/*
 
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
 
  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
 
  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
 
  Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
 
 
 
  Stockfish is free software: you can redistribute it and/or modify
 
  it under the terms of the GNU General Public License as published by
 
  the Free Software Foundation, either version 3 of the License, or
 
  (at your option) any later version.
 
 
 
  Stockfish is distributed in the hope that it will be useful,
 
  but WITHOUT ANY WARRANTY; without even the implied warranty of
 
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
  GNU General Public License for more details.
 
 
 
  You should have received a copy of the GNU General Public License
 
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 
*/
 
 
 
#include <algorithm>
 
#include <cassert>
 
 
 
#include "bitboard.h"
 
#include "pawns.h"
 
#include "position.h"
 
#include "thread.h"
 
 
 
namespace {
 
 
 
  #define V Value
 
  #define S(mg, eg) make_score(mg, eg)
 
 
 
  // Isolated pawn penalty
 
  const Score Isolated = S(13, 18);
 
 
 
  // Backward pawn penalty
 
  const Score Backward = S(24, 12);
 
 
 
  // Connected pawn bonus by opposed, phalanx, #support and rank
 
  Score Connected[2][2][3][RANK_NB];
 
 
 
  // Doubled pawn penalty
 
  const Score Doubled = S(18, 38);
 
 
 
  // Weakness of our pawn shelter in front of the king by [isKingFile][distance from edge][rank].
 
  // RANK_1 = 0 is used for files where we have no pawns or our pawn is behind our king.
 
  const Value ShelterWeakness[][int(FILE_NB) / 2][RANK_NB] = {
 
    { { V( 97), V(17), V( 9), V(44), V( 84), V( 87), V( 99) }, // Not On King file
 
      { V(106), V( 6), V(33), V(86), V( 87), V(104), V(112) },
 
      { V(101), V( 2), V(65), V(98), V( 58), V( 89), V(115) },
 
      { V( 73), V( 7), V(54), V(73), V( 84), V( 83), V(111) } },
 
    { { V(104), V(20), V( 6), V(27), V( 86), V( 93), V( 82) }, // On King file
 
      { V(123), V( 9), V(34), V(96), V(112), V( 88), V( 75) },
 
      { V(120), V(25), V(65), V(91), V( 66), V( 78), V(117) },
 
      { V( 81), V( 2), V(47), V(63), V( 94), V( 93), V(104) } }
 
  };
 
 
 
  // Danger of enemy pawns moving toward our king by [type][distance from edge][rank].
 
  // For the unopposed and unblocked cases, RANK_1 = 0 is used when opponent has
 
  // no pawn on the given file, or their pawn is behind our king.
 
  const Value StormDanger[][4][RANK_NB] = {
 
    { { V( 0),  V(-290), V(-274), V(57), V(41) },  // BlockedByKing
 
      { V( 0),  V(  60), V( 144), V(39), V(13) },
 
      { V( 0),  V(  65), V( 141), V(41), V(34) },
 
      { V( 0),  V(  53), V( 127), V(56), V(14) } },
 
    { { V( 4),  V(  73), V( 132), V(46), V(31) },  // Unopposed
 
      { V( 1),  V(  64), V( 143), V(26), V(13) },
 
      { V( 1),  V(  47), V( 110), V(44), V(24) },
 
      { V( 0),  V(  72), V( 127), V(50), V(31) } },
 
    { { V( 0),  V(   0), V(  79), V(23), V( 1) },  // BlockedByPawn
 
      { V( 0),  V(   0), V( 148), V(27), V( 2) },
 
      { V( 0),  V(   0), V( 161), V(16), V( 1) },
 
      { V( 0),  V(   0), V( 171), V(22), V(15) } },
 
    { { V(22),  V(  45), V( 104), V(62), V( 6) },  // Unblocked
 
      { V(31),  V(  30), V(  99), V(39), V(19) },
 
      { V(23),  V(  29), V(  96), V(41), V(15) },
 
      { V(21),  V(  23), V( 116), V(41), V(15) } }
 
  };
 
 
 
  // Max bonus for king safety. Corresponds to start position with all the pawns
 
  // in front of the king and no enemy pawn on the horizon.
 
  const Value MaxSafetyBonus = V(258);
 
 
 
  #undef S
 
  #undef V
 
 
 
  template<Color Us>
 
  Score evaluate(const Position& pos, Pawns::Entry* e) {
 
 
 
    const Color     Them  = (Us == WHITE ? BLACK      : WHITE);
 
    const Direction Up    = (Us == WHITE ? NORTH      : SOUTH);
 
    const Direction Right = (Us == WHITE ? NORTH_EAST : SOUTH_WEST);
 
    const Direction Left  = (Us == WHITE ? NORTH_WEST : SOUTH_EAST);
 
 
 
    Bitboard b, neighbours, stoppers, doubled, supported, phalanx;
 
    Bitboard lever, leverPush;
 
    Square s;
 
    bool opposed, backward;
 
    Score score = SCORE_ZERO;
 
    const Square* pl = pos.squares<PAWN>(Us);
 
 
 
    Bitboard ourPawns   = pos.pieces(  Us, PAWN);
 
    Bitboard theirPawns = pos.pieces(Them, PAWN);
 
 
 
    e->passedPawns[Us] = e->pawnAttacksSpan[Us] = e->weakUnopposed[Us] = 0;
 
    e->semiopenFiles[Us] = 0xFF;
 
    e->kingSquares[Us]   = SQ_NONE;
 
    e->pawnAttacks[Us]   = shift<Right>(ourPawns) | shift<Left>(ourPawns);
 
    e->pawnsOnSquares[Us][BLACK] = popcount(ourPawns & DarkSquares);
 
    e->pawnsOnSquares[Us][WHITE] = pos.count<PAWN>(Us) - e->pawnsOnSquares[Us][BLACK];
 
 
 
    // Loop through all pawns of the current color and score each pawn
 
    while ((s = *pl++) != SQ_NONE)
 
    {
 
        assert(pos.piece_on(s) == make_piece(Us, PAWN));
 
 
 
        File f = file_of(s);
 
 
 
        e->semiopenFiles[Us]   &= ~(1 << f);
 
        e->pawnAttacksSpan[Us] |= pawn_attack_span(Us, s);
 
 
 
        // Flag the pawn
 
        opposed    = theirPawns & forward_file_bb(Us, s);
 
        stoppers   = theirPawns & passed_pawn_mask(Us, s);
 
        lever      = theirPawns & PawnAttacks[Us][s];
 
        leverPush  = theirPawns & PawnAttacks[Us][s + Up];
 
        doubled    = ourPawns   & (s - Up);
 
        neighbours = ourPawns   & adjacent_files_bb(f);
 
        phalanx    = neighbours & rank_bb(s);
 
        supported  = neighbours & rank_bb(s - Up);
 
 
 
        // A pawn is backward when it is behind all pawns of the same color on the
 
        // adjacent files and cannot be safely advanced.
 
        if (!neighbours || lever || relative_rank(Us, s) >= RANK_5)
 
            backward = false;
 
        else
 
        {
 
            // Find the backmost rank with neighbours or stoppers
 
            b = rank_bb(backmost_sq(Us, neighbours | stoppers));
 
 
 
            // The pawn is backward when it cannot safely progress to that rank:
 
            // either there is a stopper in the way on this rank, or there is a
 
            // stopper on adjacent file which controls the way to that rank.
 
            backward = (b | shift<Up>(b & adjacent_files_bb(f))) & stoppers;
 
 
 
            assert(!(backward && (forward_ranks_bb(Them, s + Up) & neighbours)));
 
        }
 
 
 
        // Passed pawns will be properly scored in evaluation because we need
 
        // full attack info to evaluate them. Include also not passed pawns
 
        // which could become passed after one or two pawn pushes when are
 
        // not attacked more times than defended.
 
        if (   !(stoppers ^ lever ^ leverPush)
 
            && !(ourPawns & forward_file_bb(Us, s))
 
            && popcount(supported) >= popcount(lever)
 
            && popcount(phalanx)   >= popcount(leverPush))
 
            e->passedPawns[Us] |= s;
 
 
 
        else if (   stoppers == SquareBB[s + Up]
 
                 && relative_rank(Us, s) >= RANK_5)
 
        {
 
            b = shift<Up>(supported) & ~theirPawns;
 
            while (b)
 
                if (!more_than_one(theirPawns & PawnAttacks[Us][pop_lsb(&b)]))
 
                    e->passedPawns[Us] |= s;
 
        }
 
 
 
        // Score this pawn
 
        if (supported | phalanx)
 
            score += Connected[opposed][bool(phalanx)][popcount(supported)][relative_rank(Us, s)];
 
 
 
        else if (!neighbours)
 
            score -= Isolated, e->weakUnopposed[Us] += !opposed;
 
 
 
        else if (backward)
 
            score -= Backward, e->weakUnopposed[Us] += !opposed;
 
 
 
        if (doubled && !supported)
 
            score -= Doubled;
 
    }
 
 
 
    return score;
 
  }
 
 
 
} // namespace
 
 
 
namespace Pawns {
 
 
 
/// Pawns::init() initializes some tables needed by evaluation. Instead of using
 
/// hard-coded tables, when makes sense, we prefer to calculate them with a formula
 
/// to reduce independent parameters and to allow easier tuning and better insight.
 
 
 
void init() {
 
 
 
  static const int Seed[RANK_NB] = { 0, 13, 24, 18, 76, 100, 175, 330 };
 
 
 
  for (int opposed = 0; opposed <= 1; ++opposed)
 
      for (int phalanx = 0; phalanx <= 1; ++phalanx)
 
          for (int support = 0; support <= 2; ++support)
 
              for (Rank r = RANK_2; r < RANK_8; ++r)
 
  {
 
      int v = 17 * support;
 
      v += (Seed[r] + (phalanx ? (Seed[r + 1] - Seed[r]) / 2 : 0)) >> opposed;
 
 
 
      Connected[opposed][phalanx][support][r] = make_score(v, v * (r - 2) / 4);
 
  }
 
}
 
 
 
 
 
/// Pawns::probe() looks up the current position's pawns configuration in
 
/// the pawns hash table. It returns a pointer to the Entry if the position
 
/// is found. Otherwise a new Entry is computed and stored there, so we don't
 
/// have to recompute all when the same pawns configuration occurs again.
 
 
 
Entry* probe(const Position& pos) {
 
 
 
  Key key = pos.pawn_key();
 
  Entry* e = pos.this_thread()->pawnsTable[key];
 
 
 
  if (e->key == key)
 
      return e;
 
 
 
  e->key = key;
 
  e->score = evaluate<WHITE>(pos, e) - evaluate<BLACK>(pos, e);
 
  e->asymmetry = popcount(e->semiopenFiles[WHITE] ^ e->semiopenFiles[BLACK]);
 
  e->openFiles = popcount(e->semiopenFiles[WHITE] & e->semiopenFiles[BLACK]);
 
  return e;
 
}
 
 
 
 
 
/// Entry::shelter_storm() calculates shelter and storm penalties for the file
 
/// the king is on, as well as the two closest files.
 
 
 
template<Color Us>
 
Value Entry::shelter_storm(const Position& pos, Square ksq) {
 
 
 
  const Color Them = (Us == WHITE ? BLACK : WHITE);
 
 
 
  enum { BlockedByKing, Unopposed, BlockedByPawn, Unblocked };
 
 
 
  Bitboard b = pos.pieces(PAWN) & (forward_ranks_bb(Us, ksq) | rank_bb(ksq));
 
  Bitboard ourPawns = b & pos.pieces(Us);
 
  Bitboard theirPawns = b & pos.pieces(Them);
 
  Value safety = MaxSafetyBonus;
 
  File center = std::max(FILE_B, std::min(FILE_G, file_of(ksq)));
 
 
 
  for (File f = File(center - 1); f <= File(center + 1); ++f)
 
  {
 
      b = ourPawns & file_bb(f);
 
      Rank rkUs = b ? relative_rank(Us, backmost_sq(Us, b)) : RANK_1;
 
 
 
      b = theirPawns & file_bb(f);
 
      Rank rkThem = b ? relative_rank(Us, frontmost_sq(Them, b)) : RANK_1;
 
 
 
      int d = std::min(f, ~f);
 
      safety -=  ShelterWeakness[f == file_of(ksq)][d][rkUs]
 
               + StormDanger
 
                 [f == file_of(ksq) && rkThem == relative_rank(Us, ksq) + 1 ? BlockedByKing  :
 
                  rkUs   == RANK_1                                          ? Unopposed :
 
                  rkThem == rkUs + 1                                        ? BlockedByPawn  : Unblocked]
 
                 [d][rkThem];
 
  }
 
 
 
  return safety;
 
}
 
 
 
 
 
/// Entry::do_king_safety() calculates a bonus for king safety. It is called only
 
/// when king square changes, which is about 20% of total king_safety() calls.
 
 
 
template<Color Us>
 
Score Entry::do_king_safety(const Position& pos, Square ksq) {
 
 
 
  kingSquares[Us] = ksq;
 
  castlingRights[Us] = pos.can_castle(Us);
 
  int minKingPawnDistance = 0;
 
 
 
  Bitboard pawns = pos.pieces(Us, PAWN);
 
  if (pawns)
 
      while (!(DistanceRingBB[ksq][minKingPawnDistance++] & pawns)) {}
 
 
 
  Value bonus = shelter_storm<Us>(pos, ksq);
 
 
 
  // If we can castle use the bonus after the castling if it is bigger
 
  if (pos.can_castle(MakeCastling<Us, KING_SIDE>::right))
 
      bonus = std::max(bonus, shelter_storm<Us>(pos, relative_square(Us, SQ_G1)));
 
 
 
  if (pos.can_castle(MakeCastling<Us, QUEEN_SIDE>::right))
 
      bonus = std::max(bonus, shelter_storm<Us>(pos, relative_square(Us, SQ_C1)));
 
 
 
  return make_score(bonus, -16 * minKingPawnDistance);
 
}
 
 
 
// Explicit template instantiation
 
template Score Entry::do_king_safety<WHITE>(const Position& pos, Square ksq);
 
template Score Entry::do_king_safety<BLACK>(const Position& pos, Square ksq);
 
 
 
} // namespace Pawns