Subversion Repositories Games.Chess Giants

Rev

Rev 96 | Rev 169 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 96 Rev 154
Line 19... Line 19...
19
*/
19
*/
20
 
20
 
21
#include <algorithm>
21
#include <algorithm>
22
 
22
 
23
#include "bitboard.h"
23
#include "bitboard.h"
24
#include "bitcount.h"
-
 
25
#include "misc.h"
24
#include "misc.h"
26
 
25
 
-
 
26
uint8_t PopCnt16[1 << 16];
27
int SquareDistance[SQUARE_NB][SQUARE_NB];
27
int SquareDistance[SQUARE_NB][SQUARE_NB];
28
 
28
 
29
Bitboard  RookMasks  [SQUARE_NB];
29
Bitboard  RookMasks  [SQUARE_NB];
30
Bitboard  RookMagics [SQUARE_NB];
30
Bitboard  RookMagics [SQUARE_NB];
31
Bitboard* RookAttacks[SQUARE_NB];
31
Bitboard* RookAttacks[SQUARE_NB];
Line 71... Line 71...
71
 
71
 
72
  unsigned bsf_index(Bitboard b) {
72
  unsigned bsf_index(Bitboard b) {
73
    b ^= b - 1;
73
    b ^= b - 1;
74
    return Is64Bit ? (b * DeBruijn64) >> 58
74
    return Is64Bit ? (b * DeBruijn64) >> 58
75
                   : ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn32) >> 26;
75
                   : ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn32) >> 26;
-
 
76
  }
-
 
77
 
-
 
78
 
-
 
79
  // popcount16() counts the non-zero bits using SWAR-Popcount algorithm
-
 
80
 
-
 
81
  unsigned popcount16(unsigned u) {
-
 
82
    u -= (u >> 1) & 0x5555U;
-
 
83
    u = ((u >> 2) & 0x3333U) + (u & 0x3333U);
-
 
84
    u = ((u >> 4) + u) & 0x0F0FU;
-
 
85
    return (u * 0x0101U) >> 8;
76
  }
86
  }
77
}
87
}
78
 
88
 
79
#ifndef USE_BSFQ
89
#ifdef NO_BSF
80
 
90
 
81
/// Software fall-back of lsb() and msb() for CPU lacking hardware support
91
/// Software fall-back of lsb() and msb() for CPU lacking hardware support
82
 
92
 
83
Square lsb(Bitboard b) {
93
Square lsb(Bitboard b) {
-
 
94
  assert(b);
84
  return BSFTable[bsf_index(b)];
95
  return BSFTable[bsf_index(b)];
85
}
96
}
86
 
97
 
87
Square msb(Bitboard b) {
98
Square msb(Bitboard b) {
88
 
99
 
-
 
100
  assert(b);
89
  unsigned b32;
101
  unsigned b32;
90
  int result = 0;
102
  int result = 0;
91
 
103
 
92
  if (b > 0xFFFFFFFF)
104
  if (b > 0xFFFFFFFF)
93
  {
105
  {
Line 110... Line 122...
110
  }
122
  }
111
 
123
 
112
  return Square(result + MSBTable[b32]);
124
  return Square(result + MSBTable[b32]);
113
}
125
}
114
 
126
 
115
#endif // ifndef USE_BSFQ
127
#endif // ifdef NO_BSF
116
 
128
 
117
 
129
 
118
/// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
130
/// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
119
/// to be printed to standard output. Useful for debugging.
131
/// to be printed to standard output. Useful for debugging.
120
 
132
 
Line 136... Line 148...
136
 
148
 
137
/// Bitboards::init() initializes various bitboard tables. It is called at
149
/// Bitboards::init() initializes various bitboard tables. It is called at
138
/// startup and relies on global objects to be already zero-initialized.
150
/// startup and relies on global objects to be already zero-initialized.
139
 
151
 
140
void Bitboards::init() {
152
void Bitboards::init() {
-
 
153
 
-
 
154
  for (unsigned i = 0; i < (1 << 16); ++i)
-
 
155
      PopCnt16[i] = (uint8_t) popcount16(i);
141
 
156
 
142
  for (Square s = SQ_A1; s <= SQ_H8; ++s)
157
  for (Square s = SQ_A1; s <= SQ_H8; ++s)
143
  {
158
  {
144
      SquareBB[s] = 1ULL << s;
159
      SquareBB[s] = 1ULL << s;
145
      BSFTable[bsf_index(SquareBB[s])] = s;
160
      BSFTable[bsf_index(SquareBB[s])] = s;
Line 188... Line 203...
188
 
203
 
189
                  if (is_ok(to) && distance(s, to) < 3)
204
                  if (is_ok(to) && distance(s, to) < 3)
190
                      StepAttacksBB[make_piece(c, pt)][s] |= to;
205
                      StepAttacksBB[make_piece(c, pt)][s] |= to;
191
              }
206
              }
192
 
207
 
193
  Square RookDeltas[] = { DELTA_N,  DELTA_E,  DELTA_S,  DELTA_W  };
208
  Square RookDeltas[] = { NORTH,  EAST,  SOUTH,  WEST  };
194
  Square BishopDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW };
209
  Square BishopDeltas[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST };
195
 
210
 
196
  init_magics(RookTable, RookAttacks, RookMagics, RookMasks, RookShifts, RookDeltas, magic_index<ROOK>);
211
  init_magics(RookTable, RookAttacks, RookMagics, RookMasks, RookShifts, RookDeltas, magic_index<ROOK>);
197
  init_magics(BishopTable, BishopAttacks, BishopMagics, BishopMasks, BishopShifts, BishopDeltas, magic_index<BISHOP>);
212
  init_magics(BishopTable, BishopAttacks, BishopMagics, BishopMasks, BishopShifts, BishopDeltas, magic_index<BISHOP>);
198
 
213
 
199
  for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
214
  for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
Line 261... Line 276...
261
        // 's' computed on an empty board. The index must be big enough to contain
276
        // 's' computed on an empty board. The index must be big enough to contain
262
        // all the attacks for each possible subset of the mask and so is 2 power
277
        // all the attacks for each possible subset of the mask and so is 2 power
263
        // the number of 1s of the mask. Hence we deduce the size of the shift to
278
        // the number of 1s of the mask. Hence we deduce the size of the shift to
264
        // apply to the 64 or 32 bits word to get the index.
279
        // apply to the 64 or 32 bits word to get the index.
265
        masks[s]  = sliding_attack(deltas, s, 0) & ~edges;
280
        masks[s]  = sliding_attack(deltas, s, 0) & ~edges;
266
        shifts[s] = (Is64Bit ? 64 : 32) - popcount<Max15>(masks[s]);
281
        shifts[s] = (Is64Bit ? 64 : 32) - popcount(masks[s]);
267
 
282
 
268
        // Use Carry-Rippler trick to enumerate all subsets of masks[s] and
283
        // Use Carry-Rippler trick to enumerate all subsets of masks[s] and
269
        // store the corresponding sliding attack bitboard in reference[].
284
        // store the corresponding sliding attack bitboard in reference[].
270
        b = size = 0;
285
        b = size = 0;
271
        do {
286
        do {
Line 292... Line 307...
292
        // Find a magic for square 's' picking up an (almost) random number
307
        // Find a magic for square 's' picking up an (almost) random number
293
        // until we find the one that passes the verification test.
308
        // until we find the one that passes the verification test.
294
        do {
309
        do {
295
            do
310
            do
296
                magics[s] = rng.sparse_rand<Bitboard>();
311
                magics[s] = rng.sparse_rand<Bitboard>();
297
            while (popcount<Max15>((magics[s] * masks[s]) >> 56) < 6);
312
            while (popcount((magics[s] * masks[s]) >> 56) < 6);
298
 
313
 
299
            // A good magic must map every possible occupancy to an index that
314
            // A good magic must map every possible occupancy to an index that
300
            // looks up the correct sliding attack in the attacks[s] database.
315
            // looks up the correct sliding attack in the attacks[s] database.
301
            // Note that we build up the database for square 's' as a side
316
            // Note that we build up the database for square 's' as a side
302
            // effect of verifying the magic.
317
            // effect of verifying the magic.