/*
 
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
 
  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
 
  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
 
  Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
 
 
 
  Stockfish is free software: you can redistribute it and/or modify
 
  it under the terms of the GNU General Public License as published by
 
  the Free Software Foundation, either version 3 of the License, or
 
  (at your option) any later version.
 
 
 
  Stockfish is distributed in the hope that it will be useful,
 
  but WITHOUT ANY WARRANTY; without even the implied warranty of
 
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
  GNU General Public License for more details.
 
 
 
  You should have received a copy of the GNU General Public License
 
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 
*/
 
 
 
#ifndef POSITION_H_INCLUDED
 
#define POSITION_H_INCLUDED
 
 
 
#include <cassert>
 
#include <deque>
 
#include <memory> // For std::unique_ptr
 
#include <string>
 
 
 
#include "bitboard.h"
 
#include "types.h"
 
 
 
 
 
/// StateInfo struct stores information needed to restore a Position object to
 
/// its previous state when we retract a move. Whenever a move is made on the
 
/// board (by calling Position::do_move), a StateInfo object must be passed.
 
 
 
struct StateInfo {
 
 
 
  // Copied when making a move
 
  Key    pawnKey;
 
  Key    materialKey;
 
  Value  nonPawnMaterial[COLOR_NB];
 
  int    castlingRights;
 
  int    rule50;
 
  int    pliesFromNull;
 
  Score  psq;
 
  Square epSquare;
 
 
 
  // Not copied when making a move (will be recomputed anyhow)
 
  Key        key;
 
  Bitboard   checkersBB;
 
  Piece      capturedPiece;
 
  StateInfo* previous;
 
  Bitboard   blockersForKing[COLOR_NB];
 
  Bitboard   pinnersForKing[COLOR_NB];
 
  Bitboard   checkSquares[PIECE_TYPE_NB];
 
};
 
 
 
// In a std::deque references to elements are unaffected upon resizing
 
typedef std::unique_ptr<std::deque<StateInfo>> StateListPtr;
 
 
 
 
 
/// Position class stores information regarding the board representation as
 
/// pieces, side to move, hash keys, castling info, etc. Important methods are
 
/// do_move() and undo_move(), used by the search to update node info when
 
/// traversing the search tree.
 
class Thread;
 
 
 
class Position {
 
public:
 
  static void init();
 
 
 
  Position() = default;
 
  Position(const Position&) = delete;
 
  Position& operator=(const Position&) = delete;
 
 
 
  // FEN string input/output
 
  Position& set(const std::string& fenStr, bool isChess960, StateInfo* si, Thread* th);
 
  const std::string fen() const;
 
 
 
  // Position representation
 
  Bitboard pieces() const;
 
  Bitboard pieces(PieceType pt) const;
 
  Bitboard pieces(PieceType pt1, PieceType pt2) const;
 
  Bitboard pieces(Color c) const;
 
  Bitboard pieces(Color c, PieceType pt) const;
 
  Bitboard pieces(Color c, PieceType pt1, PieceType pt2) const;
 
  Piece piece_on(Square s) const;
 
  Square ep_square() const;
 
  bool empty(Square s) const;
 
  template<PieceType Pt> int count(Color c) const;
 
  template<PieceType Pt> const Square* squares(Color c) const;
 
  template<PieceType Pt> Square square(Color c) const;
 
 
 
  // Castling
 
  int can_castle(Color c) const;
 
  int can_castle(CastlingRight cr) const;
 
  bool castling_impeded(CastlingRight cr) const;
 
  Square castling_rook_square(CastlingRight cr) const;
 
 
 
  // Checking
 
  Bitboard checkers() const;
 
  Bitboard discovered_check_candidates() const;
 
  Bitboard pinned_pieces(Color c) const;
 
  Bitboard check_squares(PieceType pt) const;
 
 
 
  // Attacks to/from a given square
 
  Bitboard attackers_to(Square s) const;
 
  Bitboard attackers_to(Square s, Bitboard occupied) const;
 
  Bitboard attacks_from(Piece pc, Square s) const;
 
  template<PieceType> Bitboard attacks_from(Square s) const;
 
  template<PieceType> Bitboard attacks_from(Square s, Color c) const;
 
  Bitboard slider_blockers(Bitboard sliders, Square s, Bitboard& pinners) const;
 
 
 
  // Properties of moves
 
  bool legal(Move m) const;
 
  bool pseudo_legal(const Move m) const;
 
  bool capture(Move m) const;
 
  bool capture_or_promotion(Move m) const;
 
  bool gives_check(Move m) const;
 
  bool advanced_pawn_push(Move m) const;
 
  Piece moved_piece(Move m) const;
 
  Piece captured_piece() const;
 
 
 
  // Piece specific
 
  bool pawn_passed(Color c, Square s) const;
 
  bool opposite_bishops() const;
 
 
 
  // Doing and undoing moves
 
  void do_move(Move m, StateInfo& st, bool givesCheck);
 
  void undo_move(Move m);
 
  void do_null_move(StateInfo& st);
 
  void undo_null_move();
 
 
 
  // Static Exchange Evaluation
 
  bool see_ge(Move m, Value value) const;
 
 
 
  // Accessing hash keys
 
  Key key() const;
 
  Key key_after(Move m) const;
 
  Key material_key() const;
 
  Key pawn_key() const;
 
 
 
  // Other properties of the position
 
  Color side_to_move() const;
 
  Phase game_phase() const;
 
  int game_ply() const;
 
  bool is_chess960() const;
 
  Thread* this_thread() const;
 
  uint64_t nodes_searched() const;
 
  bool is_draw() const;
 
  int rule50_count() const;
 
  Score psq_score() const;
 
  Value non_pawn_material(Color c) const;
 
 
 
  // Position consistency check, for debugging
 
  bool pos_is_ok(int* failedStep = nullptr) const;
 
  void flip();
 
 
 
private:
 
  // Initialization helpers (used while setting up a position)
 
  void set_castling_right(Color c, Square rfrom);
 
  void set_state(StateInfo* si) const;
 
  void set_check_info(StateInfo* si) const;
 
 
 
  // Other helpers
 
  void put_piece(Piece pc, Square s);
 
  void remove_piece(Piece pc, Square s);
 
  void move_piece(Piece pc, Square from, Square to);
 
  template<bool Do>
 
  void do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto);
 
 
 
  // Data members
 
  Piece board[SQUARE_NB];
 
  Bitboard byTypeBB[PIECE_TYPE_NB];
 
  Bitboard byColorBB[COLOR_NB];
 
  int pieceCount[PIECE_NB];
 
  Square pieceList[PIECE_NB][16];
 
  int index[SQUARE_NB];
 
  int castlingRightsMask[SQUARE_NB];
 
  Square castlingRookSquare[CASTLING_RIGHT_NB];
 
  Bitboard castlingPath[CASTLING_RIGHT_NB];
 
  uint64_t nodes;
 
  int gamePly;
 
  Color sideToMove;
 
  Thread* thisThread;
 
  StateInfo* st;
 
  bool chess960;
 
};
 
 
 
extern std::ostream& operator<<(std::ostream& os, const Position& pos);
 
 
 
inline Color Position::side_to_move() const {
 
  return sideToMove;
 
}
 
 
 
inline bool Position::empty(Square s) const {
 
  return board[s] == NO_PIECE;
 
}
 
 
 
inline Piece Position::piece_on(Square s) const {
 
  return board[s];
 
}
 
 
 
inline Piece Position::moved_piece(Move m) const {
 
  return board[from_sq(m)];
 
}
 
 
 
inline Bitboard Position::pieces() const {
 
  return byTypeBB[ALL_PIECES];
 
}
 
 
 
inline Bitboard Position::pieces(PieceType pt) const {
 
  return byTypeBB[pt];
 
}
 
 
 
inline Bitboard Position::pieces(PieceType pt1, PieceType pt2) const {
 
  return byTypeBB[pt1] | byTypeBB[pt2];
 
}
 
 
 
inline Bitboard Position::pieces(Color c) const {
 
  return byColorBB[c];
 
}
 
 
 
inline Bitboard Position::pieces(Color c, PieceType pt) const {
 
  return byColorBB[c] & byTypeBB[pt];
 
}
 
 
 
inline Bitboard Position::pieces(Color c, PieceType pt1, PieceType pt2) const {
 
  return byColorBB[c] & (byTypeBB[pt1] | byTypeBB[pt2]);
 
}
 
 
 
template<PieceType Pt> inline int Position::count(Color c) const {
 
  return pieceCount[make_piece(c, Pt)];
 
}
 
 
 
template<PieceType Pt> inline const Square* Position::squares(Color c) const {
 
  return pieceList[make_piece(c, Pt)];
 
}
 
 
 
template<PieceType Pt> inline Square Position::square(Color c) const {
 
  assert(pieceCount[make_piece(c, Pt)] == 1);
 
  return pieceList[make_piece(c, Pt)][0];
 
}
 
 
 
inline Square Position::ep_square() const {
 
  return st->epSquare;
 
}
 
 
 
inline int Position::can_castle(CastlingRight cr) const {
 
  return st->castlingRights & cr;
 
}
 
 
 
inline int Position::can_castle(Color c) const {
 
  return st->castlingRights & ((WHITE_OO | WHITE_OOO) << (2 * c));
 
}
 
 
 
inline bool Position::castling_impeded(CastlingRight cr) const {
 
  return byTypeBB[ALL_PIECES] & castlingPath[cr];
 
}
 
 
 
inline Square Position::castling_rook_square(CastlingRight cr) const {
 
  return castlingRookSquare[cr];
 
}
 
 
 
template<PieceType Pt>
 
inline Bitboard Position::attacks_from(Square s) const {
 
  return  Pt == BISHOP || Pt == ROOK ? attacks_bb<Pt>(s, byTypeBB[ALL_PIECES])
 
        : Pt == QUEEN  ? attacks_from<ROOK>(s) | attacks_from<BISHOP>(s)
 
        : StepAttacksBB[Pt][s];
 
}
 
 
 
template<>
 
inline Bitboard Position::attacks_from<PAWN>(Square s, Color c) const {
 
  return StepAttacksBB[make_piece(c, PAWN)][s];
 
}
 
 
 
inline Bitboard Position::attacks_from(Piece pc, Square s) const {
 
  return attacks_bb(pc, s, byTypeBB[ALL_PIECES]);
 
}
 
 
 
inline Bitboard Position::attackers_to(Square s) const {
 
  return attackers_to(s, byTypeBB[ALL_PIECES]);
 
}
 
 
 
inline Bitboard Position::checkers() const {
 
  return st->checkersBB;
 
}
 
 
 
inline Bitboard Position::discovered_check_candidates() const {
 
  return st->blockersForKing[~sideToMove] & pieces(sideToMove);
 
}
 
 
 
inline Bitboard Position::pinned_pieces(Color c) const {
 
  return st->blockersForKing[c] & pieces(c);
 
}
 
 
 
inline Bitboard Position::check_squares(PieceType pt) const {
 
  return st->checkSquares[pt];
 
}
 
 
 
inline bool Position::pawn_passed(Color c, Square s) const {
 
  return !(pieces(~c, PAWN) & passed_pawn_mask(c, s));
 
}
 
 
 
inline bool Position::advanced_pawn_push(Move m) const {
 
  return   type_of(moved_piece(m)) == PAWN
 
        && relative_rank(sideToMove, from_sq(m)) > RANK_4;
 
}
 
 
 
inline Key Position::key() const {
 
  return st->key;
 
}
 
 
 
inline Key Position::pawn_key() const {
 
  return st->pawnKey;
 
}
 
 
 
inline Key Position::material_key() const {
 
  return st->materialKey;
 
}
 
 
 
inline Score Position::psq_score() const {
 
  return st->psq;
 
}
 
 
 
inline Value Position::non_pawn_material(Color c) const {
 
  return st->nonPawnMaterial[c];
 
}
 
 
 
inline int Position::game_ply() const {
 
  return gamePly;
 
}
 
 
 
inline int Position::rule50_count() const {
 
  return st->rule50;
 
}
 
 
 
inline uint64_t Position::nodes_searched() const {
 
  return nodes;
 
}
 
 
 
inline bool Position::opposite_bishops() const {
 
  return   pieceCount[W_BISHOP] == 1
 
        && pieceCount[B_BISHOP] == 1
 
        && opposite_colors(square<BISHOP>(WHITE), square<BISHOP>(BLACK));
 
}
 
 
 
inline bool Position::is_chess960() const {
 
  return chess960;
 
}
 
 
 
inline bool Position::capture_or_promotion(Move m) const {
 
  assert(is_ok(m));
 
  return type_of(m) != NORMAL ? type_of(m) != CASTLING : !empty(to_sq(m));
 
}
 
 
 
inline bool Position::capture(Move m) const {
 
  assert(is_ok(m));
 
  // Castling is encoded as "king captures rook"
 
  return (!empty(to_sq(m)) && type_of(m) != CASTLING) || type_of(m) == ENPASSANT;
 
}
 
 
 
inline Piece Position::captured_piece() const {
 
  return st->capturedPiece;
 
}
 
 
 
inline Thread* Position::this_thread() const {
 
  return thisThread;
 
}
 
 
 
inline void Position::put_piece(Piece pc, Square s) {
 
 
 
  board[s] = pc;
 
  byTypeBB[ALL_PIECES] |= s;
 
  byTypeBB[type_of(pc)] |= s;
 
  byColorBB[color_of(pc)] |= s;
 
  index[s] = pieceCount[pc]++;
 
  pieceList[pc][index[s]] = s;
 
  pieceCount[make_piece(color_of(pc), ALL_PIECES)]++;
 
}
 
 
 
inline void Position::remove_piece(Piece pc, Square s) {
 
 
 
  // WARNING: This is not a reversible operation. If we remove a piece in
 
  // do_move() and then replace it in undo_move() we will put it at the end of
 
  // the list and not in its original place, it means index[] and pieceList[]
 
  // are not invariant to a do_move() + undo_move() sequence.
 
  byTypeBB[ALL_PIECES] ^= s;
 
  byTypeBB[type_of(pc)] ^= s;
 
  byColorBB[color_of(pc)] ^= s;
 
  /* board[s] = NO_PIECE;  Not needed, overwritten by the capturing one */
 
  Square lastSquare = pieceList[pc][--pieceCount[pc]];
 
  index[lastSquare] = index[s];
 
  pieceList[pc][index[lastSquare]] = lastSquare;
 
  pieceList[pc][pieceCount[pc]] = SQ_NONE;
 
  pieceCount[make_piece(color_of(pc), ALL_PIECES)]--;
 
}
 
 
 
inline void Position::move_piece(Piece pc, Square from, Square to) {
 
 
 
  // index[from] is not updated and becomes stale. This works as long as index[]
 
  // is accessed just by known occupied squares.
 
  Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to];
 
  byTypeBB[ALL_PIECES] ^= from_to_bb;
 
  byTypeBB[type_of(pc)] ^= from_to_bb;
 
  byColorBB[color_of(pc)] ^= from_to_bb;
 
  board[from] = NO_PIECE;
 
  board[to] = pc;
 
  index[to] = index[from];
 
  pieceList[pc][index[to]] = to;
 
}
 
 
 
#endif // #ifndef POSITION_H_INCLUDED