/*
 
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
 
  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
 
  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
 
  Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
 
 
 
  Stockfish is free software: you can redistribute it and/or modify
 
  it under the terms of the GNU General Public License as published by
 
  the Free Software Foundation, either version 3 of the License, or
 
  (at your option) any later version.
 
 
 
  Stockfish is distributed in the hope that it will be useful,
 
  but WITHOUT ANY WARRANTY; without even the implied warranty of
 
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
  GNU General Public License for more details.
 
 
 
  You should have received a copy of the GNU General Public License
 
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 
*/
 
 
 
#include <algorithm> // For std::min
 
#include <cassert>
 
#include <cstring>   // For std::memset
 
 
 
#include "material.h"
 
#include "thread.h"
 
 
 
using namespace std;
 
 
 
namespace {
 
 
 
  // Polynomial material imbalance parameters
 
 
 
  constexpr int QuadraticOurs[][PIECE_TYPE_NB] = {
 
    //            OUR PIECES
 
    // pair pawn knight bishop rook queen
 
    {1438                               }, // Bishop pair
 
    {  40,   38                         }, // Pawn
 
    {  32,  255, -62                    }, // Knight      OUR PIECES
 
    {   0,  104,   4,    0              }, // Bishop
 
    { -26,   -2,  47,   105,  -208      }, // Rook
 
    {-189,   24, 117,   133,  -134, -6  }  // Queen
 
  };
 
 
 
  constexpr int QuadraticTheirs[][PIECE_TYPE_NB] = {
 
    //           THEIR PIECES
 
    // pair pawn knight bishop rook queen
 
    {   0                               }, // Bishop pair
 
    {  36,    0                         }, // Pawn
 
    {   9,   63,   0                    }, // Knight      OUR PIECES
 
    {  59,   65,  42,     0             }, // Bishop
 
    {  46,   39,  24,   -24,    0       }, // Rook
 
    {  97,  100, -42,   137,  268,    0 }  // Queen
 
  };
 
 
 
  // Endgame evaluation and scaling functions are accessed directly and not through
 
  // the function maps because they correspond to more than one material hash key.
 
  Endgame<KXK>    EvaluateKXK[] = { Endgame<KXK>(WHITE),    Endgame<KXK>(BLACK) };
 
 
 
  Endgame<KBPsK>  ScaleKBPsK[]  = { Endgame<KBPsK>(WHITE),  Endgame<KBPsK>(BLACK) };
 
  Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) };
 
  Endgame<KPsK>   ScaleKPsK[]   = { Endgame<KPsK>(WHITE),   Endgame<KPsK>(BLACK) };
 
  Endgame<KPKP>   ScaleKPKP[]   = { Endgame<KPKP>(WHITE),   Endgame<KPKP>(BLACK) };
 
 
 
  // Helper used to detect a given material distribution
 
  bool is_KXK(const Position& pos, Color us) {
 
    return  !more_than_one(pos.pieces(~us))
 
          && pos.non_pawn_material(us) >= RookValueMg;
 
  }
 
 
 
  bool is_KBPsK(const Position& pos, Color us) {
 
    return   pos.non_pawn_material(us) == BishopValueMg
 
          && pos.count<BISHOP>(us) == 1
 
          && pos.count<PAWN  >(us) >= 1;
 
  }
 
 
 
  bool is_KQKRPs(const Position& pos, Color us) {
 
    return  !pos.count<PAWN>(us)
 
          && pos.non_pawn_material(us) == QueenValueMg
 
          && pos.count<QUEEN>(us) == 1
 
          && pos.count<ROOK>(~us) == 1
 
          && pos.count<PAWN>(~us) >= 1;
 
  }
 
 
 
  /// imbalance() calculates the imbalance by comparing the piece count of each
 
  /// piece type for both colors.
 
  template<Color Us>
 
  int imbalance(const int pieceCount[][PIECE_TYPE_NB]) {
 
 
 
    constexpr Color Them = (Us == WHITE ? BLACK : WHITE);
 
 
 
    int bonus = 0;
 
 
 
    // Second-degree polynomial material imbalance, by Tord Romstad
 
    for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1)
 
    {
 
        if (!pieceCount[Us][pt1])
 
            continue;
 
 
 
        int v = 0;
 
 
 
        for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2)
 
            v +=  QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2]
 
                + QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2];
 
 
 
        bonus += pieceCount[Us][pt1] * v;
 
    }
 
 
 
    return bonus;
 
  }
 
 
 
} // namespace
 
 
 
namespace Material {
 
 
 
/// Material::probe() looks up the current position's material configuration in
 
/// the material hash table. It returns a pointer to the Entry if the position
 
/// is found. Otherwise a new Entry is computed and stored there, so we don't
 
/// have to recompute all when the same material configuration occurs again.
 
 
 
Entry* probe(const Position& pos) {
 
 
 
  Key key = pos.material_key();
 
  Entry* e = pos.this_thread()->materialTable[key];
 
 
 
  if (e->key == key)
 
      return e;
 
 
 
  std::memset(e, 0, sizeof(Entry));
 
  e->key = key;
 
  e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
 
 
 
  Value npm_w = pos.non_pawn_material(WHITE);
 
  Value npm_b = pos.non_pawn_material(BLACK);
 
  Value npm = std::max(EndgameLimit, std::min(npm_w + npm_b, MidgameLimit));
 
 
 
  // Map total non-pawn material into [PHASE_ENDGAME, PHASE_MIDGAME]
 
  e->gamePhase = Phase(((npm - EndgameLimit) * PHASE_MIDGAME) / (MidgameLimit - EndgameLimit));
 
 
 
  // Let's look if we have a specialized evaluation function for this particular
 
  // material configuration. Firstly we look for a fixed configuration one, then
 
  // for a generic one if the previous search failed.
 
  if ((e->evaluationFunction = pos.this_thread()->endgames.probe<Value>(key)) != nullptr)
 
      return e;
 
 
 
  for (Color c = WHITE; c <= BLACK; ++c)
 
      if (is_KXK(pos, c))
 
      {
 
          e->evaluationFunction = &EvaluateKXK[c];
 
          return e;
 
      }
 
 
 
  // OK, we didn't find any special evaluation function for the current material
 
  // configuration. Is there a suitable specialized scaling function?
 
  const EndgameBase<ScaleFactor>* sf;
 
 
 
  if ((sf = pos.this_thread()->endgames.probe<ScaleFactor>(key)) != nullptr)
 
  {
 
      e->scalingFunction[sf->strongSide] = sf; // Only strong color assigned
 
      return e;
 
  }
 
 
 
  // We didn't find any specialized scaling function, so fall back on generic
 
  // ones that refer to more than one material distribution. Note that in this
 
  // case we don't return after setting the function.
 
  for (Color c = WHITE; c <= BLACK; ++c)
 
  {
 
    if (is_KBPsK(pos, c))
 
        e->scalingFunction[c] = &ScaleKBPsK[c];
 
 
 
    else if (is_KQKRPs(pos, c))
 
        e->scalingFunction[c] = &ScaleKQKRPs[c];
 
  }
 
 
 
  if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) // Only pawns on the board
 
  {
 
      if (!pos.count<PAWN>(BLACK))
 
      {
 
          assert(pos.count<PAWN>(WHITE) >= 2);
 
 
 
          e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
 
      }
 
      else if (!pos.count<PAWN>(WHITE))
 
      {
 
          assert(pos.count<PAWN>(BLACK) >= 2);
 
 
 
          e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
 
      }
 
      else if (pos.count<PAWN>(WHITE) == 1 && pos.count<PAWN>(BLACK) == 1)
 
      {
 
          // This is a special case because we set scaling functions
 
          // for both colors instead of only one.
 
          e->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
 
          e->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
 
      }
 
  }
 
 
 
  // Zero or just one pawn makes it difficult to win, even with a small material
 
  // advantage. This catches some trivial draws like KK, KBK and KNK and gives a
 
  // drawish scale factor for cases such as KRKBP and KmmKm (except for KBBKN).
 
  if (!pos.count<PAWN>(WHITE) && npm_w - npm_b <= BishopValueMg)
 
      e->factor[WHITE] = uint8_t(npm_w <  RookValueMg   ? SCALE_FACTOR_DRAW :
 
                                 npm_b <= BishopValueMg ? 4 : 14);
 
 
 
  if (!pos.count<PAWN>(BLACK) && npm_b - npm_w <= BishopValueMg)
 
      e->factor[BLACK] = uint8_t(npm_b <  RookValueMg   ? SCALE_FACTOR_DRAW :
 
                                 npm_w <= BishopValueMg ? 4 : 14);
 
 
 
  // Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
 
  // for the bishop pair "extended piece", which allows us to be more flexible
 
  // in defining bishop pair bonuses.
 
  const int pieceCount[COLOR_NB][PIECE_TYPE_NB] = {
 
  { pos.count<BISHOP>(WHITE) > 1, pos.count<PAWN>(WHITE), pos.count<KNIGHT>(WHITE),
 
    pos.count<BISHOP>(WHITE)    , pos.count<ROOK>(WHITE), pos.count<QUEEN >(WHITE) },
 
  { pos.count<BISHOP>(BLACK) > 1, pos.count<PAWN>(BLACK), pos.count<KNIGHT>(BLACK),
 
    pos.count<BISHOP>(BLACK)    , pos.count<ROOK>(BLACK), pos.count<QUEEN >(BLACK) } };
 
 
 
  e->value = int16_t((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16);
 
  return e;
 
}
 
 
 
} // namespace Material