#include "chess.h"
 
#include "data.h"
 
/* last modified 12/29/15 */
 
/*
 
 *******************************************************************************
 
 *                                                                             *
 
 *   NextMove() is used to select the next move from the current move list.    *
 
 *                                                                             *
 
 *   The "excluded move" code below simply collects any moves that were        *
 
 *   searched without being generated (hash move and up to 4 killers).  We     *
 
 *   save them in the NEXT structure and make sure to exclude them when        *
 
 *   searching after a move generation to avoid the duplicated effort.         *
 
 *                                                                             *
 
 *******************************************************************************
 
 */
 
int NextMove(TREE * RESTRICT tree, int ply, int depth, int side, int in_check) {
 
  unsigned *movep, *bestp;
 
  int hist, bestval, possible;
 
 
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  The following "big switch" controls the finate state    *
 
 *  machine that selects moves.  The "phase" value in the   *
 
 *  next_status[ply] structure is always set after a move   *
 
 *  is selected, and it defines the next state of the FSM   *
 
 *  so select the next move in a sequenced order.           *
 
 *                                                          *
 
 ************************************************************
 
 */
 
  switch (tree->next_status[ply].phase) {
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  First, try the transposition table move (which will be  *
 
 *  the principal variation move as we first move down the  *
 
 *  tree) or the best move found in this position during a  *
 
 *  prior search.                                           *
 
 *                                                          *
 
 ************************************************************
 
 */
 
    case HASH:
 
      tree->next_status[ply].order = 0;
 
      tree->next_status[ply].exclude = &tree->next_status[ply].done[0];
 
      tree->next_status[ply].phase = GENERATE_CAPTURES;
 
      if (tree->hash_move[ply]) {
 
        tree->curmv[ply] = tree->hash_move[ply];
 
        *(tree->next_status[ply].exclude++) = tree->curmv[ply];
 
        if (ValidMove(tree, ply, side, tree->curmv[ply])) {
 
          tree->phase[ply] = HASH;
 
          return ++tree->next_status[ply].order;
 
        }
 
#if defined(DEBUG)
 
        else
 
          Print(2048, "ERROR:  bad move from hash table, ply=%d\n", ply);
 
#endif
 
      }
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  Generate captures and sort them based on the simple     *
 
 *  MVV/LVA ordering where we try to capture the most       *
 
 *  valuable victim piece possible, using the least         *
 
 *  valuable attacking piece possible.  Later we will test  *
 
 *  to see if the capture appears to lose material and we   *
 
 *  will defer searching it until later.                    *
 
 *                                                          *
 
 *  Or, if in check, generate all the legal moves that      *
 
 *  escape check by using GenerateCheckEvasions().  After   *
 
 *  we do this, we sort them using MVV/LVA to move captures *
 
 *  to the front of the list in the correct order.          *
 
 *                                                          *
 
 ************************************************************
 
 */
 
    case GENERATE_CAPTURES:
 
      tree->next_status[ply].phase = CAPTURES;
 
      if (!in_check)
 
        tree->last[ply] =
 
            GenerateCaptures(tree, ply, side, tree->last[ply - 1]);
 
      else
 
        tree->last[ply] =
 
            GenerateCheckEvasions(tree, ply, side, tree->last[ply - 1]);
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  Now make a pass over the moves to assign the sort value *
 
 *  for each.  We simply use MVV/LVA move order here.  A    *
 
 *  simple optimization is to use the pre-computed array    *
 
 *  MVV_LVA[victim][attacker] which returns a simple value  *
 
 *  that indicates MVV/LVA order.                           *
 
 *                                                          *
 
 ************************************************************
 
 */
 
      tree->next_status[ply].remaining = 0;
 
      for (movep = tree->last[ply - 1]; movep < tree->last[ply]; movep++)
 
        if (*movep == tree->hash_move[ply]) {
 
          *movep = 0;
 
          tree->next_status[ply].exclude = &tree->next_status[ply].done[0];
 
        } else {
 
          *movep += MVV_LVA[Captured(*movep)][Piece(*movep)];
 
          tree->next_status[ply].remaining++;
 
        }
 
      NextSort(tree, ply);
 
      tree->next_status[ply].last = tree->last[ply - 1];
 
      if (in_check)
 
        goto remaining_moves;
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  Try the captures moves, which are in order based on     *
 
 *  MVV/LVA ordering.  If a larger-valued piece captures a  *
 
 *  lesser-valued piece, and SEE() says it loses material,  *
 
 *  this capture will be deferred until later.              *
 
 *                                                          *
 
 *  If we are in check, we jump down to the history moves   *
 
 *  phase (we don't need to generate any more moves as      *
 
 *  GenerateCheckEvasions has already generated all legal   *
 
 *  moves.                                                  *
 
 *                                                          *
 
 ************************************************************
 
 */
 
    case CAPTURES:
 
      while (tree->next_status[ply].remaining) {
 
        tree->curmv[ply] = Move(*(tree->next_status[ply].last++));
 
        if (!--tree->next_status[ply].remaining)
 
          tree->next_status[ply].phase = KILLER1;
 
        if (pcval[Piece(tree->curmv[ply])] <=
 
            pcval[Captured(tree->curmv[ply])]
 
            || SEE(tree, side, tree->curmv[ply]) >= 0) {
 
          *(tree->next_status[ply].last - 1) = 0;
 
          tree->phase[ply] = CAPTURES;
 
          return ++tree->next_status[ply].order;
 
        }
 
      }
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  Now, try the killer moves.  This phase tries the two    *
 
 *  killers for the current ply without generating moves,   *
 
 *  which saves time if a cutoff occurs.  After those two   *
 
 *  killers are searched, we try the killers from two plies *
 
 *  back since they have greater depth and might produce a  *
 
 *  cutoff if the current two do not.                       *
 
 *                                                          *
 
 ************************************************************
 
 */
 
    case KILLER1:
 
      possible = tree->killers[ply].move1;
 
      if (!Exclude(tree, ply, possible) &&
 
          ValidMove(tree, ply, side, possible)) {
 
        tree->curmv[ply] = possible;
 
        *(tree->next_status[ply].exclude++) = possible;
 
        tree->next_status[ply].phase = KILLER2;
 
        tree->phase[ply] = KILLER1;
 
        return ++tree->next_status[ply].order;
 
      }
 
    case KILLER2:
 
      possible = tree->killers[ply].move2;
 
      if (!Exclude(tree, ply, possible) &&
 
          ValidMove(tree, ply, side, possible)) {
 
        tree->curmv[ply] = possible;
 
        *(tree->next_status[ply].exclude++) = possible;
 
        tree->next_status[ply].phase = (ply < 3) ? COUNTER_MOVE1 : KILLER3;
 
        tree->phase[ply] = KILLER2;
 
        return ++tree->next_status[ply].order;
 
      }
 
    case KILLER3:
 
      possible = tree->killers[ply - 2].move1;
 
      if (!Exclude(tree, ply, possible) &&
 
          ValidMove(tree, ply, side, possible)) {
 
        tree->curmv[ply] = possible;
 
        *(tree->next_status[ply].exclude++) = possible;
 
        tree->next_status[ply].phase = KILLER4;
 
        tree->phase[ply] = KILLER3;
 
        return ++tree->next_status[ply].order;
 
      }
 
    case KILLER4:
 
      possible = tree->killers[ply - 2].move2;
 
      if (!Exclude(tree, ply, possible) &&
 
          ValidMove(tree, ply, side, possible)) {
 
        tree->curmv[ply] = possible;
 
        *(tree->next_status[ply].exclude++) = possible;
 
        tree->next_status[ply].phase = COUNTER_MOVE1;
 
        tree->phase[ply] = KILLER4;
 
        return ++tree->next_status[ply].order;
 
      }
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  Now, before we give up and generate moves, try the      *
 
 *  counter-move which was a move that failed high in the   *
 
 *  past when the move at the previous ply was played.      *
 
 *                                                          *
 
 ************************************************************
 
 */
 
    case COUNTER_MOVE1:
 
      possible = counter_move[tree->curmv[ply - 1] & 4095].move1;
 
      if (!Exclude(tree, ply, possible) &&
 
          ValidMove(tree, ply, side, possible)) {
 
        tree->curmv[ply] = possible;
 
        *(tree->next_status[ply].exclude++) = possible;
 
        tree->next_status[ply].phase = COUNTER_MOVE2;
 
        tree->phase[ply] = COUNTER_MOVE1;
 
        return ++tree->next_status[ply].order;
 
      }
 
    case COUNTER_MOVE2:
 
      possible = counter_move[tree->curmv[ply - 1] & 4095].move2;
 
      if (!Exclude(tree, ply, possible) &&
 
          ValidMove(tree, ply, side, possible)) {
 
        tree->curmv[ply] = possible;
 
        *(tree->next_status[ply].exclude++) = possible;
 
        tree->next_status[ply].phase = MOVE_PAIR1;
 
        tree->phase[ply] = COUNTER_MOVE2;
 
        return ++tree->next_status[ply].order;
 
      }
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  Finally we try paired moves, which are simply moves     *
 
 *  that were good when played after the other move in the  *
 
 *  pair was played two plies back.                         *
 
 *                                                          *
 
 ************************************************************
 
 */
 
    case MOVE_PAIR1:
 
      possible = move_pair[tree->curmv[ply - 2] & 4095].move1;
 
      if (!Exclude(tree, ply, possible) &&
 
          ValidMove(tree, ply, side, possible)) {
 
        tree->curmv[ply] = possible;
 
        *(tree->next_status[ply].exclude++) = possible;
 
        tree->next_status[ply].phase = MOVE_PAIR2;
 
        tree->phase[ply] = MOVE_PAIR1;
 
        return ++tree->next_status[ply].order;
 
      }
 
    case MOVE_PAIR2:
 
      possible = move_pair[tree->curmv[ply - 2] & 4095].move2;
 
      if (!Exclude(tree, ply, possible) &&
 
          ValidMove(tree, ply, side, possible)) {
 
        tree->curmv[ply] = possible;
 
        *(tree->next_status[ply].exclude++) = possible;
 
        tree->next_status[ply].phase = GENERATE_QUIET;
 
        tree->phase[ply] = MOVE_PAIR2;
 
        return ++tree->next_status[ply].order;
 
      }
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  Now, generate all non-capturing moves, which get added  *
 
 *  to the move list behind any captures we did not search. *
 
 *                                                          *
 
 ************************************************************
 
 */
 
    case GENERATE_QUIET:
 
      if (!in_check)
 
        tree->last[ply] =
 
            GenerateNoncaptures(tree, ply, side, tree->last[ply]);
 
      tree->next_status[ply].last = tree->last[ply - 1];
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  Now, try the history moves.  This phase takes the       *
 
 *  complete move list, and passes over them in a classic   *
 
 *  selection-sort, choosing the move with the highest      *
 
 *  history score.  This phase is only done one time, as it *
 
 *  also purges the hash, killer, counter and paired moves  *
 
 *  from the list.                                          *
 
 *                                                          *
 
 ************************************************************
 
 */
 
      tree->next_status[ply].remaining = 0;
 
      tree->next_status[ply].phase = HISTORY;
 
      bestval = -99999999;
 
      bestp = 0;
 
      for (movep = tree->last[ply - 1]; movep < tree->last[ply]; movep++)
 
        if (*movep) {
 
          if (Exclude(tree, ply, *movep))
 
            *movep = 0;
 
          else if (depth >= 6) {
 
            tree->next_status[ply].remaining++;
 
            hist = history[HistoryIndex(side, *movep)];
 
            if (hist > bestval) {
 
              bestval = hist;
 
              bestp = movep;
 
            }
 
          }
 
        }
 
      tree->next_status[ply].remaining /= 2;
 
      if (bestp) {
 
        tree->curmv[ply] = Move(*bestp);
 
        *bestp = 0;
 
        tree->phase[ply] = HISTORY;
 
        return ++tree->next_status[ply].order;
 
      }
 
      goto remaining_moves;
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  Now, continue with the history moves, but since one     *
 
 *  pass has been made over the complete move list, there   *
 
 *  are no hash/killer moves left in the list, so the tests *
 
 *  for these can be avoided.                               *
 
 *                                                          *
 
 ************************************************************
 
 */
 
    case HISTORY:
 
      if (depth >= 6) {
 
        bestval = -99999999;
 
        bestp = 0;
 
        for (movep = tree->last[ply - 1]; movep < tree->last[ply]; movep++)
 
          if (*movep) {
 
            hist = history[HistoryIndex(side, *movep)];
 
            if (hist > bestval) {
 
              bestval = hist;
 
              bestp = movep;
 
            }
 
          }
 
        if (bestp) {
 
          tree->curmv[ply] = Move(*bestp);
 
          *bestp = 0;
 
          if (--(tree->next_status[ply].remaining) <= 0) {
 
            tree->next_status[ply].phase = REMAINING;
 
            tree->next_status[ply].last = tree->last[ply - 1];
 
          }
 
          tree->phase[ply] = HISTORY;
 
          return ++tree->next_status[ply].order;
 
        }
 
      }
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  Then we try the rest of the set of moves, and we do not *
 
 *  use Exclude() function to skip any moves we have        *
 
 *  already searched (hash or killers) since the history    *
 
 *  phase above has already done that.                      *
 
 *                                                          *
 
 ************************************************************
 
 */
 
    remaining_moves:
 
      tree->next_status[ply].phase = REMAINING;
 
      tree->next_status[ply].last = tree->last[ply - 1];
 
    case REMAINING:
 
      for (; tree->next_status[ply].last < tree->last[ply];
 
          tree->next_status[ply].last++)
 
        if (*tree->next_status[ply].last) {
 
          tree->curmv[ply] = Move(*tree->next_status[ply].last++);
 
          tree->phase[ply] = REMAINING;
 
          return ++tree->next_status[ply].order;
 
        }
 
      return NONE;
 
    default:
 
      Print(4095, "oops!  next_status.phase is bad! [phase=%d]\n",
 
          tree->next_status[ply].phase);
 
  }
 
  return NONE;
 
}
 
 
 
/* last modified 07/03/14 */
 
/*
 
 *******************************************************************************
 
 *                                                                             *
 
 *   NextRootMove() is used to select the next move from the root move list.   *
 
 *                                                                             *
 
 *   There is one subtle trick here that must not be broken.  Crafty does LMR  *
 
 *   at the root, and the reduction amount is dependent on the order in which  *
 
 *   a specific move is searched.  With the recent changes dealing with this   *
 
 *   issue in non-root moves, NextRootMove() now simply returns the move's     *
 
 *   order within the move list.  This might be a problem if the last move in  *
 
 *   the list fails high, because it would be reduced on the re-search, which  *
 
 *   is something we definitely don't want.  The solution is found in the code *
 
 *   inside Iterate().  When a move fails high, it is moved to the top of the  *
 
 *   move list so that (a) it is searched first on the re-search (more on this *
 
 *   in a moment) and (b) since its position in the move list is now #1, it    *
 
 *   will get an order value of 1 which is never reduced.  The only warning is *
 
 *   that Iterate() MUST re-sort the ply-1 move list after a fail high, even   *
 
 *   though it seems like a very tiny computational waste.                     *
 
 *                                                                             *
 
 *   The other reason for doing the re-sort has to do with the parallel search *
 
 *   algorithm.  When one thread fails high at the root, it stops the others.  *
 
 *   they have to carefully undo the "this move has been searched" flag since  *
 
 *   these incomplete searches need to be re-done after the fail-high move is  *
 
 *   finished.  But it is possible some of those interrupted moves appear      *
 
 *   before the fail high move in the move list.  Which would lead Crafty to   *
 
 *   fail high, then produce a different best move's PV.  By re-sorting, now   *
 
 *   the fail-high move is always searched first since here we just start at   *
 
 *   the top of the move list and look for the first "not yet searched" move   *
 
 *   to return.  It solves several problems, but if that re-sort is not done,  *
 
 *   things go south quickly.  The voice of experience is all I will say here. *
 
 *                                                                             *
 
 *******************************************************************************
 
 */
 
int NextRootMove(TREE * RESTRICT tree, TREE * RESTRICT mytree, int side) {
 
  uint64_t total_nodes;
 
  int which, i, t;
 
 
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  First, we check to see if we only have one legal move.  *
 
 *  If so, and we are not pondering, we stop after a short  *
 
 *  search, saving time, but making sure we have something  *
 
 *  to ponder.                                              *
 
 *                                                          *
 
 ************************************************************
 
 */
 
  if (!annotate_mode && !pondering && !booking && n_root_moves == 1 &&
 
      iteration > 10) {
 
    abort_search = 1;
 
    return NONE;
 
  }
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  For the moves at the root of the tree, the list has     *
 
 *  already been generated and sorted.                      *
 
 *                                                          *
 
 *  We simply have to find the first move that has a zero   *
 
 *  "already searched" flag and choose that one.  We do set *
 
 *  the "already searched" flag for this move before we     *
 
 *  return so that it won't be searched again in another    *
 
 *  thread.                                                 *
 
 *                                                          *
 
 ************************************************************
 
 */
 
  for (which = 0; which < n_root_moves; which++) {
 
    if (!(root_moves[which].status & 8)) {
 
      if (search_move) {
 
        if (root_moves[which].move != search_move) {
 
          root_moves[which].status |= 8;
 
          continue;
 
        }
 
      }
 
      tree->curmv[1] = root_moves[which].move;
 
      root_moves[which].status |= 8;
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  We have found a move to search.  If appropriate, we     *
 
 *  display this move, along with the time and information  *
 
 *  such as which move this is in the list and how many     *
 
 *  are left to search before this iteration is done, and   *
 
 *  a "status" character that shows the state of the        *
 
 *  current search ("?" means we are pondering, waiting on  *
 
 *  a move to be entered, "*" means we are searching and    *
 
 *  our clock is running).  We also display the NPS for     *
 
 *  the search, simply for information about how fast the   *
 
 *  machine is running.                                     *
 
 *                                                          *
 
 ************************************************************
 
 */
 
      if (ReadClock() - start_time > noise_level && display_options & 16) {
 
        sprintf(mytree
->remaining_moves_text
, "%d/%d", which 
+ 1,  
            n_root_moves);
 
        end_time = ReadClock();
 
        Lock(lock_io);
 
        if (pondering)
 
          printf("         %2i   %s%7s?  ", iteration
,  
              Display2Times(end_time - start_time),
 
              mytree->remaining_moves_text);
 
        else
 
          printf("         %2i   %s%7s*  ", iteration
,  
              Display2Times(end_time - start_time),
 
              mytree->remaining_moves_text);
 
        if (Flip(side))
 
        strcpy(mytree
->root_move_text
, OutputMove
(tree
, 1, side
,  
                tree->curmv[1]));
 
        total_nodes = block[0]->nodes_searched;
 
        for (t = 0; t < (int) smp_max_threads; t++) // Pierre-Marie Baty -- added type cast
 
          for (i = 0; i < 64; i++)
 
            if (!(thread[t].blocks & SetMask(i)))
 
              total_nodes += block[t * 64 + 1 + i]->nodes_searched;
 
        nodes_per_second = (unsigned int) (total_nodes * 100 / Max(end_time - start_time, 1)); // Pierre-Marie Baty -- added type cast
 
        i 
= strlen(mytree
->root_move_text
); 
        i = (i < 8) ? i : 8;
 
        strncat(mytree
->root_move_text
, "          ", 8 - i
);  
        printf("%s", mytree
->root_move_text
);  
        printf("(%snps)             \r", DisplayKMB
(nodes_per_second
, 0));  
        Unlock(lock_io);
 
      }
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  Bit of a tricky exit.  If the move is not flagged as    *
 
 *  "OK to search in parallel or reduce" then we return     *
 
 *  "DO_NOT_REDUCE" which will prevent Search() from        *
 
 *  reducing the move (LMR).  Otherwise we return the more  *
 
 *  common "REMAINING" value which allows LMR to be used on *
 
 *  those root moves.                                       *
 
 *                                                          *
 
 ************************************************************
 
 */
 
      if (root_moves[which].status & 4)
 
        tree->phase[1] = DO_NOT_REDUCE;
 
      else
 
        tree->phase[1] = REMAINING;
 
      return which + 1;
 
    }
 
  }
 
  return NONE;
 
}
 
 
 
/* last modified 11/13/14 */
 
/*
 
 *******************************************************************************
 
 *                                                                             *
 
 *   NextRootMoveParallel() is used to determine if the next root move can be  *
 
 *   searched in parallel.  If it appears to Iterate() that one of the moves   *
 
 *   following the first move might become the best move, the 'no parallel'    *
 
 *   flag is set to speed up finding the new best move.  This flag is set if   *
 
 *   this root move has an "age" value > 0 which indicates this move was the   *
 
 *   "best move" within the previous 3 search iterations.  We want to search   *
 
 *   such moves as quickly as possible, prior to starting a parallel search at *
 
 *   the root, in case this move once again becomes the best move and provides *
 
 *   a better alpha bound.                                                     *
 
 *                                                                             *
 
 *******************************************************************************
 
 */
 
int NextRootMoveParallel(void) {
 
  int which;
 
 
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  Here we simply check the root_move status flag that is  *
 
 *  set in Iterate() after each iteration is completed.  A  *
 
 *  value of "1" indicates this move has to be searched by  *
 
 *  all processors together, splitting at the root must     *
 
 *  wait until we have searched all moves that have been    *
 
 *  "best" during the previous three plies.                 *
 
 *                                                          *
 
 *  The root move list has a flag, bit 3, used to indicate  *
 
 *  that this move has been best recently.  If this bit is  *
 
 *  set, we are forced to use all processors to search this *
 
 *  move so that it is completed quickly rather than being  *
 
 *  searched by just one processor, and taking much longer  *
 
 *  to get a score back.  We do this to give the search the *
 
 *  best opportunity to fail high on this move before we    *
 
 *  run out of time.                                        *
 
 *                                                          *
 
 ************************************************************
 
 */
 
  for (which = 0; which < n_root_moves; which++)
 
    if (!(root_moves[which].status & 8))
 
      break;
 
  if (which < n_root_moves && !(root_moves[which].status & 4))
 
    return 1;
 
  return 0;
 
}
 
 
 
/* last modified 09/11/15 */
 
/*
 
 *******************************************************************************
 
 *                                                                             *
 
 *   Exclude() searches the list of moves searched prior to generating a move  *
 
 *   list to exclude those that were searched via a hash table best move or    *
 
 *   through the killer moves for the current ply and two plies back.          *
 
 *                                                                             *
 
 *   The variable next_status[].excluded is the total number of non-generated  *
 
 *   moves we searched.  next_status[].remaining is initially set to excluded, *
 
 *   but each time an excluded move is found, the counter is decremented.      *
 
 *   Once all excluded moves have been found, we avoid running through the     *
 
 *   list of excluded moves on each call and simply return.                    *
 
 *                                                                             *
 
 *******************************************************************************
 
 */
 
int Exclude(TREE * RESTRICT tree, int ply, int move) {
 
  unsigned *i;
 
 
 
  if (tree->next_status[ply].exclude > &tree->next_status[ply].done[0])
 
    for (i = &tree->next_status[ply].done[0];
 
        i < tree->next_status[ply].exclude; i++)
 
      if (move == *i)
 
        return 1;
 
  return 0;
 
}
 
 
 
/* last modified 05/20/15 */
 
/*
 
 *******************************************************************************
 
 *                                                                             *
 
 *   NextSort() is used to sort the move list.  This is a list of 32 bit       *
 
 *   values where the rightmost 21 bits is the compressed move, and the left-  *
 
 *   most 11 bits are the sort key (MVV/LVA values).                           *
 
 *                                                                             *
 
 *******************************************************************************
 
 */
 
void NextSort(TREE * RESTRICT tree, int ply) {
 
  unsigned temp, *movep, *tmovep;
 
 
 
/*
 
 ************************************************************
 
 *                                                          *
 
 *  This is a simple insertion sort algorithm.              *
 
 *                                                          *
 
 ************************************************************
 
 */
 
  if (tree->last[ply] > tree->last[ply - 1] + 1) {
 
    for (movep = tree->last[ply - 1] + 1; movep < tree->last[ply]; movep++) {
 
      temp = *movep;
 
      tmovep = movep - 1;
 
      while (tmovep >= tree->last[ply - 1] && SortV(*tmovep) < SortV(temp)) {
 
        *(tmovep + 1) = *tmovep;
 
        tmovep--;
 
      }
 
      *(tmovep + 1) = temp;
 
    }
 
  }
 
}