Rev 154 | Rev 176 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
| Rev 154 | Rev 169 | ||
|---|---|---|---|
| Line 1... | Line 1... | ||
| 1 | /* | 1 | /* | 
| - | 2 |   Stockfish, a UCI chess playing engine derived from Glaurung 2.1 | |
| 2 |   Copyright (c) 2013 Ronald de Man | 3 |   Copyright (c) 2013 Ronald de Man | 
| 3 |    | 4 |   Copyright (C) 2016-2018 Marco Costalba, Lucas Braesch | 
| 4 | 5 | ||
| - | 6 |   Stockfish is free software: you can redistribute it and/or modify | |
| 5 |    | 7 |   it under the terms of the GNU General Public License as published by | 
| 6 |    | 8 |   the Free Software Foundation, either version 3 of the License, or | 
| 7 |    | 9 |   (at your option) any later version. | 
| - | 10 | ||
| - | 11 |   Stockfish is distributed in the hope that it will be useful, | |
| - | 12 |   but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| - | 13 |   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | |
| - | 14 |   GNU General Public License for more details. | |
| - | 15 | ||
| - | 16 |   You should have received a copy of the GNU General Public License | |
| - | 17 |   along with this program.  If not, see <http://www.gnu.org/licenses/>. | |
| 8 | */ | 18 | */ | 
| 9 | - | ||
| 10 | #define NOMINMAX | - | |
| 11 | 19 | ||
| 12 | #include <algorithm> | 20 | #include <algorithm> | 
| - | 21 | #include <atomic> | |
| - | 22 | #include <cstdint> | |
| - | 23 | #include <cstring>   // For std::memset | |
| - | 24 | #include <deque> | |
| - | 25 | #include <fstream> | |
| - | 26 | #include <iostream> | |
| - | 27 | #include <list> | |
| - | 28 | #include <sstream> | |
| - | 29 | #include <type_traits> | |
| 13 | 30 | ||
| - | 31 | #include "../bitboard.h" | |
| - | 32 | #include "../movegen.h" | |
| 14 | #include "../position.h" | 33 | #include "../position.h" | 
| 15 | #include "../movegen.h" | - | |
| 16 | #include "../bitboard.h" | - | |
| 17 | #include "../search.h" | 34 | #include "../search.h" | 
| - | 35 | #include "../thread_win32.h" | |
| - | 36 | #include "../types.h" | |
| 18 | 37 | ||
| 19 | #include "tbprobe.h" | 38 | #include "tbprobe.h" | 
| 20 | #include "tbcore.h" | - | |
| 21 | 39 | ||
| - | 40 | #ifndef _WIN32 | |
| 22 | #include  | 41 | #include <fcntl.h> | 
| - | 42 | #include <unistd.h> | |
| - | 43 | #include <sys/mman.h> | |
| - | 44 | #include <sys/stat.h> | |
| - | 45 | #else | |
| - | 46 | #define WIN32_LEAN_AND_MEAN | |
| - | 47 | #define NOMINMAX | |
| - | 48 | #include <windows.h> | |
| - | 49 | #endif | |
| 23 | 50 | ||
| 24 | namespace | 51 | using namespace Tablebases; | 
| 25 | extern Key psq[PIECE_NB][SQUARE_NB]; | - | |
| 26 | } | - | |
| 27 | 52 | ||
| 28 | int Tablebases::MaxCardinality | 53 | int Tablebases::MaxCardinality; | 
| 29 | 54 | ||
| 30 | // Given a position with 6 or fewer pieces, produce a text string | - | |
| 31 | // of the form KQPvKRP, where "KQP" represents the white pieces if | - | |
| 32 | // mirror == 0 and the black pieces if mirror == 1. | - | |
| 33 | static void prt_str(Position& pos, char *str, int mirror) | - | |
| 34 | { | - | |
| 35 |   Color color; | - | |
| 36 | 
 | 55 | namespace { | 
| 37 | int i; | - | |
| 38 | 56 | ||
| 39 | color = !mirror ? WHITE : BLACK; | - | |
| 40 | for (pt = KING; pt >= PAWN; --pt) | - | |
| 41 | 
 | 57 | // Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables | 
| 42 | *str++ = pchr[6 - pt]; | - | |
| 43 | *str++ = 'v'; | - | |
| 44 | color = ~color; | - | |
| 45 | for (pt = KING; pt >= PAWN; --pt) | - | |
| 46 | 
 | 58 | enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, SingleValue = 128 }; | 
| 47 | *str++ = pchr[6 - pt]; | - | |
| 48 | *str++ = 0; | - | |
| 49 | } | - | |
| 50 | 59 | ||
| 51 | 
 | 60 | inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); } | 
| 52 | 
 | 61 | inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); } | 
| 53 | 
 | 62 | inline Square operator^(Square s, int i) { return Square(int(s) ^ i); } | 
| 54 | { | - | |
| 55 |   Color color; | - | |
| 56 |   PieceType pt; | - | |
| 57 | int i; | - | |
| 58 | uint64 key = 0; | - | |
| 59 | 63 | ||
| 60 | 
 | 64 | // DTZ tables don't store valid scores for moves that reset the rule50 counter | 
| 61 | 
 | 65 | // like captures and pawn moves but we can easily recover the correct dtz of the | 
| 62 | 
 | 66 | // previous move if we know the position's WDL score. | 
| 63 | 
 | 67 | int dtz_before_zeroing(WDLScore wdl) { | 
| 64 | 
 | 68 | return wdl == WDLWin ? 1 : | 
| 65 | 
 | 69 | wdl == WDLCursedWin ? 101 : | 
| 66 | 
 | 70 | wdl == WDLBlessedLoss ? -101 : | 
| 67 | 
 | 71 | wdl == WDLLoss ? -1 : 0; | 
| - | 72 | } | |
| 68 | 73 | ||
| - | 74 | // Return the sign of a number (-1, 0, 1) | |
| - | 75 | template <typename T> int sign_of(T val) { | |
| 69 | return | 76 | return (T(0) < val) - (val < T(0)); | 
| 70 | } | 77 | } | 
| 71 | 78 | ||
| 72 | //  | 79 | // Numbers in little endian used by sparseIndex[] to point into blockLength[] | 
| 73 | 
 | 80 | struct SparseEntry { | 
| 74 | 
 | 81 | char block[4]; // Number of block | 
| 75 | // pawns, ..., kings. | - | |
| 76 | 
 | 82 | char offset[2]; // Offset within the block | 
| 77 |  | 83 | }; | 
| 78 | int color; | - | |
| 79 |   PieceType pt; | - | |
| 80 | int i; | - | |
| 81 | uint64 key = 0; | - | |
| 82 | 84 | ||
| 83 | color = !mirror ? 0 : 8; | - | |
| 84 | for (pt = PAWN; pt <= KING; ++pt) | - | |
| 85 | for (i = 0; i < pcs[color + pt]; i++) | - | |
| 86 | key ^= Zobrist::psq[make_piece(WHITE, pt)][i]; | - | |
| 87 | color ^= 8; | - | |
| 88 | for (pt = PAWN; pt <= KING; ++pt) | - | |
| 89 | for (i = 0; i < pcs[color + pt]; i++) | - | |
| 90 | 
 | 85 | static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes"); | 
| 91 | 86 | ||
| 92 | 
 | 87 | typedef uint16_t Sym; // Huffman symbol | 
| 93 | } | - | |
| 94 | 88 | ||
| - | 89 | struct LR { | |
| - | 90 | enum Side { Left, Right, Value }; | |
| - | 91 | ||
| - | 92 | uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12 | |
| - | 93 |                    // bits is the right-hand symbol. If symbol has length 1, | |
| - | 94 |                    // then the first byte is the stored value. | |
| 95 | 
 | 95 | template<Side S> | 
| - | 96 | Sym get() { | |
| - | 97 | return S == Left ? ((lr[1] & 0xF) << 8) | lr[0] : | |
| - | 98 | S == Right ? (lr[2] << 4) | (lr[1] >> 4) : | |
| - | 99 | S == Value ? lr[0] : (assert(false), Sym(-1)); | |
| 96 | 
 | 100 |     } | 
| - | 101 | }; | |
| - | 102 | ||
| - | 103 | static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes"); | |
| - | 104 | ||
| - | 105 | const int TBPIECES = 6; | |
| - | 106 | ||
| - | 107 | struct PairsData { | |
| 97 | int | 108 | int flags; | 
| - | 109 | size_t sizeofBlock; // Block size in bytes | |
| - | 110 | size_t span; // About every span values there is a SparseIndex[] entry | |
| - | 111 | int blocksNum; // Number of blocks in the TB file | |
| - | 112 | int maxSymLen; // Maximum length in bits of the Huffman symbols | |
| - | 113 | int minSymLen; // Minimum length in bits of the Huffman symbols | |
| - | 114 | Sym* lowestSym; // lowestSym[l] is the symbol of length l with the lowest value | |
| - | 115 | LR* btree; // btree[sym] stores the left and right symbols that expand sym | |
| - | 116 | uint16_t* blockLength; // Number of stored positions (minus one) for each block: 1..65536 | |
| - | 117 | int blockLengthSize; // Size of blockLength[] table: padded so it's bigger than blocksNum | |
| - | 118 | SparseEntry* sparseIndex; // Partial indices into blockLength[] | |
| - | 119 | size_t sparseIndexSize; // Size of SparseIndex[] table | |
| - | 120 | uint8_t* data; // Start of Huffman compressed data | |
| - | 121 | std::vector<uint64_t> base64; // base64[l - min_sym_len] is the 64bit-padded lowest symbol of length l | |
| - | 122 | std::vector<uint8_t> symlen; // Number of values (-1) represented by a given Huffman symbol: 1..256 | |
| - | 123 | Piece pieces[TBPIECES]; // Position pieces: the order of pieces defines the groups | |
| - | 124 | uint64_t groupIdx[TBPIECES+1]; // Start index used for the encoding of the group's pieces | |
| - | 125 | int groupLen[TBPIECES+1]; // Number of pieces in a given group: KRKN -> (3, 1) | |
| - | 126 | }; | |
| - | 127 | ||
| - | 128 | // Helper struct to avoid manually defining entry copy constructor as we | |
| - | 129 | // should because the default one is not compatible with std::atomic_bool. | |
| - | 130 | struct Atomic { | |
| - | 131 | Atomic() = default; | |
| - | 132 | Atomic(const Atomic& e) { ready = e.ready.load(); } // MSVC 2013 wants assignment within body | |
| - | 133 | std::atomic_bool ready; | |
| - | 134 | }; | |
| - | 135 | ||
| - | 136 | // We define types for the different parts of the WDLEntry and DTZEntry with | |
| - | 137 | // corresponding specializations for pieces or pawns. | |
| - | 138 | ||
| - | 139 | struct WDLEntryPiece { | |
| - | 140 | PairsData* precomp; | |
| - | 141 | }; | |
| - | 142 | ||
| - | 143 | struct WDLEntryPawn { | |
| - | 144 | uint8_t pawnCount[2]; // [Lead color / other color] | |
| - | 145 | WDLEntryPiece file[2][4]; // [wtm / btm][FILE_A..FILE_D] | |
| - | 146 | }; | |
| - | 147 | ||
| - | 148 | struct DTZEntryPiece { | |
| - | 149 | PairsData* precomp; | |
| - | 150 | uint16_t map_idx[4]; // WDLWin, WDLLoss, WDLCursedWin, WDLBlessedLoss | |
| - | 151 | uint8_t* map; | |
| - | 152 | }; | |
| - | 153 | ||
| - | 154 | struct DTZEntryPawn { | |
| - | 155 | uint8_t pawnCount[2]; | |
| 98 | 
 | 156 | DTZEntryPiece file[4]; | 
| - | 157 | uint8_t* map; | |
| - | 158 | }; | |
| - | 159 | ||
| - | 160 | struct TBEntry : public Atomic { | |
| - | 161 | void* baseAddress; | |
| - | 162 | uint64_t mapping; | |
| - | 163 |     Key key; | |
| - | 164 |     Key key2; | |
| - | 165 | int pieceCount; | |
| - | 166 | bool hasPawns; | |
| - | 167 | bool hasUniquePieces; | |
| - | 168 | }; | |
| - | 169 | ||
| - | 170 | // Now the main types: WDLEntry and DTZEntry | |
| - | 171 | struct WDLEntry : public TBEntry { | |
| - | 172 | WDLEntry(const std::string& code); | |
| - | 173 | ~WDLEntry(); | |
| - | 174 | union { | |
| - | 175 | WDLEntryPiece pieceTable[2]; // [wtm / btm] | |
| - | 176 |         WDLEntryPawn  pawnTable; | |
| 99 | } | 177 | }; | 
| - | 178 | }; | |
| - | 179 | ||
| - | 180 | struct DTZEntry : public TBEntry { | |
| - | 181 | DTZEntry(const WDLEntry& wdl); | |
| - | 182 | ~DTZEntry(); | |
| - | 183 | union { | |
| - | 184 |         DTZEntryPiece pieceTable; | |
| - | 185 |         DTZEntryPawn  pawnTable; | |
| 100 | 
 | 186 | }; | 
| - | 187 | }; | |
| - | 188 | ||
| - | 189 | typedef decltype(WDLEntry::pieceTable) WDLPieceTable; | |
| - | 190 | typedef decltype(DTZEntry::pieceTable) DTZPieceTable; | |
| - | 191 | typedef decltype(WDLEntry::pawnTable ) WDLPawnTable; | |
| - | 192 | typedef decltype(DTZEntry::pawnTable ) DTZPawnTable; | |
| - | 193 | ||
| - | 194 | auto item(WDLPieceTable& e, int stm, int ) -> decltype(e[stm])& { return e[stm]; } | |
| - | 195 | auto item(DTZPieceTable& e, int , int ) -> decltype(e)& { return e; } | |
| - | 196 | auto item(WDLPawnTable& e, int stm, int f) -> decltype(e.file[stm][f])& { return e.file[stm][f]; } | |
| - | 197 | auto item(DTZPawnTable& e, int , int f) -> decltype(e.file[f])& { return e.file[f]; } | |
| - | 198 | ||
| - | 199 | template<typename E> struct Ret { typedef int type; }; | |
| - | 200 | template<> struct Ret<WDLEntry> { typedef WDLScore type; }; | |
| - | 201 | ||
| - | 202 | int MapPawns[SQUARE_NB]; | |
| - | 203 | int MapB1H1H7[SQUARE_NB]; | |
| - | 204 | int MapA1D1D4[SQUARE_NB]; | |
| - | 205 | int MapKK[10][SQUARE_NB]; // [MapA1D1D4][SQUARE_NB] | |
| - | 206 | ||
| - | 207 | // Comparison function to sort leading pawns in ascending MapPawns[] order | |
| - | 208 | bool pawns_comp(Square i, Square j) { return MapPawns[i] < MapPawns[j]; } | |
| - | 209 | int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); } | |
| - | 210 | ||
| - | 211 | const Value WDL_to_value[] = { | |
| - | 212 | -VALUE_MATE + MAX_PLY + 1, | |
| - | 213 | VALUE_DRAW - 2, | |
| - | 214 | VALUE_DRAW, | |
| 101 | 
 | 215 | VALUE_DRAW + 2, | 
| - | 216 | VALUE_MATE - MAX_PLY - 1 | |
| 102 | } | 217 | }; | 
| - | 218 | ||
| - | 219 | const std::string PieceToChar = " PNBRQK pnbrqk"; | |
| - | 220 | ||
| - | 221 | int Binomial[6][SQUARE_NB]; // [k][n] k elements from a set of n elements | |
| - | 222 | int LeadPawnIdx[5][SQUARE_NB]; // [leadPawnsCnt][SQUARE_NB] | |
| - | 223 | int LeadPawnsSize[5][4]; // [leadPawnsCnt][FILE_A..FILE_D] | |
| - | 224 | ||
| - | 225 | enum { BigEndian, LittleEndian }; | |
| 103 | 226 | ||
| 104 | 
 | 227 | template<typename T, int Half = sizeof(T) / 2, int End = sizeof(T) - 1> | 
| - | 228 | inline void swap_byte(T& x) | |
| 105 | { | 229 | { | 
| 106 | 
 | 230 | char tmp, *c = (char*)&x; | 
| 107 | 
 | 231 | for (int i = 0; i < Half; ++i) | 
| 108 | 
 | 232 | tmp = c[i], c[i] = c[End - i], c[End - i] = tmp; | 
| 109 | } | 233 | } | 
| - | 234 | template<> inline void swap_byte<uint8_t, 0, 0>(uint8_t&) {} | |
| 110 | 235 | ||
| 111 | 
 | 236 | template<typename T, int LE> T number(void* addr) | 
| 112 | static int probe_wdl_table(Position& pos, int *success) | - | |
| 113 | { | 237 | { | 
| 114 | 
 | 238 | const union { uint32_t i; char c[4]; } Le = { 0x01020304 }; | 
| 115 | 
 | 239 | const bool IsLittleEndian = (Le.c[0] == 4); | 
| 116 | uint64 idx; | - | |
| 117 | uint64 key; | - | |
| 118 | int i; | - | |
| 119 |   ubyte res; | - | |
| 120 | int p[TBPIECES]; | - | |
| 121 | 240 | ||
| 122 |   // Obtain the position's material signature key. | - | |
| 123 | 
 | 241 |     T v; | 
| 124 | 242 | ||
| - | 243 | if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare) | |
| - | 244 | std::memcpy(&v, addr, sizeof(T)); | |
| - | 245 |     else | |
| - | 246 | v = *((T*)addr); | |
| - | 247 | ||
| - | 248 | if (LE != IsLittleEndian) | |
| - | 249 | swap_byte(v); | |
| 125 | 
 | 250 | return v; | 
| - | 251 | } | |
| - | 252 | ||
| - | 253 | class HashTable { | |
| - | 254 | ||
| - | 255 | typedef std::pair<WDLEntry*, DTZEntry*> EntryPair; | |
| - | 256 | typedef std::pair<Key, EntryPair> Entry; | |
| - | 257 | ||
| - | 258 | static const int TBHASHBITS = 10; | |
| - | 259 | static const int HSHMAX = 5; | |
| - | 260 | ||
| - | 261 | Entry hashTable[1 << TBHASHBITS][HSHMAX]; | |
| - | 262 | ||
| - | 263 | std::deque<WDLEntry> wdlTable; | |
| - | 264 | std::deque<DTZEntry> dtzTable; | |
| - | 265 | ||
| - | 266 | void insert(Key key, WDLEntry* wdl, DTZEntry* dtz) { | |
| - | 267 | Entry* entry = hashTable[key >> (64 - TBHASHBITS)]; | |
| - | 268 | ||
| - | 269 | for (int i = 0; i < HSHMAX; ++i, ++entry) | |
| - | 270 | if (!entry->second.first || entry->first == key) { | |
| 126 | 
 | 271 | *entry = std::make_pair(key, std::make_pair(wdl, dtz)); | 
| - | 272 | return; | |
| 127 | 
 | 273 |             } | 
| - | 274 | ||
| - | 275 | std::cerr << "HSHMAX too low!" << std::endl; | |
| - | 276 | exit(1); | |
| - | 277 |     } | |
| - | 278 | ||
| - | 279 | public: | |
| - | 280 | template<typename E, int I = std::is_same<E, WDLEntry>::value ? 0 : 1> | |
| - | 281 | E* get(Key key) { | |
| - | 282 | Entry* entry = hashTable[key >> (64 - TBHASHBITS)]; | |
| - | 283 | ||
| - | 284 | for (int i = 0; i < HSHMAX; ++i, ++entry) | |
| - | 285 | if (entry->first == key) | |
| - | 286 | return std::get<I>(entry->second); | |
| 128 | 287 | ||
| 129 | ptr2 = TB_hash[key >> (64 - TBHASHBITS)]; | - | |
| 130 | for (i = 0; i < HSHMAX; i++) | - | |
| 131 | if (ptr2[i].key == key) break; | - | |
| 132 | if (i == HSHMAX) { | - | |
| 133 | *success = 0; | - | |
| 134 | return | 288 | return nullptr; | 
| 135 |   } | 289 |   } | 
| 136 | 290 | ||
| 137 | 
 | 291 | void clear() { | 
| 138 | 
 | 292 | std::memset(hashTable, 0, sizeof(hashTable)); | 
| 139 | 
 | 293 | wdlTable.clear(); | 
| 140 | 
 | 294 | dtzTable.clear(); | 
| 141 | 
 | 295 |   } | 
| 142 | 
 | 296 | size_t size() const { return wdlTable.size(); } | 
| 143 | 
 | 297 | void insert(const std::vector<PieceType>& pieces); | 
| - | 298 | }; | |
| - | 299 | ||
| 144 | 
 | 300 | HashTable EntryTable; | 
| - | 301 | ||
| 145 | 
 | 302 | class TBFile : public std::ifstream { | 
| - | 303 | ||
| 146 | 
 | 304 | std::string fname; | 
| - | 305 | ||
| 147 | 
 | 306 | public: | 
| - | 307 |     // Look for and open the file among the Paths directories where the .rtbw | |
| - | 308 |     // and .rtbz files can be found. Multiple directories are separated by ";" | |
| - | 309 |     // on Windows and by ":" on Unix-based operating systems. | |
| 148 | 
 | 310 |     // | 
| - | 311 |     // Example: | |
| 149 | 
 | 312 |     // C:\tb\wdl345;C:\tb\wdl6;D:\tb\dtz345;D:\tb\dtz6 | 
| - | 313 | static std::string Paths; | |
| - | 314 | ||
| - | 315 | TBFile(const std::string& f) { | |
| - | 316 | ||
| 150 |  | 317 | #ifndef _WIN32 | 
| 151 | 
 | 318 | const char SepChar = ':'; | 
| 152 | #else | 319 | #else | 
| 153 | 
 | 320 | const char SepChar = ';'; | 
| 154 | #endif | 321 | #endif | 
| - | 322 | std::stringstream ss(Paths); | |
| 155 | 
 | 323 | std::string path; | 
| - | 324 | ||
| - | 325 | while (std::getline(ss, path, SepChar)) { | |
| - | 326 | fname = path + "/" + f; | |
| - | 327 | std::ifstream::open(fname); | |
| - | 328 | if (is_open()) | |
| - | 329 | return; | |
| - | 330 |         } | |
| 156 |     } | 331 |     } | 
| 157 | UNLOCK(TB_mutex); | - | |
| 158 |   } | - | |
| 159 | 332 | ||
| - | 333 |     // Memory map the file and check it. File should be already open and will be | |
| 160 | 
 | 334 |     // closed after mapping. | 
| - | 335 | uint8_t* map(void** baseAddress, uint64_t* mapping, const uint8_t* TB_MAGIC) { | |
| - | 336 | ||
| 161 | 
 | 337 | assert(is_open()); | 
| - | 338 | ||
| - | 339 | close(); // Need to re-open to get native file descriptor | |
| - | 340 | ||
| - | 341 | #ifndef _WIN32 | |
| 162 | 
 | 342 | struct stat statbuf; | 
| - | 343 | int fd = ::open(fname.c_str(), O_RDONLY); | |
| - | 344 | ||
| 163 | 
 | 345 | if (fd == -1) | 
| - | 346 | return *baseAddress = nullptr, nullptr; | |
| - | 347 | ||
| - | 348 | fstat(fd, &statbuf); | |
| - | 349 | *mapping = statbuf.st_size; | |
| - | 350 | *baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0); | |
| 164 | 
 | 351 | ::close(fd); | 
| - | 352 | ||
| 165 | 
 | 353 | if (*baseAddress == MAP_FAILED) { | 
| - | 354 | std::cerr << "Could not mmap() " << fname << std::endl; | |
| - | 355 | exit(1); | |
| 166 | 
 | 356 |         } | 
| - | 357 | #else | |
| - | 358 | HANDLE fd = CreateFile(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr, | |
| - | 359 | OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr); | |
| - | 360 | ||
| - | 361 | if (fd == INVALID_HANDLE_VALUE) | |
| - | 362 | return *baseAddress = nullptr, nullptr; | |
| - | 363 | ||
| 167 | 
 | 364 |         DWORD size_high; | 
| - | 365 | DWORD size_low = GetFileSize(fd, &size_high); | |
| - | 366 | HANDLE mmap = CreateFileMapping(fd, nullptr, PAGE_READONLY, size_high, size_low, nullptr); | |
| - | 367 | CloseHandle(fd); | |
| - | 368 | ||
| - | 369 | if (!mmap) { | |
| - | 370 | std::cerr << "CreateFileMapping() failed" << std::endl; | |
| - | 371 | exit(1); | |
| - | 372 |         } | |
| - | 373 | ||
| - | 374 | *mapping = (uint64_t)mmap; | |
| - | 375 | *baseAddress = MapViewOfFile(mmap, FILE_MAP_READ, 0, 0, 0); | |
| - | 376 | ||
| - | 377 | if (!*baseAddress) { | |
| - | 378 | std::cerr << "MapViewOfFile() failed, name = " << fname | |
| - | 379 | << ", error = " << GetLastError() << std::endl; | |
| - | 380 | exit(1); | |
| - | 381 |         } | |
| - | 382 | #endif | |
| - | 383 | uint8_t* data = (uint8_t*)*baseAddress; | |
| - | 384 | ||
| - | 385 | if ( *data++ != *TB_MAGIC++ | |
| - | 386 | || *data++ != *TB_MAGIC++ | |
| - | 387 | || *data++ != *TB_MAGIC++ | |
| - | 388 | || *data++ != *TB_MAGIC) { | |
| - | 389 | std::cerr << "Corrupted table in file " << fname << std::endl; | |
| 168 | 
 | 390 | unmap(*baseAddress, *mapping); | 
| - | 391 | return *baseAddress = nullptr, nullptr; | |
| - | 392 |         } | |
| - | 393 | ||
| - | 394 | return data; | |
| 169 |     } | 395 |     } | 
| 170 | } else { | - | |
| 171 | cmirror = pos.side_to_move() == WHITE ? 0 : 8; | - | |
| 172 | mirror = pos.side_to_move() == WHITE ? 0 : 0x38; | - | |
| 173 | bside = 0; | - | |
| 174 |   } | - | |
| 175 | 396 | ||
| 176 |   // p[i] is to contain the square 0-63 (A1-H8) for a piece of type | - | |
| 177 | 
 | 397 | static void unmap(void* baseAddress, uint64_t mapping) { | 
| 178 |   // Pieces of the same type are guaranteed to be consecutive. | - | |
| - | 398 | ||
| 179 | 
 | 399 | #ifndef _WIN32 | 
| 180 | struct TBEntry_piece *entry = (struct TBEntry_piece *)ptr; | - | |
| 181 | 
 | 400 | munmap(baseAddress, mapping); | 
| 182 | for (i = 0; i < entry->num;) { | - | |
| 183 | Bitboard bb = pos.pieces((Color)((pc[i] ^ cmirror) >> 3), | - | |
| 184 | (PieceType)(pc[i] & 0x07)); | - | |
| 185 | 
 | 401 | #else | 
| 186 | 
 | 402 | UnmapViewOfFile(baseAddress); | 
| 187 | 
 | 403 | CloseHandle((HANDLE)mapping); | 
| - | 404 | #endif | |
| 188 |     } | 405 |     } | 
| 189 | idx = encode_piece(entry, entry->norm[bside], p, entry->factor[bside]); | - | |
| 190 | res = decompress_pairs(entry->precomp[bside], idx); | - | |
| 191 | 
 | 406 | }; | 
| - | 407 | ||
| 192 | 
 | 408 | std::string TBFile::Paths; | 
| - | 409 | ||
| 193 | 
 | 410 | WDLEntry::WDLEntry(const std::string& code) { | 
| 194 | Bitboard bb = pos.pieces((Color)(k >> 3), (PieceType)(k & 0x07)); | - | |
| - | 411 | ||
| 195 | 
 | 412 |     StateInfo st; | 
| 196 | 
 | 413 |     Position pos; | 
| - | 414 | ||
| 197 | 
 | 415 | memset(this, 0, sizeof(WDLEntry)); | 
| - | 416 | ||
| 198 | 
 | 417 | ready = false; | 
| - | 418 | key = pos.set(code, WHITE, &st).material_key(); | |
| 199 | 
 | 419 | pieceCount = popcount(pos.pieces()); | 
| 200 | 
 | 420 | hasPawns = pos.pieces(PAWN); | 
| - | 421 | ||
| 201 | for (; | 422 | for (Color c = WHITE; c <= BLACK; ++c) | 
| - | 423 | for (PieceType pt = PAWN; pt < KING; ++pt) | |
| 202 | 
 | 424 | if (popcount(pos.pieces(c, pt)) == 1) | 
| 203 | 
 | 425 | hasUniquePieces = true; | 
| - | 426 | ||
| 204 | 
 | 427 | if (hasPawns) { | 
| - | 428 |         // Set the leading color. In case both sides have pawns the leading color | |
| - | 429 |         // is the side with less pawns because this leads to better compression. | |
| 205 | 
 | 430 | bool c = !pos.count<PAWN>(BLACK) | 
| 206 | 
 | 431 | || ( pos.count<PAWN>(WHITE) | 
| - | 432 | && pos.count<PAWN>(BLACK) >= pos.count<PAWN>(WHITE)); | |
| - | 433 | ||
| - | 434 | pawnTable.pawnCount[0] = pos.count<PAWN>(c ? WHITE : BLACK); | |
| - | 435 | pawnTable.pawnCount[1] = pos.count<PAWN>(c ? BLACK : WHITE); | |
| 207 |     } | 436 |     } | 
| 208 | idx = encode_pawn(entry, entry->file[f].norm[bside], p, entry->file[f].factor[bside]); | - | |
| 209 | res = decompress_pairs(entry->file[f].precomp[bside], idx); | - | |
| 210 |   } | - | |
| 211 | 437 | ||
| 212 | 
 | 438 | key2 = pos.set(code, BLACK, &st).material_key(); | 
| 213 | } | 439 | } | 
| 214 | 440 | ||
| 215 | static int probe_dtz_table(Position& pos, int wdl, int *success) | - | |
| 216 | { | - | |
| 217 | 
 | 441 | WDLEntry::~WDLEntry() { | 
| 218 | uint64 idx; | - | |
| 219 | int i, res; | - | |
| 220 | int p[TBPIECES]; | - | |
| 221 | 442 | ||
| 222 | 
 | 443 | if (baseAddress) | 
| 223 | 
 | 444 | TBFile::unmap(baseAddress, mapping); | 
| 224 | 445 | ||
| 225 | if (DTZ_table[0].key1 != key && DTZ_table[0].key2 != key) { | - | |
| 226 | for (i = | 446 | for (int i = 0; i < 2; ++i) | 
| 227 | if (DTZ_table[i].key1 == key) break; | - | |
| 228 | if (i < DTZ_ENTRIES) { | - | |
| 229 | struct DTZTableEntry table_entry = DTZ_table[i]; | - | |
| 230 | 
 | 447 | if (hasPawns) | 
| 231 | 
 | 448 | for (File f = FILE_A; f <= FILE_D; ++f) | 
| 232 | 
 | 449 | delete pawnTable.file[i][f].precomp; | 
| 233 | 
 | 450 |         else | 
| 234 | 
 | 451 | delete pieceTable[i].precomp; | 
| - | 452 | } | |
| - | 453 | ||
| 235 | 
 | 454 | DTZEntry::DTZEntry(const WDLEntry& wdl) { | 
| - | 455 | ||
| 236 | 
 | 456 | memset(this, 0, sizeof(DTZEntry)); | 
| - | 457 | ||
| 237 | 
 | 458 | ready = false; | 
| 238 | 
 | 459 | key = wdl.key; | 
| 239 | 
 | 460 | key2 = wdl.key2; | 
| 240 |       } | - | |
| 241 | 
 | 461 | pieceCount = wdl.pieceCount; | 
| 242 | 
 | 462 | hasPawns = wdl.hasPawns; | 
| 243 | 
 | 463 | hasUniquePieces = wdl.hasUniquePieces; | 
| - | 464 | ||
| 244 | 
 | 465 | if (hasPawns) { | 
| 245 | if (DTZ_table[DTZ_ENTRIES - 1].entry) | - | |
| 246 | 
 | 466 | pawnTable.pawnCount[0] = wdl.pawnTable.pawnCount[0]; | 
| 247 | for (i = DTZ_ENTRIES - 1; i > 0; i--) | - | |
| 248 | 
 | 467 | pawnTable.pawnCount[1] = wdl.pawnTable.pawnCount[1]; | 
| 249 | load_dtz_table(str, calc_key(pos, mirror), calc_key(pos, !mirror)); | - | |
| 250 |     } | 468 |     } | 
| 251 | 
 | 469 | } | 
| 252 | 470 | ||
| 253 | 
 | 471 | DTZEntry::~DTZEntry() { | 
| 254 | if (!ptr) { | - | |
| 255 | *success = 0; | - | |
| 256 | return 0; | - | |
| 257 |   } | - | |
| 258 | 472 | ||
| - | 473 | if (baseAddress) | |
| - | 474 | TBFile::unmap(baseAddress, mapping); | |
| - | 475 | ||
| - | 476 | if (hasPawns) | |
| - | 477 | for (File f = FILE_A; f <= FILE_D; ++f) | |
| - | 478 | delete pawnTable.file[f].precomp; | |
| - | 479 |     else | |
| 259 | 
 | 480 | delete pieceTable.precomp; | 
| - | 481 | } | |
| - | 482 | ||
| - | 483 | void HashTable::insert(const std::vector<PieceType>& pieces) { | |
| - | 484 | ||
| 260 | 
 | 485 | std::string code; | 
| - | 486 | ||
| 261 | 
 | 487 | for (PieceType pt : pieces) | 
| - | 488 | code += PieceToChar[pt]; | |
| - | 489 | ||
| - | 490 | TBFile file(code.insert(code.find('K', 1), "v") + ".rtbw"); // KRK -> KRvK | |
| - | 491 | ||
| - | 492 | if (!file.is_open()) // Only WDL file is checked | |
| 262 | 
 | 493 | return; | 
| - | 494 | ||
| - | 495 | file.close(); | |
| - | 496 | ||
| - | 497 | MaxCardinality = std::max((int)pieces.size(), MaxCardinality); | |
| - | 498 | ||
| - | 499 | wdlTable.emplace_back(code); | |
| - | 500 | dtzTable.emplace_back(wdlTable.back()); | |
| - | 501 | ||
| - | 502 | insert(wdlTable.back().key , &wdlTable.back(), &dtzTable.back()); | |
| - | 503 | insert(wdlTable.back().key2, &wdlTable.back(), &dtzTable.back()); | |
| - | 504 | } | |
| - | 505 | ||
| - | 506 | // TB tables are compressed with canonical Huffman code. The compressed data is divided into | |
| - | 507 | // blocks of size d->sizeofBlock, and each block stores a variable number of symbols. | |
| - | 508 | // Each symbol represents either a WDL or a (remapped) DTZ value, or a pair of other symbols | |
| - | 509 | // (recursively). If you keep expanding the symbols in a block, you end up with up to 65536 | |
| - | 510 | // WDL or DTZ values. Each symbol represents up to 256 values and will correspond after | |
| - | 511 | // Huffman coding to at least 1 bit. So a block of 32 bytes corresponds to at most | |
| - | 512 | // 32 x 8 x 256 = 65536 values. This maximum is only reached for tables that consist mostly | |
| - | 513 | // of draws or mostly of wins, but such tables are actually quite common. In principle, the | |
| - | 514 | // blocks in WDL tables are 64 bytes long (and will be aligned on cache lines). But for | |
| - | 515 | // mostly-draw or mostly-win tables this can leave many 64-byte blocks only half-filled, so | |
| - | 516 | // in such cases blocks are 32 bytes long. The blocks of DTZ tables are up to 1024 bytes long. | |
| - | 517 | // The generator picks the size that leads to the smallest table. The "book" of symbols and | |
| - | 518 | // Huffman codes is the same for all blocks in the table. A non-symmetric pawnless TB file | |
| - | 519 | // will have one table for wtm and one for btm, a TB file with pawns will have tables per | |
| - | 520 | // file a,b,c,d also in this case one set for wtm and one for btm. | |
| - | 521 | int decompress_pairs(PairsData* d, uint64_t idx) { | |
| - | 522 | ||
| - | 523 |     // Special case where all table positions store the same value | |
| - | 524 | if (d->flags & TBFlag::SingleValue) | |
| - | 525 | return d->minSymLen; | |
| - | 526 | ||
| - | 527 |     // First we need to locate the right block that stores the value at index "idx". | |
| - | 528 |     // Because each block n stores blockLength[n] + 1 values, the index i of the block | |
| - | 529 |     // that contains the value at position idx is: | |
| - | 530 |     // | |
| - | 531 |     //                    for (i = -1, sum = 0; sum <= idx; i++) | |
| - | 532 |     //                        sum += blockLength[i + 1] + 1; | |
| - | 533 |     // | |
| - | 534 |     // This can be slow, so we use SparseIndex[] populated with a set of SparseEntry that | |
| - | 535 |     // point to known indices into blockLength[]. Namely SparseIndex[k] is a SparseEntry | |
| - | 536 |     // that stores the blockLength[] index and the offset within that block of the value | |
| - | 537 |     // with index I(k), where: | |
| - | 538 |     // | |
| - | 539 |     //       I(k) = k * d->span + d->span / 2      (1) | |
| - | 540 | ||
| - | 541 |     // First step is to get the 'k' of the I(k) nearest to our idx, using definition (1) | |
| - | 542 | uint32_t k = (uint32_t) (idx / d->span); // Pierre-Marie Baty -- added type cast | |
| - | 543 | ||
| - | 544 |     // Then we read the corresponding SparseIndex[] entry | |
| - | 545 | uint32_t block = number<uint32_t, LittleEndian>(&d->sparseIndex[k].block); | |
| - | 546 | int offset = number<uint16_t, LittleEndian>(&d->sparseIndex[k].offset); | |
| - | 547 | ||
| - | 548 |     // Now compute the difference idx - I(k). From definition of k we know that | |
| - | 549 |     // | |
| - | 550 |     //       idx = k * d->span + idx % d->span    (2) | |
| - | 551 |     // | |
| - | 552 |     // So from (1) and (2) we can compute idx - I(K): | |
| - | 553 | int diff = idx % d->span - d->span / 2; | |
| - | 554 | ||
| - | 555 |     // Sum the above to offset to find the offset corresponding to our idx | |
| 263 | 
 | 556 | offset += diff; | 
| - | 557 | ||
| - | 558 |     // Move to previous/next block, until we reach the correct block that contains idx, | |
| - | 559 |     // that is when 0 <= offset <= d->blockLength[block] | |
| - | 560 | while (offset < 0) | |
| - | 561 | offset += d->blockLength[--block] + 1; | |
| - | 562 | ||
| - | 563 | while (offset > d->blockLength[block]) | |
| 264 | 
 | 564 | offset -= d->blockLength[block++] + 1; | 
| - | 565 | ||
| - | 566 |     // Finally, we find the start address of our block of canonical Huffman symbols | |
| - | 567 | uint32_t* ptr = (uint32_t*)(d->data + block * d->sizeofBlock); | |
| - | 568 | ||
| - | 569 |     // Read the first 64 bits in our block, this is a (truncated) sequence of | |
| - | 570 |     // unknown number of symbols of unknown length but we know the first one | |
| - | 571 |     // is at the beginning of this 64 bits sequence. | |
| - | 572 | uint64_t buf64 = number<uint64_t, BigEndian>(ptr); ptr += 2; | |
| - | 573 | int buf64Size = 64; | |
| 265 | 
 | 574 |     Sym sym; | 
| - | 575 | ||
| - | 576 | while (true) { | |
| - | 577 | int len = 0; // This is the symbol length - d->min_sym_len | |
| - | 578 | ||
| - | 579 |         // Now get the symbol length. For any symbol s64 of length l right-padded | |
| - | 580 |         // to 64 bits we know that d->base64[l-1] >= s64 >= d->base64[l] so we | |
| - | 581 |         // can find the symbol length iterating through base64[]. | |
| - | 582 | while (buf64 < d->base64[len]) | |
| - | 583 | ++len; | |
| - | 584 | ||
| - | 585 |         // All the symbols of a given length are consecutive integers (numerical | |
| - | 586 |         // sequence property), so we can compute the offset of our symbol of | |
| - | 587 |         // length len, stored at the beginning of buf64. | |
| - | 588 | sym = (Sym) ((buf64 - d->base64[len]) >> (64 - len - d->minSymLen)); // Pierre-Marie Baty -- added type cast | |
| - | 589 | ||
| - | 590 |         // Now add the value of the lowest symbol of length len to get our symbol | |
| - | 591 | sym += number<Sym, LittleEndian>(&d->lowestSym[len]); | |
| - | 592 | ||
| - | 593 |         // If our offset is within the number of values represented by symbol sym | |
| 266 | 
 | 594 |         // we are done... | 
| 267 | 
 | 595 | if (offset < d->symlen[sym] + 1) | 
| - | 596 | break; | |
| - | 597 | ||
| - | 598 |         // ...otherwise update the offset and continue to iterate | |
| - | 599 | offset -= d->symlen[sym] + 1; | |
| - | 600 | len += d->minSymLen; // Get the real length | |
| - | 601 | buf64 <<= len; // Consume the just processed symbol | |
| - | 602 | buf64Size -= len; | |
| - | 603 | ||
| - | 604 | if (buf64Size <= 32) { // Refill the buffer | |
| - | 605 | buf64Size += 32; | |
| - | 606 | buf64 |= (uint64_t)number<uint32_t, BigEndian>(ptr++) << (64 - buf64Size); | |
| - | 607 |         } | |
| 268 |     } | 608 |     } | 
| 269 | } else { | - | |
| 270 | cmirror = pos.side_to_move() == WHITE ? 0 : 8; | - | |
| 271 | mirror = pos.side_to_move() == WHITE ? 0 : 0x38; | - | |
| 272 | bside = 0; | - | |
| 273 |   } | - | |
| 274 | 609 | ||
| - | 610 |     // Ok, now we have our symbol that expands into d->symlen[sym] + 1 symbols. | |
| - | 611 |     // We binary-search for our value recursively expanding into the left and | |
| - | 612 |     // right child symbols until we reach a leaf node where symlen[sym] + 1 == 1 | |
| - | 613 |     // that will store the value we need. | |
| 275 | 
 | 614 | while (d->symlen[sym]) { | 
| - | 615 | ||
| 276 | 
 | 616 | Sym left = d->btree[sym].get<LR::Left>(); | 
| - | 617 | ||
| 277 | 
 | 618 |         // If a symbol contains 36 sub-symbols (d->symlen[sym] + 1 = 36) and | 
| - | 619 |         // expands in a pair (d->symlen[left] = 23, d->symlen[right] = 11), then | |
| - | 620 |         // we know that, for instance the ten-th value (offset = 10) will be on | |
| - | 621 |         // the left side because in Recursive Pairing child symbols are adjacent. | |
| - | 622 | if (offset < d->symlen[left] + 1) | |
| 278 | 
 | 623 | sym = left; | 
| 279 | 
 | 624 | else { | 
| - | 625 | offset -= d->symlen[left] + 1; | |
| - | 626 | sym = d->btree[sym].get<LR::Right>(); | |
| - | 627 |         } | |
| 280 |     } | 628 |     } | 
| 281 | ubyte *pc = entry->pieces; | - | |
| 282 | for (i = 0; i < entry->num;) { | - | |
| 283 | Bitboard bb = pos.pieces((Color)((pc[i] ^ cmirror) >> 3), | - | |
| 284 | (PieceType)(pc[i] & 0x07)); | - | |
| 285 | do { | - | |
| 286 | p[i++] = pop_lsb(&bb); | - | |
| 287 | } while (bb); | - | |
| 288 |     } | - | |
| 289 | idx = encode_piece((struct TBEntry_piece *)entry, entry->norm, p, entry->factor); | - | |
| 290 | res = decompress_pairs(entry->precomp, idx); | - | |
| 291 | 629 | ||
| 292 | if (entry->flags & 2) | - | |
| 293 | 
 | 630 | return d->btree[sym].get<LR::Value>(); | 
| - | 631 | } | |
| 294 | 632 | ||
| - | 633 | bool check_dtz_stm(WDLEntry*, int, File) { return true; } | |
| - | 634 | ||
| - | 635 | bool check_dtz_stm(DTZEntry* entry, int stm, File f) { | |
| - | 636 | ||
| - | 637 | int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags | |
| - | 638 | : entry->pieceTable.precomp->flags; | |
| - | 639 | ||
| - | 640 | return (flags & TBFlag::STM) == stm | |
| - | 641 | || ((entry->key == entry->key2) && !entry->hasPawns); | |
| - | 642 | } | |
| - | 643 | ||
| - | 644 | // DTZ scores are sorted by frequency of occurrence and then assigned the | |
| - | 645 | // values 0, 1, 2, ... in order of decreasing frequency. This is done for each | |
| - | 646 | // of the four WDLScore values. The mapping information necessary to reconstruct | |
| - | 647 | // the original values is stored in the TB file and read during map[] init. | |
| - | 648 | WDLScore map_score(WDLEntry*, File, int value, WDLScore) { return WDLScore(value - 2); } | |
| - | 649 | ||
| - | 650 | int map_score(DTZEntry* entry, File f, int value, WDLScore wdl) { | |
| - | 651 | ||
| - | 652 | const int WDLMap[] = { 1, 3, 0, 2, 0 }; | |
| - | 653 | ||
| - | 654 | int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags | |
| - | 655 | : entry->pieceTable.precomp->flags; | |
| - | 656 | ||
| - | 657 | uint8_t* map = entry->hasPawns ? entry->pawnTable.map | |
| - | 658 | : entry->pieceTable.map; | |
| - | 659 | ||
| - | 660 | uint16_t* idx = entry->hasPawns ? entry->pawnTable.file[f].map_idx | |
| - | 661 | : entry->pieceTable.map_idx; | |
| - | 662 | if (flags & TBFlag::Mapped) | |
| 295 | 
 | 663 | value = map[idx[WDLMap[wdl + 2]] + value]; | 
| - | 664 | ||
| - | 665 |     // DTZ tables store distance to zero in number of moves or plies. We | |
| - | 666 |     // want to return plies, so we have convert to plies when needed. | |
| - | 667 | if ( (wdl == WDLWin && !(flags & TBFlag::WinPlies)) | |
| - | 668 | || (wdl == WDLLoss && !(flags & TBFlag::LossPlies)) | |
| - | 669 | || wdl == WDLCursedWin | |
| - | 670 | || wdl == WDLBlessedLoss) | |
| 296 | 
 | 671 | value *= 2; | 
| - | 672 | ||
| - | 673 | return value + 1; | |
| - | 674 | } | |
| - | 675 | ||
| - | 676 | // Compute a unique index out of a position and use it to probe the TB file. To | |
| - | 677 | // encode k pieces of same type and color, first sort the pieces by square in | |
| - | 678 | // ascending order s1 <= s2 <= ... <= sk then compute the unique index as: | |
| - | 679 | // | |
| - | 680 | //      idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk] | |
| - | 681 | // | |
| - | 682 | template<typename Entry, typename T = typename Ret<Entry>::type> | |
| - | 683 | T do_probe_table(const Position& pos, Entry* entry, WDLScore wdl, ProbeState* result) { | |
| - | 684 | ||
| - | 685 | const bool IsWDL = std::is_same<Entry, WDLEntry>::value; | |
| - | 686 | ||
| - | 687 | Square squares[TBPIECES]; | |
| - | 688 | Piece pieces[TBPIECES]; | |
| - | 689 | uint64_t idx; | |
| - | 690 | int next = 0, size = 0, leadPawnsCnt = 0; | |
| 297 | 
 | 691 | PairsData* d; | 
| - | 692 | Bitboard b, leadPawns = 0; | |
| - | 693 | File tbFile = FILE_A; | |
| - | 694 | ||
| - | 695 |     // A given TB entry like KRK has associated two material keys: KRvk and Kvkr. | |
| - | 696 |     // If both sides have the same pieces keys are equal. In this case TB tables | |
| - | 697 |     // only store the 'white to move' case, so if the position to lookup has black | |
| - | 698 |     // to move, we need to switch the color and flip the squares before to lookup. | |
| - | 699 | bool symmetricBlackToMove = (entry->key == entry->key2 && pos.side_to_move()); | |
| - | 700 | ||
| - | 701 |     // TB files are calculated for white as stronger side. For instance we have | |
| - | 702 |     // KRvK, not KvKR. A position where stronger side is white will have its | |
| - | 703 |     // material key == entry->key, otherwise we have to switch the color and | |
| - | 704 |     // flip the squares before to lookup. | |
| 298 | 
 | 705 | bool blackStronger = (pos.material_key() != entry->key); | 
| - | 706 | ||
| - | 707 | int flipColor = (symmetricBlackToMove || blackStronger) * 8; | |
| - | 708 | int flipSquares = (symmetricBlackToMove || blackStronger) * 070; | |
| - | 709 | int stm = (symmetricBlackToMove || blackStronger) ^ pos.side_to_move(); | |
| - | 710 | ||
| - | 711 |     // For pawns, TB files store 4 separate tables according if leading pawn is on | |
| - | 712 |     // file a, b, c or d after reordering. The leading pawn is the one with maximum | |
| - | 713 |     // MapPawns[] value, that is the one most toward the edges and with lowest rank. | |
| - | 714 | if (entry->hasPawns) { | |
| - | 715 | ||
| - | 716 |         // In all the 4 tables, pawns are at the beginning of the piece sequence and | |
| - | 717 |         // their color is the reference one. So we just pick the first one. | |
| 299 | 
 | 718 | Piece pc = Piece(item(entry->pawnTable, 0, 0).precomp->pieces[0] ^ flipColor); | 
| - | 719 | ||
| - | 720 | assert(type_of(pc) == PAWN); | |
| - | 721 | ||
| 300 | 
 | 722 | leadPawns = b = pos.pieces(color_of(pc), PAWN); | 
| 301 | 
 | 723 |         do | 
| - | 724 | squares[size++] = pop_lsb(&b) ^ flipSquares; | |
| - | 725 | while (b); | |
| - | 726 | ||
| - | 727 | leadPawnsCnt = size; | |
| - | 728 | ||
| - | 729 | std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp)); | |
| - | 730 | ||
| - | 731 | tbFile = file_of(squares[0]); | |
| - | 732 | if (tbFile > FILE_D) | |
| - | 733 | tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1 | |
| - | 734 | ||
| - | 735 | d = item(entry->pawnTable , stm, tbFile).precomp; | |
| - | 736 | } else | |
| - | 737 | d = item(entry->pieceTable, stm, tbFile).precomp; | |
| - | 738 | ||
| - | 739 |     // DTZ tables are one-sided, i.e. they store positions only for white to | |
| - | 740 |     // move or only for black to move, so check for side to move to be stm, | |
| - | 741 |     // early exit otherwise. | |
| - | 742 | if (!IsWDL && !check_dtz_stm(entry, stm, tbFile)) | |
| - | 743 | return *result = CHANGE_STM, T(); | |
| - | 744 | ||
| - | 745 |     // Now we are ready to get all the position pieces (but the lead pawns) and | |
| - | 746 |     // directly map them to the correct color and square. | |
| - | 747 | b = pos.pieces() ^ leadPawns; | |
| 302 | do { | 748 | do { | 
| 303 | 
 | 749 | Square s = pop_lsb(&b); | 
| - | 750 | squares[size] = s ^ flipSquares; | |
| - | 751 | pieces[size++] = Piece(pos.piece_on(s) ^ flipColor); | |
| 304 | } while ( | 752 | } while (b); | 
| - | 753 | ||
| - | 754 | assert(size >= 2); | |
| - | 755 | ||
| - | 756 |     // Then we reorder the pieces to have the same sequence as the one stored | |
| - | 757 |     // in precomp->pieces[i]: the sequence that ensures the best compression. | |
| 305 | int | 758 | for (int i = leadPawnsCnt; i < size; ++i) | 
| - | 759 | for (int j = i; j < size; ++j) | |
| 306 | 
 | 760 | if (d->pieces[i] == pieces[j]) | 
| - | 761 |             { | |
| - | 762 | std::swap(pieces[i], pieces[j]); | |
| - | 763 | std::swap(squares[i], squares[j]); | |
| 307 | 
 | 764 | break; | 
| 308 | 
 | 765 |             } | 
| - | 766 | ||
| - | 767 |     // Now we map again the squares so that the square of the lead piece is in | |
| - | 768 |     // the triangle A1-D1-D4. | |
| - | 769 | if (file_of(squares[0]) > FILE_D) | |
| - | 770 | for (int i = 0; i < size; ++i) | |
| - | 771 | squares[i] ^= 7; // Horizontal flip: SQ_H1 -> SQ_A1 | |
| - | 772 | ||
| - | 773 |     // Encode leading pawns starting with the one with minimum MapPawns[] and | |
| - | 774 |     // proceeding in ascending order. | |
| - | 775 | if (entry->hasPawns) { | |
| - | 776 | idx = LeadPawnIdx[leadPawnsCnt][squares[0]]; | |
| - | 777 | ||
| - | 778 | std::sort(squares + 1, squares + leadPawnsCnt, pawns_comp); | |
| - | 779 | ||
| - | 780 | for (int i = 1; i < leadPawnsCnt; ++i) | |
| - | 781 | idx += Binomial[i][MapPawns[squares[i]]]; | |
| - | 782 | ||
| - | 783 | goto encode_remaining; // With pawns we have finished special treatments | |
| 309 |     } | 784 |     } | 
| - | 785 | ||
| - | 786 |     // In positions withouth pawns, we further flip the squares to ensure leading | |
| 310 | 
 | 787 |     // piece is below RANK_5. | 
| - | 788 | if (rank_of(squares[0]) > RANK_4) | |
| 311 | for ( | 789 | for (int i = 0; i < size; ++i) | 
| 312 | 
 | 790 | squares[i] ^= 070; // Vertical flip: SQ_A8 -> SQ_A1 | 
| - | 791 | ||
| - | 792 |     // Look for the first piece of the leading group not on the A1-D4 diagonal | |
| - | 793 |     // and ensure it is mapped below the diagonal. | |
| 313 | 
 | 794 | for (int i = 0; i < d->groupLen[0]; ++i) { | 
| - | 795 | if (!off_A1H8(squares[i])) | |
| 314 | 
 | 796 | continue; | 
| - | 797 | ||
| - | 798 | if (off_A1H8(squares[i]) > 0) // A1-H8 diagonal flip: SQ_A3 -> SQ_C3 | |
| 315 | 
 | 799 | for (int j = i; j < size; ++j) | 
| - | 800 | squares[j] = Square(((squares[j] >> 3) | (squares[j] << 3)) & 63); | |
| 316 | 
 | 801 | break; | 
| 317 |     } | 802 |     } | 
| 318 | idx = encode_pawn((struct TBEntry_pawn *)entry, entry->file[f].norm, p, entry->file[f].factor); | - | |
| 319 | res = decompress_pairs(entry->file[f].precomp, idx); | - | |
| 320 | 803 | ||
| - | 804 |     // Encode the leading group. | |
| - | 805 |     // | |
| - | 806 |     // Suppose we have KRvK. Let's say the pieces are on square numbers wK, wR | |
| - | 807 |     // and bK (each 0...63). The simplest way to map this position to an index | |
| - | 808 |     // is like this: | |
| - | 809 |     // | |
| - | 810 |     //   index = wK * 64 * 64 + wR * 64 + bK; | |
| - | 811 |     // | |
| - | 812 |     // But this way the TB is going to have 64*64*64 = 262144 positions, with | |
| - | 813 |     // lots of positions being equivalent (because they are mirrors of each | |
| - | 814 |     // other) and lots of positions being invalid (two pieces on one square, | |
| 321 | 
 | 815 |     // adjacent kings, etc.). | 
| - | 816 |     // Usually the first step is to take the wK and bK together. There are just | |
| - | 817 |     // 462 ways legal and not-mirrored ways to place the wK and bK on the board. | |
| - | 818 |     // Once we have placed the wK and bK, there are 62 squares left for the wR | |
| - | 819 |     // Mapping its square from 0..63 to available squares 0..61 can be done like: | |
| - | 820 |     // | |
| - | 821 |     //   wR -= (wR > wK) + (wR > bK); | |
| - | 822 |     // | |
| 322 | 
 | 823 |     // In words: if wR "comes later" than wK, we deduct 1, and the same if wR | 
| - | 824 |     // "comes later" than bK. In case of two same pieces like KRRvK we want to | |
| - | 825 |     // place the two Rs "together". If we have 62 squares left, we can place two | |
| - | 826 |     // Rs "together" in 62 * 61 / 2 ways (we divide by 2 because rooks can be | |
| - | 827 |     // swapped and still get the same position.) | |
| - | 828 |     // | |
| - | 829 |     // In case we have at least 3 unique pieces (inlcuded kings) we encode them | |
| - | 830 |     // together. | |
| - | 831 | if (entry->hasUniquePieces) { | |
| 323 | 832 | ||
| 324 | 
 | 833 | int adjust1 = squares[1] > squares[0]; | 
| 325 | 
 | 834 | int adjust2 = (squares[2] > squares[0]) + (squares[2] > squares[1]); | 
| 326 |   } | - | |
| 327 | 835 | ||
| - | 836 |         // First piece is below a1-h8 diagonal. MapA1D1D4[] maps the b1-d1-d3 | |
| - | 837 |         // triangle to 0...5. There are 63 squares for second piece and and 62 | |
| - | 838 |         // (mapped to 0...61) for the third. | |
| - | 839 | if (off_A1H8(squares[0])) | |
| - | 840 | idx = ( MapA1D1D4[squares[0]] * 63 | |
| - | 841 | + (squares[1] - adjust1)) * 62 | |
| - | 842 | + squares[2] - adjust2; | |
| - | 843 | ||
| - | 844 |         // First piece is on a1-h8 diagonal, second below: map this occurence to | |
| - | 845 |         // 6 to differentiate from the above case, rank_of() maps a1-d4 diagonal | |
| - | 846 |         // to 0...3 and finally MapB1H1H7[] maps the b1-h1-h7 triangle to 0..27. | |
| - | 847 | else if (off_A1H8(squares[1])) | |
| - | 848 | idx = ( 6 * 63 + rank_of(squares[0]) * 28 | |
| - | 849 | + MapB1H1H7[squares[1]]) * 62 | |
| - | 850 | + squares[2] - adjust2; | |
| - | 851 | ||
| - | 852 |         // First two pieces are on a1-h8 diagonal, third below | |
| - | 853 | else if (off_A1H8(squares[2])) | |
| - | 854 | idx = 6 * 63 * 62 + 4 * 28 * 62 | |
| - | 855 | + rank_of(squares[0]) * 7 * 28 | |
| - | 856 | + (rank_of(squares[1]) - adjust1) * 28 | |
| - | 857 | + MapB1H1H7[squares[2]]; | |
| - | 858 | ||
| - | 859 |         // All 3 pieces on the diagonal a1-h8 | |
| 328 | 
 | 860 |         else | 
| - | 861 | idx = 6 * 63 * 62 + 4 * 28 * 62 + 4 * 7 * 28 | |
| - | 862 | + rank_of(squares[0]) * 7 * 6 | |
| - | 863 | + (rank_of(squares[1]) - adjust1) * 6 | |
| - | 864 | + (rank_of(squares[2]) - adjust2); | |
| - | 865 | } else | |
| - | 866 |         // We don't have at least 3 unique pieces, like in KRRvKBB, just map | |
| - | 867 |         // the kings. | |
| - | 868 | idx = MapKK[MapA1D1D4[squares[0]]][squares[1]]; | |
| - | 869 | ||
| - | 870 | encode_remaining: | |
| - | 871 | idx *= d->groupIdx[0]; | |
| - | 872 | Square* groupSq = squares + d->groupLen[0]; | |
| - | 873 | ||
| - | 874 |     // Encode remainig pawns then pieces according to square, in ascending order | |
| - | 875 | bool remainingPawns = entry->hasPawns && entry->pawnTable.pawnCount[1]; | |
| - | 876 | ||
| - | 877 | while (d->groupLen[++next]) | |
| - | 878 |     { | |
| - | 879 | std::sort(groupSq, groupSq + d->groupLen[next]); | |
| - | 880 | uint64_t n = 0; | |
| - | 881 | ||
| - | 882 |         // Map down a square if "comes later" than a square in the previous | |
| - | 883 |         // groups (similar to what done earlier for leading group pieces). | |
| - | 884 | for (int i = 0; i < d->groupLen[next]; ++i) | |
| - | 885 |         { | |
| - | 886 | auto f = [&](Square s) { return groupSq[i] > s; }; | |
| - | 887 | auto adjust = std::count_if(squares, groupSq, f); | |
| - | 888 | n += Binomial[i + 1][groupSq[i] - adjust - 8 * remainingPawns]; | |
| - | 889 |         } | |
| - | 890 | ||
| - | 891 | remainingPawns = false; | |
| - | 892 | idx += n * d->groupIdx[next]; | |
| - | 893 | groupSq += d->groupLen[next]; | |
| - | 894 |     } | |
| - | 895 | ||
| - | 896 |     // Now that we have the index, decompress the pair and get the score | |
| - | 897 | return map_score(entry, tbFile, decompress_pairs(d, idx), wdl); | |
| 329 | } | 898 | } | 
| 330 | 899 | ||
| 331 | //  | 900 | // Group together pieces that will be encoded together. The general rule is that | 
| - | 901 | // a group contains pieces of same type and color. The exception is the leading | |
| 332 | 
 | 902 | // group that, in case of positions withouth pawns, can be formed by 3 different | 
| - | 903 | // pieces (default) or by the king pair when there is not a unique piece apart | |
| - | 904 | // from the kings. When there are pawns, pawns are always first in pieces[]. | |
| - | 905 | // | |
| - | 906 | // As example KRKN -> KRK + N, KNNK -> KK + NN, KPPKP -> P + PP + K + K | |
| 333 | 
 | 907 | // | 
| - | 908 | // The actual grouping depends on the TB generator and can be inferred from the | |
| 334 | 
 | 909 | // sequence of pieces in piece[] array. | 
| - | 910 | template<typename T> | |
| - | 911 | void set_groups(T& e, PairsData* d, int order[], File f) { | |
| 335 | 912 | ||
| - | 913 | int n = 0, firstLen = e.hasPawns ? 0 : e.hasUniquePieces ? 3 : 2; | |
| - | 914 | d->groupLen[n] = 1; | |
| - | 915 | ||
| - | 916 |     // Number of pieces per group is stored in groupLen[], for instance in KRKN | |
| - | 917 |     // the encoder will default on '111', so groupLen[] will be (3, 1). | |
| 336 | for ( | 918 | for (int i = 1; i < e.pieceCount; ++i) | 
| - | 919 | if (--firstLen > 0 || d->pieces[i] == d->pieces[i - 1]) | |
| - | 920 | d->groupLen[n]++; | |
| - | 921 |         else | |
| - | 922 | d->groupLen[++n] = 1; | |
| - | 923 | ||
| - | 924 | d->groupLen[++n] = 0; // Zero-terminated | |
| - | 925 | ||
| - | 926 |     // The sequence in pieces[] defines the groups, but not the order in which | |
| - | 927 |     // they are encoded. If the pieces in a group g can be combined on the board | |
| - | 928 |     // in N(g) different ways, then the position encoding will be of the form: | |
| - | 929 |     // | |
| - | 930 |     //           g1 * N(g2) * N(g3) + g2 * N(g3) + g3 | |
| - | 931 |     // | |
| - | 932 |     // This ensures unique encoding for the whole position. The order of the | |
| - | 933 |     // groups is a per-table parameter and could not follow the canonical leading | |
| - | 934 |     // pawns/pieces -> remainig pawns -> remaining pieces. In particular the | |
| - | 935 |     // first group is at order[0] position and the remaining pawns, when present, | |
| - | 936 |     // are at order[1] position. | |
| - | 937 | bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides | |
| 337 | 
 | 938 | int next = pp ? 2 : 1; | 
| - | 939 | int freeSquares = 64 - d->groupLen[0] - (pp ? d->groupLen[1] : 0); | |
| - | 940 | uint64_t idx = 1; | |
| - | 941 | ||
| - | 942 | for (int k = 0; next < n || k == order[0] || k == order[1]; ++k) | |
| - | 943 | if (k == order[0]) // Leading pawns or pieces | |
| - | 944 |         { | |
| - | 945 | d->groupIdx[0] = idx; | |
| - | 946 | idx *= e.hasPawns ? LeadPawnsSize[d->groupLen[0]][f] | |
| - | 947 | : e.hasUniquePieces ? 31332 : 462; | |
| - | 948 |         } | |
| - | 949 | else if (k == order[1]) // Remaining pawns | |
| - | 950 |         { | |
| - | 951 | d->groupIdx[1] = idx; | |
| - | 952 | idx *= Binomial[d->groupLen[1]][48 - d->groupLen[0]]; | |
| - | 953 |         } | |
| - | 954 | else // Remainig pieces | |
| - | 955 |         { | |
| - | 956 | d->groupIdx[next] = idx; | |
| - | 957 | idx *= Binomial[d->groupLen[next]][freeSquares]; | |
| - | 958 | freeSquares -= d->groupLen[next++]; | |
| - | 959 |         } | |
| - | 960 | ||
| - | 961 | d->groupIdx[n] = idx; | |
| - | 962 | } | |
| - | 963 | ||
| - | 964 | // In Recursive Pairing each symbol represents a pair of childern symbols. So | |
| - | 965 | // read d->btree[] symbols data and expand each one in his left and right child | |
| - | 966 | // symbol until reaching the leafs that represent the symbol value. | |
| - | 967 | uint8_t set_symlen(PairsData* d, Sym s, std::vector<bool>& visited) { | |
| - | 968 | ||
| 338 | 
 | 969 | visited[s] = true; // We can set it now because tree is acyclic | 
| - | 970 | Sym sr = d->btree[s].get<LR::Right>(); | |
| - | 971 | ||
| - | 972 | if (sr == 0xFFF) | |
| - | 973 | return 0; | |
| - | 974 | ||
| - | 975 | Sym sl = d->btree[s].get<LR::Left>(); | |
| - | 976 | ||
| - | 977 | if (!visited[sl]) | |
| 339 | 
 | 978 | d->symlen[sl] = set_symlen(d, sl, visited); | 
| - | 979 | ||
| - | 980 | if (!visited[sr]) | |
| 340 | 
 | 981 | d->symlen[sr] = set_symlen(d, sr, visited); | 
| - | 982 | ||
| - | 983 | return d->symlen[sl] + d->symlen[sr] + 1; | |
| - | 984 | } | |
| - | 985 | ||
| - | 986 | uint8_t* set_sizes(PairsData* d, uint8_t* data) { | |
| - | 987 | ||
| - | 988 | d->flags = *data++; | |
| - | 989 | ||
| - | 990 | if (d->flags & TBFlag::SingleValue) { | |
| 341 | 
 | 991 | d->blocksNum = d->blockLengthSize = 0; | 
| - | 992 | d->span = d->sparseIndexSize = 0; // Broken MSVC zero-init | |
| - | 993 | d->minSymLen = *data++; // Here we store the single value | |
| - | 994 | return data; | |
| 342 |     } | 995 |     } | 
| 343 |   } | - | |
| 344 | 996 | ||
| - | 997 |     // groupLen[] is a zero-terminated list of group lengths, the last groupIdx[] | |
| - | 998 |     // element stores the biggest index that is the tb size. | |
| - | 999 | uint64_t tbSize = d->groupIdx[std::find(d->groupLen, d->groupLen + 7, 0) - d->groupLen]; | |
| - | 1000 | ||
| - | 1001 | d->sizeofBlock = 1ULL << *data++; | |
| - | 1002 | d->span = 1ULL << *data++; | |
| - | 1003 | d->sparseIndexSize = (size_t) ((tbSize + d->span - 1) / d->span); // Round up // Pierre-Marie Baty -- added type cast | |
| - | 1004 | int padding = number<uint8_t, LittleEndian>(data++); | |
| - | 1005 | d->blocksNum = number<uint32_t, LittleEndian>(data); data += sizeof(uint32_t); | |
| - | 1006 | d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[] | |
| - | 1007 |                                                  // does not point out of range. | |
| - | 1008 | d->maxSymLen = *data++; | |
| - | 1009 | d->minSymLen = *data++; | |
| - | 1010 | d->lowestSym = (Sym*)data; | |
| - | 1011 | d->base64.resize(d->maxSymLen - d->minSymLen + 1); | |
| - | 1012 | ||
| - | 1013 |     // The canonical code is ordered such that longer symbols (in terms of | |
| - | 1014 |     // the number of bits of their Huffman code) have lower numeric value, | |
| - | 1015 |     // so that d->lowestSym[i] >= d->lowestSym[i+1] (when read as LittleEndian). | |
| - | 1016 |     // Starting from this we compute a base64[] table indexed by symbol length | |
| - | 1017 |     // and containing 64 bit values so that d->base64[i] >= d->base64[i+1]. | |
| - | 1018 |     // See http://www.eecs.harvard.edu/~michaelm/E210/huffman.pdf | |
| - | 1019 | for (int i = d->base64.size() - 2; i >= 0; --i) { | |
| - | 1020 | d->base64[i] = (d->base64[i + 1] + number<Sym, LittleEndian>(&d->lowestSym[i]) | |
| - | 1021 | - number<Sym, LittleEndian>(&d->lowestSym[i + 1])) / 2; | |
| - | 1022 | ||
| - | 1023 | assert(d->base64[i] * 2 >= d->base64[i+1]); | |
| - | 1024 |     } | |
| - | 1025 | ||
| - | 1026 |     // Now left-shift by an amount so that d->base64[i] gets shifted 1 bit more | |
| - | 1027 |     // than d->base64[i+1] and given the above assert condition, we ensure that | |
| - | 1028 |     // d->base64[i] >= d->base64[i+1]. Moreover for any symbol s64 of length i | |
| - | 1029 |     // and right-padded to 64 bits holds d->base64[i-1] >= s64 >= d->base64[i]. | |
| - | 1030 | for (size_t i = 0; i < d->base64.size(); ++i) | |
| - | 1031 | d->base64[i] <<= 64 - i - d->minSymLen; // Right-padding to 64 bits | |
| - | 1032 | ||
| - | 1033 | data += d->base64.size() * sizeof(Sym); | |
| - | 1034 | d->symlen.resize(number<uint16_t, LittleEndian>(data)); data += sizeof(uint16_t); | |
| 345 | 
 | 1035 | d->btree = (LR*)data; | 
| - | 1036 | ||
| - | 1037 |     // The comrpession scheme used is "Recursive Pairing", that replaces the most | |
| - | 1038 |     // frequent adjacent pair of symbols in the source message by a new symbol, | |
| - | 1039 |     // reevaluating the frequencies of all of the symbol pairs with respect to | |
| - | 1040 |     // the extended alphabet, and then repeating the process. | |
| - | 1041 |     // See http://www.larsson.dogma.net/dcc99.pdf | |
| - | 1042 | std::vector<bool> visited(d->symlen.size()); | |
| - | 1043 | ||
| - | 1044 | for (Sym sym = 0; sym < d->symlen.size(); ++sym) | |
| - | 1045 | if (!visited[sym]) | |
| - | 1046 | d->symlen[sym] = set_symlen(d, sym, visited); | |
| - | 1047 | ||
| - | 1048 | return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1); | |
| 346 | } | 1049 | } | 
| 347 | 1050 | ||
| - | 1051 | template<typename T> | |
| 348 | 
 | 1052 | uint8_t* set_dtz_map(WDLEntry&, T&, uint8_t*, File) { return nullptr; } | 
| 349 | { | 1053 | |
| 350 | int v; | - | |
| 351 | 
 | 1054 | template<typename T> | 
| 352 | 
 | 1055 | uint8_t* set_dtz_map(DTZEntry&, T& p, uint8_t* data, File maxFile) { | 
| 353 |   StateInfo st; | - | |
| 354 | 1056 | ||
| 355 |   // Generate (at least) all legal non-ep captures including (under)promotions. | - | |
| 356 |   // It is OK to generate more, as long as they are filtered out below. | - | |
| 357 | 
 | 1057 | p.map = data; | 
| 358 | end = generate<CAPTURES>(pos, stack); | - | |
| 359 |     // Since underpromotion captures are not included, we need to add them. | - | |
| 360 | end = add_underprom_caps(pos, stack, end); | - | |
| 361 | } else | - | |
| 362 | end = generate<EVASIONS>(pos, stack); | - | |
| 363 | 1058 | ||
| 364 | for ( | 1059 | for (File f = FILE_A; f <= maxFile; ++f) { | 
| 365 | Move capture = moves->move; | - | |
| 366 | if ( | 1060 | if (item(p, 0, f).precomp->flags & TBFlag::Mapped) | 
| 367 | 
 | 1061 | for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x | 
| 368 | continue; | - | |
| 369 | 
 | 1062 | item(p, 0, f).map_idx[i] = (uint16_t)(data - p.map + 1); | 
| 370 | v = -probe_ab(pos, -beta, -alpha, success); | - | |
| 371 | pos.undo_move(capture); | - | |
| 372 | 
 | 1063 | data += *data + 1; | 
| 373 | if (v > alpha) { | - | |
| 374 | if (v >= beta) { | - | |
| 375 | *success = 2; | - | |
| 376 | 
 | 1064 |             } | 
| 377 |       } | - | |
| 378 | alpha = v; | - | |
| 379 |     } | 1065 |     } | 
| 380 |   } | - | |
| 381 | 1066 | ||
| 382 | 
 | 1067 | return data += (uintptr_t)data & 1; // Word alignment | 
| 383 | if (*success == 0) return 0; | - | |
| 384 | if (alpha >= v) { | - | |
| 385 | *success = 1 + (alpha > 0); | - | |
| 386 | return alpha; | - | |
| 387 | } else { | - | |
| 388 | *success = 1; | - | |
| 389 | return v; | - | |
| 390 |   } | - | |
| 391 | } | 1068 | } | 
| 392 | 1069 | ||
| 393 | // Probe the WDL table for a particular position. | - | |
| 394 | // If *success != 0, the probe was successful. | - | |
| 395 | // The return value is from the point of view of the side to move: | - | |
| 396 | // -2 : loss | - | |
| 397 | 
 | 1070 | template<typename Entry, typename T> | 
| 398 | //  0 : draw | - | |
| 399 | 
 | 1071 | void do_init(Entry& e, T& p, uint8_t* data) { | 
| 400 | //  2 : win | - | |
| 401 | int Tablebases::probe_wdl(Position& pos, int *success) | - | |
| 402 | { | - | |
| 403 | int v; | - | |
| 404 | 1072 | ||
| 405 | *success = 1; | - | |
| 406 | 
 | 1073 | const bool IsWDL = std::is_same<Entry, WDLEntry>::value; | 
| 407 | 1074 | ||
| 408 |   // If en passant is not possible, we are done. | - | |
| 409 | if (pos.ep_square() == SQ_NONE) | - | |
| 410 | 
 | 1075 | PairsData* d; | 
| 411 | if (!(*success)) return 0; | - | |
| 412 | 1076 | ||
| 413 | 
 | 1077 | enum { Split = 1, HasPawns = 2 }; | 
| 414 | int v1 = -3; | - | |
| 415 |   // Generate (at least) all legal en passant captures. | - | |
| 416 | ExtMove stack[192]; | - | |
| 417 | ExtMove *moves, *end; | - | |
| 418 |   StateInfo st; | - | |
| 419 | 1078 | ||
| 420 | if (!pos.checkers()) | - | |
| 421 | 
 | 1079 | assert(e.hasPawns == !!(*data & HasPawns)); | 
| 422 |   else | - | |
| 423 | 
 | 1080 | assert((e.key != e.key2) == !!(*data & Split)); | 
| 424 | 1081 | ||
| 425 | for (moves = stack; moves < end; moves++) { | - | |
| 426 | 
 | 1082 | data++; // First byte stores flags | 
| - | 1083 | ||
| 427 | 
 | 1084 | const int Sides = IsWDL && (e.key != e.key2) ? 2 : 1; | 
| 428 | || !pos.legal(capture)) | - | |
| 429 | continue; | - | |
| 430 | 
 | 1085 | const File MaxFile = e.hasPawns ? FILE_D : FILE_A; | 
| - | 1086 | ||
| 431 | 
 | 1087 | bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides | 
| - | 1088 | ||
| 432 | 
 | 1089 | assert(!pp || e.pawnTable.pawnCount[0]); | 
| - | 1090 | ||
| 433 | 
 | 1091 | for (File f = FILE_A; f <= MaxFile; ++f) { | 
| 434 | if (v0 > v1) v1 = v0; | - | |
| 435 |   } | 1092 | |
| 436 | if (v1 > -3) { | - | |
| 437 | 
 | 1093 | for (int i = 0; i < Sides; i++) | 
| 438 | else if (v == 0) { | - | |
| 439 | 
 | 1094 | item(p, i, f).precomp = new PairsData(); | 
| - | 1095 | ||
| 440 | 
 | 1096 | int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF }, | 
| 441 | Move capture = moves->move; | - | |
| 442 | 
 | 1097 | { *data >> 4, pp ? *(data + 1) >> 4 : 0xF } }; | 
| 443 | 
 | 1098 | data += 1 + pp; | 
| 444 |       } | 1099 | |
| 445 | if (moves == end && !pos.checkers()) { | - | |
| 446 | 
 | 1100 | for (int k = 0; k < e.pieceCount; ++k, ++data) | 
| 447 | for (; | 1101 | for (int i = 0; i < Sides; i++) | 
| 448 | 
 | 1102 | item(p, i, f).precomp->pieces[k] = Piece(i ? *data >> 4 : *data & 0xF); | 
| - | 1103 | ||
| 449 | 
 | 1104 | for (int i = 0; i < Sides; ++i) | 
| 450 | break; | - | |
| 451 |         } | - | |
| 452 |       } | - | |
| 453 | 
 | 1105 | set_groups(e, item(p, i, f).precomp, order[i], f); | 
| 454 | if (moves == end) | - | |
| 455 | v = v1; | - | |
| 456 |     } | 1106 |     } | 
| 457 |   } | - | |
| 458 | 1107 | ||
| - | 1108 | data += (uintptr_t)data & 1; // Word alignment | |
| - | 1109 | ||
| - | 1110 | for (File f = FILE_A; f <= MaxFile; ++f) | |
| - | 1111 | for (int i = 0; i < Sides; i++) | |
| - | 1112 | data = set_sizes(item(p, i, f).precomp, data); | |
| - | 1113 | ||
| - | 1114 | if (!IsWDL) | |
| - | 1115 | data = set_dtz_map(e, p, data, MaxFile); | |
| - | 1116 | ||
| - | 1117 | for (File f = FILE_A; f <= MaxFile; ++f) | |
| - | 1118 | for (int i = 0; i < Sides; i++) { | |
| - | 1119 | (d = item(p, i, f).precomp)->sparseIndex = (SparseEntry*)data; | |
| - | 1120 | data += d->sparseIndexSize * sizeof(SparseEntry); | |
| 459 | 
 | 1121 |         } | 
| - | 1122 | ||
| - | 1123 | for (File f = FILE_A; f <= MaxFile; ++f) | |
| - | 1124 | for (int i = 0; i < Sides; i++) { | |
| - | 1125 | (d = item(p, i, f).precomp)->blockLength = (uint16_t*)data; | |
| - | 1126 | data += d->blockLengthSize * sizeof(uint16_t); | |
| - | 1127 |         } | |
| - | 1128 | ||
| - | 1129 | for (File f = FILE_A; f <= MaxFile; ++f) | |
| - | 1130 | for (int i = 0; i < Sides; i++) { | |
| - | 1131 | data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment | |
| - | 1132 | (d = item(p, i, f).precomp)->data = data; | |
| - | 1133 | data += d->blocksNum * d->sizeofBlock; | |
| - | 1134 |         } | |
| 460 | } | 1135 | } | 
| 461 | 1136 | ||
| 462 | 
 | 1137 | template<typename Entry> | 
| 463 | 
 | 1138 | void* init(Entry& e, const Position& pos) { | 
| 464 | { | - | |
| 465 | int wdl, dtz; | - | |
| 466 | 1139 | ||
| 467 | 
 | 1140 | const bool IsWDL = std::is_same<Entry, WDLEntry>::value; | 
| 468 | if (*success == 0) return 0; | - | |
| 469 | 1141 | ||
| 470 | 
 | 1142 | static Mutex mutex; | 
| 471 | 1143 | ||
| - | 1144 |     // Avoid a thread reads 'ready' == true while another is still in do_init(), | |
| - | 1145 |     // this could happen due to compiler reordering. | |
| 472 | if ( | 1146 | if (e.ready.load(std::memory_order_acquire)) | 
| 473 | 
 | 1147 | return e.baseAddress; | 
| 474 | 1148 | ||
| 475 | ExtMove stack[192]; | - | |
| 476 | 
 | 1149 | std::unique_lock<Mutex> lk(mutex); | 
| 477 |   StateInfo st; | - | |
| 478 | 1150 | ||
| 479 | if (wdl > 0) { | - | |
| 480 | 
 | 1151 | if (e.ready.load(std::memory_order_relaxed)) // Recheck under lock | 
| 481 |     // including non-capturing promotions. | - | |
| 482 | 
 | 1152 | return e.baseAddress; | 
| 483 | end = generate<NON_EVASIONS>(pos, stack); | - | |
| 484 |     else | - | |
| 485 | end = generate<EVASIONS>(pos, stack); | - | |
| 486 | 1153 | ||
| 487 | 
 | 1154 |     // Pieces strings in decreasing order for each color, like ("KPP","KR") | 
| 488 | 
 | 1155 | std::string fname, w, b; | 
| 489 | 
 | 1156 | for (PieceType pt = KING; pt >= PAWN; --pt) { | 
| 490 | || !pos.legal(move)) | - | |
| 491 | continue; | - | |
| 492 | 
 | 1157 | w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]); | 
| 493 | 
 | 1158 | b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]); | 
| 494 | pos.undo_move(move); | - | |
| 495 | if (*success == 0) return 0; | - | |
| 496 | if (v == wdl) | - | |
| 497 | return v == 2 ? 1 : 101; | - | |
| 498 |     } | 1159 |     } | 
| 499 |   } | - | |
| 500 | 1160 | ||
| 501 | 
 | 1161 | const uint8_t TB_MAGIC[][4] = { { 0xD7, 0x66, 0x0C, 0xA5 }, | 
| 502 | if (*success >= 0) { | - | |
| 503 | if (wdl & 1) dtz += 100; | - | |
| 504 | 
 | 1162 | { 0x71, 0xE8, 0x23, 0x5D } }; | 
| 505 |   } | - | |
| 506 | 1163 | ||
| - | 1164 | fname = (e.key == pos.material_key() ? w + 'v' + b : b + 'v' + w) | |
| - | 1165 | + (IsWDL ? ".rtbw" : ".rtbz"); | |
| - | 1166 | ||
| - | 1167 | uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, TB_MAGIC[IsWDL]); | |
| 507 | 
 | 1168 | if (data) | 
| - | 1169 | e.hasPawns ? do_init(e, e.pawnTable, data) : do_init(e, e.pieceTable, data); | |
| - | 1170 | ||
| - | 1171 | e.ready.store(true, std::memory_order_release); | |
| - | 1172 | return e.baseAddress; | |
| - | 1173 | } | |
| - | 1174 | ||
| - | 1175 | template<typename E, typename T = typename Ret<E>::type> | |
| - | 1176 | T probe_table(const Position& pos, ProbeState* result, WDLScore wdl = WDLDraw) { | |
| - | 1177 | ||
| - | 1178 | if (!(pos.pieces() ^ pos.pieces(KING))) | |
| - | 1179 | return T(WDLDraw); // KvK | |
| - | 1180 | ||
| - | 1181 | E* entry = EntryTable.get<E>(pos.material_key()); | |
| - | 1182 | ||
| - | 1183 | if (!entry || !init(*entry, pos)) | |
| - | 1184 | return *result = FAIL, T(); | |
| - | 1185 | ||
| - | 1186 | return do_probe_table(pos, entry, wdl, result); | |
| - | 1187 | } | |
| - | 1188 | ||
| - | 1189 | // For a position where the side to move has a winning capture it is not necessary | |
| - | 1190 | // to store a winning value so the generator treats such positions as "don't cares" | |
| - | 1191 | // and tries to assign to it a value that improves the compression ratio. Similarly, | |
| - | 1192 | // if the side to move has a drawing capture, then the position is at least drawn. | |
| - | 1193 | // If the position is won, then the TB needs to store a win value. But if the | |
| - | 1194 | // position is drawn, the TB may store a loss value if that is better for compression. | |
| - | 1195 | // All of this means that during probing, the engine must look at captures and probe | |
| - | 1196 | // their results and must probe the position itself. The "best" result of these | |
| - | 1197 | // probes is the correct result for the position. | |
| - | 1198 | // DTZ table don't store values when a following move is a zeroing winning move | |
| - | 1199 | // (winning capture or winning pawn move). Also DTZ store wrong values for positions | |
| - | 1200 | // where the best move is an ep-move (even if losing). So in all these cases set | |
| - | 1201 | // the state to ZEROING_BEST_MOVE. | |
| - | 1202 | template<bool CheckZeroingMoves = false> | |
| - | 1203 | WDLScore search(Position& pos, ProbeState* result) { | |
| - | 1204 | ||
| - | 1205 | WDLScore value, bestValue = WDLLoss; | |
| 508 | 
 | 1206 |     StateInfo st; | 
| - | 1207 | ||
| - | 1208 | auto moveList = MoveList<LEGAL>(pos); | |
| - | 1209 | size_t totalCount = moveList.size(), moveCount = 0; | |
| - | 1210 | ||
| 509 | for ( | 1211 | for (const Move& move : moveList) | 
| - | 1212 |     { | |
| 510 | 
 | 1213 | if ( !pos.capture(move) | 
| 511 | 
 | 1214 | && (!CheckZeroingMoves || type_of(pos.moved_piece(move)) != PAWN)) | 
| 512 | 
 | 1215 | continue; | 
| - | 1216 | ||
| 513 | 
 | 1217 | moveCount++; | 
| - | 1218 | ||
| 514 | 
 | 1219 | pos.do_move(move, st); | 
| 515 | 
 | 1220 | value = -search(pos, result); | 
| 516 | pos.undo_move(move); | 1221 | pos.undo_move(move); | 
| - | 1222 | ||
| 517 | if (* | 1223 | if (*result == FAIL) | 
| - | 1224 | return WDLDraw; | |
| - | 1225 | ||
| 518 | 
 | 1226 | if (value > bestValue) | 
| - | 1227 |         { | |
| 519 | 
 | 1228 | bestValue = value; | 
| - | 1229 | ||
| - | 1230 | if (value >= WDLWin) | |
| - | 1231 |             { | |
| - | 1232 | *result = ZEROING_BEST_MOVE; // Winning DTZ-zeroing move | |
| - | 1233 | return value; | |
| - | 1234 |             } | |
| - | 1235 |         } | |
| 520 |     } | 1236 |     } | 
| - | 1237 | ||
| - | 1238 |     // In case we have already searched all the legal moves we don't have to probe | |
| - | 1239 |     // the TB because the stored score could be wrong. For instance TB tables | |
| - | 1240 |     // do not contain information on position with ep rights, so in this case | |
| - | 1241 |     // the result of probe_wdl_table is wrong. Also in case of only capture | |
| - | 1242 |     // moves, for instance here 4K3/4q3/6p1/2k5/6p1/8/8/8 w - - 0 7, we have to | |
| 521 | 
 | 1243 |     // return with ZEROING_BEST_MOVE set. | 
| 522 | } else { | - | |
| 523 | 
 | 1244 | bool noMoreMoves = (moveCount && moveCount == totalCount); | 
| - | 1245 | ||
| 524 | if ( | 1246 | if (noMoreMoves) | 
| 525 | 
 | 1247 | value = bestValue; | 
| 526 |     else | 1248 |     else | 
| - | 1249 |     { | |
| 527 | 
 | 1250 | value = probe_table<WDLEntry>(pos, result); | 
| - | 1251 | ||
| - | 1252 | if (*result == FAIL) | |
| - | 1253 | return WDLDraw; | |
| - | 1254 |     } | |
| - | 1255 | ||
| - | 1256 |     // DTZ stores a "don't care" value if bestValue is a win | |
| - | 1257 | if (bestValue >= value) | |
| - | 1258 | return *result = ( bestValue > WDLDraw | |
| - | 1259 | || noMoreMoves ? ZEROING_BEST_MOVE : OK), bestValue; | |
| - | 1260 | ||
| - | 1261 | return *result = OK, value; | |
| - | 1262 | } | |
| - | 1263 | ||
| - | 1264 | } // namespace | |
| - | 1265 | ||
| - | 1266 | void Tablebases::init(const std::string& paths) { | |
| - | 1267 | ||
| - | 1268 | EntryTable.clear(); | |
| - | 1269 | MaxCardinality = 0; | |
| - | 1270 | TBFile::Paths = paths; | |
| - | 1271 | ||
| - | 1272 | if (paths.empty() || paths == "<empty>") | |
| - | 1273 | return; | |
| - | 1274 | ||
| - | 1275 |     // MapB1H1H7[] encodes a square below a1-h8 diagonal to 0..27 | |
| - | 1276 | int code = 0; | |
| 528 | for ( | 1277 | for (Square s = SQ_A1; s <= SQ_H8; ++s) | 
| - | 1278 | if (off_A1H8(s) < 0) | |
| - | 1279 | MapB1H1H7[s] = code++; | |
| - | 1280 | ||
| - | 1281 |     // MapA1D1D4[] encodes a square in the a1-d1-d4 triangle to 0..9 | |
| - | 1282 | std::vector<Square> diagonal; | |
| 529 | 
 | 1283 | code = 0; | 
| - | 1284 | for (Square s = SQ_A1; s <= SQ_D4; ++s) | |
| - | 1285 | if (off_A1H8(s) < 0 && file_of(s) <= FILE_D) | |
| 530 | 
 | 1286 | MapA1D1D4[s] = code++; | 
| - | 1287 | ||
| - | 1288 | else if (!off_A1H8(s) && file_of(s) <= FILE_D) | |
| - | 1289 | diagonal.push_back(s); | |
| - | 1290 | ||
| - | 1291 |     // Diagonal squares are encoded as last ones | |
| 531 | 
 | 1292 | for (auto s : diagonal) | 
| - | 1293 | MapA1D1D4[s] = code++; | |
| - | 1294 | ||
| - | 1295 |     // MapKK[] encodes all the 461 possible legal positions of two kings where | |
| - | 1296 |     // the first is in the a1-d1-d4 triangle. If the first king is on the a1-d4 | |
| - | 1297 |     // diagonal, the other one shall not to be above the a1-h8 diagonal. | |
| - | 1298 | std::vector<std::pair<int, Square>> bothOnDiagonal; | |
| - | 1299 | code = 0; | |
| - | 1300 | for (int idx = 0; idx < 10; idx++) | |
| - | 1301 | for (Square s1 = SQ_A1; s1 <= SQ_D4; ++s1) | |
| - | 1302 | if (MapA1D1D4[s1] == idx && (idx || s1 == SQ_B1)) // SQ_B1 is mapped to 0 | |
| 532 | 
 | 1303 |             { | 
| - | 1304 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) | |
| - | 1305 | if ((PseudoAttacks[KING][s1] | s1) & s2) | |
| - | 1306 | continue; // Illegal position | |
| - | 1307 | ||
| - | 1308 | else if (!off_A1H8(s1) && off_A1H8(s2) > 0) | |
| - | 1309 | continue; // First on diagonal, second above | |
| - | 1310 | ||
| - | 1311 | else if (!off_A1H8(s1) && !off_A1H8(s2)) | |
| - | 1312 | bothOnDiagonal.push_back(std::make_pair(idx, s2)); | |
| - | 1313 | ||
| - | 1314 |                     else | |
| 533 | 
 | 1315 | MapKK[idx][s2] = code++; | 
| - | 1316 |             } | |
| - | 1317 | ||
| - | 1318 |     // Legal positions with both kings on diagonal are encoded as last ones | |
| - | 1319 | for (auto p : bothOnDiagonal) | |
| - | 1320 | MapKK[p.first][p.second] = code++; | |
| - | 1321 | ||
| - | 1322 |     // Binomial[] stores the Binomial Coefficents using Pascal rule. There | |
| - | 1323 |     // are Binomial[k][n] ways to choose k elements from a set of n elements. | |
| 534 | 
 | 1324 | Binomial[0][0] = 1; | 
| - | 1325 | ||
| - | 1326 | for (int n = 1; n < 64; n++) // Squares | |
| - | 1327 | for (int k = 0; k < 6 && k <= n; ++k) // Pieces | |
| - | 1328 | Binomial[k][n] = (k > 0 ? Binomial[k - 1][n - 1] : 0) | |
| - | 1329 | + (k < n ? Binomial[k ][n - 1] : 0); | |
| - | 1330 | ||
| - | 1331 |     // MapPawns[s] encodes squares a2-h7 to 0..47. This is the number of possible | |
| - | 1332 |     // available squares when the leading one is in 's'. Moreover the pawn with | |
| - | 1333 |     // highest MapPawns[] is the leading pawn, the one nearest the edge and, | |
| - | 1334 |     // among pawns with same file, the one with lowest rank. | |
| - | 1335 | int availableSquares = 47; // Available squares when lead pawn is in a2 | |
| - | 1336 | ||
| - | 1337 |     // Init the tables for the encoding of leading pawns group: with 6-men TB we | |
| - | 1338 |     // can have up to 4 leading pawns (KPPPPK). | |
| - | 1339 | for (int leadPawnsCnt = 1; leadPawnsCnt <= 4; ++leadPawnsCnt) | |
| - | 1340 | for (File f = FILE_A; f <= FILE_D; ++f) | |
| - | 1341 |         { | |
| - | 1342 |             // Restart the index at every file because TB table is splitted | |
| - | 1343 |             // by file, so we can reuse the same index for different files. | |
| 535 | 
 | 1344 | int idx = 0; | 
| - | 1345 | ||
| - | 1346 |             // Sum all possible combinations for a given file, starting with | |
| - | 1347 |             // the leading pawn on rank 2 and increasing the rank. | |
| - | 1348 | for (Rank r = RANK_2; r <= RANK_7; ++r) | |
| 536 | 
 | 1349 |             { | 
| 537 | 
 | 1350 | Square sq = make_square(f, r); | 
| - | 1351 | ||
| - | 1352 |                 // Compute MapPawns[] at first pass. | |
| - | 1353 |                 // If sq is the leading pawn square, any other pawn cannot be | |
| - | 1354 |                 // below or more toward the edge of sq. There are 47 available | |
| - | 1355 |                 // squares when sq = a2 and reduced by 2 for any rank increase | |
| - | 1356 |                 // due to mirroring: sq == a3 -> no a2, h2, so MapPawns[a3] = 45 | |
| 538 | 
 | 1357 | if (leadPawnsCnt == 1) | 
| - | 1358 |                 { | |
| - | 1359 | MapPawns[sq] = availableSquares--; | |
| - | 1360 | MapPawns[sq ^ 7] = availableSquares--; // Horizontal flip | |
| - | 1361 |                 } | |
| - | 1362 | LeadPawnIdx[leadPawnsCnt][sq] = idx; | |
| - | 1363 | idx += Binomial[leadPawnsCnt - 1][MapPawns[sq]]; | |
| - | 1364 |             } | |
| - | 1365 |             // After a file is traversed, store the cumulated per-file index | |
| - | 1366 | LeadPawnsSize[leadPawnsCnt][f] = idx; | |
| - | 1367 |         } | |
| - | 1368 | ||
| - | 1369 | for (PieceType p1 = PAWN; p1 < KING; ++p1) { | |
| - | 1370 | EntryTable.insert({KING, p1, KING}); | |
| - | 1371 | ||
| - | 1372 | for (PieceType p2 = PAWN; p2 <= p1; ++p2) { | |
| - | 1373 | EntryTable.insert({KING, p1, p2, KING}); | |
| - | 1374 | EntryTable.insert({KING, p1, KING, p2}); | |
| - | 1375 | ||
| - | 1376 | for (PieceType p3 = PAWN; p3 < KING; ++p3) | |
| - | 1377 | EntryTable.insert({KING, p1, p2, KING, p3}); | |
| - | 1378 | ||
| - | 1379 | for (PieceType p3 = PAWN; p3 <= p2; ++p3) { | |
| - | 1380 | EntryTable.insert({KING, p1, p2, p3, KING}); | |
| - | 1381 | ||
| - | 1382 | for (PieceType p4 = PAWN; p4 <= p3; ++p4) | |
| - | 1383 | EntryTable.insert({KING, p1, p2, p3, p4, KING}); | |
| - | 1384 | ||
| - | 1385 | for (PieceType p4 = PAWN; p4 < KING; ++p4) | |
| - | 1386 | EntryTable.insert({KING, p1, p2, p3, KING, p4}); | |
| - | 1387 |             } | |
| - | 1388 | ||
| - | 1389 | for (PieceType p3 = PAWN; p3 <= p1; ++p3) | |
| - | 1390 | for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4) | |
| - | 1391 | EntryTable.insert({KING, p1, p2, KING, p3, p4}); | |
| 539 |         } | 1392 |         } | 
| 540 | } else { | - | |
| 541 | v = -Tablebases::probe_dtz(pos, success) - 1; | - | |
| 542 |       } | - | |
| 543 | pos.undo_move(move); | - | |
| 544 | if (*success == 0) return 0; | - | |
| 545 | if (v < best) | - | |
| 546 | best = v; | - | |
| 547 |     } | 1393 |     } | 
| 548 | return best; | - | |
| 549 |   } | 1394 | |
| - | 1395 | sync_cout << "info string Found " << EntryTable.size() << " tablebases" << sync_endl; | |
| 550 | } | 1396 | } | 
| 551 | 1397 | ||
| - | 1398 | // Probe the WDL table for a particular position. | |
| - | 1399 | // If *result != FAIL, the probe was successful. | |
| - | 1400 | // The return value is from the point of view of the side to move: | |
| - | 1401 | // -2 : loss | |
| - | 1402 | // -1 : loss, but draw under 50-move rule | |
| - | 1403 | //  0 : draw | |
| 552 | 
 | 1404 | //  1 : win, but draw under 50-move rule | 
| - | 1405 | //  2 : win | |
| - | 1406 | WDLScore Tablebases::probe_wdl(Position& pos, ProbeState* result) { | |
| - | 1407 | ||
| 553 | 
 | 1408 | *result = OK; | 
| - | 1409 | return search(pos, result); | |
| 554 | } | 1410 | } | 
| 555 | 1411 | ||
| 556 | // Probe the DTZ table for a particular position. | 1412 | // Probe the DTZ table for a particular position. | 
| 557 | // If * | 1413 | // If *result != FAIL, the probe was successful. | 
| 558 | // The return value is from the point of view of the side to move: | 1414 | // The return value is from the point of view of the side to move: | 
| 559 | //         n < -100 : loss, but draw under 50-move rule | 1415 | //         n < -100 : loss, but draw under 50-move rule | 
| 560 | // -100 <= n < -1   : loss in n ply (assuming 50-move counter == 0) | 1416 | // -100 <= n < -1   : loss in n ply (assuming 50-move counter == 0) | 
| 561 | //         0        : draw | 1417 | //         0        : draw | 
| 562 | //     1 < n <= 100 : win in n ply (assuming 50-move counter == 0) | 1418 | //     1 < n <= 100 : win in n ply (assuming 50-move counter == 0) | 
| Line 576... | Line 1432... | ||
| 576 | // capture or pawn move, the inequality to be preserved is | 1432 | // capture or pawn move, the inequality to be preserved is | 
| 577 | // dtz + 50-movecounter <= 100. | 1433 | // dtz + 50-movecounter <= 100. | 
| 578 | // | 1434 | // | 
| 579 | // In short, if a move is available resulting in dtz + 50-move-counter <= 99, | 1435 | // In short, if a move is available resulting in dtz + 50-move-counter <= 99, | 
| 580 | // then do not accept moves leading to dtz + 50-move-counter == 100. | 1436 | // then do not accept moves leading to dtz + 50-move-counter == 100. | 
| 581 | // | - | |
| 582 | int Tablebases::probe_dtz(Position& pos, | 1437 | int Tablebases::probe_dtz(Position& pos, ProbeState* result) { | 
| 583 | { | - | |
| 584 | *success = 1; | - | |
| 585 | int v = probe_dtz_no_ep(pos, success); | - | |
| 586 | 1438 | ||
| 587 | if (pos.ep_square() == SQ_NONE) | - | |
| 588 | 
 | 1439 | *result = OK; | 
| 589 | 
 | 1440 | WDLScore wdl = search<true>(pos, result); | 
| 590 | 1441 | ||
| 591 |   //  | 1442 | if (*result == FAIL || wdl == WDLDraw) // DTZ tables don't store draws | 
| 592 | 
 | 1443 | return 0; | 
| 593 | 1444 | ||
| - | 1445 |     // DTZ stores a 'don't care' value in this case, or even a plain wrong | |
| 594 | 
 | 1446 |     // one as in case the best move is a losing ep, so it cannot be probed. | 
| 595 | 
 | 1447 | if (*result == ZEROING_BEST_MOVE) | 
| 596 | 
 | 1448 | return dtz_before_zeroing(wdl); | 
| 597 | 1449 | ||
| 598 | if (!pos.checkers()) | - | |
| 599 | end = generate<CAPTURES>(pos, stack); | - | |
| 600 |   else | - | |
| 601 | 
 | 1450 | int dtz = probe_table<DTZEntry>(pos, result, wdl); | 
| 602 | 1451 | ||
| 603 | 
 | 1452 | if (*result == FAIL) | 
| 604 | 
 | 1453 | return 0; | 
| - | 1454 | ||
| 605 | if ( | 1455 | if (*result != CHANGE_STM) | 
| 606 | 
 | 1456 | return (dtz + 100 * (wdl == WDLBlessedLoss || wdl == WDLCursedWin)) * sign_of(wdl); | 
| 607 | continue; | 1457 | |
| 608 | 
 | 1458 |     // DTZ stores results for the other side, so we need to do a 1-ply search and | 
| 609 | 
 | 1459 |     // find the winning move that minimizes DTZ. | 
| 610 | 
 | 1460 |     StateInfo st; | 
| 611 | if (*success == 0) return 0; | - | |
| 612 | 
 | 1461 | int minDTZ = 0xFFFF; | 
| 613 |   } | 1462 | |
| 614 | if (v1 > -3) { | - | |
| 615 | 
 | 1463 | for (const Move& move : MoveList<LEGAL>(pos)) | 
| 616 | if (v < -100) { | - | |
| 617 | if (v1 >= 0) | - | |
| 618 | 
 | 1464 |     { | 
| 619 | } else if (v < 0) { | - | |
| 620 | 
 | 1465 | bool zeroing = pos.capture(move) || type_of(pos.moved_piece(move)) == PAWN; | 
| - | 1466 | ||
| 621 | 
 | 1467 | pos.do_move(move, st); | 
| - | 1468 | ||
| 622 | 
 | 1469 |         // For zeroing moves we want the dtz of the move _before_ doing it, | 
| 623 | if (v1 > 0) | - | |
| 624 | v = v1; | - | |
| 625 | 
 | 1470 |         // otherwise we will get the dtz of the next move sequence. Search the | 
| 626 | if (v1 == 1) | - | |
| 627 | v = v1; | - | |
| 628 | 
 | 1471 |         // position after the move to get the score sign (because even in a | 
| 629 | v = v1; | - | |
| 630 | } else { | - | |
| 631 | 
 | 1472 |         // winning position we could make a losing capture or going for a draw). | 
| 632 | 
 | 1473 | dtz = zeroing ? -dtz_before_zeroing(search(pos, result)) | 
| 633 | 
 | 1474 | : -probe_dtz(pos, result); | 
| - | 1475 | ||
| 634 | 
 | 1476 | pos.undo_move(move); | 
| 635 |       } | 1477 | |
| 636 | if ( | 1478 | if (*result == FAIL) | 
| 637 | 
 | 1479 | return 0; | 
| - | 1480 | ||
| 638 | 
 | 1481 |         // Convert result from 1-ply search. Zeroing moves are already accounted | 
| 639 | 
 | 1482 |         // by dtz_before_zeroing() that returns the DTZ of the previous move. | 
| 640 | 
 | 1483 | if (!zeroing) | 
| 641 | 
 | 1484 | dtz += sign_of(dtz); | 
| 642 |         } | - | |
| 643 |       } | 1485 | |
| - | 1486 |         // Skip the draws and if we are winning only pick positive dtz | |
| 644 | if ( | 1487 | if (dtz < minDTZ && sign_of(dtz) == sign_of(wdl)) | 
| 645 | 
 | 1488 | minDTZ = dtz; | 
| 646 |     } | 1489 |     } | 
| 647 |   } | - | |
| 648 | 1490 | ||
| - | 1491 |     // Special handle a mate position, when there are no legal moves, in this | |
| - | 1492 |     // case return value is somewhat arbitrary, so stick to the original TB code | |
| 649 | 
 | 1493 |     // that returns -1 in this case. | 
| - | 1494 | return minDTZ == 0xFFFF ? -1 : minDTZ; | |
| 650 | } | 1495 | } | 
| 651 | 1496 | ||
| 652 | // Check whether there has been at least one repetition of positions | 1497 | // Check whether there has been at least one repetition of positions | 
| 653 | // since the last capture or pawn move. | 1498 | // since the last capture or pawn move. | 
| 654 | static int has_repeated(StateInfo *st) | 1499 | static int has_repeated(StateInfo *st) | 
| 655 | { | 1500 | { | 
| 656 | while (1) { | 1501 | while (1) { | 
| 657 | int i = 4, e = std::min(st->rule50, st->pliesFromNull); | 1502 | int i = 4, e = std::min(st->rule50, st->pliesFromNull); | 
| 658 | if (e < i) | - | |
| 659 | return 0; | - | |
| 660 | StateInfo *stp = st->previous->previous; | - | |
| 661 | do { | - | |
| 662 | stp = stp->previous->previous; | - | |
| 663 | if (stp->key == st->key) | - | |
| 664 | return 1; | - | |
| 665 | i += 2; | - | |
| 666 | } while (i <= e); | - | |
| 667 | st = st->previous; | - | |
| 668 |   } | - | |
| 669 | } | - | |
| 670 | 1503 | ||
| 671 | 
 | 1504 | if (e < i) | 
| 672 | 
 | 1505 | return 0; | 
| - | 1506 | ||
| - | 1507 | StateInfo *stp = st->previous->previous; | |
| - | 1508 | ||
| 673 | 
 | 1509 | do { | 
| - | 1510 | stp = stp->previous->previous; | |
| - | 1511 | ||
| - | 1512 | if (stp->key == st->key) | |
| 674 | 
 | 1513 | return 1; | 
| - | 1514 | ||
| 675 | 
 | 1515 | i += 2; | 
| - | 1516 | } while (i <= e); | |
| - | 1517 | ||
| 676 | 
 | 1518 | st = st->previous; | 
| - | 1519 |     } | |
| 677 | } | 1520 | } | 
| 678 | 1521 | ||
| 679 | // Use the DTZ tables to filter out moves that don't preserve the win or draw. | 1522 | // Use the DTZ tables to filter out moves that don't preserve the win or draw. | 
| 680 | // If the position is lost, but DTZ is fairly high, only keep moves that | 1523 | // If the position is lost, but DTZ is fairly high, only keep moves that | 
| 681 | // maximise DTZ. | 1524 | // maximise DTZ. | 
| 682 | // | 1525 | // | 
| 683 | // A return value false indicates that not all probes were successful and that | 1526 | // A return value false indicates that not all probes were successful and that | 
| 684 | // no moves were filtered out. | 1527 | // no moves were filtered out. | 
| 685 | bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves, Value& score) | 1528 | bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves, Value& score) | 
| 686 | { | 1529 | { | 
| 687 | 
 | 1530 | assert(rootMoves.size()); | 
| 688 | 1531 | ||
| 689 | 
 | 1532 |     ProbeState result; | 
| 690 | 
 | 1533 | int dtz = probe_dtz(pos, &result); | 
| 691 | 1534 | ||
| - | 1535 | if (result == FAIL) | |
| 692 | 
 | 1536 | return false; | 
| 693 | 1537 | ||
| - | 1538 |     StateInfo st; | |
| - | 1539 | ||
| 694 |   // Probe each move | 1540 |     // Probe each move | 
| 695 | for (size_t i = 0; i < rootMoves.size(); | 1541 | for (size_t i = 0; i < rootMoves.size(); ++i) { | 
| 696 | Move move = rootMoves[i].pv[0]; | 1542 | Move move = rootMoves[i].pv[0]; | 
| 697 | 
 | 1543 | pos.do_move(move, st); | 
| 698 | int v = 0; | 1544 | int v = 0; | 
| - | 1545 | ||
| 699 | if (pos.checkers() && dtz > 0) { | 1546 | if (pos.checkers() && dtz > 0) { | 
| 700 | ExtMove s[ | 1547 | ExtMove s[MAX_MOVES]; | 
| - | 1548 | ||
| 701 | if (generate<LEGAL>(pos, s) == s) | 1549 | if (generate<LEGAL>(pos, s) == s) | 
| - | 1550 | v = 1; | |
| - | 1551 |         } | |
| - | 1552 | ||
| - | 1553 | if (!v) { | |
| - | 1554 | if (st.rule50 != 0) { | |
| - | 1555 | v = -probe_dtz(pos, &result); | |
| - | 1556 | ||
| - | 1557 | if (v > 0) | |
| - | 1558 | ++v; | |
| - | 1559 | else if (v < 0) | |
| - | 1560 | --v; | |
| - | 1561 | } else { | |
| - | 1562 | v = -probe_wdl(pos, &result); | |
| - | 1563 | v = dtz_before_zeroing(WDLScore(v)); | |
| 702 | 
 | 1564 |             } | 
| - | 1565 |         } | |
| - | 1566 | ||
| - | 1567 | pos.undo_move(move); | |
| - | 1568 | ||
| - | 1569 | if (result == FAIL) | |
| - | 1570 | return false; | |
| - | 1571 | ||
| - | 1572 | rootMoves[i].score = (Value)v; | |
| 703 |     } | 1573 |     } | 
| 704 | if (!v) { | - | |
| 705 | if (st.rule50 != 0) { | - | |
| 706 | v = -Tablebases::probe_dtz(pos, &success); | - | |
| 707 | if (v > 0) v++; | - | |
| 708 | else if (v < 0) v--; | - | |
| 709 | } else { | - | |
| 710 | v = -Tablebases::probe_wdl(pos, &success); | - | |
| 711 | v = wdl_to_dtz[v + 2]; | - | |
| 712 |       } | - | |
| 713 |     } | - | |
| 714 | pos.undo_move(move); | - | |
| 715 | if (!success) return false; | - | |
| 716 | rootMoves[i].score = (Value)v; | - | |
| 717 |   } | - | |
| 718 | 1574 | ||
| 719 |   // Obtain 50-move counter for the root position. | 1575 |     // Obtain 50-move counter for the root position. | 
| 720 |   // In Stockfish there seems to be no clean way, so we do it like this: | 1576 |     // In Stockfish there seems to be no clean way, so we do it like this: | 
| 721 | int cnt50 = st.previous->rule50; | 1577 | int cnt50 = st.previous ? st.previous->rule50 : 0; | 
| 722 | 1578 | ||
| 723 |   // Use 50-move counter to determine whether the root position is | 1579 |     // Use 50-move counter to determine whether the root position is | 
| 724 |   // won, lost or drawn. | 1580 |     // won, lost or drawn. | 
| 725 | 
 | 1581 | WDLScore wdl = WDLDraw; | 
| 726 | if (dtz > 0) | - | |
| 727 | wdl = (dtz + cnt50 <= 100) ? 2 : 1; | - | |
| 728 | else if (dtz < 0) | - | |
| 729 | wdl = (-dtz + cnt50 <= 100) ? -2 : -1; | - | |
| 730 | 1582 | ||
| 731 |   // Determine the score to report to the user. | - | |
| 732 | score = wdl_to_Value[wdl + 2]; | - | |
| 733 |   // If the position is winning or losing, but too few moves left, adjust the | - | |
| 734 |   // score to show how close it is to winning or losing. | - | |
| 735 |   // NOTE: int(PawnValueEg) is used as scaling factor in score_to_uci(). | - | |
| 736 | 
 | 1583 | if (dtz > 0) | 
| 737 | 
 | 1584 | wdl = (dtz + cnt50 <= 100) ? WDLWin : WDLCursedWin; | 
| 738 | else if ( | 1585 | else if (dtz < 0) | 
| 739 | 
 | 1586 | wdl = (-dtz + cnt50 <= 100) ? WDLLoss : WDLBlessedLoss; | 
| 740 | 1587 | ||
| - | 1588 |     // Determine the score to report to the user. | |
| - | 1589 | score = WDL_to_value[wdl + 2]; | |
| - | 1590 | ||
| - | 1591 |     // If the position is winning or losing, but too few moves left, adjust the | |
| - | 1592 |     // score to show how close it is to winning or losing. | |
| - | 1593 |     // NOTE: int(PawnValueEg) is used as scaling factor in score_to_uci(). | |
| - | 1594 | if (wdl == WDLCursedWin && dtz <= 100) | |
| - | 1595 | score = (Value)(((200 - dtz - cnt50) * int(PawnValueEg)) / 200); | |
| - | 1596 | else if (wdl == WDLBlessedLoss && dtz >= -100) | |
| - | 1597 | score = -(Value)(((200 + dtz - cnt50) * int(PawnValueEg)) / 200); | |
| - | 1598 | ||
| 741 |   // Now be a bit smart about filtering out moves. | 1599 |     // Now be a bit smart about filtering out moves. | 
| 742 | size_t j = 0; | 1600 | size_t j = 0; | 
| - | 1601 | ||
| 743 | if (dtz > 0) { // winning (or 50-move rule draw) | 1602 | if (dtz > 0) { // winning (or 50-move rule draw) | 
| 744 | int best = 0xffff; | 1603 | int best = 0xffff; | 
| - | 1604 | ||
| 745 | for (size_t i = 0; i < rootMoves.size(); | 1605 | for (size_t i = 0; i < rootMoves.size(); ++i) { | 
| 746 | int v = rootMoves[i].score; | 1606 | int v = rootMoves[i].score; | 
| - | 1607 | ||
| 747 | if (v > 0 && v < best) | 1608 | if (v > 0 && v < best) | 
| 748 | best = v; | 1609 | best = v; | 
| 749 |     } | 1610 |         } | 
| - | 1611 | ||
| 750 | int max = best; | 1612 | int max = best; | 
| - | 1613 | ||
| 751 |     // If the current phase has not seen repetitions, then try all moves | 1614 |         // If the current phase has not seen repetitions, then try all moves | 
| 752 |     // that stay safely within the 50-move budget, if there are any. | 1615 |         // that stay safely within the 50-move budget, if there are any. | 
| 753 | if (!has_repeated(st.previous) && best + cnt50 <= 99) | 1616 | if (!has_repeated(st.previous) && best + cnt50 <= 99) | 
| 754 | max = 99 - cnt50; | 1617 | max = 99 - cnt50; | 
| - | 1618 | ||
| 755 | for (size_t i = 0; i < rootMoves.size(); | 1619 | for (size_t i = 0; i < rootMoves.size(); ++i) { | 
| 756 | int v = rootMoves[i].score; | 1620 | int v = rootMoves[i].score; | 
| - | 1621 | ||
| 757 | if (v > 0 && v <= max) | 1622 | if (v > 0 && v <= max) | 
| 758 | rootMoves[j++] = rootMoves[i]; | 1623 | rootMoves[j++] = rootMoves[i]; | 
| 759 |     } | 1624 |         } | 
| 760 | } else if (dtz < 0) { // losing (or 50-move rule draw) | 1625 | } else if (dtz < 0) { // losing (or 50-move rule draw) | 
| 761 | int best = 0; | 1626 | int best = 0; | 
| - | 1627 | ||
| 762 | for (size_t i = 0; i < rootMoves.size(); | 1628 | for (size_t i = 0; i < rootMoves.size(); ++i) { | 
| 763 | int v = rootMoves[i].score; | 1629 | int v = rootMoves[i].score; | 
| - | 1630 | ||
| 764 | if (v < best) | 1631 | if (v < best) | 
| 765 | best = v; | 1632 | best = v; | 
| 766 |     } | 1633 |         } | 
| - | 1634 | ||
| 767 |     // Try all moves, unless we approach or have a 50-move rule draw. | 1635 |         // Try all moves, unless we approach or have a 50-move rule draw. | 
| 768 | if (-best * 2 + cnt50 < 100) | 1636 | if (-best * 2 + cnt50 < 100) | 
| 769 | return true; | 1637 | return true; | 
| - | 1638 | ||
| 770 | for (size_t i = 0; i < rootMoves.size(); | 1639 | for (size_t i = 0; i < rootMoves.size(); ++i) { | 
| 771 | if (rootMoves[i].score == best) | 1640 | if (rootMoves[i].score == best) | 
| - | 1641 | rootMoves[j++] = rootMoves[i]; | |
| - | 1642 |         } | |
| - | 1643 | } else { // drawing | |
| - | 1644 |         // Try all moves that preserve the draw. | |
| - | 1645 | for (size_t i = 0; i < rootMoves.size(); ++i) { | |
| - | 1646 | if (rootMoves[i].score == 0) | |
| 772 | rootMoves[j++] = rootMoves[i]; | 1647 | rootMoves[j++] = rootMoves[i]; | 
| - | 1648 |         } | |
| 773 |     } | 1649 |     } | 
| 774 | } else { // drawing | - | |
| 775 |     // Try all moves that preserve the draw. | - | |
| 776 | for (size_t i = 0; i < rootMoves.size(); i++) { | - | |
| 777 | if (rootMoves[i].score == 0) | - | |
| 778 | rootMoves[j++] = rootMoves[i]; | - | |
| 779 |     } | - | |
| 780 |   } | - | |
| 781 | rootMoves.resize(j, Search::RootMove(MOVE_NONE)); | - | |
| 782 | 1650 | ||
| - | 1651 | rootMoves.resize(j, Search::RootMove(MOVE_NONE)); | |
| - | 1652 | ||
| 783 | return true; | 1653 | return true; | 
| 784 | } | 1654 | } | 
| 785 | 1655 | ||
| 786 | // Use the WDL tables to filter out moves that don't preserve the win or draw. | 1656 | // Use the WDL tables to filter out moves that don't preserve the win or draw. | 
| 787 | // This is a fallback for the case that some or all DTZ tables are missing. | 1657 | // This is a fallback for the case that some or all DTZ tables are missing. | 
| 788 | // | 1658 | // | 
| 789 | // A return value false indicates that not all probes were successful and that | 1659 | // A return value false indicates that not all probes were successful and that | 
| 790 | // no moves were filtered out. | 1660 | // no moves were filtered out. | 
| 791 | bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves, Value& score) | 1661 | bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves, Value& score) | 
| 792 | { | 1662 | { | 
| 793 | 
 | 1663 |     ProbeState result; | 
| 794 | 1664 | ||
| 795 | 
 | 1665 | WDLScore wdl = Tablebases::probe_wdl(pos, &result); | 
| 796 | if (!success) return false; | - | |
| 797 | score = wdl_to_Value[wdl + 2]; | - | |
| 798 | 1666 | ||
| - | 1667 | if (result == FAIL) | |
| 799 | 
 | 1668 | return false; | 
| 800 | 1669 | ||
| 801 | 
 | 1670 | score = WDL_to_value[wdl + 2]; | 
| 802 | 1671 | ||
| 803 |   // Probe each move. | - | |
| 804 | for (size_t i = 0; i < rootMoves.size(); i++) { | - | |
| 805 | Move move = rootMoves[i].pv[0]; | - | |
| 806 | pos.do_move(move, st, pos.gives_check(move)); | - | |
| 807 | int v = -Tablebases::probe_wdl(pos, &success); | - | |
| 808 | pos.undo_move(move); | - | |
| 809 | if (!success) return false; | - | |
| 810 | rootMoves[i].score = (Value)v; | - | |
| 811 | if (v > best) | - | |
| 812 | 
 | 1672 |     StateInfo st; | 
| 813 |   } | - | |
| 814 | 1673 | ||
| 815 | 
 | 1674 | int best = WDLLoss; | 
| 816 | for (size_t i = 0; i < rootMoves.size(); i++) { | - | |
| 817 | if (rootMoves[i].score == best) | - | |
| 818 | rootMoves[j++] = rootMoves[i]; | - | |
| 819 |   } | - | |
| 820 | rootMoves.resize(j, Search::RootMove(MOVE_NONE)); | - | |
| 821 | 1675 | ||
| 822 | 
 | 1676 |     // Probe each move | 
| 823 | } | - | |
| - | 1677 | for (size_t i = 0; i < rootMoves.size(); ++i) { | |
| - | 1678 | Move move = rootMoves[i].pv[0]; | |
| - | 1679 | pos.do_move(move, st); | |
| - | 1680 | WDLScore v = -Tablebases::probe_wdl(pos, &result); | |
| - | 1681 | pos.undo_move(move); | |
| 824 | 1682 | ||
| - | 1683 | if (result == FAIL) | |
| - | 1684 | return false; | |
| - | 1685 | ||
| - | 1686 | rootMoves[i].score = (Value)v; | |
| - | 1687 | ||
| - | 1688 | if (v > best) | |
| - | 1689 | best = v; | |
| - | 1690 |     } | |
| - | 1691 | ||
| - | 1692 | size_t j = 0; | |
| - | 1693 | ||
| - | 1694 | for (size_t i = 0; i < rootMoves.size(); ++i) { | |
| - | 1695 | if (rootMoves[i].score == best) | |
| - | 1696 | rootMoves[j++] = rootMoves[i]; | |
| - | 1697 |     } | |
| - | 1698 | ||
| - | 1699 | rootMoves.resize(j, Search::RootMove(MOVE_NONE)); | |
| - | 1700 | ||
| - | 1701 | return true; | |
| - | 1702 | } | |