Rev 176 | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
Rev 176 | Rev 185 | ||
---|---|---|---|
Line 18... | Line 18... | ||
18 | */ |
18 | */ |
19 | 19 | ||
20 | #include <algorithm> |
20 | #include <algorithm> |
21 | #include <atomic> |
21 | #include <atomic> |
22 | #include <cstdint> |
22 | #include <cstdint> |
23 | #include <cstring> // For std::memset |
23 | #include <cstring> // For std::memset and std::memcpy |
24 | #include <deque> |
24 | #include <deque> |
25 | #include <fstream> |
25 | #include <fstream> |
26 | #include <iostream> |
26 | #include <iostream> |
27 | #include <list> |
27 | #include <list> |
28 | #include <sstream> |
28 | #include <sstream> |
Line 32... | Line 32... | ||
32 | #include "../movegen.h" |
32 | #include "../movegen.h" |
33 | #include "../position.h" |
33 | #include "../position.h" |
34 | #include "../search.h" |
34 | #include "../search.h" |
35 | #include "../thread_win32.h" |
35 | #include "../thread_win32.h" |
36 | #include "../types.h" |
36 | #include "../types.h" |
- | 37 | #include "../uci.h" |
|
37 | 38 | ||
38 | #include "tbprobe.h" |
39 | #include "tbprobe.h" |
39 | 40 | ||
40 | #ifndef _WIN32 |
41 | #ifndef _WIN32 |
41 | #include <fcntl.h> |
42 | #include <fcntl.h> |
Line 51... | Line 52... | ||
51 | using namespace Tablebases; |
52 | using namespace Tablebases; |
52 | 53 | ||
53 | int Tablebases::MaxCardinality; |
54 | int Tablebases::MaxCardinality; |
54 | 55 | ||
55 | namespace { |
56 | namespace { |
- | 57 | ||
- | 58 | constexpr int TBPIECES = 7; // Max number of supported pieces |
|
- | 59 | ||
- | 60 | enum { BigEndian, LittleEndian }; |
|
- | 61 | enum TBType { KEY, WDL, DTZ }; // Used as template parameter |
|
56 | 62 | ||
57 | // Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables |
63 | // Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables |
58 | enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, SingleValue = 128 }; |
64 | enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, Wide = 16, SingleValue = 128 }; |
59 | 65 | ||
60 | inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); } |
66 | inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); } |
61 | inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); } |
67 | inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); } |
62 | inline Square operator^(Square s, int i) { return Square(int(s) ^ i); } |
68 | inline Square operator^(Square s, int i) { return Square(int(s) ^ i); } |
63 | 69 | ||
64 | // DTZ tables don't store valid scores for moves that reset the rule50 counter |
- | |
65 | // like captures and pawn moves but we can easily recover the correct dtz of the |
- | |
66 | // previous move if we know the position's WDL score. |
- | |
67 | int dtz_before_zeroing(WDLScore wdl) { |
- | |
68 | return wdl == WDLWin ? 1 : |
- | |
69 | wdl == WDLCursedWin ? 101 : |
- | |
70 | wdl == WDLBlessedLoss ? -101 : |
- | |
71 | wdl == WDLLoss ? -1 : 0; |
- | |
72 | } |
- | |
73 | - | ||
74 | // Return the sign of a number (-1, 0, 1) |
- | |
75 | template <typename T> int sign_of(T val) { |
- | |
76 | return (T(0) < val) - (val < T(0)); |
- | |
77 | } |
- | |
78 | - | ||
79 | // Numbers in little endian used by sparseIndex[] to point into blockLength[] |
- | |
80 | struct SparseEntry { |
- | |
81 | char block[4]; // Number of block |
- | |
82 | char offset[2]; // Offset within the block |
- | |
83 | }; |
- | |
84 | - | ||
85 | static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes"); |
- | |
86 | - | ||
87 | typedef uint16_t Sym; // Huffman symbol |
- | |
88 | - | ||
89 | struct LR { |
- | |
90 | enum Side { Left, Right, Value }; |
- | |
91 | - | ||
92 | uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12 |
- | |
93 | // bits is the right-hand symbol. If symbol has length 1, |
- | |
94 | // then the first byte is the stored value. |
- | |
95 | template<Side S> |
- | |
96 | Sym get() { |
- | |
97 | return S == Left ? ((lr[1] & 0xF) << 8) | lr[0] : |
- | |
98 | S == Right ? (lr[2] << 4) | (lr[1] >> 4) : |
- | |
99 | S == Value ? lr[0] : (assert(false), Sym(-1)); |
- | |
100 | } |
- | |
101 | }; |
- | |
102 | - | ||
103 | static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes"); |
- | |
104 | - | ||
105 | const int TBPIECES = 6; |
- | |
106 | - | ||
107 | struct PairsData { |
- | |
108 | int flags; |
- | |
109 | size_t sizeofBlock; // Block size in bytes |
- | |
110 | size_t span; // About every span values there is a SparseIndex[] entry |
- | |
111 | int blocksNum; // Number of blocks in the TB file |
- | |
112 | int maxSymLen; // Maximum length in bits of the Huffman symbols |
- | |
113 | int minSymLen; // Minimum length in bits of the Huffman symbols |
- | |
114 | Sym* lowestSym; // lowestSym[l] is the symbol of length l with the lowest value |
- | |
115 | LR* btree; // btree[sym] stores the left and right symbols that expand sym |
- | |
116 | uint16_t* blockLength; // Number of stored positions (minus one) for each block: 1..65536 |
- | |
117 | int blockLengthSize; // Size of blockLength[] table: padded so it's bigger than blocksNum |
- | |
118 | SparseEntry* sparseIndex; // Partial indices into blockLength[] |
- | |
119 | size_t sparseIndexSize; // Size of SparseIndex[] table |
- | |
120 | uint8_t* data; // Start of Huffman compressed data |
- | |
121 | std::vector<uint64_t> base64; // base64[l - min_sym_len] is the 64bit-padded lowest symbol of length l |
- | |
122 | std::vector<uint8_t> symlen; // Number of values (-1) represented by a given Huffman symbol: 1..256 |
- | |
123 | Piece pieces[TBPIECES]; // Position pieces: the order of pieces defines the groups |
- | |
124 | uint64_t groupIdx[TBPIECES+1]; // Start index used for the encoding of the group's pieces |
- | |
125 | int groupLen[TBPIECES+1]; // Number of pieces in a given group: KRKN -> (3, 1) |
- | |
126 | }; |
- | |
127 | - | ||
128 | // Helper struct to avoid manually defining entry copy constructor as we |
- | |
129 | // should because the default one is not compatible with std::atomic_bool. |
- | |
130 | struct Atomic { |
- | |
131 | Atomic() = default; |
- | |
132 | Atomic(const Atomic& e) { ready = e.ready.load(); } // MSVC 2013 wants assignment within body |
- | |
133 | std::atomic_bool ready; |
- | |
134 | }; |
- | |
135 | - | ||
136 | // We define types for the different parts of the WDLEntry and DTZEntry with |
- | |
137 | // corresponding specializations for pieces or pawns. |
- | |
138 | - | ||
139 | struct WDLEntryPiece { |
- | |
140 | PairsData* precomp; |
- | |
141 | }; |
- | |
142 | - | ||
143 | struct WDLEntryPawn { |
- | |
144 | uint8_t pawnCount[2]; // [Lead color / other color] |
- | |
145 | WDLEntryPiece file[2][4]; // [wtm / btm][FILE_A..FILE_D] |
- | |
146 | }; |
- | |
147 | - | ||
148 | struct DTZEntryPiece { |
- | |
149 | PairsData* precomp; |
- | |
150 | uint16_t map_idx[4]; // WDLWin, WDLLoss, WDLCursedWin, WDLBlessedLoss |
- | |
151 | uint8_t* map; |
- | |
152 | }; |
- | |
153 | - | ||
154 | struct DTZEntryPawn { |
- | |
155 | uint8_t pawnCount[2]; |
- | |
156 | DTZEntryPiece file[4]; |
- | |
157 | uint8_t* map; |
- | |
158 | }; |
- | |
159 | - | ||
160 | struct TBEntry : public Atomic { |
- | |
161 | void* baseAddress; |
- | |
162 | uint64_t mapping; |
- | |
163 | Key key; |
- | |
164 | Key key2; |
- | |
165 | int pieceCount; |
- | |
166 | bool hasPawns; |
- | |
167 | bool hasUniquePieces; |
- | |
168 | }; |
- | |
169 | - | ||
170 | // Now the main types: WDLEntry and DTZEntry |
- | |
171 | struct WDLEntry : public TBEntry { |
- | |
172 | WDLEntry(const std::string& code); |
- | |
173 | ~WDLEntry(); |
- | |
174 | union { |
- | |
175 |
|
70 | const std::string PieceToChar = " PNBRQK pnbrqk"; |
176 | WDLEntryPawn pawnTable; |
- | |
177 | }; |
- | |
178 | }; |
- | |
179 | - | ||
180 | struct DTZEntry : public TBEntry { |
- | |
181 | DTZEntry(const WDLEntry& wdl); |
- | |
182 | ~DTZEntry(); |
- | |
183 | union { |
- | |
184 | DTZEntryPiece pieceTable; |
- | |
185 | DTZEntryPawn pawnTable; |
- | |
186 | }; |
- | |
187 | }; |
- | |
188 | - | ||
189 | typedef decltype(WDLEntry::pieceTable) WDLPieceTable; |
- | |
190 | typedef decltype(DTZEntry::pieceTable) DTZPieceTable; |
- | |
191 | typedef decltype(WDLEntry::pawnTable ) WDLPawnTable; |
- | |
192 | typedef decltype(DTZEntry::pawnTable ) DTZPawnTable; |
- | |
193 | - | ||
194 | auto item(WDLPieceTable& e, int stm, int ) -> decltype(e[stm])& { return e[stm]; } |
- | |
195 | auto item(DTZPieceTable& e, int , int ) -> decltype(e)& { return e; } |
- | |
196 | auto item(WDLPawnTable& e, int stm, int f) -> decltype(e.file[stm][f])& { return e.file[stm][f]; } |
- | |
197 | auto item(DTZPawnTable& e, int , int f) -> decltype(e.file[f])& { return e.file[f]; } |
- | |
198 | - | ||
199 | template<typename E> struct Ret { typedef int type; }; |
- | |
200 | template<> struct Ret<WDLEntry> { typedef WDLScore type; }; |
- | |
201 | 71 | ||
202 | int MapPawns[SQUARE_NB]; |
72 | int MapPawns[SQUARE_NB]; |
203 | int MapB1H1H7[SQUARE_NB]; |
73 | int MapB1H1H7[SQUARE_NB]; |
204 | int MapA1D1D4[SQUARE_NB]; |
74 | int MapA1D1D4[SQUARE_NB]; |
205 | int MapKK[10][SQUARE_NB]; // [MapA1D1D4][SQUARE_NB] |
75 | int MapKK[10][SQUARE_NB]; // [MapA1D1D4][SQUARE_NB] |
- | 76 | ||
- | 77 | int Binomial[6][SQUARE_NB]; // [k][n] k elements from a set of n elements |
|
- | 78 | int LeadPawnIdx[6][SQUARE_NB]; // [leadPawnsCnt][SQUARE_NB] |
|
- | 79 | int LeadPawnsSize[6][4]; // [leadPawnsCnt][FILE_A..FILE_D] |
|
206 | 80 | ||
207 | // Comparison function to sort leading pawns in ascending MapPawns[] order |
81 | // Comparison function to sort leading pawns in ascending MapPawns[] order |
208 | bool pawns_comp(Square i, Square j) { return MapPawns[i] < MapPawns[j]; } |
82 | bool pawns_comp(Square i, Square j) { return MapPawns[i] < MapPawns[j]; } |
209 | int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); } |
83 | int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); } |
210 | 84 | ||
211 |
|
85 | constexpr Value WDL_to_value[] = { |
212 | -VALUE_MATE + MAX_PLY + 1, |
86 | -VALUE_MATE + MAX_PLY + 1, |
213 | VALUE_DRAW - 2, |
87 | VALUE_DRAW - 2, |
214 | VALUE_DRAW, |
88 | VALUE_DRAW, |
215 | VALUE_DRAW + 2, |
89 | VALUE_DRAW + 2, |
216 | VALUE_MATE - MAX_PLY - 1 |
90 | VALUE_MATE - MAX_PLY - 1 |
217 | }; |
91 | }; |
218 | - | ||
219 | const std::string PieceToChar = " PNBRQK pnbrqk"; |
- | |
220 | - | ||
221 | int Binomial[6][SQUARE_NB]; // [k][n] k elements from a set of n elements |
- | |
222 | int LeadPawnIdx[5][SQUARE_NB]; // [leadPawnsCnt][SQUARE_NB] |
- | |
223 | int LeadPawnsSize[5][4]; // [leadPawnsCnt][FILE_A..FILE_D] |
- | |
224 | - | ||
225 | enum { BigEndian, LittleEndian }; |
- | |
226 | 92 | ||
227 | template<typename T, int Half = sizeof(T) / 2, int End = sizeof(T) - 1> |
93 | template<typename T, int Half = sizeof(T) / 2, int End = sizeof(T) - 1> |
228 | inline void |
94 | inline void swap_endian(T& x) |
229 | { |
95 | { |
- | 96 | static_assert(std::is_unsigned<T>::value, "Argument of swap_endian not unsigned"); |
|
- | 97 | ||
230 |
|
98 | uint8_t tmp, *c = (uint8_t*)&x; |
231 | for (int i = 0; i < Half; ++i) |
99 | for (int i = 0; i < Half; ++i) |
232 | tmp = c[i], c[i] = c[End - i], c[End - i] = tmp; |
100 | tmp = c[i], c[i] = c[End - i], c[End - i] = tmp; |
233 | } |
101 | } |
234 | template<> inline void |
102 | template<> inline void swap_endian<uint8_t>(uint8_t&) {} |
235 | 103 | ||
236 | template<typename T, int LE> T number(void* addr) |
104 | template<typename T, int LE> T number(void* addr) |
237 | { |
105 | { |
238 | const union { uint32_t i; char c[4]; } Le = { 0x01020304 }; |
106 | static const union { uint32_t i; char c[4]; } Le = { 0x01020304 }; |
239 | const bool IsLittleEndian = (Le.c[0] == 4); |
107 | static const bool IsLittleEndian = (Le.c[0] == 4); |
240 | 108 | ||
241 | T v; |
109 | T v; |
242 | 110 | ||
243 | if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare) |
111 | if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare) |
244 | std::memcpy(&v, addr, sizeof(T)); |
112 | std::memcpy(&v, addr, sizeof(T)); |
245 | else |
113 | else |
246 | v = *((T*)addr); |
114 | v = *((T*)addr); |
247 | 115 | ||
248 | if (LE != IsLittleEndian) |
116 | if (LE != IsLittleEndian) |
249 |
|
117 | swap_endian(v); |
250 | return v; |
118 | return v; |
251 | } |
119 | } |
252 | 120 | ||
- | 121 | // DTZ tables don't store valid scores for moves that reset the rule50 counter |
|
- | 122 | // like captures and pawn moves but we can easily recover the correct dtz of the |
|
- | 123 | // previous move if we know the position's WDL score. |
|
- | 124 | int dtz_before_zeroing(WDLScore wdl) { |
|
- | 125 | return wdl == WDLWin ? 1 : |
|
- | 126 | wdl == WDLCursedWin ? 101 : |
|
253 |
|
127 | wdl == WDLBlessedLoss ? -101 : |
- | 128 | wdl == WDLLoss ? -1 : 0; |
|
- | 129 | } |
|
254 | 130 | ||
- | 131 | // Return the sign of a number (-1, 0, 1) |
|
255 |
|
132 | template <typename T> int sign_of(T val) { |
256 |
|
133 | return (T(0) < val) - (val < T(0)); |
- | 134 | } |
|
257 | 135 | ||
- | 136 | // Numbers in little endian used by sparseIndex[] to point into blockLength[] |
|
- | 137 | struct SparseEntry { |
|
258 |
|
138 | char block[4]; // Number of block |
259 |
|
139 | char offset[2]; // Offset within the block |
- | 140 | }; |
|
260 | 141 | ||
261 |
|
142 | static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes"); |
262 | 143 | ||
263 | std::deque<WDLEntry> wdlTable; |
- | |
264 |
|
144 | typedef uint16_t Sym; // Huffman symbol |
265 | 145 | ||
266 |
|
146 | struct LR { |
267 |
|
147 | enum Side { Left, Right }; |
268 | 148 | ||
269 |
|
149 | uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12 |
270 |
|
150 | // bits is the right-hand symbol. If symbol has length 1, |
271 |
|
151 | // then the left-hand symbol is the stored value. |
272 |
|
152 | template<Side S> |
273 |
|
153 | Sym get() { |
274 | - | ||
275 |
|
154 | return S == Left ? ((lr[1] & 0xF) << 8) | lr[0] : |
276 |
|
155 | S == Right ? (lr[2] << 4) | (lr[1] >> 4) : (assert(false), Sym(-1)); |
277 | } |
156 | } |
- | 157 | }; |
|
278 | 158 | ||
279 | public: |
- | |
280 |
|
159 | static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes"); |
281 | E* get(Key key) { |
- | |
282 | Entry* entry = hashTable[key >> (64 - TBHASHBITS)]; |
- | |
283 | 160 | ||
284 | for (int i = 0; i < HSHMAX; ++i, ++entry) |
- | |
285 | if (entry->first == key) |
- | |
286 |
|
161 | // Tablebases data layout is structured as following: |
287 | 162 | // |
|
288 | return nullptr; |
- | |
289 | } |
- | |
290 | - | ||
291 | void clear() { |
- | |
292 |
|
163 | // TBFile: memory maps/unmaps the physical .rtbw and .rtbz files |
293 | wdlTable.clear(); |
- | |
294 | dtzTable.clear(); |
- | |
295 | } |
- | |
296 |
|
164 | // TBTable: one object for each file with corresponding indexing information |
297 |
|
165 | // TBTables: has ownership of TBTable objects, keeping a list and a hash |
298 | }; |
- | |
299 | - | ||
300 | HashTable EntryTable; |
- | |
301 | 166 | ||
- | 167 | // class TBFile memory maps/unmaps the single .rtbw and .rtbz files. Files are |
|
- | 168 | // memory mapped for best performance. Files are mapped at first access: at init |
|
- | 169 | // time only existence of the file is checked. |
|
302 | class TBFile : public std::ifstream { |
170 | class TBFile : public std::ifstream { |
303 | 171 | ||
304 | std::string fname; |
172 | std::string fname; |
305 | 173 | ||
306 | public: |
174 | public: |
Line 313... | Line 181... | ||
313 | static std::string Paths; |
181 | static std::string Paths; |
314 | 182 | ||
315 | TBFile(const std::string& f) { |
183 | TBFile(const std::string& f) { |
316 | 184 | ||
317 | #ifndef _WIN32 |
185 | #ifndef _WIN32 |
318 |
|
186 | constexpr char SepChar = ':'; |
319 | #else |
187 | #else |
320 |
|
188 | constexpr char SepChar = ';'; |
321 | #endif |
189 | #endif |
322 | std::stringstream ss(Paths); |
190 | std::stringstream ss(Paths); |
323 | std::string path; |
191 | std::string path; |
324 | 192 | ||
325 | while (std::getline(ss, path, SepChar)) { |
193 | while (std::getline(ss, path, SepChar)) { |
Line 330... | Line 198... | ||
330 | } |
198 | } |
331 | } |
199 | } |
332 | 200 | ||
333 | // Memory map the file and check it. File should be already open and will be |
201 | // Memory map the file and check it. File should be already open and will be |
334 | // closed after mapping. |
202 | // closed after mapping. |
335 | uint8_t* map(void** baseAddress, uint64_t* mapping, |
203 | uint8_t* map(void** baseAddress, uint64_t* mapping, TBType type) { |
336 | 204 | ||
337 | assert(is_open()); |
205 | assert(is_open()); |
338 | 206 | ||
339 | close(); // Need to re-open to get native file descriptor |
207 | close(); // Need to re-open to get native file descriptor |
340 | 208 | ||
Line 346... | Line 214... | ||
346 | return *baseAddress = nullptr, nullptr; |
214 | return *baseAddress = nullptr, nullptr; |
347 | 215 | ||
348 | fstat(fd, &statbuf); |
216 | fstat(fd, &statbuf); |
349 | *mapping = statbuf.st_size; |
217 | *mapping = statbuf.st_size; |
350 | *baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0); |
218 | *baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0); |
- | 219 | madvise(*baseAddress, statbuf.st_size, MADV_RANDOM); |
|
351 | ::close(fd); |
220 | ::close(fd); |
352 | 221 | ||
353 | if (*baseAddress == MAP_FAILED) { |
222 | if (*baseAddress == MAP_FAILED) { |
354 | std::cerr << "Could not mmap() " << fname << std::endl; |
223 | std::cerr << "Could not mmap() " << fname << std::endl; |
355 | exit(1); |
224 | exit(1); |
Line 380... | Line 249... | ||
380 | exit(1); |
249 | exit(1); |
381 | } |
250 | } |
382 | #endif |
251 | #endif |
383 | uint8_t* data = (uint8_t*)*baseAddress; |
252 | uint8_t* data = (uint8_t*)*baseAddress; |
384 | 253 | ||
385 |
|
254 | constexpr uint8_t Magics[][4] = { { 0xD7, 0x66, 0x0C, 0xA5 }, |
386 |
|
255 | { 0x71, 0xE8, 0x23, 0x5D } }; |
387 | || *data++ != *TB_MAGIC++ |
- | |
- | 256 | ||
388 |
|
257 | if (memcmp(data, Magics[type == WDL], 4)) { |
389 | std::cerr << "Corrupted table in file " << fname << std::endl; |
258 | std::cerr << "Corrupted table in file " << fname << std::endl; |
390 | unmap(*baseAddress, *mapping); |
259 | unmap(*baseAddress, *mapping); |
391 | return *baseAddress = nullptr, nullptr; |
260 | return *baseAddress = nullptr, nullptr; |
392 | } |
261 | } |
393 | 262 | ||
394 | return data; |
263 | return data + 4; // Skip Magics's header |
395 | } |
264 | } |
396 | 265 | ||
397 | static void unmap(void* baseAddress, uint64_t mapping) { |
266 | static void unmap(void* baseAddress, uint64_t mapping) { |
398 | 267 | ||
399 | #ifndef _WIN32 |
268 | #ifndef _WIN32 |
Line 405... | Line 274... | ||
405 | } |
274 | } |
406 | }; |
275 | }; |
407 | 276 | ||
408 | std::string TBFile::Paths; |
277 | std::string TBFile::Paths; |
409 | 278 | ||
- | 279 | // struct PairsData contains low level indexing information to access TB data. |
|
- | 280 | // There are 8, 4 or 2 PairsData records for each TBTable, according to type of |
|
- | 281 | // table and if positions have pawns or not. It is populated at first access. |
|
- | 282 | struct PairsData { |
|
- | 283 | uint8_t flags; // Table flags, see enum TBFlag |
|
- | 284 | uint8_t maxSymLen; // Maximum length in bits of the Huffman symbols |
|
- | 285 | uint8_t minSymLen; // Minimum length in bits of the Huffman symbols |
|
- | 286 | uint32_t blocksNum; // Number of blocks in the TB file |
|
- | 287 | size_t sizeofBlock; // Block size in bytes |
|
- | 288 | size_t span; // About every span values there is a SparseIndex[] entry |
|
- | 289 | Sym* lowestSym; // lowestSym[l] is the symbol of length l with the lowest value |
|
- | 290 | LR* btree; // btree[sym] stores the left and right symbols that expand sym |
|
- | 291 | uint16_t* blockLength; // Number of stored positions (minus one) for each block: 1..65536 |
|
- | 292 | uint32_t blockLengthSize; // Size of blockLength[] table: padded so it's bigger than blocksNum |
|
- | 293 | SparseEntry* sparseIndex; // Partial indices into blockLength[] |
|
- | 294 | size_t sparseIndexSize; // Size of SparseIndex[] table |
|
- | 295 | uint8_t* data; // Start of Huffman compressed data |
|
- | 296 | std::vector<uint64_t> base64; // base64[l - min_sym_len] is the 64bit-padded lowest symbol of length l |
|
- | 297 | std::vector<uint8_t> symlen; // Number of values (-1) represented by a given Huffman symbol: 1..256 |
|
- | 298 | Piece pieces[TBPIECES]; // Position pieces: the order of pieces defines the groups |
|
- | 299 | uint64_t groupIdx[TBPIECES+1]; // Start index used for the encoding of the group's pieces |
|
- | 300 | int groupLen[TBPIECES+1]; // Number of pieces in a given group: KRKN -> (3, 1) |
|
- | 301 | uint16_t map_idx[4]; // WDLWin, WDLLoss, WDLCursedWin, WDLBlessedLoss (used in DTZ) |
|
- | 302 | }; |
|
- | 303 | ||
- | 304 | // struct TBTable contains indexing information to access the corresponding TBFile. |
|
- | 305 | // There are 2 types of TBTable, corresponding to a WDL or a DTZ file. TBTable |
|
- | 306 | // is populated at init time but the nested PairsData records are populated at |
|
- | 307 | // first access, when the corresponding file is memory mapped. |
|
- | 308 | template<TBType Type> |
|
- | 309 | struct TBTable { |
|
- | 310 | typedef typename std::conditional<Type == WDL, WDLScore, int>::type Ret; |
|
- | 311 | ||
- | 312 | static constexpr int Sides = Type == WDL ? 2 : 1; |
|
- | 313 | ||
- | 314 | std::atomic_bool ready; |
|
- | 315 | void* baseAddress; |
|
- | 316 | uint8_t* map; |
|
- | 317 | uint64_t mapping; |
|
- | 318 | Key key; |
|
- | 319 | Key key2; |
|
- | 320 | int pieceCount; |
|
- | 321 | bool hasPawns; |
|
- | 322 | bool hasUniquePieces; |
|
- | 323 | uint8_t pawnCount[2]; // [Lead color / other color] |
|
- | 324 | PairsData items[Sides][4]; // [wtm / btm][FILE_A..FILE_D or 0] |
|
- | 325 | ||
- | 326 | PairsData* get(int stm, int f) { |
|
- | 327 | return &items[stm % Sides][hasPawns ? f : 0]; |
|
- | 328 | } |
|
- | 329 | ||
- | 330 | TBTable() : ready(false), baseAddress(nullptr) {} |
|
410 |
|
331 | explicit TBTable(const std::string& code); |
- | 332 | explicit TBTable(const TBTable<WDL>& wdl); |
|
- | 333 | ||
- | 334 | ~TBTable() { |
|
- | 335 | if (baseAddress) |
|
- | 336 | TBFile::unmap(baseAddress, mapping); |
|
- | 337 | } |
|
- | 338 | }; |
|
- | 339 | ||
- | 340 | template<> |
|
- | 341 | TBTable<WDL>::TBTable(const std::string& code) : TBTable() { |
|
411 | 342 | ||
412 | StateInfo st; |
343 | StateInfo st; |
413 | Position pos; |
344 | Position pos; |
414 | 345 | ||
415 | memset(this, 0, sizeof(WDLEntry)); |
- | |
416 | - | ||
417 | ready = false; |
- | |
418 | key = pos.set(code, WHITE, &st).material_key(); |
346 | key = pos.set(code, WHITE, &st).material_key(); |
419 | pieceCount = |
347 | pieceCount = pos.count<ALL_PIECES>(); |
420 | hasPawns = pos.pieces(PAWN); |
348 | hasPawns = pos.pieces(PAWN); |
421 | 349 | ||
- | 350 | hasUniquePieces = false; |
|
422 | for (Color c = WHITE; c <= BLACK; ++c) |
351 | for (Color c = WHITE; c <= BLACK; ++c) |
423 | for (PieceType pt = PAWN; pt < KING; ++pt) |
352 | for (PieceType pt = PAWN; pt < KING; ++pt) |
424 | if (popcount(pos.pieces(c, pt)) == 1) |
353 | if (popcount(pos.pieces(c, pt)) == 1) |
425 | hasUniquePieces = true; |
354 | hasUniquePieces = true; |
426 | 355 | ||
427 | if (hasPawns) { |
- | |
428 |
|
356 | // Set the leading color. In case both sides have pawns the leading color |
429 |
|
357 | // is the side with less pawns because this leads to better compression. |
430 |
|
358 | bool c = !pos.count<PAWN>(BLACK) |
431 |
|
359 | || ( pos.count<PAWN>(WHITE) |
432 |
|
360 | && pos.count<PAWN>(BLACK) >= pos.count<PAWN>(WHITE)); |
433 | 361 | ||
434 |
|
362 | pawnCount[0] = pos.count<PAWN>(c ? WHITE : BLACK); |
435 |
|
363 | pawnCount[1] = pos.count<PAWN>(c ? BLACK : WHITE); |
436 | } |
- | |
437 | 364 | ||
438 | key2 = pos.set(code, BLACK, &st).material_key(); |
365 | key2 = pos.set(code, BLACK, &st).material_key(); |
439 | } |
366 | } |
440 | 367 | ||
441 |
|
368 | template<> |
- | 369 | TBTable<DTZ>::TBTable(const TBTable<WDL>& wdl) : TBTable() { |
|
442 | 370 | ||
443 | if (baseAddress) |
- | |
444 | TBFile::unmap(baseAddress, mapping); |
- | |
445 | - | ||
446 | for (int i = 0; i < 2; ++i) |
- | |
447 | if (hasPawns) |
- | |
448 | for (File f = FILE_A; f <= FILE_D; ++f) |
- | |
449 |
|
371 | // Use the corresponding WDL table to avoid recalculating all from scratch |
450 | else |
- | |
451 | delete pieceTable[i].precomp; |
- | |
452 | } |
- | |
453 | - | ||
454 | DTZEntry::DTZEntry(const WDLEntry& wdl) { |
- | |
455 | - | ||
456 | memset(this, 0, sizeof(DTZEntry)); |
- | |
457 | - | ||
458 | ready = false; |
- | |
459 | key = wdl.key; |
372 | key = wdl.key; |
460 | key2 = wdl.key2; |
373 | key2 = wdl.key2; |
461 | pieceCount = wdl.pieceCount; |
374 | pieceCount = wdl.pieceCount; |
462 | hasPawns = wdl.hasPawns; |
375 | hasPawns = wdl.hasPawns; |
463 | hasUniquePieces = wdl.hasUniquePieces; |
376 | hasUniquePieces = wdl.hasUniquePieces; |
- | 377 | pawnCount[0] = wdl.pawnCount[0]; |
|
- | 378 | pawnCount[1] = wdl.pawnCount[1]; |
|
- | 379 | } |
|
464 | 380 | ||
- | 381 | // class TBTables creates and keeps ownership of the TBTable objects, one for |
|
- | 382 | // each TB file found. It supports a fast, hash based, table lookup. Populated |
|
- | 383 | // at init time, accessed at probe time. |
|
465 |
|
384 | class TBTables { |
- | 385 | ||
- | 386 | typedef std::tuple<Key, TBTable<WDL>*, TBTable<DTZ>*> Entry; |
|
- | 387 | ||
- | 388 | static constexpr int Size = 1 << 12; // 4K table, indexed by key's 12 lsb |
|
- | 389 | static constexpr int Overflow = 1; // Number of elements allowed to map to the last bucket |
|
- | 390 | ||
- | 391 | Entry hashTable[Size + Overflow]; |
|
- | 392 | ||
- | 393 | std::deque<TBTable<WDL>> wdlTable; |
|
- | 394 | std::deque<TBTable<DTZ>> dtzTable; |
|
- | 395 | ||
- | 396 | void insert(Key key, TBTable<WDL>* wdl, TBTable<DTZ>* dtz) { |
|
- | 397 | uint32_t homeBucket = (uint32_t)key & (Size - 1); |
|
466 |
|
398 | Entry entry = std::make_tuple(key, wdl, dtz); |
- | 399 | ||
- | 400 | // Ensure last element is empty to avoid overflow when looking up |
|
- | 401 | for (uint32_t bucket = homeBucket; bucket < Size + Overflow - 1; ++bucket) { |
|
- | 402 | Key otherKey = std::get<KEY>(hashTable[bucket]); |
|
- | 403 | if (otherKey == key || !std::get<WDL>(hashTable[bucket])) { |
|
- | 404 | hashTable[bucket] = entry; |
|
- | 405 | return; |
|
- | 406 | } |
|
- | 407 | ||
- | 408 | // Robin Hood hashing: If we've probed for longer than this element, |
|
- | 409 | // insert here and search for a new spot for the other element instead. |
|
- | 410 | uint32_t otherHomeBucket = (uint32_t)otherKey & (Size - 1); |
|
- | 411 | if (otherHomeBucket > homeBucket) { |
|
467 |
|
412 | swap(entry, hashTable[bucket]); |
- | 413 | key = otherKey; |
|
- | 414 | homeBucket = otherHomeBucket; |
|
- | 415 | } |
|
- | 416 | } |
|
- | 417 | std::cerr << "TB hash table size too low!" << std::endl; |
|
- | 418 | exit(1); |
|
468 | } |
419 | } |
469 | } |
- | |
470 | 420 | ||
- | 421 | public: |
|
- | 422 | template<TBType Type> |
|
471 |
|
423 | TBTable<Type>* get(Key key) { |
- | 424 | for (const Entry* entry = &hashTable[(uint32_t)key & (Size - 1)]; ; ++entry) { |
|
- | 425 | if (std::get<KEY>(*entry) == key || !std::get<Type>(*entry)) |
|
- | 426 | return std::get<Type>(*entry); |
|
- | 427 | } |
|
- | 428 | } |
|
472 | 429 | ||
473 |
|
430 | void clear() { |
474 |
|
431 | memset(hashTable, 0, sizeof(hashTable)); |
- | 432 | wdlTable.clear(); |
|
- | 433 | dtzTable.clear(); |
|
- | 434 | } |
|
- | 435 | size_t size() const { return wdlTable.size(); } |
|
- | 436 | void add(const std::vector<PieceType>& pieces); |
|
- | 437 | }; |
|
475 | 438 | ||
476 |
|
439 | TBTables TBTables; |
477 | for (File f = FILE_A; f <= FILE_D; ++f) |
- | |
478 | delete pawnTable.file[f].precomp; |
- | |
479 | else |
- | |
480 | delete pieceTable.precomp; |
- | |
481 | } |
- | |
482 | 440 | ||
- | 441 | // If the corresponding file exists two new objects TBTable<WDL> and TBTable<DTZ> |
|
- | 442 | // are created and added to the lists and hash table. Called at init time. |
|
483 | void |
443 | void TBTables::add(const std::vector<PieceType>& pieces) { |
484 | 444 | ||
485 | std::string code; |
445 | std::string code; |
486 | 446 | ||
487 | for (PieceType pt : pieces) |
447 | for (PieceType pt : pieces) |
488 | code += PieceToChar[pt]; |
448 | code += PieceToChar[pt]; |
Line 497... | Line 457... | ||
497 | MaxCardinality = std::max((int)pieces.size(), MaxCardinality); |
457 | MaxCardinality = std::max((int)pieces.size(), MaxCardinality); |
498 | 458 | ||
499 | wdlTable.emplace_back(code); |
459 | wdlTable.emplace_back(code); |
500 | dtzTable.emplace_back(wdlTable.back()); |
460 | dtzTable.emplace_back(wdlTable.back()); |
501 | 461 | ||
- | 462 | // Insert into the hash keys for both colors: KRvK with KR white and black |
|
502 | insert(wdlTable.back().key , &wdlTable.back(), &dtzTable.back()); |
463 | insert(wdlTable.back().key , &wdlTable.back(), &dtzTable.back()); |
503 | insert(wdlTable.back().key2, &wdlTable.back(), &dtzTable.back()); |
464 | insert(wdlTable.back().key2, &wdlTable.back(), &dtzTable.back()); |
504 | } |
465 | } |
505 | 466 | ||
506 | // TB tables are compressed with canonical Huffman code. The compressed data is divided into |
467 | // TB tables are compressed with canonical Huffman code. The compressed data is divided into |
Line 537... | Line 498... | ||
537 | // with index I(k), where: |
498 | // with index I(k), where: |
538 | // |
499 | // |
539 | // I(k) = k * d->span + d->span / 2 (1) |
500 | // I(k) = k * d->span + d->span / 2 (1) |
540 | 501 | ||
541 | // First step is to get the 'k' of the I(k) nearest to our idx, using definition (1) |
502 | // First step is to get the 'k' of the I(k) nearest to our idx, using definition (1) |
542 | uint32_t k = |
503 | uint32_t k = idx / d->span; |
543 | 504 | ||
544 | // Then we read the corresponding SparseIndex[] entry |
505 | // Then we read the corresponding SparseIndex[] entry |
545 | uint32_t block = number<uint32_t, LittleEndian>(&d->sparseIndex[k].block); |
506 | uint32_t block = number<uint32_t, LittleEndian>(&d->sparseIndex[k].block); |
546 | int offset = number<uint16_t, LittleEndian>(&d->sparseIndex[k].offset); |
507 | int offset = number<uint16_t, LittleEndian>(&d->sparseIndex[k].offset); |
547 | 508 | ||
Line 562... | Line 523... | ||
562 | 523 | ||
563 | while (offset > d->blockLength[block]) |
524 | while (offset > d->blockLength[block]) |
564 | offset -= d->blockLength[block++] + 1; |
525 | offset -= d->blockLength[block++] + 1; |
565 | 526 | ||
566 | // Finally, we find the start address of our block of canonical Huffman symbols |
527 | // Finally, we find the start address of our block of canonical Huffman symbols |
567 | uint32_t* ptr = (uint32_t*)(d->data + block * d->sizeofBlock); |
528 | uint32_t* ptr = (uint32_t*)(d->data + ((uint64_t)block * d->sizeofBlock)); |
568 | 529 | ||
569 | // Read the first 64 bits in our block, this is a (truncated) sequence of |
530 | // Read the first 64 bits in our block, this is a (truncated) sequence of |
570 | // unknown number of symbols of unknown length but we know the first one |
531 | // unknown number of symbols of unknown length but we know the first one |
571 | // is at the beginning of this 64 bits sequence. |
532 | // is at the beginning of this 64 bits sequence. |
572 | uint64_t buf64 = number<uint64_t, BigEndian>(ptr); ptr += 2; |
533 | uint64_t buf64 = number<uint64_t, BigEndian>(ptr); ptr += 2; |
Line 583... | Line 544... | ||
583 | ++len; |
544 | ++len; |
584 | 545 | ||
585 | // All the symbols of a given length are consecutive integers (numerical |
546 | // All the symbols of a given length are consecutive integers (numerical |
586 | // sequence property), so we can compute the offset of our symbol of |
547 | // sequence property), so we can compute the offset of our symbol of |
587 | // length len, stored at the beginning of buf64. |
548 | // length len, stored at the beginning of buf64. |
588 | sym = |
549 | sym = (buf64 - d->base64[len]) >> (64 - len - d->minSymLen); |
589 | 550 | ||
590 | // Now add the value of the lowest symbol of length len to get our symbol |
551 | // Now add the value of the lowest symbol of length len to get our symbol |
591 | sym += number<Sym, LittleEndian>(&d->lowestSym[len]); |
552 | sym += number<Sym, LittleEndian>(&d->lowestSym[len]); |
592 | 553 | ||
593 | // If our offset is within the number of values represented by symbol sym |
554 | // If our offset is within the number of values represented by symbol sym |
Line 625... | Line 586... | ||
625 | offset -= d->symlen[left] + 1; |
586 | offset -= d->symlen[left] + 1; |
626 | sym = d->btree[sym].get<LR::Right>(); |
587 | sym = d->btree[sym].get<LR::Right>(); |
627 | } |
588 | } |
628 | } |
589 | } |
629 | 590 | ||
630 | return d->btree[sym].get<LR:: |
591 | return d->btree[sym].get<LR::Left>(); |
631 | } |
592 | } |
632 | 593 | ||
633 | bool check_dtz_stm( |
594 | bool check_dtz_stm(TBTable<WDL>*, int, File) { return true; } |
634 | 595 | ||
635 | bool check_dtz_stm( |
596 | bool check_dtz_stm(TBTable<DTZ>* entry, int stm, File f) { |
636 | - | ||
637 | int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags |
- | |
638 | : entry->pieceTable.precomp->flags; |
- | |
639 | 597 | ||
- | 598 | auto flags = entry->get(stm, f)->flags; |
|
640 | return (flags & TBFlag::STM) == stm |
599 | return (flags & TBFlag::STM) == stm |
641 | || ((entry->key == entry->key2) && !entry->hasPawns); |
600 | || ((entry->key == entry->key2) && !entry->hasPawns); |
642 | } |
601 | } |
643 | 602 | ||
644 | // DTZ scores are sorted by frequency of occurrence and then assigned the |
603 | // DTZ scores are sorted by frequency of occurrence and then assigned the |
645 | // values 0, 1, 2, ... in order of decreasing frequency. This is done for each |
604 | // values 0, 1, 2, ... in order of decreasing frequency. This is done for each |
646 | // of the four WDLScore values. The mapping information necessary to reconstruct |
605 | // of the four WDLScore values. The mapping information necessary to reconstruct |
647 | // the original values is stored in the TB file and read during map[] init. |
606 | // the original values is stored in the TB file and read during map[] init. |
648 | WDLScore map_score( |
607 | WDLScore map_score(TBTable<WDL>*, File, int value, WDLScore) { return WDLScore(value - 2); } |
649 | 608 | ||
650 | int map_score( |
609 | int map_score(TBTable<DTZ>* entry, File f, int value, WDLScore wdl) { |
651 | 610 | ||
652 |
|
611 | constexpr int WDLMap[] = { 1, 3, 0, 2, 0 }; |
653 | 612 | ||
654 |
|
613 | auto flags = entry->get(0, f)->flags; |
655 | : entry->pieceTable.precomp->flags; |
- | |
656 | 614 | ||
657 | uint8_t* map = entry-> |
615 | uint8_t* map = entry->map; |
658 | : entry->pieceTable.map; |
- | |
659 | - | ||
660 | uint16_t* idx = entry-> |
616 | uint16_t* idx = entry->get(0, f)->map_idx; |
661 |
|
617 | if (flags & TBFlag::Mapped) { |
662 | if (flags & TBFlag:: |
618 | if (flags & TBFlag::Wide) |
- | 619 | value = ((uint16_t *)map)[idx[WDLMap[wdl + 2]] + value]; |
|
- | 620 | else |
|
663 | value = map[idx[WDLMap[wdl + 2]] + value]; |
621 | value = map[idx[WDLMap[wdl + 2]] + value]; |
- | 622 | } |
|
664 | 623 | ||
665 | // DTZ tables store distance to zero in number of moves or plies. We |
624 | // DTZ tables store distance to zero in number of moves or plies. We |
666 | // want to return plies, so we have convert to plies when needed. |
625 | // want to return plies, so we have convert to plies when needed. |
667 | if ( (wdl == WDLWin && !(flags & TBFlag::WinPlies)) |
626 | if ( (wdl == WDLWin && !(flags & TBFlag::WinPlies)) |
668 | || (wdl == WDLLoss && !(flags & TBFlag::LossPlies)) |
627 | || (wdl == WDLLoss && !(flags & TBFlag::LossPlies)) |
Line 677... | Line 636... | ||
677 | // encode k pieces of same type and color, first sort the pieces by square in |
636 | // encode k pieces of same type and color, first sort the pieces by square in |
678 | // ascending order s1 <= s2 <= ... <= sk then compute the unique index as: |
637 | // ascending order s1 <= s2 <= ... <= sk then compute the unique index as: |
679 | // |
638 | // |
680 | // idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk] |
639 | // idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk] |
681 | // |
640 | // |
682 | template<typename |
641 | template<typename T, typename Ret = typename T::Ret> |
683 |
|
642 | Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* result) { |
684 | - | ||
685 | const bool IsWDL = std::is_same<Entry, WDLEntry>::value; |
- | |
686 | 643 | ||
687 | Square squares[TBPIECES]; |
644 | Square squares[TBPIECES]; |
688 | Piece pieces[TBPIECES]; |
645 | Piece pieces[TBPIECES]; |
689 | uint64_t idx; |
646 | uint64_t idx; |
690 | int next = 0, size = 0, leadPawnsCnt = 0; |
647 | int next = 0, size = 0, leadPawnsCnt = 0; |
Line 713... | Line 670... | ||
713 | // MapPawns[] value, that is the one most toward the edges and with lowest rank. |
670 | // MapPawns[] value, that is the one most toward the edges and with lowest rank. |
714 | if (entry->hasPawns) { |
671 | if (entry->hasPawns) { |
715 | 672 | ||
716 | // In all the 4 tables, pawns are at the beginning of the piece sequence and |
673 | // In all the 4 tables, pawns are at the beginning of the piece sequence and |
717 | // their color is the reference one. So we just pick the first one. |
674 | // their color is the reference one. So we just pick the first one. |
718 | Piece pc = Piece |
675 | Piece pc = Piece(entry->get(0, 0)->pieces[0] ^ flipColor); |
719 | 676 | ||
720 | assert(type_of(pc) == PAWN); |
677 | assert(type_of(pc) == PAWN); |
721 | 678 | ||
722 | leadPawns = b = pos.pieces(color_of(pc), PAWN); |
679 | leadPawns = b = pos.pieces(color_of(pc), PAWN); |
723 | do |
680 | do |
Line 729... | Line 686... | ||
729 | std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp)); |
686 | std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp)); |
730 | 687 | ||
731 | tbFile = file_of(squares[0]); |
688 | tbFile = file_of(squares[0]); |
732 | if (tbFile > FILE_D) |
689 | if (tbFile > FILE_D) |
733 | tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1 |
690 | tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1 |
734 | - | ||
735 | d = item(entry->pawnTable , stm, tbFile).precomp; |
- | |
736 | } |
691 | } |
737 | d = item(entry->pieceTable, stm, tbFile).precomp; |
- | |
738 | 692 | ||
739 | // DTZ tables are one-sided, i.e. they store positions only for white to |
693 | // DTZ tables are one-sided, i.e. they store positions only for white to |
740 | // move or only for black to move, so check for side to move to be stm, |
694 | // move or only for black to move, so check for side to move to be stm, |
741 | // early exit otherwise. |
695 | // early exit otherwise. |
742 | if ( |
696 | if (!check_dtz_stm(entry, stm, tbFile)) |
743 | return *result = CHANGE_STM, |
697 | return *result = CHANGE_STM, Ret(); |
744 | 698 | ||
745 | // Now we are ready to get all the position pieces (but the lead pawns) and |
699 | // Now we are ready to get all the position pieces (but the lead pawns) and |
746 | // directly map them to the correct color and square. |
700 | // directly map them to the correct color and square. |
747 | b = pos.pieces() ^ leadPawns; |
701 | b = pos.pieces() ^ leadPawns; |
748 | do { |
702 | do { |
Line 750... | Line 704... | ||
750 | squares[size] = s ^ flipSquares; |
704 | squares[size] = s ^ flipSquares; |
751 | pieces[size++] = Piece(pos.piece_on(s) ^ flipColor); |
705 | pieces[size++] = Piece(pos.piece_on(s) ^ flipColor); |
752 | } while (b); |
706 | } while (b); |
753 | 707 | ||
754 | assert(size >= 2); |
708 | assert(size >= 2); |
- | 709 | ||
- | 710 | d = entry->get(stm, tbFile); |
|
755 | 711 | ||
756 | // Then we reorder the pieces to have the same sequence as the one stored |
712 | // Then we reorder the pieces to have the same sequence as the one stored |
757 | // in |
713 | // in pieces[i]: the sequence that ensures the best compression. |
758 | for (int i = leadPawnsCnt; i < size; ++i) |
714 | for (int i = leadPawnsCnt; i < size; ++i) |
759 | for (int j = i; j < size; ++j) |
715 | for (int j = i; j < size; ++j) |
760 | if (d->pieces[i] == pieces[j]) |
716 | if (d->pieces[i] == pieces[j]) |
761 | { |
717 | { |
762 | std::swap(pieces[i], pieces[j]); |
718 | std::swap(pieces[i], pieces[j]); |
Line 870... | Line 826... | ||
870 | encode_remaining: |
826 | encode_remaining: |
871 | idx *= d->groupIdx[0]; |
827 | idx *= d->groupIdx[0]; |
872 | Square* groupSq = squares + d->groupLen[0]; |
828 | Square* groupSq = squares + d->groupLen[0]; |
873 | 829 | ||
874 | // Encode remainig pawns then pieces according to square, in ascending order |
830 | // Encode remainig pawns then pieces according to square, in ascending order |
875 | bool remainingPawns = entry->hasPawns && entry-> |
831 | bool remainingPawns = entry->hasPawns && entry->pawnCount[1]; |
876 | 832 | ||
877 | while (d->groupLen[++next]) |
833 | while (d->groupLen[++next]) |
878 | { |
834 | { |
879 | std::sort(groupSq, groupSq + d->groupLen[next]); |
835 | std::sort(groupSq, groupSq + d->groupLen[next]); |
880 | uint64_t n = 0; |
836 | uint64_t n = 0; |
Line 932... | Line 888... | ||
932 | // This ensures unique encoding for the whole position. The order of the |
888 | // This ensures unique encoding for the whole position. The order of the |
933 | // groups is a per-table parameter and could not follow the canonical leading |
889 | // groups is a per-table parameter and could not follow the canonical leading |
934 | // pawns/pieces -> remainig pawns -> remaining pieces. In particular the |
890 | // pawns/pieces -> remainig pawns -> remaining pieces. In particular the |
935 | // first group is at order[0] position and the remaining pawns, when present, |
891 | // first group is at order[0] position and the remaining pawns, when present, |
936 | // are at order[1] position. |
892 | // are at order[1] position. |
937 | bool pp = e.hasPawns && e |
893 | bool pp = e.hasPawns && e.pawnCount[1]; // Pawns on both sides |
938 | int next = pp ? 2 : 1; |
894 | int next = pp ? 2 : 1; |
939 | int freeSquares = 64 - d->groupLen[0] - (pp ? d->groupLen[1] : 0); |
895 | int freeSquares = 64 - d->groupLen[0] - (pp ? d->groupLen[1] : 0); |
940 | uint64_t idx = 1; |
896 | uint64_t idx = 1; |
941 | 897 | ||
942 | for (int k = 0; next < n || k == order[0] || k == order[1]; ++k) |
898 | for (int k = 0; next < n || k == order[0] || k == order[1]; ++k) |
Line 998... | Line 954... | ||
998 | // element stores the biggest index that is the tb size. |
954 | // element stores the biggest index that is the tb size. |
999 | uint64_t tbSize = d->groupIdx[std::find(d->groupLen, d->groupLen + 7, 0) - d->groupLen]; |
955 | uint64_t tbSize = d->groupIdx[std::find(d->groupLen, d->groupLen + 7, 0) - d->groupLen]; |
1000 | 956 | ||
1001 | d->sizeofBlock = 1ULL << *data++; |
957 | d->sizeofBlock = 1ULL << *data++; |
1002 | d->span = 1ULL << *data++; |
958 | d->span = 1ULL << *data++; |
1003 | d->sparseIndexSize = |
959 | d->sparseIndexSize = (tbSize + d->span - 1) / d->span; // Round up |
1004 |
|
960 | auto padding = number<uint8_t, LittleEndian>(data++); |
1005 | d->blocksNum = number<uint32_t, LittleEndian>(data); data += sizeof(uint32_t); |
961 | d->blocksNum = number<uint32_t, LittleEndian>(data); data += sizeof(uint32_t); |
1006 | d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[] |
962 | d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[] |
1007 | // does not point out of range. |
963 | // does not point out of range. |
1008 | d->maxSymLen = *data++; |
964 | d->maxSymLen = *data++; |
1009 | d->minSymLen = *data++; |
965 | d->minSymLen = *data++; |
Line 1032... | Line 988... | ||
1032 | 988 | ||
1033 | data += d->base64.size() * sizeof(Sym); |
989 | data += d->base64.size() * sizeof(Sym); |
1034 | d->symlen.resize(number<uint16_t, LittleEndian>(data)); data += sizeof(uint16_t); |
990 | d->symlen.resize(number<uint16_t, LittleEndian>(data)); data += sizeof(uint16_t); |
1035 | d->btree = (LR*)data; |
991 | d->btree = (LR*)data; |
1036 | 992 | ||
1037 | // The |
993 | // The compression scheme used is "Recursive Pairing", that replaces the most |
1038 | // frequent adjacent pair of symbols in the source message by a new symbol, |
994 | // frequent adjacent pair of symbols in the source message by a new symbol, |
1039 | // reevaluating the frequencies of all of the symbol pairs with respect to |
995 | // reevaluating the frequencies of all of the symbol pairs with respect to |
1040 | // the extended alphabet, and then repeating the process. |
996 | // the extended alphabet, and then repeating the process. |
1041 | // See http://www.larsson.dogma.net/dcc99.pdf |
997 | // See http://www.larsson.dogma.net/dcc99.pdf |
1042 | std::vector<bool> visited(d->symlen.size()); |
998 | std::vector<bool> visited(d->symlen.size()); |
Line 1046... | Line 1002... | ||
1046 | d->symlen[sym] = set_symlen(d, sym, visited); |
1002 | d->symlen[sym] = set_symlen(d, sym, visited); |
1047 | 1003 | ||
1048 | return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1); |
1004 | return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1); |
1049 | } |
1005 | } |
1050 | 1006 | ||
1051 | template<typename T> |
- | |
1052 | uint8_t* set_dtz_map( |
1007 | uint8_t* set_dtz_map(TBTable<WDL>&, uint8_t* data, File) { return data; } |
1053 | 1008 | ||
1054 | template<typename T> |
- | |
1055 | uint8_t* set_dtz_map( |
1009 | uint8_t* set_dtz_map(TBTable<DTZ>& e, uint8_t* data, File maxFile) { |
1056 | 1010 | ||
1057 |
|
1011 | e.map = data; |
1058 | 1012 | ||
1059 | for (File f = FILE_A; f <= maxFile; ++f) { |
1013 | for (File f = FILE_A; f <= maxFile; ++f) { |
- | 1014 | auto flags = e.get(0, f)->flags; |
|
1060 | if ( |
1015 | if (flags & TBFlag::Mapped) { |
- | 1016 | if (flags & TBFlag::Wide) { |
|
- | 1017 | data += (uintptr_t)data & 1; // Word alignment, we may have a mixed table |
|
1061 | for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x |
1018 | for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x |
1062 |
|
1019 | e.get(0, f)->map_idx[i] = (uint16_t)((uint16_t *)data - (uint16_t *)e.map + 1); |
- | 1020 | data += 2 * number<uint16_t, LittleEndian>(data) + 2; |
|
1063 |
|
1021 | } |
1064 | } |
1022 | } |
- | 1023 | else { |
|
- | 1024 | for (int i = 0; i < 4; ++i) { |
|
- | 1025 | e.get(0, f)->map_idx[i] = (uint16_t)(data - e.map + 1); |
|
- | 1026 | data += *data + 1; |
|
- | 1027 | } |
|
- | 1028 | } |
|
- | 1029 | } |
|
1065 | } |
1030 | } |
1066 | 1031 | ||
1067 | return data += (uintptr_t)data & 1; // Word alignment |
1032 | return data += (uintptr_t)data & 1; // Word alignment |
1068 | } |
1033 | } |
1069 | 1034 | ||
- | 1035 | // Populate entry's PairsData records with data from the just memory mapped file. |
|
- | 1036 | // Called at first access. |
|
1070 | template< |
1037 | template<typename T> |
1071 | void |
1038 | void set(T& e, uint8_t* data) { |
1072 | - | ||
1073 | const bool IsWDL = std::is_same<Entry, WDLEntry>::value; |
- | |
1074 | 1039 | ||
1075 | PairsData* d; |
1040 | PairsData* d; |
1076 | 1041 | ||
1077 | enum { Split = 1, HasPawns = 2 }; |
1042 | enum { Split = 1, HasPawns = 2 }; |
1078 | 1043 | ||
1079 | assert(e.hasPawns == !!(*data & HasPawns)); |
1044 | assert(e.hasPawns == !!(*data & HasPawns)); |
1080 | assert((e.key != e.key2) == !!(*data & Split)); |
1045 | assert((e.key != e.key2) == !!(*data & Split)); |
1081 | 1046 | ||
1082 | data++; // First byte stores flags |
1047 | data++; // First byte stores flags |
1083 | 1048 | ||
1084 | const int Sides |
1049 | const int sides = T::Sides == 2 && (e.key != e.key2) ? 2 : 1; |
1085 | const File |
1050 | const File maxFile = e.hasPawns ? FILE_D : FILE_A; |
1086 | 1051 | ||
1087 | bool pp = e.hasPawns && e |
1052 | bool pp = e.hasPawns && e.pawnCount[1]; // Pawns on both sides |
1088 | 1053 | ||
1089 | assert(!pp || e |
1054 | assert(!pp || e.pawnCount[0]); |
1090 | 1055 | ||
1091 | for (File f = FILE_A; f <= |
1056 | for (File f = FILE_A; f <= maxFile; ++f) { |
1092 | 1057 | ||
1093 | for (int i = 0; i < |
1058 | for (int i = 0; i < sides; i++) |
1094 |
|
1059 | *e.get(i, f) = PairsData(); |
1095 | 1060 | ||
1096 | int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF }, |
1061 | int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF }, |
1097 | { *data >> 4, pp ? *(data + 1) >> 4 : 0xF } }; |
1062 | { *data >> 4, pp ? *(data + 1) >> 4 : 0xF } }; |
1098 | data += 1 + pp; |
1063 | data += 1 + pp; |
1099 | 1064 | ||
1100 | for (int k = 0; k < e.pieceCount; ++k, ++data) |
1065 | for (int k = 0; k < e.pieceCount; ++k, ++data) |
1101 | for (int i = 0; i < |
1066 | for (int i = 0; i < sides; i++) |
1102 |
|
1067 | e.get(i, f)->pieces[k] = Piece(i ? *data >> 4 : *data & 0xF); |
1103 | 1068 | ||
1104 | for (int i = 0; i < |
1069 | for (int i = 0; i < sides; ++i) |
1105 | set_groups(e, |
1070 | set_groups(e, e.get(i, f), order[i], f); |
1106 | } |
1071 | } |
1107 | 1072 | ||
1108 | data += (uintptr_t)data & 1; // Word alignment |
1073 | data += (uintptr_t)data & 1; // Word alignment |
1109 | 1074 | ||
1110 | for (File f = FILE_A; f <= |
1075 | for (File f = FILE_A; f <= maxFile; ++f) |
1111 | for (int i = 0; i < |
1076 | for (int i = 0; i < sides; i++) |
1112 | data = set_sizes( |
1077 | data = set_sizes(e.get(i, f), data); |
1113 | 1078 | ||
1114 | if (!IsWDL) |
- | |
1115 |
|
1079 | data = set_dtz_map(e, data, maxFile); |
1116 | 1080 | ||
1117 | for (File f = FILE_A; f <= |
1081 | for (File f = FILE_A; f <= maxFile; ++f) |
1118 | for (int i = 0; i < |
1082 | for (int i = 0; i < sides; i++) { |
1119 | (d = |
1083 | (d = e.get(i, f))->sparseIndex = (SparseEntry*)data; |
1120 | data += d->sparseIndexSize * sizeof(SparseEntry); |
1084 | data += d->sparseIndexSize * sizeof(SparseEntry); |
1121 | } |
1085 | } |
1122 | 1086 | ||
1123 | for (File f = FILE_A; f <= |
1087 | for (File f = FILE_A; f <= maxFile; ++f) |
1124 | for (int i = 0; i < |
1088 | for (int i = 0; i < sides; i++) { |
1125 | (d = |
1089 | (d = e.get(i, f))->blockLength = (uint16_t*)data; |
1126 | data += d->blockLengthSize * sizeof(uint16_t); |
1090 | data += d->blockLengthSize * sizeof(uint16_t); |
1127 | } |
1091 | } |
1128 | 1092 | ||
1129 | for (File f = FILE_A; f <= |
1093 | for (File f = FILE_A; f <= maxFile; ++f) |
1130 | for (int i = 0; i < |
1094 | for (int i = 0; i < sides; i++) { |
1131 | data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment |
1095 | data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment |
1132 | (d = |
1096 | (d = e.get(i, f))->data = data; |
1133 | data += d->blocksNum * d->sizeofBlock; |
1097 | data += d->blocksNum * d->sizeofBlock; |
1134 | } |
1098 | } |
1135 | } |
1099 | } |
1136 | 1100 | ||
- | 1101 | // If the TB file corresponding to the given position is already memory mapped |
|
- | 1102 | // then return its base address, otherwise try to memory map and init it. Called |
|
- | 1103 | // at every probe, memory map and init only at first access. Function is thread |
|
- | 1104 | // safe and can be called concurrently. |
|
1137 | template< |
1105 | template<TBType Type> |
1138 | void* |
1106 | void* mapped(TBTable<Type>& e, const Position& pos) { |
1139 | - | ||
1140 | const bool IsWDL = std::is_same<Entry, WDLEntry>::value; |
- | |
1141 | 1107 | ||
1142 | static Mutex mutex; |
1108 | static Mutex mutex; |
1143 | 1109 | ||
1144 | // |
1110 | // Use 'aquire' to avoid a thread reads 'ready' == true while another is |
1145 | // this could happen due to compiler reordering. |
1111 | // still working, this could happen due to compiler reordering. |
1146 | if (e.ready.load(std::memory_order_acquire)) |
1112 | if (e.ready.load(std::memory_order_acquire)) |
1147 | return e.baseAddress; |
1113 | return e.baseAddress; // Could be nullptr if file does not exsist |
1148 | 1114 | ||
1149 | std::unique_lock<Mutex> lk(mutex); |
1115 | std::unique_lock<Mutex> lk(mutex); |
1150 | 1116 | ||
1151 | if (e.ready.load(std::memory_order_relaxed)) // Recheck under lock |
1117 | if (e.ready.load(std::memory_order_relaxed)) // Recheck under lock |
1152 | return e.baseAddress; |
1118 | return e.baseAddress; |
Line 1155... | Line 1121... | ||
1155 | std::string fname, w, b; |
1121 | std::string fname, w, b; |
1156 | for (PieceType pt = KING; pt >= PAWN; --pt) { |
1122 | for (PieceType pt = KING; pt >= PAWN; --pt) { |
1157 | w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]); |
1123 | w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]); |
1158 | b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]); |
1124 | b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]); |
1159 | } |
1125 | } |
1160 | - | ||
1161 | const uint8_t TB_MAGIC[][4] = { { 0xD7, 0x66, 0x0C, 0xA5 }, |
- | |
1162 | { 0x71, 0xE8, 0x23, 0x5D } }; |
- | |
1163 | 1126 | ||
1164 | fname = (e.key == pos.material_key() ? w + 'v' + b : b + 'v' + w) |
1127 | fname = (e.key == pos.material_key() ? w + 'v' + b : b + 'v' + w) |
1165 | + ( |
1128 | + (Type == WDL ? ".rtbw" : ".rtbz"); |
- | 1129 | ||
- | 1130 | uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, Type); |
|
1166 | 1131 | ||
1167 | uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, TB_MAGIC[IsWDL]); |
- | |
1168 | if (data) |
1132 | if (data) |
1169 |
|
1133 | set(e, data); |
1170 | 1134 | ||
1171 | e.ready.store(true, std::memory_order_release); |
1135 | e.ready.store(true, std::memory_order_release); |
1172 | return e.baseAddress; |
1136 | return e.baseAddress; |
1173 | } |
1137 | } |
1174 | 1138 | ||
1175 | template< |
1139 | template<TBType Type, typename Ret = typename TBTable<Type>::Ret> |
1176 |
|
1140 | Ret probe_table(const Position& pos, ProbeState* result, WDLScore wdl = WDLDraw) { |
1177 | 1141 | ||
1178 | if |
1142 | if (pos.count<ALL_PIECES>() == 2) // KvK |
1179 | return |
1143 | return Ret(WDLDraw); |
1180 | 1144 | ||
1181 |
|
1145 | TBTable<Type>* entry = TBTables.get<Type>(pos.material_key()); |
1182 | 1146 | ||
1183 | if (!entry || ! |
1147 | if (!entry || !mapped(*entry, pos)) |
1184 | return *result = FAIL, |
1148 | return *result = FAIL, Ret(); |
1185 | 1149 | ||
1186 | return do_probe_table(pos, entry, wdl, result); |
1150 | return do_probe_table(pos, entry, wdl, result); |
1187 | } |
1151 | } |
1188 | 1152 | ||
1189 | // For a position where the side to move has a winning capture it is not necessary |
1153 | // For a position where the side to move has a winning capture it is not necessary |
Line 1193... | Line 1157... | ||
1193 | // If the position is won, then the TB needs to store a win value. But if the |
1157 | // If the position is won, then the TB needs to store a win value. But if the |
1194 | // position is drawn, the TB may store a loss value if that is better for compression. |
1158 | // position is drawn, the TB may store a loss value if that is better for compression. |
1195 | // All of this means that during probing, the engine must look at captures and probe |
1159 | // All of this means that during probing, the engine must look at captures and probe |
1196 | // their results and must probe the position itself. The "best" result of these |
1160 | // their results and must probe the position itself. The "best" result of these |
1197 | // probes is the correct result for the position. |
1161 | // probes is the correct result for the position. |
1198 | // DTZ |
1162 | // DTZ tables do not store values when a following move is a zeroing winning move |
1199 | // (winning capture or winning pawn move). Also DTZ store wrong values for positions |
1163 | // (winning capture or winning pawn move). Also DTZ store wrong values for positions |
1200 | // where the best move is an ep-move (even if losing). So in all these cases set |
1164 | // where the best move is an ep-move (even if losing). So in all these cases set |
1201 | // the state to ZEROING_BEST_MOVE. |
1165 | // the state to ZEROING_BEST_MOVE. |
1202 | template<bool CheckZeroingMoves |
1166 | template<bool CheckZeroingMoves> |
1203 | WDLScore search(Position& pos, ProbeState* result) { |
1167 | WDLScore search(Position& pos, ProbeState* result) { |
1204 | 1168 | ||
1205 | WDLScore value, bestValue = WDLLoss; |
1169 | WDLScore value, bestValue = WDLLoss; |
1206 | StateInfo st; |
1170 | StateInfo st; |
1207 | 1171 | ||
Line 1215... | Line 1179... | ||
1215 | continue; |
1179 | continue; |
1216 | 1180 | ||
1217 | moveCount++; |
1181 | moveCount++; |
1218 | 1182 | ||
1219 | pos.do_move(move, st); |
1183 | pos.do_move(move, st); |
1220 | value = -search(pos, result); |
1184 | value = -search<false>(pos, result); |
1221 | pos.undo_move(move); |
1185 | pos.undo_move(move); |
1222 | 1186 | ||
1223 | if (*result == FAIL) |
1187 | if (*result == FAIL) |
1224 | return WDLDraw; |
1188 | return WDLDraw; |
1225 | 1189 | ||
Line 1245... | Line 1209... | ||
1245 | 1209 | ||
1246 | if (noMoreMoves) |
1210 | if (noMoreMoves) |
1247 | value = bestValue; |
1211 | value = bestValue; |
1248 | else |
1212 | else |
1249 | { |
1213 | { |
1250 | value = probe_table< |
1214 | value = probe_table<WDL>(pos, result); |
1251 | 1215 | ||
1252 | if (*result == FAIL) |
1216 | if (*result == FAIL) |
1253 | return WDLDraw; |
1217 | return WDLDraw; |
1254 | } |
1218 | } |
1255 | 1219 | ||
Line 1261... | Line 1225... | ||
1261 | return *result = OK, value; |
1225 | return *result = OK, value; |
1262 | } |
1226 | } |
1263 | 1227 | ||
1264 | } // namespace |
1228 | } // namespace |
1265 | 1229 | ||
- | 1230 | ||
- | 1231 | /// Tablebases::init() is called at startup and after every change to |
|
- | 1232 | /// "SyzygyPath" UCI option to (re)create the various tables. It is not thread |
|
- | 1233 | /// safe, nor it needs to be. |
|
1266 | void Tablebases::init(const std::string& paths) { |
1234 | void Tablebases::init(const std::string& paths) { |
1267 | 1235 | ||
1268 |
|
1236 | TBTables.clear(); |
1269 | MaxCardinality = 0; |
1237 | MaxCardinality = 0; |
1270 | TBFile::Paths = paths; |
1238 | TBFile::Paths = paths; |
1271 | 1239 | ||
1272 | if (paths.empty() || paths == |
1240 | if (paths.empty() || paths == "<empty>") |
1273 | return; |
1241 | return; |
1274 | 1242 | ||
1275 | // MapB1H1H7[] encodes a square below a1-h8 diagonal to 0..27 |
1243 | // MapB1H1H7[] encodes a square below a1-h8 diagonal to 0..27 |
1276 | int code = 0; |
1244 | int code = 0; |
1277 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
1245 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
Line 1307... | Line 1275... | ||
1307 | 1275 | ||
1308 | else if (!off_A1H8(s1) && off_A1H8(s2) > 0) |
1276 | else if (!off_A1H8(s1) && off_A1H8(s2) > 0) |
1309 | continue; // First on diagonal, second above |
1277 | continue; // First on diagonal, second above |
1310 | 1278 | ||
1311 | else if (!off_A1H8(s1) && !off_A1H8(s2)) |
1279 | else if (!off_A1H8(s1) && !off_A1H8(s2)) |
1312 | bothOnDiagonal. |
1280 | bothOnDiagonal.emplace_back(idx, s2); |
1313 | 1281 | ||
1314 | else |
1282 | else |
1315 | MapKK[idx][s2] = code++; |
1283 | MapKK[idx][s2] = code++; |
1316 | } |
1284 | } |
1317 | 1285 | ||
Line 1332... | Line 1300... | ||
1332 | // available squares when the leading one is in 's'. Moreover the pawn with |
1300 | // available squares when the leading one is in 's'. Moreover the pawn with |
1333 | // highest MapPawns[] is the leading pawn, the one nearest the edge and, |
1301 | // highest MapPawns[] is the leading pawn, the one nearest the edge and, |
1334 | // among pawns with same file, the one with lowest rank. |
1302 | // among pawns with same file, the one with lowest rank. |
1335 | int availableSquares = 47; // Available squares when lead pawn is in a2 |
1303 | int availableSquares = 47; // Available squares when lead pawn is in a2 |
1336 | 1304 | ||
1337 | // Init the tables for the encoding of leading pawns group: with |
1305 | // Init the tables for the encoding of leading pawns group: with 7-men TB we |
1338 | // can have up to |
1306 | // can have up to 5 leading pawns (KPPPPPK). |
1339 | for (int leadPawnsCnt = 1; leadPawnsCnt <= |
1307 | for (int leadPawnsCnt = 1; leadPawnsCnt <= 5; ++leadPawnsCnt) |
1340 | for (File f = FILE_A; f <= FILE_D; ++f) |
1308 | for (File f = FILE_A; f <= FILE_D; ++f) |
1341 | { |
1309 | { |
1342 | // Restart the index at every file because TB table is splitted |
1310 | // Restart the index at every file because TB table is splitted |
1343 | // by file, so we can reuse the same index for different files. |
1311 | // by file, so we can reuse the same index for different files. |
1344 | int idx = 0; |
1312 | int idx = 0; |
Line 1364... | Line 1332... | ||
1364 | } |
1332 | } |
1365 | // After a file is traversed, store the cumulated per-file index |
1333 | // After a file is traversed, store the cumulated per-file index |
1366 | LeadPawnsSize[leadPawnsCnt][f] = idx; |
1334 | LeadPawnsSize[leadPawnsCnt][f] = idx; |
1367 | } |
1335 | } |
1368 | 1336 | ||
- | 1337 | // Add entries in TB tables if the corresponding ".rtbw" file exsists |
|
1369 | for (PieceType p1 = PAWN; p1 < KING; ++p1) { |
1338 | for (PieceType p1 = PAWN; p1 < KING; ++p1) { |
1370 |
|
1339 | TBTables.add({KING, p1, KING}); |
1371 | 1340 | ||
1372 | for (PieceType p2 = PAWN; p2 <= p1; ++p2) { |
1341 | for (PieceType p2 = PAWN; p2 <= p1; ++p2) { |
1373 |
|
1342 | TBTables.add({KING, p1, p2, KING}); |
1374 |
|
1343 | TBTables.add({KING, p1, KING, p2}); |
1375 | 1344 | ||
1376 | for (PieceType p3 = PAWN; p3 < KING; ++p3) |
1345 | for (PieceType p3 = PAWN; p3 < KING; ++p3) |
1377 |
|
1346 | TBTables.add({KING, p1, p2, KING, p3}); |
1378 | 1347 | ||
1379 | for (PieceType p3 = PAWN; p3 <= p2; ++p3) { |
1348 | for (PieceType p3 = PAWN; p3 <= p2; ++p3) { |
1380 |
|
1349 | TBTables.add({KING, p1, p2, p3, KING}); |
- | 1350 | ||
- | 1351 | for (PieceType p4 = PAWN; p4 <= p3; ++p4) { |
|
- | 1352 | TBTables.add({KING, p1, p2, p3, p4, KING}); |
|
1381 | 1353 | ||
1382 | for (PieceType |
1354 | for (PieceType p5 = PAWN; p5 <= p4; ++p5) |
1383 |
|
1355 | TBTables.add({KING, p1, p2, p3, p4, p5, KING}); |
1384 | 1356 | ||
- | 1357 | for (PieceType p5 = PAWN; p5 < KING; ++p5) |
|
- | 1358 | TBTables.add({KING, p1, p2, p3, p4, KING, p5}); |
|
- | 1359 | } |
|
- | 1360 | ||
1385 | for (PieceType p4 = PAWN; p4 < KING; ++p4) |
1361 | for (PieceType p4 = PAWN; p4 < KING; ++p4) { |
1386 |
|
1362 | TBTables.add({KING, p1, p2, p3, KING, p4}); |
- | 1363 | ||
- | 1364 | for (PieceType p5 = PAWN; p5 <= p4; ++p5) |
|
- | 1365 | TBTables.add({KING, p1, p2, p3, KING, p4, p5}); |
|
- | 1366 | } |
|
1387 | } |
1367 | } |
1388 | 1368 | ||
1389 | for (PieceType p3 = PAWN; p3 <= p1; ++p3) |
1369 | for (PieceType p3 = PAWN; p3 <= p1; ++p3) |
1390 | for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4) |
1370 | for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4) |
1391 |
|
1371 | TBTables.add({KING, p1, p2, KING, p3, p4}); |
1392 | } |
1372 | } |
1393 | } |
1373 | } |
1394 | 1374 | ||
1395 | sync_cout << "info string Found " << |
1375 | sync_cout << "info string Found " << TBTables.size() << " tablebases" << sync_endl; |
1396 | } |
1376 | } |
1397 | 1377 | ||
1398 | // Probe the WDL table for a particular position. |
1378 | // Probe the WDL table for a particular position. |
1399 | // If *result != FAIL, the probe was successful. |
1379 | // If *result != FAIL, the probe was successful. |
1400 | // The return value is from the point of view of the side to move: |
1380 | // The return value is from the point of view of the side to move: |
Line 1404... | Line 1384... | ||
1404 | // 1 : win, but draw under 50-move rule |
1384 | // 1 : win, but draw under 50-move rule |
1405 | // 2 : win |
1385 | // 2 : win |
1406 | WDLScore Tablebases::probe_wdl(Position& pos, ProbeState* result) { |
1386 | WDLScore Tablebases::probe_wdl(Position& pos, ProbeState* result) { |
1407 | 1387 | ||
1408 | *result = OK; |
1388 | *result = OK; |
1409 | return search(pos, result); |
1389 | return search<false>(pos, result); |
1410 | } |
1390 | } |
1411 | 1391 | ||
1412 | // Probe the DTZ table for a particular position. |
1392 | // Probe the DTZ table for a particular position. |
1413 | // If *result != FAIL, the probe was successful. |
1393 | // If *result != FAIL, the probe was successful. |
1414 | // The return value is from the point of view of the side to move: |
1394 | // The return value is from the point of view of the side to move: |
1415 | // n < -100 : loss, but draw under 50-move rule |
1395 | // n < -100 : loss, but draw under 50-move rule |
1416 | // -100 <= n < -1 : loss in n ply (assuming 50-move counter == 0) |
1396 | // -100 <= n < -1 : loss in n ply (assuming 50-move counter == 0) |
- | 1397 | // -1 : loss, the side to move is mated |
|
1417 | // 0 : draw |
1398 | // 0 : draw |
1418 | // 1 < n <= 100 : win in n ply (assuming 50-move counter == 0) |
1399 | // 1 < n <= 100 : win in n ply (assuming 50-move counter == 0) |
1419 | // 100 < n : win, but draw under 50-move rule |
1400 | // 100 < n : win, but draw under 50-move rule |
1420 | // |
1401 | // |
1421 | // The return value n can be off by 1: a return value -n can mean a loss |
1402 | // The return value n can be off by 1: a return value -n can mean a loss |
Line 1445... | Line 1426... | ||
1445 | // DTZ stores a 'don't care' value in this case, or even a plain wrong |
1426 | // DTZ stores a 'don't care' value in this case, or even a plain wrong |
1446 | // one as in case the best move is a losing ep, so it cannot be probed. |
1427 | // one as in case the best move is a losing ep, so it cannot be probed. |
1447 | if (*result == ZEROING_BEST_MOVE) |
1428 | if (*result == ZEROING_BEST_MOVE) |
1448 | return dtz_before_zeroing(wdl); |
1429 | return dtz_before_zeroing(wdl); |
1449 | 1430 | ||
1450 | int dtz = probe_table< |
1431 | int dtz = probe_table<DTZ>(pos, result, wdl); |
1451 | 1432 | ||
1452 | if (*result == FAIL) |
1433 | if (*result == FAIL) |
1453 | return 0; |
1434 | return 0; |
1454 | 1435 | ||
1455 | if (*result != CHANGE_STM) |
1436 | if (*result != CHANGE_STM) |
Line 1468... | Line 1449... | ||
1468 | 1449 | ||
1469 | // For zeroing moves we want the dtz of the move _before_ doing it, |
1450 | // For zeroing moves we want the dtz of the move _before_ doing it, |
1470 | // otherwise we will get the dtz of the next move sequence. Search the |
1451 | // otherwise we will get the dtz of the next move sequence. Search the |
1471 | // position after the move to get the score sign (because even in a |
1452 | // position after the move to get the score sign (because even in a |
1472 | // winning position we could make a losing capture or going for a draw). |
1453 | // winning position we could make a losing capture or going for a draw). |
1473 | dtz = zeroing ? -dtz_before_zeroing(search(pos, result)) |
1454 | dtz = zeroing ? -dtz_before_zeroing(search<false>(pos, result)) |
1474 | : -probe_dtz(pos, result); |
1455 | : -probe_dtz(pos, result); |
1475 | 1456 | ||
1476 |
|
1457 | // If the move mates, force minDTZ to 1 |
1477 | - | ||
1478 | if ( |
1458 | if (dtz == 1 && pos.checkers() && MoveList<LEGAL>(pos).size() == 0) |
1479 |
|
1459 | minDTZ = 1; |
1480 | 1460 | ||
1481 | // Convert result from 1-ply search. Zeroing moves are already accounted |
1461 | // Convert result from 1-ply search. Zeroing moves are already accounted |
1482 | // by dtz_before_zeroing() that returns the DTZ of the previous move. |
1462 | // by dtz_before_zeroing() that returns the DTZ of the previous move. |
1483 | if (!zeroing) |
1463 | if (!zeroing) |
1484 | dtz += sign_of(dtz); |
1464 | dtz += sign_of(dtz); |
1485 | 1465 | ||
1486 | // Skip the draws and if we are winning only pick positive dtz |
1466 | // Skip the draws and if we are winning only pick positive dtz |
1487 | if (dtz < minDTZ && sign_of(dtz) == sign_of(wdl)) |
1467 | if (dtz < minDTZ && sign_of(dtz) == sign_of(wdl)) |
1488 | minDTZ = dtz; |
1468 | minDTZ = dtz; |
- | 1469 | ||
- | 1470 | pos.undo_move(move); |
|
- | 1471 | ||
- | 1472 | if (*result == FAIL) |
|
- | 1473 | return 0; |
|
1489 | } |
1474 | } |
1490 | 1475 | ||
1491 | // |
1476 | // When there are no legal moves, the position is mate: we return -1 |
1492 | // case return value is somewhat arbitrary, so stick to the original TB code |
- | |
1493 | // that returns -1 in this case. |
- | |
1494 | return minDTZ == 0xFFFF ? -1 : minDTZ; |
1477 | return minDTZ == 0xFFFF ? -1 : minDTZ; |
1495 | } |
1478 | } |
1496 | 1479 | ||
1497 | // Check whether there has been at least one repetition of positions |
- | |
1498 | // since the last capture or pawn move. |
- | |
1499 | static int has_repeated(StateInfo *st) |
- | |
1500 | { |
- | |
1501 | while (1) { |
- | |
1502 | int i = 4, e = std::min(st->rule50, st->pliesFromNull); |
- | |
1503 | 1480 | ||
1504 | if (e < i) |
- | |
1505 | return 0; |
- | |
1506 | - | ||
1507 | StateInfo *stp = st->previous->previous; |
- | |
1508 | - | ||
1509 | do { |
- | |
1510 | stp = stp->previous->previous; |
- | |
1511 | - | ||
1512 | if (stp->key == st->key) |
- | |
1513 | return 1; |
- | |
1514 | - | ||
1515 | i += 2; |
- | |
1516 | } while (i <= e); |
- | |
1517 | - | ||
1518 | st = st->previous; |
- | |
1519 | } |
- | |
1520 | } |
- | |
1521 | - | ||
1522 | // Use the DTZ tables to |
1481 | // Use the DTZ tables to rank root moves. |
1523 | // If the position is lost, but DTZ is fairly high, only keep moves that |
- | |
1524 | // maximise DTZ. |
- | |
1525 | // |
1482 | // |
1526 | // A return value false indicates that not all probes were successful |
1483 | // A return value false indicates that not all probes were successful. |
1527 | // no moves were filtered out. |
- | |
1528 | bool Tablebases::root_probe(Position& pos, Search::RootMoves& |
1484 | bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves) { |
1529 | { |
- | |
1530 | assert(rootMoves.size()); |
- | |
1531 | 1485 | ||
1532 | ProbeState result; |
1486 | ProbeState result; |
1533 |
|
1487 | StateInfo st; |
1534 | 1488 | ||
1535 |
|
1489 | // Obtain 50-move counter for the root position |
1536 |
|
1490 | int cnt50 = pos.rule50_count(); |
1537 | 1491 | ||
- | 1492 | // Check whether a position was repeated since the last zeroing move. |
|
1538 |
|
1493 | bool rep = pos.has_repeated(); |
1539 | 1494 | ||
1540 | // Probe each move |
- | |
1541 |
|
1495 | int dtz, bound = Options["Syzygy50MoveRule"] ? 900 : 1; |
1542 | Move move = rootMoves[i].pv[0]; |
- | |
1543 | pos.do_move(move, st); |
- | |
1544 | int v = 0; |
- | |
1545 | 1496 | ||
1546 |
|
1497 | // Probe and rank each move |
- | 1498 | for (auto& m : rootMoves) |
|
- | 1499 | { |
|
1547 |
|
1500 | pos.do_move(m.pv[0], st); |
1548 | 1501 | ||
- | 1502 | // Calculate dtz for the current move counting from the root position |
|
- | 1503 | if (pos.rule50_count() == 0) |
|
- | 1504 | { |
|
- | 1505 | // In case of a zeroing move, dtz is one of -101/-1/0/1/101 |
|
- | 1506 | WDLScore wdl = -probe_wdl(pos, &result); |
|
- | 1507 | dtz = dtz_before_zeroing(wdl); |
|
- | 1508 | } |
|
- | 1509 | else |
|
- | 1510 | { |
|
- | 1511 | // Otherwise, take dtz for the new position and correct by 1 ply |
|
1549 |
|
1512 | dtz = -probe_dtz(pos, &result); |
1550 |
|
1513 | dtz = dtz > 0 ? dtz + 1 |
- | 1514 | : dtz < 0 ? dtz - 1 : dtz; |
|
1551 | } |
1515 | } |
1552 | 1516 | ||
- | 1517 | // Make sure that a mating move is assigned a dtz value of 1 |
|
1553 | if ( |
1518 | if ( pos.checkers() |
1554 |
|
1519 | && dtz == 2 |
1555 |
|
1520 | && MoveList<LEGAL>(pos).size() == 0) |
- | 1521 | dtz = 1; |
|
1556 | 1522 | ||
1557 | if (v > 0) |
- | |
1558 | ++v; |
- | |
1559 | else if (v < 0) |
- | |
1560 | --v; |
- | |
1561 | } else { |
- | |
1562 | v = -probe_wdl(pos, &result); |
- | |
1563 | v = dtz_before_zeroing(WDLScore(v)); |
- | |
1564 | } |
- | |
1565 | } |
- | |
1566 | - | ||
1567 | pos.undo_move( |
1523 | pos.undo_move(m.pv[0]); |
1568 | 1524 | ||
1569 | if (result == FAIL) |
1525 | if (result == FAIL) |
1570 | return false; |
1526 | return false; |
1571 | 1527 | ||
1572 |
|
1528 | // Better moves are ranked higher. Certain wins are ranked equally. |
- | 1529 | // Losing moves are ranked equally unless a 50-move draw is in sight. |
|
- | 1530 | int r = dtz > 0 ? (dtz + cnt50 <= 99 && !rep ? 1000 : 1000 - (dtz + cnt50)) |
|
- | 1531 | : dtz < 0 ? (-dtz * 2 + cnt50 < 100 ? -1000 : -1000 + (-dtz + cnt50)) |
|
1573 |
|
1532 | : 0; |
- | 1533 | m.tbRank = r; |
|
1574 | 1534 | ||
1575 | // Obtain 50-move counter for the root position. |
- | |
1576 |
|
1535 | // Determine the score to be displayed for this move. Assign at least |
1577 | int cnt50 = st.previous ? st.previous->rule50 : 0; |
- | |
1578 | - | ||
1579 | // |
1536 | // 1 cp to cursed wins and let it grow to 49 cp as the positions gets |
1580 | // |
1537 | // closer to a real win. |
1581 | WDLScore wdl = WDLDraw; |
- | |
1582 | - | ||
1583 | if (dtz > 0) |
- | |
1584 |
|
1538 | m.tbScore = r >= bound ? VALUE_MATE - MAX_PLY - 1 |
1585 | else if (dtz < 0) |
- | |
1586 | wdl = (-dtz + cnt50 <= 100) ? WDLLoss : WDLBlessedLoss; |
- | |
1587 | - | ||
1588 | // Determine the score to report to the user. |
- | |
1589 | score = WDL_to_value[wdl + 2]; |
- | |
1590 | - | ||
1591 | // If the position is winning or losing, but too few moves left, adjust the |
- | |
1592 | // score to show how close it is to winning or losing. |
- | |
1593 | // NOTE: int(PawnValueEg) is used as scaling factor in score_to_uci(). |
- | |
1594 | if (wdl == WDLCursedWin && dtz <= 100) |
- | |
1595 |
|
1539 | : r > 0 ? Value((std::max( 3, r - 800) * int(PawnValueEg)) / 200) |
1596 |
|
1540 | : r == 0 ? VALUE_DRAW |
1597 |
|
1541 | : r > -bound ? Value((std::min(-3, r + 800) * int(PawnValueEg)) / 200) |
1598 | - | ||
1599 | // Now be a bit smart about filtering out moves. |
- | |
1600 | size_t j = 0; |
- | |
1601 | - | ||
1602 | if (dtz > 0) { // winning (or 50-move rule draw) |
- | |
1603 | int best = 0xffff; |
- | |
1604 | - | ||
1605 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
- | |
1606 | int v = rootMoves[i].score; |
- | |
1607 | - | ||
1608 | if (v > 0 && v < best) |
- | |
1609 | best = v; |
- | |
1610 | } |
- | |
1611 | - | ||
1612 | int max = best; |
- | |
1613 | - | ||
1614 | // If the current phase has not seen repetitions, then try all moves |
- | |
1615 | // that stay safely within the 50-move budget, if there are any. |
- | |
1616 | if (!has_repeated(st.previous) && best + cnt50 <= 99) |
- | |
1617 | max = 99 - cnt50; |
- | |
1618 | - | ||
1619 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
- | |
1620 | int v = rootMoves[i].score; |
- | |
1621 | - | ||
1622 | if (v > 0 && v <= max) |
- | |
1623 | rootMoves[j++] = rootMoves[i]; |
- | |
1624 | } |
- | |
1625 | } else if (dtz < 0) { // losing (or 50-move rule draw) |
- | |
1626 | int best = 0; |
- | |
1627 | - | ||
1628 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
- | |
1629 | int v = rootMoves[i].score; |
- | |
1630 | - | ||
1631 | if (v < best) |
- | |
1632 | best = v; |
- | |
1633 | } |
- | |
1634 | - | ||
1635 | // Try all moves, unless we approach or have a 50-move rule draw. |
- | |
1636 | if (-best * 2 + cnt50 < 100) |
- | |
1637 | return true; |
- | |
1638 | - | ||
1639 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
- | |
1640 | if (rootMoves[i].score == best) |
- | |
1641 | rootMoves[j++] = rootMoves[i]; |
- | |
1642 | } |
- | |
1643 | } else { // drawing |
- | |
1644 | // Try all moves that preserve the draw. |
- | |
1645 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
- | |
1646 | if (rootMoves[i].score == 0) |
- | |
1647 |
|
1542 | : -VALUE_MATE + MAX_PLY + 1; |
1648 | } |
- | |
1649 | } |
1543 | } |
1650 | - | ||
1651 | rootMoves.resize(j, Search::RootMove(MOVE_NONE)); |
- | |
1652 | 1544 | ||
1653 | return true; |
1545 | return true; |
1654 | } |
1546 | } |
1655 | 1547 | ||
- | 1548 | ||
1656 | // Use the WDL tables to |
1549 | // Use the WDL tables to rank root moves. |
1657 | // This is a fallback for the case that some or all DTZ tables are missing. |
1550 | // This is a fallback for the case that some or all DTZ tables are missing. |
1658 | // |
1551 | // |
1659 | // A return value false indicates that not all probes were successful |
1552 | // A return value false indicates that not all probes were successful. |
1660 | // no moves were filtered out. |
- | |
1661 | bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& |
1553 | bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves) { |
1662 | { |
- | |
1663 | ProbeState result; |
- | |
1664 | 1554 | ||
1665 |
|
1555 | static const int WDL_to_rank[] = { -1000, -899, 0, 899, 1000 }; |
1666 | 1556 | ||
1667 |
|
1557 | ProbeState result; |
1668 |
|
1558 | StateInfo st; |
1669 | 1559 | ||
1670 |
|
1560 | bool rule50 = Options["Syzygy50MoveRule"]; |
1671 | 1561 | ||
- | 1562 | // Probe and rank each move |
|
1672 |
|
1563 | for (auto& m : rootMoves) |
- | 1564 | { |
|
- | 1565 | pos.do_move(m.pv[0], st); |
|
1673 | 1566 | ||
1674 |
|
1567 | WDLScore wdl = -probe_wdl(pos, &result); |
1675 | 1568 | ||
1676 | // Probe each move |
- | |
1677 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
- | |
1678 | Move move = rootMoves[i].pv[0]; |
- | |
1679 | pos.do_move(move, st); |
- | |
1680 | WDLScore v = -Tablebases::probe_wdl(pos, &result); |
- | |
1681 | pos.undo_move( |
1569 | pos.undo_move(m.pv[0]); |
1682 | 1570 | ||
1683 | if (result == FAIL) |
1571 | if (result == FAIL) |
1684 | return false; |
1572 | return false; |
1685 | 1573 | ||
1686 |
|
1574 | m.tbRank = WDL_to_rank[wdl + 2]; |
1687 | 1575 | ||
1688 | if ( |
1576 | if (!rule50) |
1689 |
|
1577 | wdl = wdl > WDLDraw ? WDLWin |
- | 1578 | : wdl < WDLDraw ? WDLLoss : WDLDraw; |
|
- | 1579 | m.tbScore = WDL_to_value[wdl + 2]; |
|
1690 | } |
1580 | } |
1691 | - | ||
1692 | size_t j = 0; |
- | |
1693 | - | ||
1694 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
- | |
1695 | if (rootMoves[i].score == best) |
- | |
1696 | rootMoves[j++] = rootMoves[i]; |
- | |
1697 | } |
- | |
1698 | - | ||
1699 | rootMoves.resize(j, Search::RootMove(MOVE_NONE)); |
- | |
1700 | 1581 | ||
1701 | return true; |
1582 | return true; |
1702 | } |
1583 | } |