed;
 
 
 
    if (tick - lastInfoTime >= 1000)
 
    {
 
        lastInfoTime = tick;
 
        dbg_print();
 
    }
 
 
 
    // An engine may not stop pondering until told so by the GUI
 
    if (Limits.ponder)
 
        return;
 
 
 
    if (   (Limits.use_time_management() && elapsed > Time.maximum() - 10)
 
        || (Limits.movetime && elapsed >= Limits.movetime)
 
        || (Limits.nodes && Threads.nodes_searched() >= Limits.nodes))
 
            Signals.stop = true;
 
  }
 
 
 
} // namespace
 
 
 
 
 
/// UCI::pv() formats PV information according to the UCI protocol. UCI requires
 
/// that all (if any) unsearched PV lines are sent using a previous search score.
 
 
 
string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {
 
 
 
  std::stringstream ss;
 
  int elapsed = Time.elapsed() + 1;
 
  const Search::RootMoveVector& rootMoves = pos.this_thread()->rootMoves;
 
  size_t PVIdx = pos.this_thread()->PVIdx;
 
  size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size());
 
  uint64_t nodes_searched = Threads.nodes_searched();
 
 
 
  for (size_t i = 0; i < multiPV; ++i)
 
  {
 
      bool updated = (i <= PVIdx);
 
 
 
      if (depth == ONE_PLY && !updated)
 
          continue;
 
 
 
      Depth d = updated ? depth : depth - ONE_PLY;
 
      Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore;
 
 
 
      bool tb = TB::RootInTB && abs(v) < VALUE_MATE - MAX_PLY;
 
      v = tb ? TB::Score : v;
 
 
 
      if (ss.rdbuf()->in_avail()) // Not at first line
 
          ss << "\n";
 
 
 
      ss << "info"
 
         << " depth "    << d / ONE_PLY
 
         << " seldepth " << pos.this_thread()->maxPly
 
         << " multipv "  << i + 1
 
         << " score "    << UCI::value(v);
 
 
 
      if (!tb && i == PVIdx)
 
          ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : "");
 
 
 
      ss << " nodes "    << nodes_searched
 
         << " nps "      << nodes_searched * 1000 / elapsed;
 
 
 
      if (elapsed > 1000) // Earlier makes little sense
 
          ss << " hashfull " << TT.hashfull();
 
 
 
      ss << " tbhits "   << TB::Hits
 
         << " time "     << elapsed
 
         << " pv";
 
 
 
      for (Move m : rootMoves[i].pv)
 
          ss << " " << UCI::move(m, pos.is_chess960());
 
  }
 
 
 
  return ss.str();
 
}
 
 
 
 
 
/// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and
 
/// inserts the PV back into the TT. This makes sure the old PV moves are searched
 
/// first, even if the old TT entries have been overwritten.
 
 
 
void RootMove::insert_pv_in_tt(Position& pos) {
 
 
 
  StateInfo state[MAX_PLY], *st = state;
 
  bool ttHit;
 
 
 
  for (Move m : pv)
 
  {
 
      assert(MoveList<LEGAL>(pos).contains(m));
 
 
 
      TTEntry* tte = TT.probe(pos.key(), ttHit);
 
 
 
      if (!ttHit || tte->move() != m) // Don't overwrite correct entries
 
          tte->save(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE,
 
                    m, VALUE_NONE, TT.generation());
 
 
 
      pos.do_move(m, *st++, pos.gives_check(m, CheckInfo(pos)));
 
  }
 
 
 
  for (size_t i = pv.size(); i > 0; )
 
      pos.undo_move(pv[--i]);
 
}
 
 
 
 
 
/// RootMove::extract_ponder_from_tt() is called in case we have no ponder move
 
/// before exiting the search, for instance, in case we stop the search during a
 
/// fail high at root. We try hard to have a ponder move to return to the GUI,
 
/// otherwise in case of 'ponder on' we have nothing to think on.
 
 
 
bool RootMove::extract_ponder_from_tt(Position& pos)
 
{
 
    StateInfo st;
 
    bool ttHit;
 
 
 
    assert(pv.size() == 1);
 
 
 
    pos.do_move(pv[0], st, pos.gives_check(pv[0], CheckInfo(pos)));
 
    TTEntry* tte = TT.probe(pos.key(), ttHit);
 
    pos.undo_move(pv[0]);
 
 
 
    if (ttHit)
 
    {
 
        Move m = tte->move(); // Local copy to be SMP safe
 
        if (MoveList<LEGAL>(pos).contains(m))
 
           return pv.push_back(m), true;
 
    }
 
 
 
    return false;
 
}