#ifndef TBDECODE
 
/* *INDENT-OFF* */
 
#  define       TBDECODE
 
#  include <stdio.h>
 
#  include <stdlib.h>
 
#  include <string.h>
 
#  include <time.h>
 
#  ifndef CLOCKS_PER_SEC
 
#    define CLOCKS_PER_SEC CLK_TCK
 
#  endif
 
/* ---------------------------- Error codes --------------------------- */
 
/*                              -----------                             */
 
#  define COMP_ERR_NONE     0   /* everything is OK                     */
 
#  define COMP_ERR_READ     2   /* input file read error                */
 
#  define COMP_ERR_NOMEM    5   /* no enough memory                     */
 
#  define COMP_ERR_BROKEN   6   /* damaged compressed data              */
 
#  define COMP_ERR_PARAM    7   /* incorrect function parameter         */
 
#  define COMP_ERR_INTERNAL 9   /* everything else is internal error    */
 
                                /* hopefully it should never happen     */
 
/* Almost all  functions listed further return one as  its result on of */
 
/* codes given  above: if no  error occured then COMP_ERR_NONE (i.e. 0) */
 
/* is returned, otherwise functions return  error  code  plus number of */
 
/* line in "comp.c"  where the error  was detected multiplied  by  256; */
 
/* line number may  be  used for exact specification  of  a place where */
 
/* error was detected thus making debugging slightly simpler.           */
 
/*                                                                      */
 
/* Thus, "(code &  0xff)"  gives proper error code,  and  "(code >> 8)" */
 
/* gives number of line where the error was raised.                     */
 
/* -------------------------------------------------------------------- */
 
/*                                                                      */
 
/*                Compress/decompress some chess tables                 */
 
/*                                                                      */
 
/*               Copyright (c) 1991--1998 Andrew Kadatch                */
 
/*                                                                      */
 
/* The Limited-Reference  variant  of  Lempel-Ziv algorithm implemented */
 
/* here was first described in  my  B.Sc.  thesis "Efficient algorithms */
 
/* for image  compression",  Novosibirsk  State  University,  1992, and */
 
/* cannot be  used in any product distributed in  Russia or CIS without */
 
/* written permission from the author.                                  */
 
/*                                                                      */
 
/* Most of the code listed below is significantly  simplified code from */
 
/* the PRS data compression library and therefore it should not be used */
 
/* in any product (software or hardware, commercial or not, and  so on) */
 
/* without written permission from the author.                          */
 
/*                                                                      */
 
/* -------------------------------------------------------------------- */
 
/* ---------------------------- Debugging ----------------------------- */
 
/*                              ---------                               */
 
#  ifndef DEBUG
 
#    define DEBUG       0
 
#  endif
 
#  if DEBUG
 
#    define assert(cond) ((cond) ? (void) 0 : _local_assert (__LINE__))
 
static void _local_assert(int lineno)
 
{
 
  fprintf(stderr, "assertion at line %u failed\n", lineno);
 
  exit(33);
 
}
 
 
 
#    define debug(x) x
 
#    define dprintf(x) printf x
 
#  else
 
#    if !defined (assert)
 
#      define assert(cond) ((void) 0)
 
#    endif
 
#    define debug(x)     ((void) 0)
 
#    define dprintf(x)   ((void) 0)
 
#  endif
 
/* mob_pach */
 
#  ifndef  __cplusplus
 
int cbEGTBCompBytes = 0;
 
#  else
 
extern "C" {
 
  int cbEGTBCompBytes = 0;
 
}
 
#  endif
 
/* --------------------- Constants, types, etc. ----------------------- */
 
/*                       ----------------------                         */
 
#  define MIN_BLOCK_BITS        8
 
/* LOG2 (min size of block to compress) */
 
#  define MAX_BLOCK_BITS        16
 
/* LOG2 (max size of block to compress) */
 
/* max. integer we can take LOG2 by table       */
 
#  define MAX_BITS_HALF ((MAX_BLOCK_BITS + 1) >> 1)
 
#  define MAX_BITS      (MAX_BITS_HALF * 2)
 
/* assume that integer is at least 32 bits wide */
 
#  ifndef uint
 
#    define uint unsigned
 
#  endif
 
#  ifndef uchar
 
#    define uchar unsigned char
 
#  endif
 
#  define HEADER_SIZE           80      /* number of reserved bytes     */
 
#  define STOP_SEARCH_LENGTH    256     /* terminate search if match    */
 
                                        /* length exceeds that value    */
 
#  define MAX_LENGTH_BITS               5
 
#  define MAX_LENGTH              (1 << MAX_LENGTH_BITS)
 
#  define LONG_BITS               1
 
#  define LONG_LENGTH           (MAX_BLOCK_BITS - LONG_BITS)
 
#  define LONG_QUICK            (MAX_LENGTH - LONG_LENGTH)
 
#  if LONG_LENGTH > (MAX_BLOCK_BITS - LONG_BITS)
 
#    undef LONG_LENGTH
 
#    define LONG_LENGTH         (MAX_BLOCK_BITS - LONG_BITS)
 
#  endif
 
#  if LONG_LENGTH >= MAX_LENGTH || LONG_LENGTH <= 0
 
#    error LONG_LENGTH is out of range
 
#  endif
 
#  if LONG_BITS <= 0
 
#    error LONG_BITS must be positive
 
#  endif
 
#  define DELTA (LONG_BITS + LONG_QUICK - 1)
 
#  if (MAX_LENGTH - 1) - (LONG_LENGTH - LONG_BITS) != DELTA
 
#    error Hmmm
 
#  endif
 
#  define MAX_DISTANCES         24
 
#  define LOG_MAX_DISTANCES     6       /* see check below      */
 
#  if MAX_DISTANCES > (1 << LOG_MAX_DISTANCES)
 
#    error MAX_DISTANCES should not exceed (1 << LOG_MAX_DISTANCES)
 
#  endif
 
#  define ALPHABET_SIZE         (256 + (MAX_DISTANCES << MAX_LENGTH_BITS))
 
#  define MAX_ALPHABET  ALPHABET_SIZE   /* max. alphabet handled by     */
 
                                        /* Huffman coding routines      */
 
#  define USE_CRC32             1
 
/* 0 - use Fletcher's checksum, != 0 - use proper CRC32                 */
 
    static uchar header_title[64] =
 
    "Compressed by DATACOMP v 1.0 (c) 1991--1998 Andrew Kadatch\r\n\0";
 
 
 
#  define RET(n) ((n) + __LINE__ * 256)
 
/* ------------------------- CRC32 routines --------------------------- */
 
/*                           --------------                             */
 
#  if USE_CRC32
 
static unsigned CRC32_table[256];
 
static int CRC32_initialized = 0;
 
static void CRC32_init(void)
 
{
 
  int i, j;
 
  unsigned k, m = (unsigned) 0xedb88320L;
 
 
 
  if (CRC32_initialized)
 
    return;
 
  for (i = 0; i < 256; ++i) {
 
    k = i;
 
    j = 8;
 
    do {
 
      if ((k & 1) != 0)
 
        k >>= 1;
 
      else {
 
        k >>= 1;
 
        k ^= m;
 
      };
 
    } while (--j);
 
    CRC32_table[i] = k;
 
  }
 
  CRC32_initialized = 1;
 
}
 
static unsigned CRC32(uchar * p, int n, unsigned k)
 
{
 
  unsigned *table = CRC32_table;
 
  uchar *e = p + n;
 
 
 
  while (p + 16 < e) {
 
#    define X(i) k = table[((uchar) k) ^ p[i]] ^ (k >> 8)
 
    X(0);
 
    X(1);
 
    X(2);
 
    X(3);
 
    X(4);
 
    X(5);
 
    X(6);
 
    X(7);
 
    X(8);
 
    X(9);
 
    X(10);
 
    X(11);
 
    X(12);
 
    X(13);
 
    X(14);
 
    X(15);
 
#    undef X
 
    p += 16;
 
  }
 
  while (p < e)
 
    k = table[((uchar) k) ^ *p++] ^ (k >> 8);
 
  return (k);
 
}
 
#  else
 
#    define CRC32_init()
 
static unsigned CRC32(uchar * p, int n, unsigned k1)
 
{
 
  unsigned k0 = k1 & 0xffff;
 
  uchar *e = p + n;
 
 
 
  k1 = (k1 >> 16) & 0xffff;
 
  while (p + 16 < e) {
 
#    define X(i) k0 += p[i]; k1 += k0;
 
    X(0);
 
    X(1);
 
    X(2);
 
    X(3);
 
    X(4);
 
    X(5);
 
    X(6);
 
    X(7);
 
    X(8);
 
    X(9);
 
    X(10);
 
    X(11);
 
    X(12);
 
    X(13);
 
    X(14);
 
    X(15);
 
#    undef X
 
    k0 = (k0 & 0xffff) + (k0 >> 16);
 
    k1 = (k1 & 0xffff) + (k1 >> 16);
 
    p += 16;
 
  }
 
  while (p < e) {
 
    k0 += *p++;
 
    k1 += k0;
 
  }
 
  k0 = (k0 & 0xffff) + (k0 >> 16);
 
  k1 = (k1 & 0xffff) + (k1 >> 16);
 
  k0 = (k0 & 0xffff) + (k0 >> 16);
 
  k1 = (k1 & 0xffff) + (k1 >> 16);
 
  assert(((k0 | k1) >> 16) == 0);
 
  return (k0 + (k1 << 16));
 
}
 
#  endif                        /* USE_CRC32    */
 
/* ------------------------ Bit IO interface -------------------------- */
 
/*                          ----------------                            */
 
#  define BITIO_LOCALS  \
 
  uint   _mask;         \
 
  int    _bits;         \
 
  uchar *_ptr
 
typedef struct {
 
  BITIO_LOCALS;
 
} bitio_t;
 
 
 
#  define BITIO_ENTER(p) do {     \
 
  _mask = (p)._mask;            \
 
  _bits = (p)._bits;            \
 
  _ptr  = (p)._ptr;             \
 
} while (0)
 
#  define BITIO_LEAVE(p) do {     \
 
  (p)._mask = _mask;            \
 
  (p)._bits = _bits;            \
 
  (p)._ptr  = _ptr;             \
 
} while (0)
 
#  define BIORD_START(from) do {                \
 
  _ptr = (uchar *) (from);              \
 
  _bits = sizeof (_mask);               \
 
  _mask = 0;                            \
 
  do                                    \
 
    _mask = (_mask << 8) | *_ptr++;     \
 
  while (--_bits != 0);                 \
 
  _bits = 16;                           \
 
} while (0)
 
/* read [1, 17] bits at once */
 
#  define BIORD(bits)      \
 
  (_mask >> (8 * sizeof (_mask) - (bits)))
 
#  define BIORD_MORE(bits) do {         \
 
  _mask <<= (bits);                     \
 
  if ((_bits -= (bits)) <= 0)           \
 
  {                                     \
 
    _mask |= ((_ptr[0] << 8) + _ptr[1]) << (-_bits);    \
 
    _ptr += 2; _bits += 16;             \
 
  }                                     \
 
} while (0)
 
/* ------------------------ Huffman coding ---------------------------- */
 
/*                          --------------                              */
 
#  if MAX_ALPHABET <= 0xffff
 
#    if MAX_ALPHABET <= 1024
 
/* positive value takes 15 bits => symbol number occupies <= 10 bits    */
 
#      define huffman_decode_t  short
 
#    else
 
#      define huffman_decode_t  int
 
#    endif
 
#  else
 
#    define huffman_decode_t    int
 
#  endif
 
#  define HUFFMAN_DECODE(ch,table,start_bits) do {      \
 
  (ch) = table[BIORD (start_bits)];                     \
 
  if (((int) (ch)) >= 0)                                \
 
  {                                                     \
 
    BIORD_MORE ((ch) & 31);                             \
 
    (ch) >>= 5;                                         \
 
    break;                                              \
 
  }                                                     \
 
  BIORD_MORE (start_bits);                              \
 
  do                                                    \
 
  {                                                     \
 
    (ch) = table[BIORD (1) - (ch)];                     \
 
    BIORD_MORE (1);                                     \
 
  }                                                     \
 
  while (((int) (ch)) < 0);                             \
 
} while (0)
 
#  define HUFFMAN_TABLE_SIZE(n,start_bits) \
 
  ((1 << (start_bits)) + ((n) << 1))
 
static int huffman_decode_create(huffman_decode_t * table, uchar * length,
 
    int n, int start_bits)
 
{
 
  int i, j, k, last, freq[32], sum[32];
 
 
 
/* calculate number of codewords                                      */
 
  memset(freq, 0, sizeof(freq));
 
  for (i = 0; i < n; ++i) {
 
    if ((k = length[i]) > 31)
 
      return RET(COMP_ERR_BROKEN);
 
    ++freq[k];
 
  }
 
/* handle special case(s) -- 0 and 1 symbols in alphabet              */
 
  if (freq[0] == n) {
 
    memset(table, 0, sizeof(table[0]) << start_bits);
 
    return (0);
 
  }
 
  if (freq[0] == n - 1) {
 
    if (freq[1] != 1)
 
      return RET(COMP_ERR_BROKEN);
 
    for (i = 0; length[i] == 0;)
 
      ++i;
 
    i <<= 5;
 
    for (k = 1 << start_bits; --k >= 0;)
 
      *table++ = (huffman_decode_t) i;
 
    return (0);
 
  }
 
/* save frequences                    */
 
  memcpy(sum, freq, sizeof(sum));
 
/* check code correctness             */
 
  k = 0;
 
  for (i = 32; --i != 0;) {
 
    if ((k += freq[i]) & 1)
 
      return RET(COMP_ERR_BROKEN);
 
    k >>= 1;
 
  }
 
  if (k != 1)
 
    return RET(COMP_ERR_BROKEN);
 
/* sort symbols               */
 
  k = 0;
 
  for (i = 1; i < 32; ++i)
 
    freq[i] = (k += freq[i]);
 
  last = freq[31];      /* preserve number of symbols in alphabet       */
 
  for (i = n; --i >= 0;) {
 
    if ((k = length[i]) != 0)
 
      table[--freq[k]] = (huffman_decode_t) i;
 
  }
 
/* now create decoding table  */
 
  k = i = (1 << start_bits) + (n << 1);
 
  for (n = 32; --n > start_bits;) {
 
    j = i;
 
    while (k > j)
 
      table[--i] = (huffman_decode_t) - (k -= 2);
 
    for (k = sum[n]; --k >= 0;)
 
      table[--i] = table[--last];
 
    k = j;
 
  }
 
  j = i;
 
  i = 1 << start_bits;
 
  while (k > j)
 
    table[--i] = (huffman_decode_t) - (k -= 2);
 
  for (; n > 0; --n) {
 
    for (k = sum[n]; --k >= 0;) {
 
      assert(last <= i && last > 0);
 
      j = i - (1 << (start_bits - n));
 
      n |= table[--last] << 5;
 
      do
 
        table[--i] = (huffman_decode_t) n;
 
      while (i != j);
 
      n &= 31;
 
    }
 
  }
 
  assert((i | last) == 0);
 
  return (0);
 
}
 
 
 
/* -------------------- Read/write Huffman code ----------------------- */
 
/*                      -----------------------                         */
 
#  define MIN_REPT      2
 
#  if MIN_REPT <= 1
 
#    error MIN_REPT must exceed 1
 
#  endif
 
#  define TEMP_TABLE_BITS 8
 
static int huffman_read_length(bitio_t * bitio, uchar * length, int n)
 
{
 
  BITIO_LOCALS;
 
  huffman_decode_t table[2][HUFFMAN_TABLE_SIZE(64, TEMP_TABLE_BITS)];
 
  uchar bits[128];
 
  int i, j, k;
 
 
 
  BITIO_ENTER(*bitio);
 
  k = BIORD(1);
 
  BIORD_MORE(1);
 
  if (k != 0) {
 
    memset(length, 0, n);
 
    goto ret;
 
  }
 
  if (n <= 128) {
 
    k = BIORD(5);
 
    BIORD_MORE(5);
 
    for (i = 0; i < n;) {
 
      length[i] = (uchar) BIORD(k);
 
      BIORD_MORE(k);
 
      if (length[i++] == 0) {
 
        j = i + BIORD(4);
 
        BIORD_MORE(4);
 
        if (j > n)
 
          return RET(COMP_ERR_BROKEN);
 
        while (i != j)
 
          length[i++] = 0;
 
      }
 
    }
 
    goto ret;
 
  }
 
  BITIO_LEAVE(*bitio);
 
  i = huffman_read_length(bitio, bits, 128);
 
  if (i != 0)
 
    return (i);
 
  i = huffman_decode_create(table[0], bits, 64, TEMP_TABLE_BITS);
 
  if (i != 0)
 
    return (i);
 
  i = huffman_decode_create(table[1], bits + 64, 64, TEMP_TABLE_BITS);
 
  if (i != 0)
 
    return (i);
 
  BITIO_ENTER(*bitio);
 
  for (i = 0; i < n;) {
 
    HUFFMAN_DECODE(k, table[0], TEMP_TABLE_BITS);
 
    if (k <= 31) {
 
      length[i++] = (uchar) k;
 
      continue;
 
    }
 
    k &= 31;
 
    HUFFMAN_DECODE(j, table[1], TEMP_TABLE_BITS);
 
    if (j > 31) {
 
      int jj = j - 32;
 
 
 
      j = 1 << jj;
 
      if (jj != 0) {
 
        if (jj > 16) {
 
          j += BIORD(16) << (jj - 16);
 
          BIORD_MORE(16);
 
        }
 
        j += BIORD(jj);
 
        BIORD_MORE(jj);
 
      }
 
      j += 31;
 
    }
 
    j += MIN_REPT + i;
 
    if (j > n)
 
      return RET(COMP_ERR_BROKEN);
 
    do
 
      length[i] = (uchar) k;
 
    while (++i != j);
 
  }
 
ret:
 
  BITIO_LEAVE(*bitio);
 
  return (0);
 
}
 
 
 
/* ----------------------- Proper compression ------------------------- */
 
/*                         ------------------                           */
 
#  if MIN_BLOCK_BITS > MAX_BLOCK_BITS || MAX_BLOCK_BITS > MAX_BITS_HALF*2
 
#    error condition MIN_BLOCK_BITS <= MAX_BLOCK_BITS <= MAX_BITS_HALF*2 failed
 
#  endif
 
#  define DECODE_MAGIC    ((int) 0x5abc947fL)
 
#  define BLOCK_MAGIC     ((int) 0x79a3f29dL)
 
#  define START_BITS      13
 
#  define SHORT_INDEX     8u
 
typedef struct {
 
  huffman_decode_t table[HUFFMAN_TABLE_SIZE(ALPHABET_SIZE, START_BITS)];
 
  int distance[MAX_DISTANCES];
 
  unsigned *crc, *blk_u;
 
  unsigned short *blk_s;
 
  int block_size_log,           /* block_size is integral power of 2    */
 
   block_size,                  /* 1 << block_size_log                  */
 
   last_block_size,             /* [original] size of last block        */
 
   n_blk,                       /* total number of blocks               */
 
   comp_block_size,             /* size of largest compressed block+32  */
 
   check_crc;                   /* check CRC32?                         */
 
  uchar *comp;
 
  int magic;
 
} decode_info;
 
typedef struct {
 
  unsigned char *ptr;           /* pointer to the first decoded byte */
 
  int decoded;                  /* number of bytes decoded so far    */
 
  int total;                    /* total number of bytes in block    */
 
  int number;                   /* number of this block              */
 
} COMP_BLOCK_T;
 
 
 
/* Pointer to compressed data block                                     */
 
typedef struct {
 
  COMP_BLOCK_T b;
 
  struct {
 
    uchar *first;
 
    int size;
 
  } orig, comp;
 
  struct {
 
    uchar *ptr, *src;
 
    int rept;
 
  } emit;
 
  bitio_t bitio;
 
  int n;
 
  int magic;
 
} decode_block;
 
static int calculate_offset(decode_info * info, unsigned n)
 
{
 
  unsigned i;
 
 
 
  i = n / (2 * SHORT_INDEX);
 
  if (n & SHORT_INDEX)
 
    return info->blk_u[i + 1] - info->blk_s[n];
 
  else
 
    return info->blk_u[i] + info->blk_s[n];
 
}
 
static void do_decode(decode_info * info, decode_block * block, uchar * e)
 
{
 
  BITIO_LOCALS;
 
  uchar *p, *s = 0;
 
  int ch;
 
 
 
  if ((p = block->emit.ptr) >= e)
 
    return;
 
  if (p == block->orig.first) {
 
    BIORD_START(block->comp.first);
 
    block->emit.rept = 0;
 
  } else {
 
    BITIO_ENTER(block->bitio);
 
    if ((ch = block->emit.rept) != 0) {
 
      block->emit.rept = 0;
 
      s = block->emit.src;
 
      goto copy;
 
    }
 
  }
 
#  define OVER if (p < e) goto over; break
 
  do {
 
  over:
 
    HUFFMAN_DECODE(ch, info->table, START_BITS);
 
    if ((ch -= 256) < 0) {
 
      *p++ = (uchar) ch;
 
      OVER;
 
    }
 
    s = p + info->distance[ch >> MAX_LENGTH_BITS];
 
    ch &= MAX_LENGTH - 1;
 
    if (ch <= 3) {
 
      p[0] = s[0];
 
      p[1] = s[1];
 
      p[2] = s[2];
 
      p[3] = s[3];
 
      p += ch + 1;
 
      OVER;
 
    } else if (ch >= LONG_LENGTH) {
 
      ch -= LONG_LENGTH - LONG_BITS;
 
#  if (MAX_BLOCK_BITS - 1) + (LONG_LENGTH - LONG_BITS) >= MAX_LENGTH
 
      if (ch == DELTA) {
 
        ch = BIORD(5);
 
        BIORD_MORE(5);
 
        ch += DELTA;
 
      }
 
#  endif
 
      {
 
        int n = 1 << ch;
 
 
 
        if (ch > 16) {
 
          n += BIORD(16) << (ch -= 16);
 
          BIORD_MORE(16);
 
        }
 
        n += BIORD(ch);
 
        BIORD_MORE(ch);
 
        ch = n;
 
      }
 
      ch += LONG_LENGTH - (1 << LONG_BITS);
 
    }
 
    ++ch;
 
  copy:
 
    if (ch > 16) {
 
      if (p + ch > e) {
 
        block->emit.rept = ch - (int) (e - p);
 
        ch = (int) (e - p);
 
        goto copy;
 
      }
 
      do {
 
#  define X(i) p[i] = s[i]
 
        X(0);
 
        X(1);
 
        X(2);
 
        X(3);
 
        X(4);
 
        X(5);
 
        X(6);
 
        X(7);
 
        X(8);
 
        X(9);
 
        X(10);
 
        X(11);
 
        X(12);
 
        X(13);
 
        X(14);
 
        X(15);
 
#  undef X
 
        p += 16;
 
        s += 16;
 
      } while ((ch -= 16) > 16);
 
    }
 
    p += ch;
 
    s += ch;
 
    switch (ch) {
 
#  define X(i) case i: p[-i] = s[-i]
 
      X(16);
 
      X(15);
 
      X(14);
 
      X(13);
 
      X(12);
 
      X(11);
 
      X(10);
 
      X(9);
 
      X(8);
 
      X(7);
 
      X(6);
 
      X(5);
 
      X(4);
 
      X(3);
 
      X(2);
 
#  undef X
 
    }
 
    p[-1] = s[-1];
 
  } while (p < e);
 
#  undef OVER
 
  block->emit.ptr = p;
 
  block->emit.src = s;
 
  BITIO_LEAVE(block->bitio);
 
}
 
 
 
/* pretty ugly */
 
static int comp_open_file(decode_info ** res, FILE * fd, int check_crc)
 
{
 
  BITIO_LOCALS;
 
  bitio_t Bitio;
 
  uchar temp[ALPHABET_SIZE >= HEADER_SIZE ? ALPHABET_SIZE : HEADER_SIZE];
 
  uchar *ptr;
 
  int header_size, block_size, block_size_log, n_blk, i, n, n_s, n_u;
 
  unsigned *blk_u, *blk;
 
  unsigned short *blk_s;
 
  decode_info *info;
 
 
 
  if (res == 0)
 
    return RET(COMP_ERR_PARAM);
 
  CRC32_init();
 
  *res = 0;
 
  if (fread(temp, 1, HEADER_SIZE, fd) != HEADER_SIZE)
 
    return RET(COMP_ERR_READ);
 
  if (memcmp(temp, header_title, 64) != 0)
 
    return RET(COMP_ERR_READ);
 
  ptr = temp;
 
#  define R4(i) \
 
  ((ptr[i] << 24) + (ptr[(i) + 1] << 16) + (ptr[(i) + 2] << 8) + (ptr[(i) + 3]))
 
  header_size = R4(64);
 
  block_size_log = ptr[70];
 
  if (block_size_log > MAX_BITS || header_size < 84)
 
    return RET(COMP_ERR_BROKEN);
 
  block_size = 1 << block_size_log;
 
  if (ptr[71] != MAX_DISTANCES)
 
    return RET(COMP_ERR_BROKEN);
 
  n_blk = R4(72);
 
  if (R4(76) !=
 
      (ALPHABET_SIZE << 12) + (LONG_BITS << 8) + (LONG_LENGTH << 4) +
 
      MAX_LENGTH_BITS)
 
    return RET(COMP_ERR_BROKEN);
 
  if ((ptr = (uchar *) malloc(header_size)) == 0)
 
    return RET(COMP_ERR_NOMEM);
 
  if (fread(ptr + HEADER_SIZE, 1, header_size - HEADER_SIZE,
 
          fd) != (size_t) (header_size - HEADER_SIZE)) {
 
    free(ptr);
 
    return RET(COMP_ERR_NOMEM);
 
  }
 
  memcpy(ptr, temp, HEADER_SIZE);
 
  header_size -= 4;
 
  if (CRC32(ptr, header_size, 0) != (unsigned) R4(header_size)) {
 
    free(ptr);
 
    return RET(COMP_ERR_BROKEN);
 
  }
 
  header_size += 4;
 
/*
 
   blk = (unsigned *) malloc (sizeof (unsigned) * (1 + n_blk));
 
 */
 
  n = sizeof(unsigned) * (1 + n_blk);
 
  if (n < 4 * 1024 * 1024)
 
    n = 4 * 1024 * 1024;
 
  blk = (unsigned *) malloc(n);
 
  if (blk == 0) {
 
    free(ptr);
 
    return RET(COMP_ERR_NOMEM);
 
  }
 
  n = sizeof(info->crc[0]) * (1 + (check_crc ? (2 * n_blk) : 0));
 
  n_u = sizeof(unsigned) * (2 + n_blk / (2 * SHORT_INDEX));
 
  n_s = sizeof(unsigned short) * (1 + n_blk);
 
  if ((info = (decode_info *) malloc(sizeof(*info) + n + n_u + n_s)) == 0) {
 
    free(ptr);
 
    free(blk);
 
    return RET(COMP_ERR_NOMEM);
 
  }
 
  cbEGTBCompBytes += sizeof(*info) + n + n_s + n_u;
 
  info->crc = (unsigned *) (info + 1);
 
  if (check_crc)
 
    blk_u = info->blk_u = info->crc + 2 * n_blk;
 
  else
 
    blk_u = info->blk_u = info->crc;
 
  blk_s = info->blk_s =
 
      (unsigned short *) (blk_u + 2 + n_blk / (2 * SHORT_INDEX));
 
  info->check_crc = check_crc;
 
  info->block_size_log = block_size_log;
 
  info->block_size = block_size;
 
  info->n_blk = n_blk;
 
  if (check_crc) {
 
    n_blk <<= 1;
 
    i = HEADER_SIZE;
 
    for (n = 0; n < n_blk; ++n) {
 
      info->crc[n] = R4(i);
 
      i += 4;
 
    }
 
    n_blk >>= 1;
 
  }
 
  i = HEADER_SIZE + (n_blk << 3);
 
  BIORD_START(ptr + i);
 
  info->comp_block_size = 0;
 
  for (n = 0; n <= n_blk; ++n) {
 
    if ((blk[n] = BIORD(block_size_log)) == 0)
 
      blk[n] = block_size;
 
    if (info->comp_block_size < (int) (blk[n]))
 
      info->comp_block_size = (int) (blk[n]);
 
    BIORD_MORE(block_size_log);
 
  }
 
  info->comp_block_size += 32;
 
  for (n = 0; n < MAX_DISTANCES; ++n) {
 
    info->distance[n] = -((int) BIORD(block_size_log));
 
    BIORD_MORE(block_size_log);
 
  }
 
  i += ((n_blk + 1 + MAX_DISTANCES) * block_size_log + 7) >> 3;
 
  BIORD_START(ptr + i);
 
  BITIO_LEAVE(Bitio);
 
  if (huffman_read_length(&Bitio, temp, ALPHABET_SIZE) != 0) {
 
    free(blk);
 
    free(info);
 
    free(ptr);
 
    return RET(COMP_ERR_BROKEN);
 
  }
 
  if (huffman_decode_create(info->table, temp, ALPHABET_SIZE, START_BITS) != 0) {
 
    free(blk);
 
    free(info);
 
    free(ptr);
 
    return RET(COMP_ERR_BROKEN);
 
  }
 
  info->last_block_size = blk[n_blk];
 
  blk[n_blk] = 0;
 
  for (n = 0; n <= n_blk; ++n) {
 
    i = blk[n];
 
    blk[n] = header_size;
 
    header_size += i;
 
    if (0 == n % (2 * SHORT_INDEX))
 
      blk_u[n / (2 * SHORT_INDEX)] = blk[n];
 
  }
 
  blk_u[n_blk / (2 * SHORT_INDEX) + 1] = blk[n_blk];
 
  for (n = 0; n <= n_blk; ++n) {
 
    i = n / (2 * SHORT_INDEX);
 
    if (n & SHORT_INDEX)
 
      blk_s[n] = blk_u[i + 1] - blk[n];
 
    else
 
      blk_s[n] = blk[n] - blk_u[i];
 
  }
 
  free(blk);
 
  free(ptr);
 
  info->comp = 0;
 
  info->magic = DECODE_MAGIC;
 
  *res = info;
 
  return (COMP_ERR_NONE);
 
}
 
static int comp_tell_blocks(decode_info * info)
 
{
 
  if (info == 0 || info->magic != DECODE_MAGIC)
 
    return (-1);
 
  return (info->n_blk);
 
}
 
static int comp_init_block(decode_block * block, int block_size, uchar * orig)
 
{
 
  if (block == 0)
 
    return RET(COMP_ERR_PARAM);
 
  block->orig.first = orig;
 
  block->comp.first = (uchar *) (block + 1);
 
  block->b.ptr = 0;
 
  block->b.decoded = -1;
 
  block->b.total = -1;
 
  block->b.number = -1;
 
  block->n = -1;
 
  block->magic = BLOCK_MAGIC;
 
  return (COMP_ERR_NONE);
 
}
 
static int comp_alloc_block(decode_block ** ret_block, int block_size)
 
{
 
  decode_block *block;
 
 
 
  if (ret_block == 0)
 
    return RET(COMP_ERR_PARAM);
 
  *ret_block = 0;
 
  if ((block = (decode_block *) malloc(sizeof(*block) + block_size)) == 0)
 
    return RET(COMP_ERR_NOMEM);
 
  cbEGTBCompBytes += sizeof(*block) + block_size;
 
  if (0 != comp_init_block(block, block_size, NULL))
 
    return RET(COMP_ERR_PARAM);
 
  *ret_block = block;
 
  return (COMP_ERR_NONE);
 
}
 
 
 
#  define RETURN(n) \
 
  return ((n) == COMP_ERR_NONE ? COMP_ERR_NONE : RET (n));
 
static int comp_read_block(decode_block * block, decode_info * info, FILE * fd,
 
    int n)
 
{
 
  int comp_size, orig_size, comp_start;
 
  uchar *comp, *orig;
 
 
 
  if (block == 0 || block->magic != BLOCK_MAGIC)
 
    return RET(COMP_ERR_PARAM);
 
  assert(info->magic == DECODE_MAGIC);
 
  if ((unsigned) n >= (unsigned) info->n_blk)
 
    RETURN(COMP_ERR_PARAM);
 
  comp = block->comp.first;
 
  block->n = n;
 
  orig = block->orig.first;
 
  orig_size = info->block_size;
 
  if (n == info->n_blk - 1)
 
    orig_size = info->last_block_size;
 
  block->orig.size = orig_size;
 
  comp_start = calculate_offset(info, n);
 
  block->comp.size = comp_size = calculate_offset(info, n + 1) - comp_start;
 
  if (fseek(fd, comp_start, SEEK_SET) != 0)
 
    RETURN(COMP_ERR_READ);
 
  if (fread(comp, 1, comp_size, fd) != (size_t) comp_size)
 
    RETURN(COMP_ERR_READ);
 
  if (info->check_crc &&
 
      info->crc[(n << 1) + 1] != CRC32(block->comp.first, comp_size, 0))
 
    RETURN(COMP_ERR_BROKEN);
 
  block->emit.rept = 0;
 
  if (comp_size == orig_size) {
 
    memcpy(orig, comp, comp_size);
 
    block->emit.ptr = orig + comp_size;
 
    block->b.decoded = comp_size;
 
  } else {
 
    block->emit.ptr = orig;
 
    block->b.decoded = 0;
 
  }
 
  block->b.number = n;
 
  block->b.ptr = orig;
 
  block->b.total = orig_size;
 
  RETURN(COMP_ERR_NONE);
 
}
 
static int comp_decode_and_check_crc(decode_block * block, decode_info * info,
 
    int n, int check_crc)
 
{
 
  if (block == 0 || block->magic != BLOCK_MAGIC)
 
    return RET(COMP_ERR_PARAM);
 
  assert(info->magic == DECODE_MAGIC);
 
  if ((unsigned) (n - 1) > (unsigned) (block->orig.size - 1))
 
    RETURN(COMP_ERR_PARAM);
 
  if (check_crc)
 
    n = block->orig.size;
 
  do_decode(info, block, block->orig.first + n);
 
  block->b.ptr = block->orig.first;
 
  block->b.total = block->orig.size;
 
  if (block->b.decoded >= block->b.total) {
 
    if (block->b.decoded > block->b.total)
 
      RETURN(COMP_ERR_BROKEN);
 
    if (block->emit.rept != 0)
 
      RETURN(COMP_ERR_BROKEN);
 
  }
 
  if (check_crc && info->check_crc &&
 
      info->crc[block->n << 1] != CRC32(block->orig.first, block->orig.size, 0))
 
    RETURN(COMP_ERR_BROKEN);
 
  RETURN(COMP_ERR_NONE);
 
}
 
 
 
#  if !defined (COLOR_DECLARED)
 
/*
 
   Test driver
 
 */
 
#    define     CRC_CHECK       1
 
int main(int argc, char *argv[])
 
{
 
  int i;
 
  int size;
 
  int result;
 
  FILE *fp;
 
  decode_info *comp_info;
 
  decode_block *comp_block;
 
  clock_t tStart, tEnd;
 
  double dSeconds;
 
  uchar rgbBuf[8192 + 32];
 
 
 
  if (2 != argc) {
 
    printf("Invalid arguments\n");
 
    exit(1);
 
  }
 
  fp = fopen(argv[1], "rb");
 
  if (0 == fp) {
 
    printf("Unable to open file\n");
 
    exit(1);
 
  }
 
  result = comp_open_file(&comp_info, fp, CRC_CHECK);
 
  if (0 != result) {
 
    printf("Unable to read file (1): %d\n", result);
 
    exit(1);
 
  }
 
  if (8192 != comp_info->block_size) {
 
    printf("Invalid block size: %d\n", comp_info->block_size);
 
    exit(1);
 
  }
 
  result = comp_alloc_block(&comp_block, comp_info->block_size);
 
  if (0 != result) {
 
    printf("Unable to allocate block: %d\n", result);
 
    exit(1);
 
  }
 
  size = 0;
 
  tStart = clock();
 
  for (i = 0; i < comp_info->n_blk; i++) {
 
    if (0 != (result =
 
            comp_init_block(comp_block, comp_info->block_size, rgbBuf))) {
 
      printf("Unable to init block: %d\n", result);
 
      exit(1);
 
    }
 
    if (0 != (result = comp_read_block(comp_block, comp_info, fp, i))) {
 
      printf("Unable to read block: %d\n", result);
 
      exit(1);
 
    }
 
    size += comp_block->orig.size;
 
    if (0 != (result =
 
            comp_decode_and_check_crc(comp_block, comp_info,
 
                comp_block->orig.size, CRC_CHECK))) {
 
      printf("Unable to decode block: %d\n", result);
 
      exit(1);
 
    }
 
  }
 
  tEnd = clock();
 
  dSeconds = (double) (tEnd - tStart) / CLOCKS_PER_SEC;
 
  printf("Total memory allocated: %dKb\n", (cbEGTBCompBytes + 1023) / 1024);
 
  printf("%g seconds, %dMb, %gMb/sec)\n", dSeconds, size / (1024 * 1024),
 
      size / (1024 * 1024) / dSeconds);
 
  return 0;
 
}
 
#  endif
 
/* *INDENT-ON* */
 
#endif