Rev 7 | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
Rev 7 | Rev 13 | ||
---|---|---|---|
Line 41... | Line 41... | ||
41 | #define XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD 3.6 |
41 | #define XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD 3.6 |
42 | #define XBRZ_CFG_STEEP_DIRECTION_THRESHOLD 2.2 |
42 | #define XBRZ_CFG_STEEP_DIRECTION_THRESHOLD 2.2 |
43 | 43 | ||
44 | 44 | ||
45 | // blend types |
45 | // blend types |
46 | #define BLEND_NONE 0 |
46 | #define BLEND_NONE 0 |
47 | #define BLEND_NORMAL 1 // a normal indication to blend |
47 | #define BLEND_NORMAL 1 // a normal indication to blend |
48 | #define BLEND_DOMINANT 2 // a strong indication to blend |
48 | #define BLEND_DOMINANT 2 // a strong indication to blend |
49 | 49 | ||
50 | 50 | ||
51 | // handy macros |
51 | // handy macros |
52 | #ifndef MIN |
52 | #ifndef MIN |
Line 242... | Line 242... | ||
242 | 242 | ||
243 | static void blend_line_steep_and_shallow_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
243 | static void blend_line_steep_and_shallow_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
244 | { |
244 | { |
245 | color_format->alphagrad (outmatrix_ref (out, 1, 0), col, 1, 4); |
245 | color_format->alphagrad (outmatrix_ref (out, 1, 0), col, 1, 4); |
246 | color_format->alphagrad (outmatrix_ref (out, 0, 1), col, 1, 4); |
246 | color_format->alphagrad (outmatrix_ref (out, 0, 1), col, 1, 4); |
247 | color_format->alphagrad (outmatrix_ref (out, 1, 1), col, 5, 6); //[!] fixes 7/8 used in xBR |
247 | color_format->alphagrad (outmatrix_ref (out, 1, 1), col, 5, 6); // [!] fixes 7/8 used in xBR |
248 | } |
248 | } |
249 | static void blend_line_steep_and_shallow_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
249 | static void blend_line_steep_and_shallow_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
250 | { |
250 | { |
251 | color_format->alphagrad (outmatrix_ref (out, 2, 0), col, 1, 4); |
251 | color_format->alphagrad (outmatrix_ref (out, 2, 0), col, 1, 4); |
252 | color_format->alphagrad (outmatrix_ref (out, 0, 2), col, 1, 4); |
252 | color_format->alphagrad (outmatrix_ref (out, 0, 2), col, 1, 4); |
Line 258... | Line 258... | ||
258 | { |
258 | { |
259 | color_format->alphagrad (outmatrix_ref (out, 3, 1), col, 3, 4); |
259 | color_format->alphagrad (outmatrix_ref (out, 3, 1), col, 3, 4); |
260 | color_format->alphagrad (outmatrix_ref (out, 1, 3), col, 3, 4); |
260 | color_format->alphagrad (outmatrix_ref (out, 1, 3), col, 3, 4); |
261 | color_format->alphagrad (outmatrix_ref (out, 3, 0), col, 1, 4); |
261 | color_format->alphagrad (outmatrix_ref (out, 3, 0), col, 1, 4); |
262 | color_format->alphagrad (outmatrix_ref (out, 0, 3), col, 1, 4); |
262 | color_format->alphagrad (outmatrix_ref (out, 0, 3), col, 1, 4); |
263 | color_format->alphagrad (outmatrix_ref (out, 2, 2), col, 1, 3); //[!] fixes 1/4 used in xBR |
263 | color_format->alphagrad (outmatrix_ref (out, 2, 2), col, 1, 3); // [!] fixes 1/4 used in xBR |
264 | *outmatrix_ref (out, 3, 3) = col; |
264 | *outmatrix_ref (out, 3, 3) = col; |
265 | *outmatrix_ref (out, 3, 2) = col; |
265 | *outmatrix_ref (out, 3, 2) = col; |
266 | *outmatrix_ref (out, 2, 3) = col; |
266 | *outmatrix_ref (out, 2, 3) = col; |
267 | } |
267 | } |
268 | static void blend_line_steep_and_shallow_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
268 | static void blend_line_steep_and_shallow_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
Line 307... | Line 307... | ||
307 | { |
307 | { |
308 | color_format->alphagrad (outmatrix_ref (out, 1, 1), col, 1, 2); |
308 | color_format->alphagrad (outmatrix_ref (out, 1, 1), col, 1, 2); |
309 | } |
309 | } |
310 | static void blend_line_diagonal_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
310 | static void blend_line_diagonal_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
311 | { |
311 | { |
312 | color_format->alphagrad (outmatrix_ref (out, 1, 2), col, 1, 8); //conflict with other rotations for this odd scale |
312 | color_format->alphagrad (outmatrix_ref (out, 1, 2), col, 1, 8); // conflict with other rotations for this odd scale |
313 | color_format->alphagrad (outmatrix_ref (out, 2, 1), col, 1, 8); |
313 | color_format->alphagrad (outmatrix_ref (out, 2, 1), col, 1, 8); |
314 | color_format->alphagrad (outmatrix_ref (out, 2, 2), col, 7, 8); |
314 | color_format->alphagrad (outmatrix_ref (out, 2, 2), col, 7, 8); |
315 | } |
315 | } |
316 | static void blend_line_diagonal_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
316 | static void blend_line_diagonal_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
317 | { |
317 | { |
318 | color_format->alphagrad (outmatrix_ref (out, 4 - 1, 4 / 2), col, 1, 2); |
318 | color_format->alphagrad (outmatrix_ref (out, 4 - 1, 4 / 2), col, 1, 2); |
319 | color_format->alphagrad (outmatrix_ref (out, 4 - 2, 4 / 2 + 1), col, 1, 2); |
319 | color_format->alphagrad (outmatrix_ref (out, 4 - 2, 4 / 2 + 1), col, 1, 2); |
320 | *outmatrix_ref (out, 4 - 1, 4 - 1) = col; |
320 | *outmatrix_ref (out, 4 - 1, 4 - 1) = col; |
321 | } |
321 | } |
322 | static void blend_line_diagonal_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
322 | static void blend_line_diagonal_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
323 | { |
323 | { |
324 | color_format->alphagrad (outmatrix_ref (out, 5 - 1, 5 / 2 + 0), col, 1, 8); //conflict with other rotations for this odd scale |
324 | color_format->alphagrad (outmatrix_ref (out, 5 - 1, 5 / 2 + 0), col, 1, 8); // conflict with other rotations for this odd scale |
325 | color_format->alphagrad (outmatrix_ref (out, 5 - 2, 5 / 2 + 1), col, 1, 8); |
325 | color_format->alphagrad (outmatrix_ref (out, 5 - 2, 5 / 2 + 1), col, 1, 8); |
326 | color_format->alphagrad (outmatrix_ref (out, 5 - 3, 5 / 2 + 2), col, 1, 8); |
326 | color_format->alphagrad (outmatrix_ref (out, 5 - 3, 5 / 2 + 2), col, 1, 8); |
327 | color_format->alphagrad (outmatrix_ref (out, 4, 3), col, 7, 8); |
327 | color_format->alphagrad (outmatrix_ref (out, 4, 3), col, 7, 8); |
328 | color_format->alphagrad (outmatrix_ref (out, 3, 4), col, 7, 8); |
328 | color_format->alphagrad (outmatrix_ref (out, 3, 4), col, 7, 8); |
329 | *outmatrix_ref (out, 4, 4) = col; |
329 | *outmatrix_ref (out, 4, 4) = col; |
330 | } |
330 | } |
331 | static void blend_line_diagonal_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
331 | static void blend_line_diagonal_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
Line 342... | Line 342... | ||
342 | // corner scaling functions |
342 | // corner scaling functions |
343 | 343 | ||
344 | static void blend_corner_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
344 | static void blend_corner_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
345 | { |
345 | { |
346 | // model a round corner |
346 | // model a round corner |
347 | color_format->alphagrad (outmatrix_ref (out, 1, 1), col, 21, 100); //exact: 1 - pi/4 = 0.2146018366 |
347 | color_format->alphagrad (outmatrix_ref (out, 1, 1), col, 21, 100); // exact: 1 - pi/4 = 0.2146018366 |
348 | } |
348 | } |
349 | static void blend_corner_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
349 | static void blend_corner_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
350 | { |
350 | { |
351 | // model a round corner |
351 | // model a round corner |
352 | color_format->alphagrad (outmatrix_ref (out, 2, 2), col, 45, 100); //exact: 0.4545939598 |
352 | color_format->alphagrad (outmatrix_ref (out, 2, 2), col, 45, 100); // exact: 0.4545939598 |
353 | //color_format->alphagrad (outmatrix_ref (out, 2, 1), col, 7, 256); //0.02826017254 -> negligible + avoid conflicts with other rotations for this odd scale |
353 | //color_format->alphagrad (outmatrix_ref (out, 2, 1), col, 7, 256); // 0.02826017254 -> negligible + avoid conflicts with other rotations for this odd scale |
354 | //color_format->alphagrad (outmatrix_ref (out, 1, 2), col, 7, 256); //0.02826017254 |
354 | //color_format->alphagrad (outmatrix_ref (out, 1, 2), col, 7, 256); // 0.02826017254 |
355 | } |
355 | } |
356 | static void blend_corner_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
356 | static void blend_corner_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
357 | { |
357 | { |
358 | // model a round corner |
358 | // model a round corner |
359 | color_format->alphagrad (outmatrix_ref (out, 3, 3), col, 68, 100); //exact: 0.6848532563 |
359 | color_format->alphagrad (outmatrix_ref (out, 3, 3), col, 68, 100); // exact: 0.6848532563 |
360 | color_format->alphagrad (outmatrix_ref (out, 3, 2), col, 9, 100); //0.08677704501 |
360 | color_format->alphagrad (outmatrix_ref (out, 3, 2), col, 9, 100); // 0.08677704501 |
361 | color_format->alphagrad (outmatrix_ref (out, 2, 3), col, 9, 100); //0.08677704501 |
361 | color_format->alphagrad (outmatrix_ref (out, 2, 3), col, 9, 100); // 0.08677704501 |
362 | } |
362 | } |
363 | static void blend_corner_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
363 | static void blend_corner_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
364 | { |
364 | { |
365 | // model a round corner |
365 | // model a round corner |
366 | color_format->alphagrad (outmatrix_ref (out, 4, 4), col, 86, 100); //exact: 0.8631434088 |
366 | color_format->alphagrad (outmatrix_ref (out, 4, 4), col, 86, 100); // exact: 0.8631434088 |
367 | color_format->alphagrad (outmatrix_ref (out, 4, 3), col, 23, 100); //0.2306749731 |
367 | color_format->alphagrad (outmatrix_ref (out, 4, 3), col, 23, 100); // 0.2306749731 |
368 | color_format->alphagrad (outmatrix_ref (out, 3, 4), col, 23, 100); //0.2306749731 |
368 | color_format->alphagrad (outmatrix_ref (out, 3, 4), col, 23, 100); // 0.2306749731 |
369 | //color_format->alphagrad (outmatrix_ref (out, 4, 2), col, 1, 64); //0.01676812367 -> negligible + avoid conflicts with other rotations for this odd scale |
369 | //color_format->alphagrad (outmatrix_ref (out, 4, 2), col, 1, 64); // 0.01676812367 -> negligible + avoid conflicts with other rotations for this odd scale |
370 | //color_format->alphagrad (outmatrix_ref (out, 2, 4), col, 1, 64); //0.01676812367 |
370 | //color_format->alphagrad (outmatrix_ref (out, 2, 4), col, 1, 64); // 0.01676812367 |
371 | } |
371 | } |
372 | static void blend_corner_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
372 | static void blend_corner_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
373 | { |
373 | { |
374 | // model a round corner |
374 | // model a round corner |
375 | color_format->alphagrad (outmatrix_ref (out, 5, 5), col, 97, 100); //exact: 0.9711013910 |
375 | color_format->alphagrad (outmatrix_ref (out, 5, 5), col, 97, 100); // exact: 0.9711013910 |
376 | color_format->alphagrad (outmatrix_ref (out, 4, 5), col, 42, 100); //0.4236372243 |
376 | color_format->alphagrad (outmatrix_ref (out, 4, 5), col, 42, 100); // 0.4236372243 |
377 | color_format->alphagrad (outmatrix_ref (out, 5, 4), col, 42, 100); //0.4236372243 |
377 | color_format->alphagrad (outmatrix_ref (out, 5, 4), col, 42, 100); // 0.4236372243 |
378 | color_format->alphagrad (outmatrix_ref (out, 5, 3), col, 6, 100); //0.05652034508 |
378 | color_format->alphagrad (outmatrix_ref (out, 5, 3), col, 6, 100); // 0.05652034508 |
379 | color_format->alphagrad (outmatrix_ref (out, 3, 5), col, 6, 100); //0.05652034508 |
379 | color_format->alphagrad (outmatrix_ref (out, 3, 5), col, 6, 100); // 0.05652034508 |
380 | } |
380 | } |
381 | 381 | ||
382 | ///////////////////////////////////// |
382 | ///////////////////////////////////// |
383 | // scaler objects for various factors |
383 | // scaler objects for various factors |
384 | 384 | ||
Line 417... | Line 417... | ||
417 | ///////////////////////////////////////////////////// |
417 | ///////////////////////////////////////////////////// |
418 | // color distance functions for various color formats |
418 | // color distance functions for various color formats |
419 | 419 | ||
420 | static double dist24 (uint32_t pix1, uint32_t pix2) |
420 | static double dist24 (uint32_t pix1, uint32_t pix2) |
421 | { |
421 | { |
422 | //30% perf boost compared to plain distYCbCr()! |
422 | // 30% perf boost compared to plain distYCbCr()! |
423 | //consumes 64 MB memory; using double is only 2% faster, but takes 128 MB |
423 | // consumes 64 MB memory; using double is only 2% faster, but takes 128 MB |
424 | static float diffToDist[256 * 256 * 256]; |
424 | static float diffToDist[256 * 256 * 256] = { 0 }; |
425 | static bool is_initialized = false; |
425 | static bool is_initialized = false; |
426 | if (!is_initialized) |
426 | if (!is_initialized) |
427 | { |
427 | { |
428 | for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores) |
428 | for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores) |
429 | { |
429 | { |
Line 449... | Line 449... | ||
449 | 449 | ||
450 | const int r_diff = (int) GET_RED (pix1) - (int) GET_RED (pix2); |
450 | const int r_diff = (int) GET_RED (pix1) - (int) GET_RED (pix2); |
451 | const int g_diff = (int) GET_GREEN (pix1) - (int) GET_GREEN (pix2); |
451 | const int g_diff = (int) GET_GREEN (pix1) - (int) GET_GREEN (pix2); |
452 | const int b_diff = (int) GET_BLUE (pix1) - (int) GET_BLUE (pix2); |
452 | const int b_diff = (int) GET_BLUE (pix1) - (int) GET_BLUE (pix2); |
453 | 453 | ||
454 | return diffToDist[(((r_diff + 0xFF) / 2) << 16) |
454 | return (diffToDist[ (((r_diff + 0xFF) / 2) << 16) // slightly reduce precision (division by 2) to squeeze value into single byte |
455 | (((g_diff + 0xFF) / 2) << 8) |
455 | | (((g_diff + 0xFF) / 2) << 8) |
456 | (((b_diff + 0xFF) / 2) << 0)]; |
456 | | (((b_diff + 0xFF) / 2) << 0)]); |
457 | } |
457 | } |
458 | static double dist32 (uint32_t pix1, uint32_t pix2) |
458 | static double dist32 (uint32_t pix1, uint32_t pix2) |
459 | { |
459 | { |
460 | // Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1] |
460 | // Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1] |
461 | // 1. if a1 = a2, distance should be: a1 * distYCbCr() |
461 | // 1. if a1 = a2, distance should be: a1 * distYCbCr() |
462 | // 2. if a1 = 0, distance should be: a2 * distYCbCr(black, white) = a2 * 255 |
462 | // 2. if a1 = 0, distance should be: a2 * distYCbCr(black, white) = a2 * 255 |
463 | // 3. if a1 = 1, ??? maybe: 255 * (1 - a2) + a2 * distYCbCr() |
463 | // 3. if a1 = 1, ??? maybe: 255 * (1 - a2) + a2 * distYCbCr() |
464 | //return MIN (a1, a2) * distYCbCrBuffered(pix1, pix2) + 255 * abs(a1 - a2); |
464 | // return MIN (a1, a2) * distYCbCrBuffered(pix1, pix2) + 255 * abs(a1 - a2); |
465 | //=> following code is 15% faster: |
465 | // => following code is 15% faster: |
466 | const double d = dist24 (pix1, pix2); |
466 | const double d = dist24 (pix1, pix2); |
467 | const double a1 = GET_ALPHA (pix1) / 255.0; |
467 | const double a1 = GET_ALPHA (pix1) / 255.0; |
468 | const double a2 = GET_ALPHA (pix2) / 255.0; |
468 | const double a2 = GET_ALPHA (pix2) / 255.0; |
469 | return (a1 < a2 ? a1 * d + 255 * (a2 - a1) : a2 * d + 255 * (a1 - a2)); |
469 | return (a1 < a2 ? a1 * d + 255 * (a2 - a1) : a2 * d + 255 * (a1 - a2)); |
470 | } |
470 | } |
Line 520... | Line 520... | ||
520 | 520 | ||
521 | const int weight = 4; |
521 | const int weight = 4; |
522 | double jg = color_format->dist (ker->i, ker->f) + color_format->dist (ker->f, ker->c) + color_format->dist (ker->n, ker->k) + color_format->dist (ker->k, ker->h) + weight * color_format->dist (ker->j, ker->g); |
522 | double jg = color_format->dist (ker->i, ker->f) + color_format->dist (ker->f, ker->c) + color_format->dist (ker->n, ker->k) + color_format->dist (ker->k, ker->h) + weight * color_format->dist (ker->j, ker->g); |
523 | double fk = color_format->dist (ker->e, ker->j) + color_format->dist (ker->j, ker->o) + color_format->dist (ker->b, ker->g) + color_format->dist (ker->g, ker->l) + weight * color_format->dist (ker->f, ker->k); |
523 | double fk = color_format->dist (ker->e, ker->j) + color_format->dist (ker->j, ker->o) + color_format->dist (ker->b, ker->g) + color_format->dist (ker->g, ker->l) + weight * color_format->dist (ker->f, ker->k); |
524 | 524 | ||
525 | if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8 |
525 | if (jg < fk) // test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8 |
526 | { |
526 | { |
527 | const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * jg < fk; |
527 | const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * jg < fk; |
528 | if (ker->f != ker->g && ker->f != ker->j) |
528 | if (ker->f != ker->g && ker->f != ker->j) |
529 | result->blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; |
529 | result->blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; |
530 | 530 | ||
Line 549... | Line 549... | ||
549 | { |
549 | { |
550 | // input kernel area naming convention: |
550 | // input kernel area naming convention: |
551 | // ------------- |
551 | // ------------- |
552 | // | A | B | C | |
552 | // | A | B | C | |
553 | // ----|---|---| |
553 | // ----|---|---| |
554 | // | D | E | F | //input pixel is at position E |
554 | // | D | E | F | // input pixel is at position E |
555 | // ----|---|---| |
555 | // ----|---|---| |
556 | // | G | H | I | |
556 | // | G | H | I | |
557 | // ------------- |
557 | // ------------- |
558 | 558 | ||
559 | uint32_t |
559 | uint32_t |
Line 590... | Line 590... | ||
590 | outmatrix_t out; |
590 | outmatrix_t out; |
591 | out.size = scaler->factor; |
591 | out.size = scaler->factor; |
592 | out.ptr = target; |
592 | out.ptr = target; |
593 | out.stride = trgWidth; |
593 | out.stride = trgWidth; |
594 | 594 | ||
595 | px = (color_format->dist (e, f) <= color_format->dist (e, h) ? f : h); //choose most similar color |
595 | px = (color_format->dist (e, f) <= color_format->dist (e, h) ? f : h); // choose most similar color |
596 | 596 | ||
597 | if (doLineBlend) |
597 | if (doLineBlend) |
598 | { |
598 | { |
599 | const double fg = color_format->dist (f, g); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9 |
599 | const double fg = color_format->dist (f, g); // test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9 |
600 | const double hc = color_format->dist (h, c); |
600 | const double hc = color_format->dist (h, c); |
601 | const bool haveShallowLine = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * fg <= hc) && (e != g) && (d != g); |
601 | const bool haveShallowLine = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * fg <= hc) && (e != g) && (d != g); |
602 | const bool haveSteepLine = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * hc <= fg) && (e != c) && (b != c); |
602 | const bool haveSteepLine = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * hc <= fg) && (e != c) && (b != c); |
603 | 603 | ||
604 | if (haveShallowLine) |
604 | if (haveShallowLine) |
605 | { |
605 | { |
Line 663... | Line 663... | ||
663 | 663 | ||
664 | preprocess_corners (&res, &ker, color_format); |
664 | preprocess_corners (&res, &ker, color_format); |
665 | 665 | ||
666 | // preprocessing blend result: |
666 | // preprocessing blend result: |
667 | // --------- |
667 | // --------- |
668 | // | F | G | //evalute corner between F, G, J, K |
668 | // | F | G | // evalute corner between F, G, J, K |
669 | // ----|---| //input pixel is at position F |
669 | // ----|---| // input pixel is at position F |
670 | // | J | K | |
670 | // | J | K | |
671 | // --------- |
671 | // --------- |
672 | 672 | ||
673 | setTopR (&preProcBuffer[x], res.blend_j); |
673 | setTopR (&preProcBuffer[x], res.blend_j); |
674 | if (x + 1 < bufferSize) |
674 | if (x + 1 < bufferSize) |
Line 677... | Line 677... | ||
677 | } |
677 | } |
678 | //------------------------------------------------------------------------------------ |
678 | //------------------------------------------------------------------------------------ |
679 | 679 | ||
680 | for (int y = yFirst; y < yLast; ++y) |
680 | for (int y = yFirst; y < yLast; ++y) |
681 | { |
681 | { |
682 | uint32_t *out = trg + scaler->factor * y * trgWidth; //consider MT "striped" access |
682 | uint32_t *out = trg + scaler->factor * y * trgWidth; // consider MT "striped" access |
683 | 683 | ||
684 | const uint32_t* s_m1 = src + srcWidth * MAX (y - 1, 0); |
684 | const uint32_t* s_m1 = src + srcWidth * MAX (y - 1, 0); |
685 | const uint32_t* s_0 = src + srcWidth * y; //center line |
685 | const uint32_t* s_0 = src + srcWidth * y; // center line |
686 | const uint32_t* s_p1 = src + srcWidth * MIN (y + 1, srcHeight - 1); |
686 | const uint32_t* s_p1 = src + srcWidth * MIN (y + 1, srcHeight - 1); |
687 | const uint32_t* s_p2 = src + srcWidth * MIN (y + 2, srcHeight - 1); |
687 | const uint32_t* s_p2 = src + srcWidth * MIN (y + 2, srcHeight - 1); |
688 | 688 | ||
689 | uint8_t blend_xy1 = 0; // corner blending for current (x, y + 1) position |
689 | uint8_t blend_xy1 = 0; // corner blending for current (x, y + 1) position |
690 | 690 | ||
691 | for (int x = 0; x < srcWidth; ++x, out += scaler->factor) |
691 | for (int x = 0; x < srcWidth; ++x, out += scaler->factor) |
692 | { |
692 | { |
693 | // all those bounds checks have only insignificant impact on performance! |
693 | // all those bounds checks have only insignificant impact on performance! |
694 | const int x_m1 = MAX (x - 1, 0); //perf: prefer array indexing to additional pointers! |
694 | const int x_m1 = MAX (x - 1, 0); // perf: prefer array indexing to additional pointers! |
695 | const int x_p1 = MIN (x + 1, srcWidth - 1); |
695 | const int x_p1 = MIN (x + 1, srcWidth - 1); |
696 | const int x_p2 = MIN (x + 2, srcWidth - 1); |
696 | const int x_p2 = MIN (x + 2, srcWidth - 1); |
697 | 697 | ||
698 | kernel_4x4_t ker4; //perf: initialization is negligible |
698 | kernel_4x4_t ker4; // perf: initialization is negligible |
699 | ker4.a = s_m1[x_m1]; ker4.b = s_m1[x]; ker4.c = s_m1[x_p1]; ker4.d = s_m1[x_p2]; // read sequentially from memory as far as possible |
699 | ker4.a = s_m1[x_m1]; ker4.b = s_m1[x]; ker4.c = s_m1[x_p1]; ker4.d = s_m1[x_p2]; // read sequentially from memory as far as possible |
700 | ker4.e = s_0[x_m1]; ker4.f = s_0[x]; ker4.g = s_0[x_p1]; ker4.h = s_0[x_p2]; |
700 | ker4.e = s_0[x_m1]; ker4.f = s_0[x]; ker4.g = s_0[x_p1]; ker4.h = s_0[x_p2]; |
701 | ker4.i = s_p1[x_m1]; ker4.j = s_p1[x]; ker4.k = s_p1[x_p1]; ker4.l = s_p1[x_p2]; |
701 | ker4.i = s_p1[x_m1]; ker4.j = s_p1[x]; ker4.k = s_p1[x_p1]; ker4.l = s_p1[x_p2]; |
702 | ker4.m = s_p2[x_m1]; ker4.n = s_p2[x]; ker4.o = s_p2[x_p1]; ker4.p = s_p2[x_p2]; |
702 | ker4.m = s_p2[x_m1]; ker4.n = s_p2[x]; ker4.o = s_p2[x_p1]; ker4.p = s_p2[x_p2]; |
703 | 703 | ||
704 | // evaluate the four corners on bottom-right of current pixel |
704 | // evaluate the four corners on bottom-right of current pixel |
705 | uint8_t blend_xy = 0; //for current (x, y) position |
705 | uint8_t blend_xy = 0; // for current (x, y) position |
706 | { |
706 | { |
707 | blendresult_t res; |
707 | blendresult_t res; |
708 | preprocess_corners (&res, &ker4, color_format); |
708 | preprocess_corners (&res, &ker4, color_format); |
709 | 709 | ||
710 | // preprocessing blend result: |
710 | // preprocessing blend result: |
711 | // --------- |
711 | // --------- |
712 | // | F | G | //evalute corner between F, G, J, K |
712 | // | F | G | // evalute corner between F, G, J, K |
713 | // ----|---| //current input pixel is at position F |
713 | // ----|---| // current input pixel is at position F |
714 | // | J | K | |
714 | // | J | K | |
715 | // --------- |
715 | // --------- |
716 | 716 | ||
717 | blend_xy = preProcBuffer[x]; |
717 | blend_xy = preProcBuffer[x]; |
718 | setBottomR (&blend_xy, res.blend_f); //all four corners of (x, y) have been determined at this point due to processing sequence! |
718 | setBottomR (&blend_xy, res.blend_f); // all four corners of (x, y) have been determined at this point due to processing sequence! |
719 | 719 | ||
720 | setTopR (&blend_xy1, res.blend_j); //set 2nd known corner for (x, y + 1) |
720 | setTopR (&blend_xy1, res.blend_j); // set 2nd known corner for (x, y + 1) |
721 | preProcBuffer[x] = blend_xy1; //store on current buffer position for use on next row |
721 | preProcBuffer[x] = blend_xy1; // store on current buffer position for use on next row |
722 | 722 | ||
723 | blend_xy1 = 0; |
723 | blend_xy1 = 0; |
724 | setTopL (&blend_xy1, res.blend_k); //set 1st known corner for (x + 1, y + 1) and buffer for use on next column |
724 | setTopL (&blend_xy1, res.blend_k); // set 1st known corner for (x + 1, y + 1) and buffer for use on next column |
725 | 725 | ||
726 | if (x + 1 < bufferSize) //set 3rd known corner for (x + 1, y) |
726 | if (x + 1 < bufferSize) // set 3rd known corner for (x + 1, y) |
727 | setBottomL (&preProcBuffer[x + 1], res.blend_g); |
727 | setBottomL (&preProcBuffer[x + 1], res.blend_g); |
728 | } |
728 | } |
729 | 729 | ||
730 | //fill block of size scale * scale with the given color |
730 | // fill block of size scale * scale with the given color |
731 | uint32_t *blk = out; |
731 | uint32_t *blk = out; |
732 | for (int _blk_y = 0; _blk_y < scaler->factor; ++_blk_y, blk = (uint32_t *) BYTE_ADVANCE (blk, trgWidth * sizeof (uint32_t))) |
732 | for (int _blk_y = 0; _blk_y < scaler->factor; ++_blk_y, blk = (uint32_t *) BYTE_ADVANCE (blk, trgWidth * sizeof (uint32_t))) |
733 | for (int _blk_x = 0; _blk_x < scaler->factor; ++_blk_x) |
733 | for (int _blk_x = 0; _blk_x < scaler->factor; ++_blk_x) |
734 | blk[_blk_x] = ker4.f; |
734 | blk[_blk_x] = ker4.f; |
735 | 735 | ||
736 | //place *after* preprocessing step, to not overwrite the results while processing the the last pixel! |
736 | // place *after* preprocessing step, to not overwrite the results while processing the the last pixel! |
737 | 737 | ||
738 | //blend four corners of current pixel |
738 | // blend four corners of current pixel |
739 | if (blend_xy != 0) //good 5% perf-improvement |
739 | if (blend_xy != 0) // good 5% perf-improvement |
740 | { |
740 | { |
741 | kernel_3x3_t ker3; //perf: initialization is negligible |
741 | kernel_3x3_t ker3; // perf: initialization is negligible |
742 | ker3.a = ker4.a; ker3.b = ker4.b; ker3.c = ker4.c; |
742 | ker3.a = ker4.a; ker3.b = ker4.b; ker3.c = ker4.c; |
743 | ker3.d = ker4.e; ker3.e = ker4.f; ker3.f = ker4.g; |
743 | ker3.d = ker4.e; ker3.e = ker4.f; ker3.f = ker4.g; |
744 | ker3.g = ker4.i; ker3.h = ker4.j; ker3.i = ker4.k; |
744 | ker3.g = ker4.i; ker3.h = ker4.j; ker3.i = ker4.k; |
745 | 745 | ||
746 | blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, color_format, outmatrixref_0); |
746 | blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, color_format, outmatrixref_0); |
Line 775... | Line 775... | ||
775 | { |
775 | { |
776 | //mathematically: ySrc = floor(srcHeight * yTrg / trgHeight) |
776 | //mathematically: ySrc = floor(srcHeight * yTrg / trgHeight) |
777 | // => search for integers in: [ySrc, ySrc + 1) * trgHeight / srcHeight |
777 | // => search for integers in: [ySrc, ySrc + 1) * trgHeight / srcHeight |
778 | 778 | ||
779 | //keep within for loop to support MT input slices! |
779 | //keep within for loop to support MT input slices! |
780 | const int yTrg_first = (y * trgHeight + srcHeight - 1) / srcHeight; // |
780 | const int yTrg_first = (y * trgHeight + srcHeight - 1) / srcHeight; // = ceil(y * trgHeight / srcHeight) |
781 | const int yTrg_last = ((y + 1) * trgHeight + srcHeight - 1) / srcHeight; // |
781 | const int yTrg_last = ((y + 1) * trgHeight + srcHeight - 1) / srcHeight; // = ceil(((y + 1) * trgHeight) / srcHeight) |
782 | const int blockHeight = yTrg_last - yTrg_first; |
782 | const int blockHeight = yTrg_last - yTrg_first; |
783 | 783 | ||
784 | if (blockHeight > 0) |
784 | if (blockHeight > 0) |
785 | { |
785 | { |
786 | const uint32_t *srcLine = (const uint32_t *) BYTE_ADVANCE (src, y * srcPitch); |
786 | const uint32_t *srcLine = (const uint32_t *) BYTE_ADVANCE (src, y * srcPitch); |