Rev 154 | Rev 176 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed
Rev 154 | Rev 169 | ||
---|---|---|---|
Line 1... | Line 1... | ||
1 | /* |
1 | /* |
- | 2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
|
2 | Copyright (c) 2013 Ronald de Man |
3 | Copyright (c) 2013 Ronald de Man |
3 | |
4 | Copyright (C) 2016-2018 Marco Costalba, Lucas Braesch |
4 | 5 | ||
- | 6 | Stockfish is free software: you can redistribute it and/or modify |
|
5 | |
7 | it under the terms of the GNU General Public License as published by |
6 | |
8 | the Free Software Foundation, either version 3 of the License, or |
7 | |
9 | (at your option) any later version. |
- | 10 | ||
- | 11 | Stockfish is distributed in the hope that it will be useful, |
|
- | 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
- | 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
- | 14 | GNU General Public License for more details. |
|
- | 15 | ||
- | 16 | You should have received a copy of the GNU General Public License |
|
- | 17 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
8 | */ |
18 | */ |
9 | - | ||
10 | #define NOMINMAX |
- | |
11 | 19 | ||
12 | #include <algorithm> |
20 | #include <algorithm> |
- | 21 | #include <atomic> |
|
- | 22 | #include <cstdint> |
|
- | 23 | #include <cstring> // For std::memset |
|
- | 24 | #include <deque> |
|
- | 25 | #include <fstream> |
|
- | 26 | #include <iostream> |
|
- | 27 | #include <list> |
|
- | 28 | #include <sstream> |
|
- | 29 | #include <type_traits> |
|
13 | 30 | ||
- | 31 | #include "../bitboard.h" |
|
- | 32 | #include "../movegen.h" |
|
14 | #include "../position.h" |
33 | #include "../position.h" |
15 | #include "../movegen.h" |
- | |
16 | #include "../bitboard.h" |
- | |
17 | #include "../search.h" |
34 | #include "../search.h" |
- | 35 | #include "../thread_win32.h" |
|
- | 36 | #include "../types.h" |
|
18 | 37 | ||
19 | #include "tbprobe.h" |
38 | #include "tbprobe.h" |
20 | #include "tbcore.h" |
- | |
21 | 39 | ||
- | 40 | #ifndef _WIN32 |
|
22 | #include |
41 | #include <fcntl.h> |
- | 42 | #include <unistd.h> |
|
- | 43 | #include <sys/mman.h> |
|
- | 44 | #include <sys/stat.h> |
|
- | 45 | #else |
|
- | 46 | #define WIN32_LEAN_AND_MEAN |
|
- | 47 | #define NOMINMAX |
|
- | 48 | #include <windows.h> |
|
- | 49 | #endif |
|
23 | 50 | ||
24 | namespace |
51 | using namespace Tablebases; |
25 | extern Key psq[PIECE_NB][SQUARE_NB]; |
- | |
26 | } |
- | |
27 | 52 | ||
28 | int Tablebases::MaxCardinality |
53 | int Tablebases::MaxCardinality; |
29 | 54 | ||
30 | // Given a position with 6 or fewer pieces, produce a text string |
- | |
31 | // of the form KQPvKRP, where "KQP" represents the white pieces if |
- | |
32 | // mirror == 0 and the black pieces if mirror == 1. |
- | |
33 | static void prt_str(Position& pos, char *str, int mirror) |
- | |
34 | { |
- | |
35 | Color color; |
- | |
36 |
|
55 | namespace { |
37 | int i; |
- | |
38 | 56 | ||
39 | color = !mirror ? WHITE : BLACK; |
- | |
40 | for (pt = KING; pt >= PAWN; --pt) |
- | |
41 |
|
57 | // Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables |
42 | *str++ = pchr[6 - pt]; |
- | |
43 | *str++ = 'v'; |
- | |
44 | color = ~color; |
- | |
45 | for (pt = KING; pt >= PAWN; --pt) |
- | |
46 |
|
58 | enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, SingleValue = 128 }; |
47 | *str++ = pchr[6 - pt]; |
- | |
48 | *str++ = 0; |
- | |
49 | } |
- | |
50 | 59 | ||
51 |
|
60 | inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); } |
52 |
|
61 | inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); } |
53 |
|
62 | inline Square operator^(Square s, int i) { return Square(int(s) ^ i); } |
54 | { |
- | |
55 | Color color; |
- | |
56 | PieceType pt; |
- | |
57 | int i; |
- | |
58 | uint64 key = 0; |
- | |
59 | 63 | ||
60 |
|
64 | // DTZ tables don't store valid scores for moves that reset the rule50 counter |
61 |
|
65 | // like captures and pawn moves but we can easily recover the correct dtz of the |
62 |
|
66 | // previous move if we know the position's WDL score. |
63 |
|
67 | int dtz_before_zeroing(WDLScore wdl) { |
64 |
|
68 | return wdl == WDLWin ? 1 : |
65 |
|
69 | wdl == WDLCursedWin ? 101 : |
66 |
|
70 | wdl == WDLBlessedLoss ? -101 : |
67 |
|
71 | wdl == WDLLoss ? -1 : 0; |
- | 72 | } |
|
68 | 73 | ||
- | 74 | // Return the sign of a number (-1, 0, 1) |
|
- | 75 | template <typename T> int sign_of(T val) { |
|
69 | return |
76 | return (T(0) < val) - (val < T(0)); |
70 | } |
77 | } |
71 | 78 | ||
72 | // |
79 | // Numbers in little endian used by sparseIndex[] to point into blockLength[] |
73 |
|
80 | struct SparseEntry { |
74 |
|
81 | char block[4]; // Number of block |
75 | // pawns, ..., kings. |
- | |
76 |
|
82 | char offset[2]; // Offset within the block |
77 |
|
83 | }; |
78 | int color; |
- | |
79 | PieceType pt; |
- | |
80 | int i; |
- | |
81 | uint64 key = 0; |
- | |
82 | 84 | ||
83 | color = !mirror ? 0 : 8; |
- | |
84 | for (pt = PAWN; pt <= KING; ++pt) |
- | |
85 | for (i = 0; i < pcs[color + pt]; i++) |
- | |
86 | key ^= Zobrist::psq[make_piece(WHITE, pt)][i]; |
- | |
87 | color ^= 8; |
- | |
88 | for (pt = PAWN; pt <= KING; ++pt) |
- | |
89 | for (i = 0; i < pcs[color + pt]; i++) |
- | |
90 |
|
85 | static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes"); |
91 | 86 | ||
92 |
|
87 | typedef uint16_t Sym; // Huffman symbol |
93 | } |
- | |
94 | 88 | ||
- | 89 | struct LR { |
|
- | 90 | enum Side { Left, Right, Value }; |
|
- | 91 | ||
- | 92 | uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12 |
|
- | 93 | // bits is the right-hand symbol. If symbol has length 1, |
|
- | 94 | // then the first byte is the stored value. |
|
95 |
|
95 | template<Side S> |
- | 96 | Sym get() { |
|
- | 97 | return S == Left ? ((lr[1] & 0xF) << 8) | lr[0] : |
|
- | 98 | S == Right ? (lr[2] << 4) | (lr[1] >> 4) : |
|
- | 99 | S == Value ? lr[0] : (assert(false), Sym(-1)); |
|
96 |
|
100 | } |
- | 101 | }; |
|
- | 102 | ||
- | 103 | static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes"); |
|
- | 104 | ||
- | 105 | const int TBPIECES = 6; |
|
- | 106 | ||
- | 107 | struct PairsData { |
|
97 | int |
108 | int flags; |
- | 109 | size_t sizeofBlock; // Block size in bytes |
|
- | 110 | size_t span; // About every span values there is a SparseIndex[] entry |
|
- | 111 | int blocksNum; // Number of blocks in the TB file |
|
- | 112 | int maxSymLen; // Maximum length in bits of the Huffman symbols |
|
- | 113 | int minSymLen; // Minimum length in bits of the Huffman symbols |
|
- | 114 | Sym* lowestSym; // lowestSym[l] is the symbol of length l with the lowest value |
|
- | 115 | LR* btree; // btree[sym] stores the left and right symbols that expand sym |
|
- | 116 | uint16_t* blockLength; // Number of stored positions (minus one) for each block: 1..65536 |
|
- | 117 | int blockLengthSize; // Size of blockLength[] table: padded so it's bigger than blocksNum |
|
- | 118 | SparseEntry* sparseIndex; // Partial indices into blockLength[] |
|
- | 119 | size_t sparseIndexSize; // Size of SparseIndex[] table |
|
- | 120 | uint8_t* data; // Start of Huffman compressed data |
|
- | 121 | std::vector<uint64_t> base64; // base64[l - min_sym_len] is the 64bit-padded lowest symbol of length l |
|
- | 122 | std::vector<uint8_t> symlen; // Number of values (-1) represented by a given Huffman symbol: 1..256 |
|
- | 123 | Piece pieces[TBPIECES]; // Position pieces: the order of pieces defines the groups |
|
- | 124 | uint64_t groupIdx[TBPIECES+1]; // Start index used for the encoding of the group's pieces |
|
- | 125 | int groupLen[TBPIECES+1]; // Number of pieces in a given group: KRKN -> (3, 1) |
|
- | 126 | }; |
|
- | 127 | ||
- | 128 | // Helper struct to avoid manually defining entry copy constructor as we |
|
- | 129 | // should because the default one is not compatible with std::atomic_bool. |
|
- | 130 | struct Atomic { |
|
- | 131 | Atomic() = default; |
|
- | 132 | Atomic(const Atomic& e) { ready = e.ready.load(); } // MSVC 2013 wants assignment within body |
|
- | 133 | std::atomic_bool ready; |
|
- | 134 | }; |
|
- | 135 | ||
- | 136 | // We define types for the different parts of the WDLEntry and DTZEntry with |
|
- | 137 | // corresponding specializations for pieces or pawns. |
|
- | 138 | ||
- | 139 | struct WDLEntryPiece { |
|
- | 140 | PairsData* precomp; |
|
- | 141 | }; |
|
- | 142 | ||
- | 143 | struct WDLEntryPawn { |
|
- | 144 | uint8_t pawnCount[2]; // [Lead color / other color] |
|
- | 145 | WDLEntryPiece file[2][4]; // [wtm / btm][FILE_A..FILE_D] |
|
- | 146 | }; |
|
- | 147 | ||
- | 148 | struct DTZEntryPiece { |
|
- | 149 | PairsData* precomp; |
|
- | 150 | uint16_t map_idx[4]; // WDLWin, WDLLoss, WDLCursedWin, WDLBlessedLoss |
|
- | 151 | uint8_t* map; |
|
- | 152 | }; |
|
- | 153 | ||
- | 154 | struct DTZEntryPawn { |
|
- | 155 | uint8_t pawnCount[2]; |
|
98 |
|
156 | DTZEntryPiece file[4]; |
- | 157 | uint8_t* map; |
|
- | 158 | }; |
|
- | 159 | ||
- | 160 | struct TBEntry : public Atomic { |
|
- | 161 | void* baseAddress; |
|
- | 162 | uint64_t mapping; |
|
- | 163 | Key key; |
|
- | 164 | Key key2; |
|
- | 165 | int pieceCount; |
|
- | 166 | bool hasPawns; |
|
- | 167 | bool hasUniquePieces; |
|
- | 168 | }; |
|
- | 169 | ||
- | 170 | // Now the main types: WDLEntry and DTZEntry |
|
- | 171 | struct WDLEntry : public TBEntry { |
|
- | 172 | WDLEntry(const std::string& code); |
|
- | 173 | ~WDLEntry(); |
|
- | 174 | union { |
|
- | 175 | WDLEntryPiece pieceTable[2]; // [wtm / btm] |
|
- | 176 | WDLEntryPawn pawnTable; |
|
99 | } |
177 | }; |
- | 178 | }; |
|
- | 179 | ||
- | 180 | struct DTZEntry : public TBEntry { |
|
- | 181 | DTZEntry(const WDLEntry& wdl); |
|
- | 182 | ~DTZEntry(); |
|
- | 183 | union { |
|
- | 184 | DTZEntryPiece pieceTable; |
|
- | 185 | DTZEntryPawn pawnTable; |
|
100 |
|
186 | }; |
- | 187 | }; |
|
- | 188 | ||
- | 189 | typedef decltype(WDLEntry::pieceTable) WDLPieceTable; |
|
- | 190 | typedef decltype(DTZEntry::pieceTable) DTZPieceTable; |
|
- | 191 | typedef decltype(WDLEntry::pawnTable ) WDLPawnTable; |
|
- | 192 | typedef decltype(DTZEntry::pawnTable ) DTZPawnTable; |
|
- | 193 | ||
- | 194 | auto item(WDLPieceTable& e, int stm, int ) -> decltype(e[stm])& { return e[stm]; } |
|
- | 195 | auto item(DTZPieceTable& e, int , int ) -> decltype(e)& { return e; } |
|
- | 196 | auto item(WDLPawnTable& e, int stm, int f) -> decltype(e.file[stm][f])& { return e.file[stm][f]; } |
|
- | 197 | auto item(DTZPawnTable& e, int , int f) -> decltype(e.file[f])& { return e.file[f]; } |
|
- | 198 | ||
- | 199 | template<typename E> struct Ret { typedef int type; }; |
|
- | 200 | template<> struct Ret<WDLEntry> { typedef WDLScore type; }; |
|
- | 201 | ||
- | 202 | int MapPawns[SQUARE_NB]; |
|
- | 203 | int MapB1H1H7[SQUARE_NB]; |
|
- | 204 | int MapA1D1D4[SQUARE_NB]; |
|
- | 205 | int MapKK[10][SQUARE_NB]; // [MapA1D1D4][SQUARE_NB] |
|
- | 206 | ||
- | 207 | // Comparison function to sort leading pawns in ascending MapPawns[] order |
|
- | 208 | bool pawns_comp(Square i, Square j) { return MapPawns[i] < MapPawns[j]; } |
|
- | 209 | int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); } |
|
- | 210 | ||
- | 211 | const Value WDL_to_value[] = { |
|
- | 212 | -VALUE_MATE + MAX_PLY + 1, |
|
- | 213 | VALUE_DRAW - 2, |
|
- | 214 | VALUE_DRAW, |
|
101 |
|
215 | VALUE_DRAW + 2, |
- | 216 | VALUE_MATE - MAX_PLY - 1 |
|
102 | } |
217 | }; |
- | 218 | ||
- | 219 | const std::string PieceToChar = " PNBRQK pnbrqk"; |
|
- | 220 | ||
- | 221 | int Binomial[6][SQUARE_NB]; // [k][n] k elements from a set of n elements |
|
- | 222 | int LeadPawnIdx[5][SQUARE_NB]; // [leadPawnsCnt][SQUARE_NB] |
|
- | 223 | int LeadPawnsSize[5][4]; // [leadPawnsCnt][FILE_A..FILE_D] |
|
- | 224 | ||
- | 225 | enum { BigEndian, LittleEndian }; |
|
103 | 226 | ||
104 |
|
227 | template<typename T, int Half = sizeof(T) / 2, int End = sizeof(T) - 1> |
- | 228 | inline void swap_byte(T& x) |
|
105 | { |
229 | { |
106 |
|
230 | char tmp, *c = (char*)&x; |
107 |
|
231 | for (int i = 0; i < Half; ++i) |
108 |
|
232 | tmp = c[i], c[i] = c[End - i], c[End - i] = tmp; |
109 | } |
233 | } |
- | 234 | template<> inline void swap_byte<uint8_t, 0, 0>(uint8_t&) {} |
|
110 | 235 | ||
111 |
|
236 | template<typename T, int LE> T number(void* addr) |
112 | static int probe_wdl_table(Position& pos, int *success) |
- | |
113 | { |
237 | { |
114 |
|
238 | const union { uint32_t i; char c[4]; } Le = { 0x01020304 }; |
115 |
|
239 | const bool IsLittleEndian = (Le.c[0] == 4); |
116 | uint64 idx; |
- | |
117 | uint64 key; |
- | |
118 | int i; |
- | |
119 | ubyte res; |
- | |
120 | int p[TBPIECES]; |
- | |
121 | 240 | ||
122 | // Obtain the position's material signature key. |
- | |
123 |
|
241 | T v; |
124 | 242 | ||
- | 243 | if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare) |
|
- | 244 | std::memcpy(&v, addr, sizeof(T)); |
|
- | 245 | else |
|
- | 246 | v = *((T*)addr); |
|
- | 247 | ||
- | 248 | if (LE != IsLittleEndian) |
|
- | 249 | swap_byte(v); |
|
125 |
|
250 | return v; |
- | 251 | } |
|
- | 252 | ||
- | 253 | class HashTable { |
|
- | 254 | ||
- | 255 | typedef std::pair<WDLEntry*, DTZEntry*> EntryPair; |
|
- | 256 | typedef std::pair<Key, EntryPair> Entry; |
|
- | 257 | ||
- | 258 | static const int TBHASHBITS = 10; |
|
- | 259 | static const int HSHMAX = 5; |
|
- | 260 | ||
- | 261 | Entry hashTable[1 << TBHASHBITS][HSHMAX]; |
|
- | 262 | ||
- | 263 | std::deque<WDLEntry> wdlTable; |
|
- | 264 | std::deque<DTZEntry> dtzTable; |
|
- | 265 | ||
- | 266 | void insert(Key key, WDLEntry* wdl, DTZEntry* dtz) { |
|
- | 267 | Entry* entry = hashTable[key >> (64 - TBHASHBITS)]; |
|
- | 268 | ||
- | 269 | for (int i = 0; i < HSHMAX; ++i, ++entry) |
|
- | 270 | if (!entry->second.first || entry->first == key) { |
|
126 |
|
271 | *entry = std::make_pair(key, std::make_pair(wdl, dtz)); |
- | 272 | return; |
|
127 |
|
273 | } |
- | 274 | ||
- | 275 | std::cerr << "HSHMAX too low!" << std::endl; |
|
- | 276 | exit(1); |
|
- | 277 | } |
|
- | 278 | ||
- | 279 | public: |
|
- | 280 | template<typename E, int I = std::is_same<E, WDLEntry>::value ? 0 : 1> |
|
- | 281 | E* get(Key key) { |
|
- | 282 | Entry* entry = hashTable[key >> (64 - TBHASHBITS)]; |
|
- | 283 | ||
- | 284 | for (int i = 0; i < HSHMAX; ++i, ++entry) |
|
- | 285 | if (entry->first == key) |
|
- | 286 | return std::get<I>(entry->second); |
|
128 | 287 | ||
129 | ptr2 = TB_hash[key >> (64 - TBHASHBITS)]; |
- | |
130 | for (i = 0; i < HSHMAX; i++) |
- | |
131 | if (ptr2[i].key == key) break; |
- | |
132 | if (i == HSHMAX) { |
- | |
133 | *success = 0; |
- | |
134 | return |
288 | return nullptr; |
135 | } |
289 | } |
136 | 290 | ||
137 |
|
291 | void clear() { |
138 |
|
292 | std::memset(hashTable, 0, sizeof(hashTable)); |
139 |
|
293 | wdlTable.clear(); |
140 |
|
294 | dtzTable.clear(); |
141 |
|
295 | } |
142 |
|
296 | size_t size() const { return wdlTable.size(); } |
143 |
|
297 | void insert(const std::vector<PieceType>& pieces); |
- | 298 | }; |
|
- | 299 | ||
144 |
|
300 | HashTable EntryTable; |
- | 301 | ||
145 |
|
302 | class TBFile : public std::ifstream { |
- | 303 | ||
146 |
|
304 | std::string fname; |
- | 305 | ||
147 |
|
306 | public: |
- | 307 | // Look for and open the file among the Paths directories where the .rtbw |
|
- | 308 | // and .rtbz files can be found. Multiple directories are separated by ";" |
|
- | 309 | // on Windows and by ":" on Unix-based operating systems. |
|
148 |
|
310 | // |
- | 311 | // Example: |
|
149 |
|
312 | // C:\tb\wdl345;C:\tb\wdl6;D:\tb\dtz345;D:\tb\dtz6 |
- | 313 | static std::string Paths; |
|
- | 314 | ||
- | 315 | TBFile(const std::string& f) { |
|
- | 316 | ||
150 |
|
317 | #ifndef _WIN32 |
151 |
|
318 | const char SepChar = ':'; |
152 | #else |
319 | #else |
153 |
|
320 | const char SepChar = ';'; |
154 | #endif |
321 | #endif |
- | 322 | std::stringstream ss(Paths); |
|
155 |
|
323 | std::string path; |
- | 324 | ||
- | 325 | while (std::getline(ss, path, SepChar)) { |
|
- | 326 | fname = path + "/" + f; |
|
- | 327 | std::ifstream::open(fname); |
|
- | 328 | if (is_open()) |
|
- | 329 | return; |
|
- | 330 | } |
|
156 | } |
331 | } |
157 | UNLOCK(TB_mutex); |
- | |
158 | } |
- | |
159 | 332 | ||
- | 333 | // Memory map the file and check it. File should be already open and will be |
|
160 |
|
334 | // closed after mapping. |
- | 335 | uint8_t* map(void** baseAddress, uint64_t* mapping, const uint8_t* TB_MAGIC) { |
|
- | 336 | ||
161 |
|
337 | assert(is_open()); |
- | 338 | ||
- | 339 | close(); // Need to re-open to get native file descriptor |
|
- | 340 | ||
- | 341 | #ifndef _WIN32 |
|
162 |
|
342 | struct stat statbuf; |
- | 343 | int fd = ::open(fname.c_str(), O_RDONLY); |
|
- | 344 | ||
163 |
|
345 | if (fd == -1) |
- | 346 | return *baseAddress = nullptr, nullptr; |
|
- | 347 | ||
- | 348 | fstat(fd, &statbuf); |
|
- | 349 | *mapping = statbuf.st_size; |
|
- | 350 | *baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0); |
|
164 |
|
351 | ::close(fd); |
- | 352 | ||
165 |
|
353 | if (*baseAddress == MAP_FAILED) { |
- | 354 | std::cerr << "Could not mmap() " << fname << std::endl; |
|
- | 355 | exit(1); |
|
166 |
|
356 | } |
- | 357 | #else |
|
- | 358 | HANDLE fd = CreateFile(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr, |
|
- | 359 | OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr); |
|
- | 360 | ||
- | 361 | if (fd == INVALID_HANDLE_VALUE) |
|
- | 362 | return *baseAddress = nullptr, nullptr; |
|
- | 363 | ||
167 |
|
364 | DWORD size_high; |
- | 365 | DWORD size_low = GetFileSize(fd, &size_high); |
|
- | 366 | HANDLE mmap = CreateFileMapping(fd, nullptr, PAGE_READONLY, size_high, size_low, nullptr); |
|
- | 367 | CloseHandle(fd); |
|
- | 368 | ||
- | 369 | if (!mmap) { |
|
- | 370 | std::cerr << "CreateFileMapping() failed" << std::endl; |
|
- | 371 | exit(1); |
|
- | 372 | } |
|
- | 373 | ||
- | 374 | *mapping = (uint64_t)mmap; |
|
- | 375 | *baseAddress = MapViewOfFile(mmap, FILE_MAP_READ, 0, 0, 0); |
|
- | 376 | ||
- | 377 | if (!*baseAddress) { |
|
- | 378 | std::cerr << "MapViewOfFile() failed, name = " << fname |
|
- | 379 | << ", error = " << GetLastError() << std::endl; |
|
- | 380 | exit(1); |
|
- | 381 | } |
|
- | 382 | #endif |
|
- | 383 | uint8_t* data = (uint8_t*)*baseAddress; |
|
- | 384 | ||
- | 385 | if ( *data++ != *TB_MAGIC++ |
|
- | 386 | || *data++ != *TB_MAGIC++ |
|
- | 387 | || *data++ != *TB_MAGIC++ |
|
- | 388 | || *data++ != *TB_MAGIC) { |
|
- | 389 | std::cerr << "Corrupted table in file " << fname << std::endl; |
|
168 |
|
390 | unmap(*baseAddress, *mapping); |
- | 391 | return *baseAddress = nullptr, nullptr; |
|
- | 392 | } |
|
- | 393 | ||
- | 394 | return data; |
|
169 | } |
395 | } |
170 | } else { |
- | |
171 | cmirror = pos.side_to_move() == WHITE ? 0 : 8; |
- | |
172 | mirror = pos.side_to_move() == WHITE ? 0 : 0x38; |
- | |
173 | bside = 0; |
- | |
174 | } |
- | |
175 | 396 | ||
176 | // p[i] is to contain the square 0-63 (A1-H8) for a piece of type |
- | |
177 |
|
397 | static void unmap(void* baseAddress, uint64_t mapping) { |
178 | // Pieces of the same type are guaranteed to be consecutive. |
- | |
- | 398 | ||
179 |
|
399 | #ifndef _WIN32 |
180 | struct TBEntry_piece *entry = (struct TBEntry_piece *)ptr; |
- | |
181 |
|
400 | munmap(baseAddress, mapping); |
182 | for (i = 0; i < entry->num;) { |
- | |
183 | Bitboard bb = pos.pieces((Color)((pc[i] ^ cmirror) >> 3), |
- | |
184 | (PieceType)(pc[i] & 0x07)); |
- | |
185 |
|
401 | #else |
186 |
|
402 | UnmapViewOfFile(baseAddress); |
187 |
|
403 | CloseHandle((HANDLE)mapping); |
- | 404 | #endif |
|
188 | } |
405 | } |
189 | idx = encode_piece(entry, entry->norm[bside], p, entry->factor[bside]); |
- | |
190 | res = decompress_pairs(entry->precomp[bside], idx); |
- | |
191 |
|
406 | }; |
- | 407 | ||
192 |
|
408 | std::string TBFile::Paths; |
- | 409 | ||
193 |
|
410 | WDLEntry::WDLEntry(const std::string& code) { |
194 | Bitboard bb = pos.pieces((Color)(k >> 3), (PieceType)(k & 0x07)); |
- | |
- | 411 | ||
195 |
|
412 | StateInfo st; |
196 |
|
413 | Position pos; |
- | 414 | ||
197 |
|
415 | memset(this, 0, sizeof(WDLEntry)); |
- | 416 | ||
198 |
|
417 | ready = false; |
- | 418 | key = pos.set(code, WHITE, &st).material_key(); |
|
199 |
|
419 | pieceCount = popcount(pos.pieces()); |
200 |
|
420 | hasPawns = pos.pieces(PAWN); |
- | 421 | ||
201 | for (; |
422 | for (Color c = WHITE; c <= BLACK; ++c) |
- | 423 | for (PieceType pt = PAWN; pt < KING; ++pt) |
|
202 |
|
424 | if (popcount(pos.pieces(c, pt)) == 1) |
203 |
|
425 | hasUniquePieces = true; |
- | 426 | ||
204 |
|
427 | if (hasPawns) { |
- | 428 | // Set the leading color. In case both sides have pawns the leading color |
|
- | 429 | // is the side with less pawns because this leads to better compression. |
|
205 |
|
430 | bool c = !pos.count<PAWN>(BLACK) |
206 |
|
431 | || ( pos.count<PAWN>(WHITE) |
- | 432 | && pos.count<PAWN>(BLACK) >= pos.count<PAWN>(WHITE)); |
|
- | 433 | ||
- | 434 | pawnTable.pawnCount[0] = pos.count<PAWN>(c ? WHITE : BLACK); |
|
- | 435 | pawnTable.pawnCount[1] = pos.count<PAWN>(c ? BLACK : WHITE); |
|
207 | } |
436 | } |
208 | idx = encode_pawn(entry, entry->file[f].norm[bside], p, entry->file[f].factor[bside]); |
- | |
209 | res = decompress_pairs(entry->file[f].precomp[bside], idx); |
- | |
210 | } |
- | |
211 | 437 | ||
212 |
|
438 | key2 = pos.set(code, BLACK, &st).material_key(); |
213 | } |
439 | } |
214 | 440 | ||
215 | static int probe_dtz_table(Position& pos, int wdl, int *success) |
- | |
216 | { |
- | |
217 |
|
441 | WDLEntry::~WDLEntry() { |
218 | uint64 idx; |
- | |
219 | int i, res; |
- | |
220 | int p[TBPIECES]; |
- | |
221 | 442 | ||
222 |
|
443 | if (baseAddress) |
223 |
|
444 | TBFile::unmap(baseAddress, mapping); |
224 | 445 | ||
225 | if (DTZ_table[0].key1 != key && DTZ_table[0].key2 != key) { |
- | |
226 | for (i = |
446 | for (int i = 0; i < 2; ++i) |
227 | if (DTZ_table[i].key1 == key) break; |
- | |
228 | if (i < DTZ_ENTRIES) { |
- | |
229 | struct DTZTableEntry table_entry = DTZ_table[i]; |
- | |
230 |
|
447 | if (hasPawns) |
231 |
|
448 | for (File f = FILE_A; f <= FILE_D; ++f) |
232 |
|
449 | delete pawnTable.file[i][f].precomp; |
233 |
|
450 | else |
234 |
|
451 | delete pieceTable[i].precomp; |
- | 452 | } |
|
- | 453 | ||
235 |
|
454 | DTZEntry::DTZEntry(const WDLEntry& wdl) { |
- | 455 | ||
236 |
|
456 | memset(this, 0, sizeof(DTZEntry)); |
- | 457 | ||
237 |
|
458 | ready = false; |
238 |
|
459 | key = wdl.key; |
239 |
|
460 | key2 = wdl.key2; |
240 | } |
- | |
241 |
|
461 | pieceCount = wdl.pieceCount; |
242 |
|
462 | hasPawns = wdl.hasPawns; |
243 |
|
463 | hasUniquePieces = wdl.hasUniquePieces; |
- | 464 | ||
244 |
|
465 | if (hasPawns) { |
245 | if (DTZ_table[DTZ_ENTRIES - 1].entry) |
- | |
246 |
|
466 | pawnTable.pawnCount[0] = wdl.pawnTable.pawnCount[0]; |
247 | for (i = DTZ_ENTRIES - 1; i > 0; i--) |
- | |
248 |
|
467 | pawnTable.pawnCount[1] = wdl.pawnTable.pawnCount[1]; |
249 | load_dtz_table(str, calc_key(pos, mirror), calc_key(pos, !mirror)); |
- | |
250 | } |
468 | } |
251 |
|
469 | } |
252 | 470 | ||
253 |
|
471 | DTZEntry::~DTZEntry() { |
254 | if (!ptr) { |
- | |
255 | *success = 0; |
- | |
256 | return 0; |
- | |
257 | } |
- | |
258 | 472 | ||
- | 473 | if (baseAddress) |
|
- | 474 | TBFile::unmap(baseAddress, mapping); |
|
- | 475 | ||
- | 476 | if (hasPawns) |
|
- | 477 | for (File f = FILE_A; f <= FILE_D; ++f) |
|
- | 478 | delete pawnTable.file[f].precomp; |
|
- | 479 | else |
|
259 |
|
480 | delete pieceTable.precomp; |
- | 481 | } |
|
- | 482 | ||
- | 483 | void HashTable::insert(const std::vector<PieceType>& pieces) { |
|
- | 484 | ||
260 |
|
485 | std::string code; |
- | 486 | ||
261 |
|
487 | for (PieceType pt : pieces) |
- | 488 | code += PieceToChar[pt]; |
|
- | 489 | ||
- | 490 | TBFile file(code.insert(code.find('K', 1), "v") + ".rtbw"); // KRK -> KRvK |
|
- | 491 | ||
- | 492 | if (!file.is_open()) // Only WDL file is checked |
|
262 |
|
493 | return; |
- | 494 | ||
- | 495 | file.close(); |
|
- | 496 | ||
- | 497 | MaxCardinality = std::max((int)pieces.size(), MaxCardinality); |
|
- | 498 | ||
- | 499 | wdlTable.emplace_back(code); |
|
- | 500 | dtzTable.emplace_back(wdlTable.back()); |
|
- | 501 | ||
- | 502 | insert(wdlTable.back().key , &wdlTable.back(), &dtzTable.back()); |
|
- | 503 | insert(wdlTable.back().key2, &wdlTable.back(), &dtzTable.back()); |
|
- | 504 | } |
|
- | 505 | ||
- | 506 | // TB tables are compressed with canonical Huffman code. The compressed data is divided into |
|
- | 507 | // blocks of size d->sizeofBlock, and each block stores a variable number of symbols. |
|
- | 508 | // Each symbol represents either a WDL or a (remapped) DTZ value, or a pair of other symbols |
|
- | 509 | // (recursively). If you keep expanding the symbols in a block, you end up with up to 65536 |
|
- | 510 | // WDL or DTZ values. Each symbol represents up to 256 values and will correspond after |
|
- | 511 | // Huffman coding to at least 1 bit. So a block of 32 bytes corresponds to at most |
|
- | 512 | // 32 x 8 x 256 = 65536 values. This maximum is only reached for tables that consist mostly |
|
- | 513 | // of draws or mostly of wins, but such tables are actually quite common. In principle, the |
|
- | 514 | // blocks in WDL tables are 64 bytes long (and will be aligned on cache lines). But for |
|
- | 515 | // mostly-draw or mostly-win tables this can leave many 64-byte blocks only half-filled, so |
|
- | 516 | // in such cases blocks are 32 bytes long. The blocks of DTZ tables are up to 1024 bytes long. |
|
- | 517 | // The generator picks the size that leads to the smallest table. The "book" of symbols and |
|
- | 518 | // Huffman codes is the same for all blocks in the table. A non-symmetric pawnless TB file |
|
- | 519 | // will have one table for wtm and one for btm, a TB file with pawns will have tables per |
|
- | 520 | // file a,b,c,d also in this case one set for wtm and one for btm. |
|
- | 521 | int decompress_pairs(PairsData* d, uint64_t idx) { |
|
- | 522 | ||
- | 523 | // Special case where all table positions store the same value |
|
- | 524 | if (d->flags & TBFlag::SingleValue) |
|
- | 525 | return d->minSymLen; |
|
- | 526 | ||
- | 527 | // First we need to locate the right block that stores the value at index "idx". |
|
- | 528 | // Because each block n stores blockLength[n] + 1 values, the index i of the block |
|
- | 529 | // that contains the value at position idx is: |
|
- | 530 | // |
|
- | 531 | // for (i = -1, sum = 0; sum <= idx; i++) |
|
- | 532 | // sum += blockLength[i + 1] + 1; |
|
- | 533 | // |
|
- | 534 | // This can be slow, so we use SparseIndex[] populated with a set of SparseEntry that |
|
- | 535 | // point to known indices into blockLength[]. Namely SparseIndex[k] is a SparseEntry |
|
- | 536 | // that stores the blockLength[] index and the offset within that block of the value |
|
- | 537 | // with index I(k), where: |
|
- | 538 | // |
|
- | 539 | // I(k) = k * d->span + d->span / 2 (1) |
|
- | 540 | ||
- | 541 | // First step is to get the 'k' of the I(k) nearest to our idx, using definition (1) |
|
- | 542 | uint32_t k = (uint32_t) (idx / d->span); // Pierre-Marie Baty -- added type cast |
|
- | 543 | ||
- | 544 | // Then we read the corresponding SparseIndex[] entry |
|
- | 545 | uint32_t block = number<uint32_t, LittleEndian>(&d->sparseIndex[k].block); |
|
- | 546 | int offset = number<uint16_t, LittleEndian>(&d->sparseIndex[k].offset); |
|
- | 547 | ||
- | 548 | // Now compute the difference idx - I(k). From definition of k we know that |
|
- | 549 | // |
|
- | 550 | // idx = k * d->span + idx % d->span (2) |
|
- | 551 | // |
|
- | 552 | // So from (1) and (2) we can compute idx - I(K): |
|
- | 553 | int diff = idx % d->span - d->span / 2; |
|
- | 554 | ||
- | 555 | // Sum the above to offset to find the offset corresponding to our idx |
|
263 |
|
556 | offset += diff; |
- | 557 | ||
- | 558 | // Move to previous/next block, until we reach the correct block that contains idx, |
|
- | 559 | // that is when 0 <= offset <= d->blockLength[block] |
|
- | 560 | while (offset < 0) |
|
- | 561 | offset += d->blockLength[--block] + 1; |
|
- | 562 | ||
- | 563 | while (offset > d->blockLength[block]) |
|
264 |
|
564 | offset -= d->blockLength[block++] + 1; |
- | 565 | ||
- | 566 | // Finally, we find the start address of our block of canonical Huffman symbols |
|
- | 567 | uint32_t* ptr = (uint32_t*)(d->data + block * d->sizeofBlock); |
|
- | 568 | ||
- | 569 | // Read the first 64 bits in our block, this is a (truncated) sequence of |
|
- | 570 | // unknown number of symbols of unknown length but we know the first one |
|
- | 571 | // is at the beginning of this 64 bits sequence. |
|
- | 572 | uint64_t buf64 = number<uint64_t, BigEndian>(ptr); ptr += 2; |
|
- | 573 | int buf64Size = 64; |
|
265 |
|
574 | Sym sym; |
- | 575 | ||
- | 576 | while (true) { |
|
- | 577 | int len = 0; // This is the symbol length - d->min_sym_len |
|
- | 578 | ||
- | 579 | // Now get the symbol length. For any symbol s64 of length l right-padded |
|
- | 580 | // to 64 bits we know that d->base64[l-1] >= s64 >= d->base64[l] so we |
|
- | 581 | // can find the symbol length iterating through base64[]. |
|
- | 582 | while (buf64 < d->base64[len]) |
|
- | 583 | ++len; |
|
- | 584 | ||
- | 585 | // All the symbols of a given length are consecutive integers (numerical |
|
- | 586 | // sequence property), so we can compute the offset of our symbol of |
|
- | 587 | // length len, stored at the beginning of buf64. |
|
- | 588 | sym = (Sym) ((buf64 - d->base64[len]) >> (64 - len - d->minSymLen)); // Pierre-Marie Baty -- added type cast |
|
- | 589 | ||
- | 590 | // Now add the value of the lowest symbol of length len to get our symbol |
|
- | 591 | sym += number<Sym, LittleEndian>(&d->lowestSym[len]); |
|
- | 592 | ||
- | 593 | // If our offset is within the number of values represented by symbol sym |
|
266 |
|
594 | // we are done... |
267 |
|
595 | if (offset < d->symlen[sym] + 1) |
- | 596 | break; |
|
- | 597 | ||
- | 598 | // ...otherwise update the offset and continue to iterate |
|
- | 599 | offset -= d->symlen[sym] + 1; |
|
- | 600 | len += d->minSymLen; // Get the real length |
|
- | 601 | buf64 <<= len; // Consume the just processed symbol |
|
- | 602 | buf64Size -= len; |
|
- | 603 | ||
- | 604 | if (buf64Size <= 32) { // Refill the buffer |
|
- | 605 | buf64Size += 32; |
|
- | 606 | buf64 |= (uint64_t)number<uint32_t, BigEndian>(ptr++) << (64 - buf64Size); |
|
- | 607 | } |
|
268 | } |
608 | } |
269 | } else { |
- | |
270 | cmirror = pos.side_to_move() == WHITE ? 0 : 8; |
- | |
271 | mirror = pos.side_to_move() == WHITE ? 0 : 0x38; |
- | |
272 | bside = 0; |
- | |
273 | } |
- | |
274 | 609 | ||
- | 610 | // Ok, now we have our symbol that expands into d->symlen[sym] + 1 symbols. |
|
- | 611 | // We binary-search for our value recursively expanding into the left and |
|
- | 612 | // right child symbols until we reach a leaf node where symlen[sym] + 1 == 1 |
|
- | 613 | // that will store the value we need. |
|
275 |
|
614 | while (d->symlen[sym]) { |
- | 615 | ||
276 |
|
616 | Sym left = d->btree[sym].get<LR::Left>(); |
- | 617 | ||
277 |
|
618 | // If a symbol contains 36 sub-symbols (d->symlen[sym] + 1 = 36) and |
- | 619 | // expands in a pair (d->symlen[left] = 23, d->symlen[right] = 11), then |
|
- | 620 | // we know that, for instance the ten-th value (offset = 10) will be on |
|
- | 621 | // the left side because in Recursive Pairing child symbols are adjacent. |
|
- | 622 | if (offset < d->symlen[left] + 1) |
|
278 |
|
623 | sym = left; |
279 |
|
624 | else { |
- | 625 | offset -= d->symlen[left] + 1; |
|
- | 626 | sym = d->btree[sym].get<LR::Right>(); |
|
- | 627 | } |
|
280 | } |
628 | } |
281 | ubyte *pc = entry->pieces; |
- | |
282 | for (i = 0; i < entry->num;) { |
- | |
283 | Bitboard bb = pos.pieces((Color)((pc[i] ^ cmirror) >> 3), |
- | |
284 | (PieceType)(pc[i] & 0x07)); |
- | |
285 | do { |
- | |
286 | p[i++] = pop_lsb(&bb); |
- | |
287 | } while (bb); |
- | |
288 | } |
- | |
289 | idx = encode_piece((struct TBEntry_piece *)entry, entry->norm, p, entry->factor); |
- | |
290 | res = decompress_pairs(entry->precomp, idx); |
- | |
291 | 629 | ||
292 | if (entry->flags & 2) |
- | |
293 |
|
630 | return d->btree[sym].get<LR::Value>(); |
- | 631 | } |
|
294 | 632 | ||
- | 633 | bool check_dtz_stm(WDLEntry*, int, File) { return true; } |
|
- | 634 | ||
- | 635 | bool check_dtz_stm(DTZEntry* entry, int stm, File f) { |
|
- | 636 | ||
- | 637 | int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags |
|
- | 638 | : entry->pieceTable.precomp->flags; |
|
- | 639 | ||
- | 640 | return (flags & TBFlag::STM) == stm |
|
- | 641 | || ((entry->key == entry->key2) && !entry->hasPawns); |
|
- | 642 | } |
|
- | 643 | ||
- | 644 | // DTZ scores are sorted by frequency of occurrence and then assigned the |
|
- | 645 | // values 0, 1, 2, ... in order of decreasing frequency. This is done for each |
|
- | 646 | // of the four WDLScore values. The mapping information necessary to reconstruct |
|
- | 647 | // the original values is stored in the TB file and read during map[] init. |
|
- | 648 | WDLScore map_score(WDLEntry*, File, int value, WDLScore) { return WDLScore(value - 2); } |
|
- | 649 | ||
- | 650 | int map_score(DTZEntry* entry, File f, int value, WDLScore wdl) { |
|
- | 651 | ||
- | 652 | const int WDLMap[] = { 1, 3, 0, 2, 0 }; |
|
- | 653 | ||
- | 654 | int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags |
|
- | 655 | : entry->pieceTable.precomp->flags; |
|
- | 656 | ||
- | 657 | uint8_t* map = entry->hasPawns ? entry->pawnTable.map |
|
- | 658 | : entry->pieceTable.map; |
|
- | 659 | ||
- | 660 | uint16_t* idx = entry->hasPawns ? entry->pawnTable.file[f].map_idx |
|
- | 661 | : entry->pieceTable.map_idx; |
|
- | 662 | if (flags & TBFlag::Mapped) |
|
295 |
|
663 | value = map[idx[WDLMap[wdl + 2]] + value]; |
- | 664 | ||
- | 665 | // DTZ tables store distance to zero in number of moves or plies. We |
|
- | 666 | // want to return plies, so we have convert to plies when needed. |
|
- | 667 | if ( (wdl == WDLWin && !(flags & TBFlag::WinPlies)) |
|
- | 668 | || (wdl == WDLLoss && !(flags & TBFlag::LossPlies)) |
|
- | 669 | || wdl == WDLCursedWin |
|
- | 670 | || wdl == WDLBlessedLoss) |
|
296 |
|
671 | value *= 2; |
- | 672 | ||
- | 673 | return value + 1; |
|
- | 674 | } |
|
- | 675 | ||
- | 676 | // Compute a unique index out of a position and use it to probe the TB file. To |
|
- | 677 | // encode k pieces of same type and color, first sort the pieces by square in |
|
- | 678 | // ascending order s1 <= s2 <= ... <= sk then compute the unique index as: |
|
- | 679 | // |
|
- | 680 | // idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk] |
|
- | 681 | // |
|
- | 682 | template<typename Entry, typename T = typename Ret<Entry>::type> |
|
- | 683 | T do_probe_table(const Position& pos, Entry* entry, WDLScore wdl, ProbeState* result) { |
|
- | 684 | ||
- | 685 | const bool IsWDL = std::is_same<Entry, WDLEntry>::value; |
|
- | 686 | ||
- | 687 | Square squares[TBPIECES]; |
|
- | 688 | Piece pieces[TBPIECES]; |
|
- | 689 | uint64_t idx; |
|
- | 690 | int next = 0, size = 0, leadPawnsCnt = 0; |
|
297 |
|
691 | PairsData* d; |
- | 692 | Bitboard b, leadPawns = 0; |
|
- | 693 | File tbFile = FILE_A; |
|
- | 694 | ||
- | 695 | // A given TB entry like KRK has associated two material keys: KRvk and Kvkr. |
|
- | 696 | // If both sides have the same pieces keys are equal. In this case TB tables |
|
- | 697 | // only store the 'white to move' case, so if the position to lookup has black |
|
- | 698 | // to move, we need to switch the color and flip the squares before to lookup. |
|
- | 699 | bool symmetricBlackToMove = (entry->key == entry->key2 && pos.side_to_move()); |
|
- | 700 | ||
- | 701 | // TB files are calculated for white as stronger side. For instance we have |
|
- | 702 | // KRvK, not KvKR. A position where stronger side is white will have its |
|
- | 703 | // material key == entry->key, otherwise we have to switch the color and |
|
- | 704 | // flip the squares before to lookup. |
|
298 |
|
705 | bool blackStronger = (pos.material_key() != entry->key); |
- | 706 | ||
- | 707 | int flipColor = (symmetricBlackToMove || blackStronger) * 8; |
|
- | 708 | int flipSquares = (symmetricBlackToMove || blackStronger) * 070; |
|
- | 709 | int stm = (symmetricBlackToMove || blackStronger) ^ pos.side_to_move(); |
|
- | 710 | ||
- | 711 | // For pawns, TB files store 4 separate tables according if leading pawn is on |
|
- | 712 | // file a, b, c or d after reordering. The leading pawn is the one with maximum |
|
- | 713 | // MapPawns[] value, that is the one most toward the edges and with lowest rank. |
|
- | 714 | if (entry->hasPawns) { |
|
- | 715 | ||
- | 716 | // In all the 4 tables, pawns are at the beginning of the piece sequence and |
|
- | 717 | // their color is the reference one. So we just pick the first one. |
|
299 |
|
718 | Piece pc = Piece(item(entry->pawnTable, 0, 0).precomp->pieces[0] ^ flipColor); |
- | 719 | ||
- | 720 | assert(type_of(pc) == PAWN); |
|
- | 721 | ||
300 |
|
722 | leadPawns = b = pos.pieces(color_of(pc), PAWN); |
301 |
|
723 | do |
- | 724 | squares[size++] = pop_lsb(&b) ^ flipSquares; |
|
- | 725 | while (b); |
|
- | 726 | ||
- | 727 | leadPawnsCnt = size; |
|
- | 728 | ||
- | 729 | std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp)); |
|
- | 730 | ||
- | 731 | tbFile = file_of(squares[0]); |
|
- | 732 | if (tbFile > FILE_D) |
|
- | 733 | tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1 |
|
- | 734 | ||
- | 735 | d = item(entry->pawnTable , stm, tbFile).precomp; |
|
- | 736 | } else |
|
- | 737 | d = item(entry->pieceTable, stm, tbFile).precomp; |
|
- | 738 | ||
- | 739 | // DTZ tables are one-sided, i.e. they store positions only for white to |
|
- | 740 | // move or only for black to move, so check for side to move to be stm, |
|
- | 741 | // early exit otherwise. |
|
- | 742 | if (!IsWDL && !check_dtz_stm(entry, stm, tbFile)) |
|
- | 743 | return *result = CHANGE_STM, T(); |
|
- | 744 | ||
- | 745 | // Now we are ready to get all the position pieces (but the lead pawns) and |
|
- | 746 | // directly map them to the correct color and square. |
|
- | 747 | b = pos.pieces() ^ leadPawns; |
|
302 | do { |
748 | do { |
303 |
|
749 | Square s = pop_lsb(&b); |
- | 750 | squares[size] = s ^ flipSquares; |
|
- | 751 | pieces[size++] = Piece(pos.piece_on(s) ^ flipColor); |
|
304 | } while ( |
752 | } while (b); |
- | 753 | ||
- | 754 | assert(size >= 2); |
|
- | 755 | ||
- | 756 | // Then we reorder the pieces to have the same sequence as the one stored |
|
- | 757 | // in precomp->pieces[i]: the sequence that ensures the best compression. |
|
305 | int |
758 | for (int i = leadPawnsCnt; i < size; ++i) |
- | 759 | for (int j = i; j < size; ++j) |
|
306 |
|
760 | if (d->pieces[i] == pieces[j]) |
- | 761 | { |
|
- | 762 | std::swap(pieces[i], pieces[j]); |
|
- | 763 | std::swap(squares[i], squares[j]); |
|
307 |
|
764 | break; |
308 |
|
765 | } |
- | 766 | ||
- | 767 | // Now we map again the squares so that the square of the lead piece is in |
|
- | 768 | // the triangle A1-D1-D4. |
|
- | 769 | if (file_of(squares[0]) > FILE_D) |
|
- | 770 | for (int i = 0; i < size; ++i) |
|
- | 771 | squares[i] ^= 7; // Horizontal flip: SQ_H1 -> SQ_A1 |
|
- | 772 | ||
- | 773 | // Encode leading pawns starting with the one with minimum MapPawns[] and |
|
- | 774 | // proceeding in ascending order. |
|
- | 775 | if (entry->hasPawns) { |
|
- | 776 | idx = LeadPawnIdx[leadPawnsCnt][squares[0]]; |
|
- | 777 | ||
- | 778 | std::sort(squares + 1, squares + leadPawnsCnt, pawns_comp); |
|
- | 779 | ||
- | 780 | for (int i = 1; i < leadPawnsCnt; ++i) |
|
- | 781 | idx += Binomial[i][MapPawns[squares[i]]]; |
|
- | 782 | ||
- | 783 | goto encode_remaining; // With pawns we have finished special treatments |
|
309 | } |
784 | } |
- | 785 | ||
- | 786 | // In positions withouth pawns, we further flip the squares to ensure leading |
|
310 |
|
787 | // piece is below RANK_5. |
- | 788 | if (rank_of(squares[0]) > RANK_4) |
|
311 | for ( |
789 | for (int i = 0; i < size; ++i) |
312 |
|
790 | squares[i] ^= 070; // Vertical flip: SQ_A8 -> SQ_A1 |
- | 791 | ||
- | 792 | // Look for the first piece of the leading group not on the A1-D4 diagonal |
|
- | 793 | // and ensure it is mapped below the diagonal. |
|
313 |
|
794 | for (int i = 0; i < d->groupLen[0]; ++i) { |
- | 795 | if (!off_A1H8(squares[i])) |
|
314 |
|
796 | continue; |
- | 797 | ||
- | 798 | if (off_A1H8(squares[i]) > 0) // A1-H8 diagonal flip: SQ_A3 -> SQ_C3 |
|
315 |
|
799 | for (int j = i; j < size; ++j) |
- | 800 | squares[j] = Square(((squares[j] >> 3) | (squares[j] << 3)) & 63); |
|
316 |
|
801 | break; |
317 | } |
802 | } |
318 | idx = encode_pawn((struct TBEntry_pawn *)entry, entry->file[f].norm, p, entry->file[f].factor); |
- | |
319 | res = decompress_pairs(entry->file[f].precomp, idx); |
- | |
320 | 803 | ||
- | 804 | // Encode the leading group. |
|
- | 805 | // |
|
- | 806 | // Suppose we have KRvK. Let's say the pieces are on square numbers wK, wR |
|
- | 807 | // and bK (each 0...63). The simplest way to map this position to an index |
|
- | 808 | // is like this: |
|
- | 809 | // |
|
- | 810 | // index = wK * 64 * 64 + wR * 64 + bK; |
|
- | 811 | // |
|
- | 812 | // But this way the TB is going to have 64*64*64 = 262144 positions, with |
|
- | 813 | // lots of positions being equivalent (because they are mirrors of each |
|
- | 814 | // other) and lots of positions being invalid (two pieces on one square, |
|
321 |
|
815 | // adjacent kings, etc.). |
- | 816 | // Usually the first step is to take the wK and bK together. There are just |
|
- | 817 | // 462 ways legal and not-mirrored ways to place the wK and bK on the board. |
|
- | 818 | // Once we have placed the wK and bK, there are 62 squares left for the wR |
|
- | 819 | // Mapping its square from 0..63 to available squares 0..61 can be done like: |
|
- | 820 | // |
|
- | 821 | // wR -= (wR > wK) + (wR > bK); |
|
- | 822 | // |
|
322 |
|
823 | // In words: if wR "comes later" than wK, we deduct 1, and the same if wR |
- | 824 | // "comes later" than bK. In case of two same pieces like KRRvK we want to |
|
- | 825 | // place the two Rs "together". If we have 62 squares left, we can place two |
|
- | 826 | // Rs "together" in 62 * 61 / 2 ways (we divide by 2 because rooks can be |
|
- | 827 | // swapped and still get the same position.) |
|
- | 828 | // |
|
- | 829 | // In case we have at least 3 unique pieces (inlcuded kings) we encode them |
|
- | 830 | // together. |
|
- | 831 | if (entry->hasUniquePieces) { |
|
323 | 832 | ||
324 |
|
833 | int adjust1 = squares[1] > squares[0]; |
325 |
|
834 | int adjust2 = (squares[2] > squares[0]) + (squares[2] > squares[1]); |
326 | } |
- | |
327 | 835 | ||
- | 836 | // First piece is below a1-h8 diagonal. MapA1D1D4[] maps the b1-d1-d3 |
|
- | 837 | // triangle to 0...5. There are 63 squares for second piece and and 62 |
|
- | 838 | // (mapped to 0...61) for the third. |
|
- | 839 | if (off_A1H8(squares[0])) |
|
- | 840 | idx = ( MapA1D1D4[squares[0]] * 63 |
|
- | 841 | + (squares[1] - adjust1)) * 62 |
|
- | 842 | + squares[2] - adjust2; |
|
- | 843 | ||
- | 844 | // First piece is on a1-h8 diagonal, second below: map this occurence to |
|
- | 845 | // 6 to differentiate from the above case, rank_of() maps a1-d4 diagonal |
|
- | 846 | // to 0...3 and finally MapB1H1H7[] maps the b1-h1-h7 triangle to 0..27. |
|
- | 847 | else if (off_A1H8(squares[1])) |
|
- | 848 | idx = ( 6 * 63 + rank_of(squares[0]) * 28 |
|
- | 849 | + MapB1H1H7[squares[1]]) * 62 |
|
- | 850 | + squares[2] - adjust2; |
|
- | 851 | ||
- | 852 | // First two pieces are on a1-h8 diagonal, third below |
|
- | 853 | else if (off_A1H8(squares[2])) |
|
- | 854 | idx = 6 * 63 * 62 + 4 * 28 * 62 |
|
- | 855 | + rank_of(squares[0]) * 7 * 28 |
|
- | 856 | + (rank_of(squares[1]) - adjust1) * 28 |
|
- | 857 | + MapB1H1H7[squares[2]]; |
|
- | 858 | ||
- | 859 | // All 3 pieces on the diagonal a1-h8 |
|
328 |
|
860 | else |
- | 861 | idx = 6 * 63 * 62 + 4 * 28 * 62 + 4 * 7 * 28 |
|
- | 862 | + rank_of(squares[0]) * 7 * 6 |
|
- | 863 | + (rank_of(squares[1]) - adjust1) * 6 |
|
- | 864 | + (rank_of(squares[2]) - adjust2); |
|
- | 865 | } else |
|
- | 866 | // We don't have at least 3 unique pieces, like in KRRvKBB, just map |
|
- | 867 | // the kings. |
|
- | 868 | idx = MapKK[MapA1D1D4[squares[0]]][squares[1]]; |
|
- | 869 | ||
- | 870 | encode_remaining: |
|
- | 871 | idx *= d->groupIdx[0]; |
|
- | 872 | Square* groupSq = squares + d->groupLen[0]; |
|
- | 873 | ||
- | 874 | // Encode remainig pawns then pieces according to square, in ascending order |
|
- | 875 | bool remainingPawns = entry->hasPawns && entry->pawnTable.pawnCount[1]; |
|
- | 876 | ||
- | 877 | while (d->groupLen[++next]) |
|
- | 878 | { |
|
- | 879 | std::sort(groupSq, groupSq + d->groupLen[next]); |
|
- | 880 | uint64_t n = 0; |
|
- | 881 | ||
- | 882 | // Map down a square if "comes later" than a square in the previous |
|
- | 883 | // groups (similar to what done earlier for leading group pieces). |
|
- | 884 | for (int i = 0; i < d->groupLen[next]; ++i) |
|
- | 885 | { |
|
- | 886 | auto f = [&](Square s) { return groupSq[i] > s; }; |
|
- | 887 | auto adjust = std::count_if(squares, groupSq, f); |
|
- | 888 | n += Binomial[i + 1][groupSq[i] - adjust - 8 * remainingPawns]; |
|
- | 889 | } |
|
- | 890 | ||
- | 891 | remainingPawns = false; |
|
- | 892 | idx += n * d->groupIdx[next]; |
|
- | 893 | groupSq += d->groupLen[next]; |
|
- | 894 | } |
|
- | 895 | ||
- | 896 | // Now that we have the index, decompress the pair and get the score |
|
- | 897 | return map_score(entry, tbFile, decompress_pairs(d, idx), wdl); |
|
329 | } |
898 | } |
330 | 899 | ||
331 | // |
900 | // Group together pieces that will be encoded together. The general rule is that |
- | 901 | // a group contains pieces of same type and color. The exception is the leading |
|
332 |
|
902 | // group that, in case of positions withouth pawns, can be formed by 3 different |
- | 903 | // pieces (default) or by the king pair when there is not a unique piece apart |
|
- | 904 | // from the kings. When there are pawns, pawns are always first in pieces[]. |
|
- | 905 | // |
|
- | 906 | // As example KRKN -> KRK + N, KNNK -> KK + NN, KPPKP -> P + PP + K + K |
|
333 |
|
907 | // |
- | 908 | // The actual grouping depends on the TB generator and can be inferred from the |
|
334 |
|
909 | // sequence of pieces in piece[] array. |
- | 910 | template<typename T> |
|
- | 911 | void set_groups(T& e, PairsData* d, int order[], File f) { |
|
335 | 912 | ||
- | 913 | int n = 0, firstLen = e.hasPawns ? 0 : e.hasUniquePieces ? 3 : 2; |
|
- | 914 | d->groupLen[n] = 1; |
|
- | 915 | ||
- | 916 | // Number of pieces per group is stored in groupLen[], for instance in KRKN |
|
- | 917 | // the encoder will default on '111', so groupLen[] will be (3, 1). |
|
336 | for ( |
918 | for (int i = 1; i < e.pieceCount; ++i) |
- | 919 | if (--firstLen > 0 || d->pieces[i] == d->pieces[i - 1]) |
|
- | 920 | d->groupLen[n]++; |
|
- | 921 | else |
|
- | 922 | d->groupLen[++n] = 1; |
|
- | 923 | ||
- | 924 | d->groupLen[++n] = 0; // Zero-terminated |
|
- | 925 | ||
- | 926 | // The sequence in pieces[] defines the groups, but not the order in which |
|
- | 927 | // they are encoded. If the pieces in a group g can be combined on the board |
|
- | 928 | // in N(g) different ways, then the position encoding will be of the form: |
|
- | 929 | // |
|
- | 930 | // g1 * N(g2) * N(g3) + g2 * N(g3) + g3 |
|
- | 931 | // |
|
- | 932 | // This ensures unique encoding for the whole position. The order of the |
|
- | 933 | // groups is a per-table parameter and could not follow the canonical leading |
|
- | 934 | // pawns/pieces -> remainig pawns -> remaining pieces. In particular the |
|
- | 935 | // first group is at order[0] position and the remaining pawns, when present, |
|
- | 936 | // are at order[1] position. |
|
- | 937 | bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides |
|
337 |
|
938 | int next = pp ? 2 : 1; |
- | 939 | int freeSquares = 64 - d->groupLen[0] - (pp ? d->groupLen[1] : 0); |
|
- | 940 | uint64_t idx = 1; |
|
- | 941 | ||
- | 942 | for (int k = 0; next < n || k == order[0] || k == order[1]; ++k) |
|
- | 943 | if (k == order[0]) // Leading pawns or pieces |
|
- | 944 | { |
|
- | 945 | d->groupIdx[0] = idx; |
|
- | 946 | idx *= e.hasPawns ? LeadPawnsSize[d->groupLen[0]][f] |
|
- | 947 | : e.hasUniquePieces ? 31332 : 462; |
|
- | 948 | } |
|
- | 949 | else if (k == order[1]) // Remaining pawns |
|
- | 950 | { |
|
- | 951 | d->groupIdx[1] = idx; |
|
- | 952 | idx *= Binomial[d->groupLen[1]][48 - d->groupLen[0]]; |
|
- | 953 | } |
|
- | 954 | else // Remainig pieces |
|
- | 955 | { |
|
- | 956 | d->groupIdx[next] = idx; |
|
- | 957 | idx *= Binomial[d->groupLen[next]][freeSquares]; |
|
- | 958 | freeSquares -= d->groupLen[next++]; |
|
- | 959 | } |
|
- | 960 | ||
- | 961 | d->groupIdx[n] = idx; |
|
- | 962 | } |
|
- | 963 | ||
- | 964 | // In Recursive Pairing each symbol represents a pair of childern symbols. So |
|
- | 965 | // read d->btree[] symbols data and expand each one in his left and right child |
|
- | 966 | // symbol until reaching the leafs that represent the symbol value. |
|
- | 967 | uint8_t set_symlen(PairsData* d, Sym s, std::vector<bool>& visited) { |
|
- | 968 | ||
338 |
|
969 | visited[s] = true; // We can set it now because tree is acyclic |
- | 970 | Sym sr = d->btree[s].get<LR::Right>(); |
|
- | 971 | ||
- | 972 | if (sr == 0xFFF) |
|
- | 973 | return 0; |
|
- | 974 | ||
- | 975 | Sym sl = d->btree[s].get<LR::Left>(); |
|
- | 976 | ||
- | 977 | if (!visited[sl]) |
|
339 |
|
978 | d->symlen[sl] = set_symlen(d, sl, visited); |
- | 979 | ||
- | 980 | if (!visited[sr]) |
|
340 |
|
981 | d->symlen[sr] = set_symlen(d, sr, visited); |
- | 982 | ||
- | 983 | return d->symlen[sl] + d->symlen[sr] + 1; |
|
- | 984 | } |
|
- | 985 | ||
- | 986 | uint8_t* set_sizes(PairsData* d, uint8_t* data) { |
|
- | 987 | ||
- | 988 | d->flags = *data++; |
|
- | 989 | ||
- | 990 | if (d->flags & TBFlag::SingleValue) { |
|
341 |
|
991 | d->blocksNum = d->blockLengthSize = 0; |
- | 992 | d->span = d->sparseIndexSize = 0; // Broken MSVC zero-init |
|
- | 993 | d->minSymLen = *data++; // Here we store the single value |
|
- | 994 | return data; |
|
342 | } |
995 | } |
343 | } |
- | |
344 | 996 | ||
- | 997 | // groupLen[] is a zero-terminated list of group lengths, the last groupIdx[] |
|
- | 998 | // element stores the biggest index that is the tb size. |
|
- | 999 | uint64_t tbSize = d->groupIdx[std::find(d->groupLen, d->groupLen + 7, 0) - d->groupLen]; |
|
- | 1000 | ||
- | 1001 | d->sizeofBlock = 1ULL << *data++; |
|
- | 1002 | d->span = 1ULL << *data++; |
|
- | 1003 | d->sparseIndexSize = (size_t) ((tbSize + d->span - 1) / d->span); // Round up // Pierre-Marie Baty -- added type cast |
|
- | 1004 | int padding = number<uint8_t, LittleEndian>(data++); |
|
- | 1005 | d->blocksNum = number<uint32_t, LittleEndian>(data); data += sizeof(uint32_t); |
|
- | 1006 | d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[] |
|
- | 1007 | // does not point out of range. |
|
- | 1008 | d->maxSymLen = *data++; |
|
- | 1009 | d->minSymLen = *data++; |
|
- | 1010 | d->lowestSym = (Sym*)data; |
|
- | 1011 | d->base64.resize(d->maxSymLen - d->minSymLen + 1); |
|
- | 1012 | ||
- | 1013 | // The canonical code is ordered such that longer symbols (in terms of |
|
- | 1014 | // the number of bits of their Huffman code) have lower numeric value, |
|
- | 1015 | // so that d->lowestSym[i] >= d->lowestSym[i+1] (when read as LittleEndian). |
|
- | 1016 | // Starting from this we compute a base64[] table indexed by symbol length |
|
- | 1017 | // and containing 64 bit values so that d->base64[i] >= d->base64[i+1]. |
|
- | 1018 | // See http://www.eecs.harvard.edu/~michaelm/E210/huffman.pdf |
|
- | 1019 | for (int i = d->base64.size() - 2; i >= 0; --i) { |
|
- | 1020 | d->base64[i] = (d->base64[i + 1] + number<Sym, LittleEndian>(&d->lowestSym[i]) |
|
- | 1021 | - number<Sym, LittleEndian>(&d->lowestSym[i + 1])) / 2; |
|
- | 1022 | ||
- | 1023 | assert(d->base64[i] * 2 >= d->base64[i+1]); |
|
- | 1024 | } |
|
- | 1025 | ||
- | 1026 | // Now left-shift by an amount so that d->base64[i] gets shifted 1 bit more |
|
- | 1027 | // than d->base64[i+1] and given the above assert condition, we ensure that |
|
- | 1028 | // d->base64[i] >= d->base64[i+1]. Moreover for any symbol s64 of length i |
|
- | 1029 | // and right-padded to 64 bits holds d->base64[i-1] >= s64 >= d->base64[i]. |
|
- | 1030 | for (size_t i = 0; i < d->base64.size(); ++i) |
|
- | 1031 | d->base64[i] <<= 64 - i - d->minSymLen; // Right-padding to 64 bits |
|
- | 1032 | ||
- | 1033 | data += d->base64.size() * sizeof(Sym); |
|
- | 1034 | d->symlen.resize(number<uint16_t, LittleEndian>(data)); data += sizeof(uint16_t); |
|
345 |
|
1035 | d->btree = (LR*)data; |
- | 1036 | ||
- | 1037 | // The comrpession scheme used is "Recursive Pairing", that replaces the most |
|
- | 1038 | // frequent adjacent pair of symbols in the source message by a new symbol, |
|
- | 1039 | // reevaluating the frequencies of all of the symbol pairs with respect to |
|
- | 1040 | // the extended alphabet, and then repeating the process. |
|
- | 1041 | // See http://www.larsson.dogma.net/dcc99.pdf |
|
- | 1042 | std::vector<bool> visited(d->symlen.size()); |
|
- | 1043 | ||
- | 1044 | for (Sym sym = 0; sym < d->symlen.size(); ++sym) |
|
- | 1045 | if (!visited[sym]) |
|
- | 1046 | d->symlen[sym] = set_symlen(d, sym, visited); |
|
- | 1047 | ||
- | 1048 | return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1); |
|
346 | } |
1049 | } |
347 | 1050 | ||
- | 1051 | template<typename T> |
|
348 |
|
1052 | uint8_t* set_dtz_map(WDLEntry&, T&, uint8_t*, File) { return nullptr; } |
349 | { |
1053 | |
350 | int v; |
- | |
351 |
|
1054 | template<typename T> |
352 |
|
1055 | uint8_t* set_dtz_map(DTZEntry&, T& p, uint8_t* data, File maxFile) { |
353 | StateInfo st; |
- | |
354 | 1056 | ||
355 | // Generate (at least) all legal non-ep captures including (under)promotions. |
- | |
356 | // It is OK to generate more, as long as they are filtered out below. |
- | |
357 |
|
1057 | p.map = data; |
358 | end = generate<CAPTURES>(pos, stack); |
- | |
359 | // Since underpromotion captures are not included, we need to add them. |
- | |
360 | end = add_underprom_caps(pos, stack, end); |
- | |
361 | } else |
- | |
362 | end = generate<EVASIONS>(pos, stack); |
- | |
363 | 1058 | ||
364 | for ( |
1059 | for (File f = FILE_A; f <= maxFile; ++f) { |
365 | Move capture = moves->move; |
- | |
366 | if ( |
1060 | if (item(p, 0, f).precomp->flags & TBFlag::Mapped) |
367 |
|
1061 | for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x |
368 | continue; |
- | |
369 |
|
1062 | item(p, 0, f).map_idx[i] = (uint16_t)(data - p.map + 1); |
370 | v = -probe_ab(pos, -beta, -alpha, success); |
- | |
371 | pos.undo_move(capture); |
- | |
372 |
|
1063 | data += *data + 1; |
373 | if (v > alpha) { |
- | |
374 | if (v >= beta) { |
- | |
375 | *success = 2; |
- | |
376 |
|
1064 | } |
377 | } |
- | |
378 | alpha = v; |
- | |
379 | } |
1065 | } |
380 | } |
- | |
381 | 1066 | ||
382 |
|
1067 | return data += (uintptr_t)data & 1; // Word alignment |
383 | if (*success == 0) return 0; |
- | |
384 | if (alpha >= v) { |
- | |
385 | *success = 1 + (alpha > 0); |
- | |
386 | return alpha; |
- | |
387 | } else { |
- | |
388 | *success = 1; |
- | |
389 | return v; |
- | |
390 | } |
- | |
391 | } |
1068 | } |
392 | 1069 | ||
393 | // Probe the WDL table for a particular position. |
- | |
394 | // If *success != 0, the probe was successful. |
- | |
395 | // The return value is from the point of view of the side to move: |
- | |
396 | // -2 : loss |
- | |
397 |
|
1070 | template<typename Entry, typename T> |
398 | // 0 : draw |
- | |
399 |
|
1071 | void do_init(Entry& e, T& p, uint8_t* data) { |
400 | // 2 : win |
- | |
401 | int Tablebases::probe_wdl(Position& pos, int *success) |
- | |
402 | { |
- | |
403 | int v; |
- | |
404 | 1072 | ||
405 | *success = 1; |
- | |
406 |
|
1073 | const bool IsWDL = std::is_same<Entry, WDLEntry>::value; |
407 | 1074 | ||
408 | // If en passant is not possible, we are done. |
- | |
409 | if (pos.ep_square() == SQ_NONE) |
- | |
410 |
|
1075 | PairsData* d; |
411 | if (!(*success)) return 0; |
- | |
412 | 1076 | ||
413 |
|
1077 | enum { Split = 1, HasPawns = 2 }; |
414 | int v1 = -3; |
- | |
415 | // Generate (at least) all legal en passant captures. |
- | |
416 | ExtMove stack[192]; |
- | |
417 | ExtMove *moves, *end; |
- | |
418 | StateInfo st; |
- | |
419 | 1078 | ||
420 | if (!pos.checkers()) |
- | |
421 |
|
1079 | assert(e.hasPawns == !!(*data & HasPawns)); |
422 | else |
- | |
423 |
|
1080 | assert((e.key != e.key2) == !!(*data & Split)); |
424 | 1081 | ||
425 | for (moves = stack; moves < end; moves++) { |
- | |
426 |
|
1082 | data++; // First byte stores flags |
- | 1083 | ||
427 |
|
1084 | const int Sides = IsWDL && (e.key != e.key2) ? 2 : 1; |
428 | || !pos.legal(capture)) |
- | |
429 | continue; |
- | |
430 |
|
1085 | const File MaxFile = e.hasPawns ? FILE_D : FILE_A; |
- | 1086 | ||
431 |
|
1087 | bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides |
- | 1088 | ||
432 |
|
1089 | assert(!pp || e.pawnTable.pawnCount[0]); |
- | 1090 | ||
433 |
|
1091 | for (File f = FILE_A; f <= MaxFile; ++f) { |
434 | if (v0 > v1) v1 = v0; |
- | |
435 | } |
1092 | |
436 | if (v1 > -3) { |
- | |
437 |
|
1093 | for (int i = 0; i < Sides; i++) |
438 | else if (v == 0) { |
- | |
439 |
|
1094 | item(p, i, f).precomp = new PairsData(); |
- | 1095 | ||
440 |
|
1096 | int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF }, |
441 | Move capture = moves->move; |
- | |
442 |
|
1097 | { *data >> 4, pp ? *(data + 1) >> 4 : 0xF } }; |
443 |
|
1098 | data += 1 + pp; |
444 | } |
1099 | |
445 | if (moves == end && !pos.checkers()) { |
- | |
446 |
|
1100 | for (int k = 0; k < e.pieceCount; ++k, ++data) |
447 | for (; |
1101 | for (int i = 0; i < Sides; i++) |
448 |
|
1102 | item(p, i, f).precomp->pieces[k] = Piece(i ? *data >> 4 : *data & 0xF); |
- | 1103 | ||
449 |
|
1104 | for (int i = 0; i < Sides; ++i) |
450 | break; |
- | |
451 | } |
- | |
452 | } |
- | |
453 |
|
1105 | set_groups(e, item(p, i, f).precomp, order[i], f); |
454 | if (moves == end) |
- | |
455 | v = v1; |
- | |
456 | } |
1106 | } |
457 | } |
- | |
458 | 1107 | ||
- | 1108 | data += (uintptr_t)data & 1; // Word alignment |
|
- | 1109 | ||
- | 1110 | for (File f = FILE_A; f <= MaxFile; ++f) |
|
- | 1111 | for (int i = 0; i < Sides; i++) |
|
- | 1112 | data = set_sizes(item(p, i, f).precomp, data); |
|
- | 1113 | ||
- | 1114 | if (!IsWDL) |
|
- | 1115 | data = set_dtz_map(e, p, data, MaxFile); |
|
- | 1116 | ||
- | 1117 | for (File f = FILE_A; f <= MaxFile; ++f) |
|
- | 1118 | for (int i = 0; i < Sides; i++) { |
|
- | 1119 | (d = item(p, i, f).precomp)->sparseIndex = (SparseEntry*)data; |
|
- | 1120 | data += d->sparseIndexSize * sizeof(SparseEntry); |
|
459 |
|
1121 | } |
- | 1122 | ||
- | 1123 | for (File f = FILE_A; f <= MaxFile; ++f) |
|
- | 1124 | for (int i = 0; i < Sides; i++) { |
|
- | 1125 | (d = item(p, i, f).precomp)->blockLength = (uint16_t*)data; |
|
- | 1126 | data += d->blockLengthSize * sizeof(uint16_t); |
|
- | 1127 | } |
|
- | 1128 | ||
- | 1129 | for (File f = FILE_A; f <= MaxFile; ++f) |
|
- | 1130 | for (int i = 0; i < Sides; i++) { |
|
- | 1131 | data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment |
|
- | 1132 | (d = item(p, i, f).precomp)->data = data; |
|
- | 1133 | data += d->blocksNum * d->sizeofBlock; |
|
- | 1134 | } |
|
460 | } |
1135 | } |
461 | 1136 | ||
462 |
|
1137 | template<typename Entry> |
463 |
|
1138 | void* init(Entry& e, const Position& pos) { |
464 | { |
- | |
465 | int wdl, dtz; |
- | |
466 | 1139 | ||
467 |
|
1140 | const bool IsWDL = std::is_same<Entry, WDLEntry>::value; |
468 | if (*success == 0) return 0; |
- | |
469 | 1141 | ||
470 |
|
1142 | static Mutex mutex; |
471 | 1143 | ||
- | 1144 | // Avoid a thread reads 'ready' == true while another is still in do_init(), |
|
- | 1145 | // this could happen due to compiler reordering. |
|
472 | if ( |
1146 | if (e.ready.load(std::memory_order_acquire)) |
473 |
|
1147 | return e.baseAddress; |
474 | 1148 | ||
475 | ExtMove stack[192]; |
- | |
476 |
|
1149 | std::unique_lock<Mutex> lk(mutex); |
477 | StateInfo st; |
- | |
478 | 1150 | ||
479 | if (wdl > 0) { |
- | |
480 |
|
1151 | if (e.ready.load(std::memory_order_relaxed)) // Recheck under lock |
481 | // including non-capturing promotions. |
- | |
482 |
|
1152 | return e.baseAddress; |
483 | end = generate<NON_EVASIONS>(pos, stack); |
- | |
484 | else |
- | |
485 | end = generate<EVASIONS>(pos, stack); |
- | |
486 | 1153 | ||
487 |
|
1154 | // Pieces strings in decreasing order for each color, like ("KPP","KR") |
488 |
|
1155 | std::string fname, w, b; |
489 |
|
1156 | for (PieceType pt = KING; pt >= PAWN; --pt) { |
490 | || !pos.legal(move)) |
- | |
491 | continue; |
- | |
492 |
|
1157 | w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]); |
493 |
|
1158 | b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]); |
494 | pos.undo_move(move); |
- | |
495 | if (*success == 0) return 0; |
- | |
496 | if (v == wdl) |
- | |
497 | return v == 2 ? 1 : 101; |
- | |
498 | } |
1159 | } |
499 | } |
- | |
500 | 1160 | ||
501 |
|
1161 | const uint8_t TB_MAGIC[][4] = { { 0xD7, 0x66, 0x0C, 0xA5 }, |
502 | if (*success >= 0) { |
- | |
503 | if (wdl & 1) dtz += 100; |
- | |
504 |
|
1162 | { 0x71, 0xE8, 0x23, 0x5D } }; |
505 | } |
- | |
506 | 1163 | ||
- | 1164 | fname = (e.key == pos.material_key() ? w + 'v' + b : b + 'v' + w) |
|
- | 1165 | + (IsWDL ? ".rtbw" : ".rtbz"); |
|
- | 1166 | ||
- | 1167 | uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, TB_MAGIC[IsWDL]); |
|
507 |
|
1168 | if (data) |
- | 1169 | e.hasPawns ? do_init(e, e.pawnTable, data) : do_init(e, e.pieceTable, data); |
|
- | 1170 | ||
- | 1171 | e.ready.store(true, std::memory_order_release); |
|
- | 1172 | return e.baseAddress; |
|
- | 1173 | } |
|
- | 1174 | ||
- | 1175 | template<typename E, typename T = typename Ret<E>::type> |
|
- | 1176 | T probe_table(const Position& pos, ProbeState* result, WDLScore wdl = WDLDraw) { |
|
- | 1177 | ||
- | 1178 | if (!(pos.pieces() ^ pos.pieces(KING))) |
|
- | 1179 | return T(WDLDraw); // KvK |
|
- | 1180 | ||
- | 1181 | E* entry = EntryTable.get<E>(pos.material_key()); |
|
- | 1182 | ||
- | 1183 | if (!entry || !init(*entry, pos)) |
|
- | 1184 | return *result = FAIL, T(); |
|
- | 1185 | ||
- | 1186 | return do_probe_table(pos, entry, wdl, result); |
|
- | 1187 | } |
|
- | 1188 | ||
- | 1189 | // For a position where the side to move has a winning capture it is not necessary |
|
- | 1190 | // to store a winning value so the generator treats such positions as "don't cares" |
|
- | 1191 | // and tries to assign to it a value that improves the compression ratio. Similarly, |
|
- | 1192 | // if the side to move has a drawing capture, then the position is at least drawn. |
|
- | 1193 | // If the position is won, then the TB needs to store a win value. But if the |
|
- | 1194 | // position is drawn, the TB may store a loss value if that is better for compression. |
|
- | 1195 | // All of this means that during probing, the engine must look at captures and probe |
|
- | 1196 | // their results and must probe the position itself. The "best" result of these |
|
- | 1197 | // probes is the correct result for the position. |
|
- | 1198 | // DTZ table don't store values when a following move is a zeroing winning move |
|
- | 1199 | // (winning capture or winning pawn move). Also DTZ store wrong values for positions |
|
- | 1200 | // where the best move is an ep-move (even if losing). So in all these cases set |
|
- | 1201 | // the state to ZEROING_BEST_MOVE. |
|
- | 1202 | template<bool CheckZeroingMoves = false> |
|
- | 1203 | WDLScore search(Position& pos, ProbeState* result) { |
|
- | 1204 | ||
- | 1205 | WDLScore value, bestValue = WDLLoss; |
|
508 |
|
1206 | StateInfo st; |
- | 1207 | ||
- | 1208 | auto moveList = MoveList<LEGAL>(pos); |
|
- | 1209 | size_t totalCount = moveList.size(), moveCount = 0; |
|
- | 1210 | ||
509 | for ( |
1211 | for (const Move& move : moveList) |
- | 1212 | { |
|
510 |
|
1213 | if ( !pos.capture(move) |
511 |
|
1214 | && (!CheckZeroingMoves || type_of(pos.moved_piece(move)) != PAWN)) |
512 |
|
1215 | continue; |
- | 1216 | ||
513 |
|
1217 | moveCount++; |
- | 1218 | ||
514 |
|
1219 | pos.do_move(move, st); |
515 |
|
1220 | value = -search(pos, result); |
516 | pos.undo_move(move); |
1221 | pos.undo_move(move); |
- | 1222 | ||
517 | if (* |
1223 | if (*result == FAIL) |
- | 1224 | return WDLDraw; |
|
- | 1225 | ||
518 |
|
1226 | if (value > bestValue) |
- | 1227 | { |
|
519 |
|
1228 | bestValue = value; |
- | 1229 | ||
- | 1230 | if (value >= WDLWin) |
|
- | 1231 | { |
|
- | 1232 | *result = ZEROING_BEST_MOVE; // Winning DTZ-zeroing move |
|
- | 1233 | return value; |
|
- | 1234 | } |
|
- | 1235 | } |
|
520 | } |
1236 | } |
- | 1237 | ||
- | 1238 | // In case we have already searched all the legal moves we don't have to probe |
|
- | 1239 | // the TB because the stored score could be wrong. For instance TB tables |
|
- | 1240 | // do not contain information on position with ep rights, so in this case |
|
- | 1241 | // the result of probe_wdl_table is wrong. Also in case of only capture |
|
- | 1242 | // moves, for instance here 4K3/4q3/6p1/2k5/6p1/8/8/8 w - - 0 7, we have to |
|
521 |
|
1243 | // return with ZEROING_BEST_MOVE set. |
522 | } else { |
- | |
523 |
|
1244 | bool noMoreMoves = (moveCount && moveCount == totalCount); |
- | 1245 | ||
524 | if ( |
1246 | if (noMoreMoves) |
525 |
|
1247 | value = bestValue; |
526 | else |
1248 | else |
- | 1249 | { |
|
527 |
|
1250 | value = probe_table<WDLEntry>(pos, result); |
- | 1251 | ||
- | 1252 | if (*result == FAIL) |
|
- | 1253 | return WDLDraw; |
|
- | 1254 | } |
|
- | 1255 | ||
- | 1256 | // DTZ stores a "don't care" value if bestValue is a win |
|
- | 1257 | if (bestValue >= value) |
|
- | 1258 | return *result = ( bestValue > WDLDraw |
|
- | 1259 | || noMoreMoves ? ZEROING_BEST_MOVE : OK), bestValue; |
|
- | 1260 | ||
- | 1261 | return *result = OK, value; |
|
- | 1262 | } |
|
- | 1263 | ||
- | 1264 | } // namespace |
|
- | 1265 | ||
- | 1266 | void Tablebases::init(const std::string& paths) { |
|
- | 1267 | ||
- | 1268 | EntryTable.clear(); |
|
- | 1269 | MaxCardinality = 0; |
|
- | 1270 | TBFile::Paths = paths; |
|
- | 1271 | ||
- | 1272 | if (paths.empty() || paths == "<empty>") |
|
- | 1273 | return; |
|
- | 1274 | ||
- | 1275 | // MapB1H1H7[] encodes a square below a1-h8 diagonal to 0..27 |
|
- | 1276 | int code = 0; |
|
528 | for ( |
1277 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
- | 1278 | if (off_A1H8(s) < 0) |
|
- | 1279 | MapB1H1H7[s] = code++; |
|
- | 1280 | ||
- | 1281 | // MapA1D1D4[] encodes a square in the a1-d1-d4 triangle to 0..9 |
|
- | 1282 | std::vector<Square> diagonal; |
|
529 |
|
1283 | code = 0; |
- | 1284 | for (Square s = SQ_A1; s <= SQ_D4; ++s) |
|
- | 1285 | if (off_A1H8(s) < 0 && file_of(s) <= FILE_D) |
|
530 |
|
1286 | MapA1D1D4[s] = code++; |
- | 1287 | ||
- | 1288 | else if (!off_A1H8(s) && file_of(s) <= FILE_D) |
|
- | 1289 | diagonal.push_back(s); |
|
- | 1290 | ||
- | 1291 | // Diagonal squares are encoded as last ones |
|
531 |
|
1292 | for (auto s : diagonal) |
- | 1293 | MapA1D1D4[s] = code++; |
|
- | 1294 | ||
- | 1295 | // MapKK[] encodes all the 461 possible legal positions of two kings where |
|
- | 1296 | // the first is in the a1-d1-d4 triangle. If the first king is on the a1-d4 |
|
- | 1297 | // diagonal, the other one shall not to be above the a1-h8 diagonal. |
|
- | 1298 | std::vector<std::pair<int, Square>> bothOnDiagonal; |
|
- | 1299 | code = 0; |
|
- | 1300 | for (int idx = 0; idx < 10; idx++) |
|
- | 1301 | for (Square s1 = SQ_A1; s1 <= SQ_D4; ++s1) |
|
- | 1302 | if (MapA1D1D4[s1] == idx && (idx || s1 == SQ_B1)) // SQ_B1 is mapped to 0 |
|
532 |
|
1303 | { |
- | 1304 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) |
|
- | 1305 | if ((PseudoAttacks[KING][s1] | s1) & s2) |
|
- | 1306 | continue; // Illegal position |
|
- | 1307 | ||
- | 1308 | else if (!off_A1H8(s1) && off_A1H8(s2) > 0) |
|
- | 1309 | continue; // First on diagonal, second above |
|
- | 1310 | ||
- | 1311 | else if (!off_A1H8(s1) && !off_A1H8(s2)) |
|
- | 1312 | bothOnDiagonal.push_back(std::make_pair(idx, s2)); |
|
- | 1313 | ||
- | 1314 | else |
|
533 |
|
1315 | MapKK[idx][s2] = code++; |
- | 1316 | } |
|
- | 1317 | ||
- | 1318 | // Legal positions with both kings on diagonal are encoded as last ones |
|
- | 1319 | for (auto p : bothOnDiagonal) |
|
- | 1320 | MapKK[p.first][p.second] = code++; |
|
- | 1321 | ||
- | 1322 | // Binomial[] stores the Binomial Coefficents using Pascal rule. There |
|
- | 1323 | // are Binomial[k][n] ways to choose k elements from a set of n elements. |
|
534 |
|
1324 | Binomial[0][0] = 1; |
- | 1325 | ||
- | 1326 | for (int n = 1; n < 64; n++) // Squares |
|
- | 1327 | for (int k = 0; k < 6 && k <= n; ++k) // Pieces |
|
- | 1328 | Binomial[k][n] = (k > 0 ? Binomial[k - 1][n - 1] : 0) |
|
- | 1329 | + (k < n ? Binomial[k ][n - 1] : 0); |
|
- | 1330 | ||
- | 1331 | // MapPawns[s] encodes squares a2-h7 to 0..47. This is the number of possible |
|
- | 1332 | // available squares when the leading one is in 's'. Moreover the pawn with |
|
- | 1333 | // highest MapPawns[] is the leading pawn, the one nearest the edge and, |
|
- | 1334 | // among pawns with same file, the one with lowest rank. |
|
- | 1335 | int availableSquares = 47; // Available squares when lead pawn is in a2 |
|
- | 1336 | ||
- | 1337 | // Init the tables for the encoding of leading pawns group: with 6-men TB we |
|
- | 1338 | // can have up to 4 leading pawns (KPPPPK). |
|
- | 1339 | for (int leadPawnsCnt = 1; leadPawnsCnt <= 4; ++leadPawnsCnt) |
|
- | 1340 | for (File f = FILE_A; f <= FILE_D; ++f) |
|
- | 1341 | { |
|
- | 1342 | // Restart the index at every file because TB table is splitted |
|
- | 1343 | // by file, so we can reuse the same index for different files. |
|
535 |
|
1344 | int idx = 0; |
- | 1345 | ||
- | 1346 | // Sum all possible combinations for a given file, starting with |
|
- | 1347 | // the leading pawn on rank 2 and increasing the rank. |
|
- | 1348 | for (Rank r = RANK_2; r <= RANK_7; ++r) |
|
536 |
|
1349 | { |
537 |
|
1350 | Square sq = make_square(f, r); |
- | 1351 | ||
- | 1352 | // Compute MapPawns[] at first pass. |
|
- | 1353 | // If sq is the leading pawn square, any other pawn cannot be |
|
- | 1354 | // below or more toward the edge of sq. There are 47 available |
|
- | 1355 | // squares when sq = a2 and reduced by 2 for any rank increase |
|
- | 1356 | // due to mirroring: sq == a3 -> no a2, h2, so MapPawns[a3] = 45 |
|
538 |
|
1357 | if (leadPawnsCnt == 1) |
- | 1358 | { |
|
- | 1359 | MapPawns[sq] = availableSquares--; |
|
- | 1360 | MapPawns[sq ^ 7] = availableSquares--; // Horizontal flip |
|
- | 1361 | } |
|
- | 1362 | LeadPawnIdx[leadPawnsCnt][sq] = idx; |
|
- | 1363 | idx += Binomial[leadPawnsCnt - 1][MapPawns[sq]]; |
|
- | 1364 | } |
|
- | 1365 | // After a file is traversed, store the cumulated per-file index |
|
- | 1366 | LeadPawnsSize[leadPawnsCnt][f] = idx; |
|
- | 1367 | } |
|
- | 1368 | ||
- | 1369 | for (PieceType p1 = PAWN; p1 < KING; ++p1) { |
|
- | 1370 | EntryTable.insert({KING, p1, KING}); |
|
- | 1371 | ||
- | 1372 | for (PieceType p2 = PAWN; p2 <= p1; ++p2) { |
|
- | 1373 | EntryTable.insert({KING, p1, p2, KING}); |
|
- | 1374 | EntryTable.insert({KING, p1, KING, p2}); |
|
- | 1375 | ||
- | 1376 | for (PieceType p3 = PAWN; p3 < KING; ++p3) |
|
- | 1377 | EntryTable.insert({KING, p1, p2, KING, p3}); |
|
- | 1378 | ||
- | 1379 | for (PieceType p3 = PAWN; p3 <= p2; ++p3) { |
|
- | 1380 | EntryTable.insert({KING, p1, p2, p3, KING}); |
|
- | 1381 | ||
- | 1382 | for (PieceType p4 = PAWN; p4 <= p3; ++p4) |
|
- | 1383 | EntryTable.insert({KING, p1, p2, p3, p4, KING}); |
|
- | 1384 | ||
- | 1385 | for (PieceType p4 = PAWN; p4 < KING; ++p4) |
|
- | 1386 | EntryTable.insert({KING, p1, p2, p3, KING, p4}); |
|
- | 1387 | } |
|
- | 1388 | ||
- | 1389 | for (PieceType p3 = PAWN; p3 <= p1; ++p3) |
|
- | 1390 | for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4) |
|
- | 1391 | EntryTable.insert({KING, p1, p2, KING, p3, p4}); |
|
539 | } |
1392 | } |
540 | } else { |
- | |
541 | v = -Tablebases::probe_dtz(pos, success) - 1; |
- | |
542 | } |
- | |
543 | pos.undo_move(move); |
- | |
544 | if (*success == 0) return 0; |
- | |
545 | if (v < best) |
- | |
546 | best = v; |
- | |
547 | } |
1393 | } |
548 | return best; |
- | |
549 | } |
1394 | |
- | 1395 | sync_cout << "info string Found " << EntryTable.size() << " tablebases" << sync_endl; |
|
550 | } |
1396 | } |
551 | 1397 | ||
- | 1398 | // Probe the WDL table for a particular position. |
|
- | 1399 | // If *result != FAIL, the probe was successful. |
|
- | 1400 | // The return value is from the point of view of the side to move: |
|
- | 1401 | // -2 : loss |
|
- | 1402 | // -1 : loss, but draw under 50-move rule |
|
- | 1403 | // 0 : draw |
|
552 |
|
1404 | // 1 : win, but draw under 50-move rule |
- | 1405 | // 2 : win |
|
- | 1406 | WDLScore Tablebases::probe_wdl(Position& pos, ProbeState* result) { |
|
- | 1407 | ||
553 |
|
1408 | *result = OK; |
- | 1409 | return search(pos, result); |
|
554 | } |
1410 | } |
555 | 1411 | ||
556 | // Probe the DTZ table for a particular position. |
1412 | // Probe the DTZ table for a particular position. |
557 | // If * |
1413 | // If *result != FAIL, the probe was successful. |
558 | // The return value is from the point of view of the side to move: |
1414 | // The return value is from the point of view of the side to move: |
559 | // n < -100 : loss, but draw under 50-move rule |
1415 | // n < -100 : loss, but draw under 50-move rule |
560 | // -100 <= n < -1 : loss in n ply (assuming 50-move counter == 0) |
1416 | // -100 <= n < -1 : loss in n ply (assuming 50-move counter == 0) |
561 | // 0 : draw |
1417 | // 0 : draw |
562 | // 1 < n <= 100 : win in n ply (assuming 50-move counter == 0) |
1418 | // 1 < n <= 100 : win in n ply (assuming 50-move counter == 0) |
Line 576... | Line 1432... | ||
576 | // capture or pawn move, the inequality to be preserved is |
1432 | // capture or pawn move, the inequality to be preserved is |
577 | // dtz + 50-movecounter <= 100. |
1433 | // dtz + 50-movecounter <= 100. |
578 | // |
1434 | // |
579 | // In short, if a move is available resulting in dtz + 50-move-counter <= 99, |
1435 | // In short, if a move is available resulting in dtz + 50-move-counter <= 99, |
580 | // then do not accept moves leading to dtz + 50-move-counter == 100. |
1436 | // then do not accept moves leading to dtz + 50-move-counter == 100. |
581 | // |
- | |
582 | int Tablebases::probe_dtz(Position& pos, |
1437 | int Tablebases::probe_dtz(Position& pos, ProbeState* result) { |
583 | { |
- | |
584 | *success = 1; |
- | |
585 | int v = probe_dtz_no_ep(pos, success); |
- | |
586 | 1438 | ||
587 | if (pos.ep_square() == SQ_NONE) |
- | |
588 |
|
1439 | *result = OK; |
589 |
|
1440 | WDLScore wdl = search<true>(pos, result); |
590 | 1441 | ||
591 | // |
1442 | if (*result == FAIL || wdl == WDLDraw) // DTZ tables don't store draws |
592 |
|
1443 | return 0; |
593 | 1444 | ||
- | 1445 | // DTZ stores a 'don't care' value in this case, or even a plain wrong |
|
594 |
|
1446 | // one as in case the best move is a losing ep, so it cannot be probed. |
595 |
|
1447 | if (*result == ZEROING_BEST_MOVE) |
596 |
|
1448 | return dtz_before_zeroing(wdl); |
597 | 1449 | ||
598 | if (!pos.checkers()) |
- | |
599 | end = generate<CAPTURES>(pos, stack); |
- | |
600 | else |
- | |
601 |
|
1450 | int dtz = probe_table<DTZEntry>(pos, result, wdl); |
602 | 1451 | ||
603 |
|
1452 | if (*result == FAIL) |
604 |
|
1453 | return 0; |
- | 1454 | ||
605 | if ( |
1455 | if (*result != CHANGE_STM) |
606 |
|
1456 | return (dtz + 100 * (wdl == WDLBlessedLoss || wdl == WDLCursedWin)) * sign_of(wdl); |
607 | continue; |
1457 | |
608 |
|
1458 | // DTZ stores results for the other side, so we need to do a 1-ply search and |
609 |
|
1459 | // find the winning move that minimizes DTZ. |
610 |
|
1460 | StateInfo st; |
611 | if (*success == 0) return 0; |
- | |
612 |
|
1461 | int minDTZ = 0xFFFF; |
613 | } |
1462 | |
614 | if (v1 > -3) { |
- | |
615 |
|
1463 | for (const Move& move : MoveList<LEGAL>(pos)) |
616 | if (v < -100) { |
- | |
617 | if (v1 >= 0) |
- | |
618 |
|
1464 | { |
619 | } else if (v < 0) { |
- | |
620 |
|
1465 | bool zeroing = pos.capture(move) || type_of(pos.moved_piece(move)) == PAWN; |
- | 1466 | ||
621 |
|
1467 | pos.do_move(move, st); |
- | 1468 | ||
622 |
|
1469 | // For zeroing moves we want the dtz of the move _before_ doing it, |
623 | if (v1 > 0) |
- | |
624 | v = v1; |
- | |
625 |
|
1470 | // otherwise we will get the dtz of the next move sequence. Search the |
626 | if (v1 == 1) |
- | |
627 | v = v1; |
- | |
628 |
|
1471 | // position after the move to get the score sign (because even in a |
629 | v = v1; |
- | |
630 | } else { |
- | |
631 |
|
1472 | // winning position we could make a losing capture or going for a draw). |
632 |
|
1473 | dtz = zeroing ? -dtz_before_zeroing(search(pos, result)) |
633 |
|
1474 | : -probe_dtz(pos, result); |
- | 1475 | ||
634 |
|
1476 | pos.undo_move(move); |
635 | } |
1477 | |
636 | if ( |
1478 | if (*result == FAIL) |
637 |
|
1479 | return 0; |
- | 1480 | ||
638 |
|
1481 | // Convert result from 1-ply search. Zeroing moves are already accounted |
639 |
|
1482 | // by dtz_before_zeroing() that returns the DTZ of the previous move. |
640 |
|
1483 | if (!zeroing) |
641 |
|
1484 | dtz += sign_of(dtz); |
642 | } |
- | |
643 | } |
1485 | |
- | 1486 | // Skip the draws and if we are winning only pick positive dtz |
|
644 | if ( |
1487 | if (dtz < minDTZ && sign_of(dtz) == sign_of(wdl)) |
645 |
|
1488 | minDTZ = dtz; |
646 | } |
1489 | } |
647 | } |
- | |
648 | 1490 | ||
- | 1491 | // Special handle a mate position, when there are no legal moves, in this |
|
- | 1492 | // case return value is somewhat arbitrary, so stick to the original TB code |
|
649 |
|
1493 | // that returns -1 in this case. |
- | 1494 | return minDTZ == 0xFFFF ? -1 : minDTZ; |
|
650 | } |
1495 | } |
651 | 1496 | ||
652 | // Check whether there has been at least one repetition of positions |
1497 | // Check whether there has been at least one repetition of positions |
653 | // since the last capture or pawn move. |
1498 | // since the last capture or pawn move. |
654 | static int has_repeated(StateInfo *st) |
1499 | static int has_repeated(StateInfo *st) |
655 | { |
1500 | { |
656 | while (1) { |
1501 | while (1) { |
657 | int i = 4, e = std::min(st->rule50, st->pliesFromNull); |
1502 | int i = 4, e = std::min(st->rule50, st->pliesFromNull); |
658 | if (e < i) |
- | |
659 | return 0; |
- | |
660 | StateInfo *stp = st->previous->previous; |
- | |
661 | do { |
- | |
662 | stp = stp->previous->previous; |
- | |
663 | if (stp->key == st->key) |
- | |
664 | return 1; |
- | |
665 | i += 2; |
- | |
666 | } while (i <= e); |
- | |
667 | st = st->previous; |
- | |
668 | } |
- | |
669 | } |
- | |
670 | 1503 | ||
671 |
|
1504 | if (e < i) |
672 |
|
1505 | return 0; |
- | 1506 | ||
- | 1507 | StateInfo *stp = st->previous->previous; |
|
- | 1508 | ||
673 |
|
1509 | do { |
- | 1510 | stp = stp->previous->previous; |
|
- | 1511 | ||
- | 1512 | if (stp->key == st->key) |
|
674 |
|
1513 | return 1; |
- | 1514 | ||
675 |
|
1515 | i += 2; |
- | 1516 | } while (i <= e); |
|
- | 1517 | ||
676 |
|
1518 | st = st->previous; |
- | 1519 | } |
|
677 | } |
1520 | } |
678 | 1521 | ||
679 | // Use the DTZ tables to filter out moves that don't preserve the win or draw. |
1522 | // Use the DTZ tables to filter out moves that don't preserve the win or draw. |
680 | // If the position is lost, but DTZ is fairly high, only keep moves that |
1523 | // If the position is lost, but DTZ is fairly high, only keep moves that |
681 | // maximise DTZ. |
1524 | // maximise DTZ. |
682 | // |
1525 | // |
683 | // A return value false indicates that not all probes were successful and that |
1526 | // A return value false indicates that not all probes were successful and that |
684 | // no moves were filtered out. |
1527 | // no moves were filtered out. |
685 | bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves, Value& score) |
1528 | bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves, Value& score) |
686 | { |
1529 | { |
687 |
|
1530 | assert(rootMoves.size()); |
688 | 1531 | ||
689 |
|
1532 | ProbeState result; |
690 |
|
1533 | int dtz = probe_dtz(pos, &result); |
691 | 1534 | ||
- | 1535 | if (result == FAIL) |
|
692 |
|
1536 | return false; |
693 | 1537 | ||
- | 1538 | StateInfo st; |
|
- | 1539 | ||
694 | // Probe each move |
1540 | // Probe each move |
695 | for (size_t i = 0; i < rootMoves.size(); |
1541 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
696 | Move move = rootMoves[i].pv[0]; |
1542 | Move move = rootMoves[i].pv[0]; |
697 |
|
1543 | pos.do_move(move, st); |
698 | int v = 0; |
1544 | int v = 0; |
- | 1545 | ||
699 | if (pos.checkers() && dtz > 0) { |
1546 | if (pos.checkers() && dtz > 0) { |
700 | ExtMove s[ |
1547 | ExtMove s[MAX_MOVES]; |
- | 1548 | ||
701 | if (generate<LEGAL>(pos, s) == s) |
1549 | if (generate<LEGAL>(pos, s) == s) |
- | 1550 | v = 1; |
|
- | 1551 | } |
|
- | 1552 | ||
- | 1553 | if (!v) { |
|
- | 1554 | if (st.rule50 != 0) { |
|
- | 1555 | v = -probe_dtz(pos, &result); |
|
- | 1556 | ||
- | 1557 | if (v > 0) |
|
- | 1558 | ++v; |
|
- | 1559 | else if (v < 0) |
|
- | 1560 | --v; |
|
- | 1561 | } else { |
|
- | 1562 | v = -probe_wdl(pos, &result); |
|
- | 1563 | v = dtz_before_zeroing(WDLScore(v)); |
|
702 |
|
1564 | } |
- | 1565 | } |
|
- | 1566 | ||
- | 1567 | pos.undo_move(move); |
|
- | 1568 | ||
- | 1569 | if (result == FAIL) |
|
- | 1570 | return false; |
|
- | 1571 | ||
- | 1572 | rootMoves[i].score = (Value)v; |
|
703 | } |
1573 | } |
704 | if (!v) { |
- | |
705 | if (st.rule50 != 0) { |
- | |
706 | v = -Tablebases::probe_dtz(pos, &success); |
- | |
707 | if (v > 0) v++; |
- | |
708 | else if (v < 0) v--; |
- | |
709 | } else { |
- | |
710 | v = -Tablebases::probe_wdl(pos, &success); |
- | |
711 | v = wdl_to_dtz[v + 2]; |
- | |
712 | } |
- | |
713 | } |
- | |
714 | pos.undo_move(move); |
- | |
715 | if (!success) return false; |
- | |
716 | rootMoves[i].score = (Value)v; |
- | |
717 | } |
- | |
718 | 1574 | ||
719 | // Obtain 50-move counter for the root position. |
1575 | // Obtain 50-move counter for the root position. |
720 | // In Stockfish there seems to be no clean way, so we do it like this: |
1576 | // In Stockfish there seems to be no clean way, so we do it like this: |
721 | int cnt50 = st.previous->rule50; |
1577 | int cnt50 = st.previous ? st.previous->rule50 : 0; |
722 | 1578 | ||
723 | // Use 50-move counter to determine whether the root position is |
1579 | // Use 50-move counter to determine whether the root position is |
724 | // won, lost or drawn. |
1580 | // won, lost or drawn. |
725 |
|
1581 | WDLScore wdl = WDLDraw; |
726 | if (dtz > 0) |
- | |
727 | wdl = (dtz + cnt50 <= 100) ? 2 : 1; |
- | |
728 | else if (dtz < 0) |
- | |
729 | wdl = (-dtz + cnt50 <= 100) ? -2 : -1; |
- | |
730 | 1582 | ||
731 | // Determine the score to report to the user. |
- | |
732 | score = wdl_to_Value[wdl + 2]; |
- | |
733 | // If the position is winning or losing, but too few moves left, adjust the |
- | |
734 | // score to show how close it is to winning or losing. |
- | |
735 | // NOTE: int(PawnValueEg) is used as scaling factor in score_to_uci(). |
- | |
736 |
|
1583 | if (dtz > 0) |
737 |
|
1584 | wdl = (dtz + cnt50 <= 100) ? WDLWin : WDLCursedWin; |
738 | else if ( |
1585 | else if (dtz < 0) |
739 |
|
1586 | wdl = (-dtz + cnt50 <= 100) ? WDLLoss : WDLBlessedLoss; |
740 | 1587 | ||
- | 1588 | // Determine the score to report to the user. |
|
- | 1589 | score = WDL_to_value[wdl + 2]; |
|
- | 1590 | ||
- | 1591 | // If the position is winning or losing, but too few moves left, adjust the |
|
- | 1592 | // score to show how close it is to winning or losing. |
|
- | 1593 | // NOTE: int(PawnValueEg) is used as scaling factor in score_to_uci(). |
|
- | 1594 | if (wdl == WDLCursedWin && dtz <= 100) |
|
- | 1595 | score = (Value)(((200 - dtz - cnt50) * int(PawnValueEg)) / 200); |
|
- | 1596 | else if (wdl == WDLBlessedLoss && dtz >= -100) |
|
- | 1597 | score = -(Value)(((200 + dtz - cnt50) * int(PawnValueEg)) / 200); |
|
- | 1598 | ||
741 | // Now be a bit smart about filtering out moves. |
1599 | // Now be a bit smart about filtering out moves. |
742 | size_t j = 0; |
1600 | size_t j = 0; |
- | 1601 | ||
743 | if (dtz > 0) { // winning (or 50-move rule draw) |
1602 | if (dtz > 0) { // winning (or 50-move rule draw) |
744 | int best = 0xffff; |
1603 | int best = 0xffff; |
- | 1604 | ||
745 | for (size_t i = 0; i < rootMoves.size(); |
1605 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
746 | int v = rootMoves[i].score; |
1606 | int v = rootMoves[i].score; |
- | 1607 | ||
747 | if (v > 0 && v < best) |
1608 | if (v > 0 && v < best) |
748 | best = v; |
1609 | best = v; |
749 | } |
1610 | } |
- | 1611 | ||
750 | int max = best; |
1612 | int max = best; |
- | 1613 | ||
751 | // If the current phase has not seen repetitions, then try all moves |
1614 | // If the current phase has not seen repetitions, then try all moves |
752 | // that stay safely within the 50-move budget, if there are any. |
1615 | // that stay safely within the 50-move budget, if there are any. |
753 | if (!has_repeated(st.previous) && best + cnt50 <= 99) |
1616 | if (!has_repeated(st.previous) && best + cnt50 <= 99) |
754 | max = 99 - cnt50; |
1617 | max = 99 - cnt50; |
- | 1618 | ||
755 | for (size_t i = 0; i < rootMoves.size(); |
1619 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
756 | int v = rootMoves[i].score; |
1620 | int v = rootMoves[i].score; |
- | 1621 | ||
757 | if (v > 0 && v <= max) |
1622 | if (v > 0 && v <= max) |
758 | rootMoves[j++] = rootMoves[i]; |
1623 | rootMoves[j++] = rootMoves[i]; |
759 | } |
1624 | } |
760 | } else if (dtz < 0) { // losing (or 50-move rule draw) |
1625 | } else if (dtz < 0) { // losing (or 50-move rule draw) |
761 | int best = 0; |
1626 | int best = 0; |
- | 1627 | ||
762 | for (size_t i = 0; i < rootMoves.size(); |
1628 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
763 | int v = rootMoves[i].score; |
1629 | int v = rootMoves[i].score; |
- | 1630 | ||
764 | if (v < best) |
1631 | if (v < best) |
765 | best = v; |
1632 | best = v; |
766 | } |
1633 | } |
- | 1634 | ||
767 | // Try all moves, unless we approach or have a 50-move rule draw. |
1635 | // Try all moves, unless we approach or have a 50-move rule draw. |
768 | if (-best * 2 + cnt50 < 100) |
1636 | if (-best * 2 + cnt50 < 100) |
769 | return true; |
1637 | return true; |
- | 1638 | ||
770 | for (size_t i = 0; i < rootMoves.size(); |
1639 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
771 | if (rootMoves[i].score == best) |
1640 | if (rootMoves[i].score == best) |
- | 1641 | rootMoves[j++] = rootMoves[i]; |
|
- | 1642 | } |
|
- | 1643 | } else { // drawing |
|
- | 1644 | // Try all moves that preserve the draw. |
|
- | 1645 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
|
- | 1646 | if (rootMoves[i].score == 0) |
|
772 | rootMoves[j++] = rootMoves[i]; |
1647 | rootMoves[j++] = rootMoves[i]; |
- | 1648 | } |
|
773 | } |
1649 | } |
774 | } else { // drawing |
- | |
775 | // Try all moves that preserve the draw. |
- | |
776 | for (size_t i = 0; i < rootMoves.size(); i++) { |
- | |
777 | if (rootMoves[i].score == 0) |
- | |
778 | rootMoves[j++] = rootMoves[i]; |
- | |
779 | } |
- | |
780 | } |
- | |
781 | rootMoves.resize(j, Search::RootMove(MOVE_NONE)); |
- | |
782 | 1650 | ||
- | 1651 | rootMoves.resize(j, Search::RootMove(MOVE_NONE)); |
|
- | 1652 | ||
783 | return true; |
1653 | return true; |
784 | } |
1654 | } |
785 | 1655 | ||
786 | // Use the WDL tables to filter out moves that don't preserve the win or draw. |
1656 | // Use the WDL tables to filter out moves that don't preserve the win or draw. |
787 | // This is a fallback for the case that some or all DTZ tables are missing. |
1657 | // This is a fallback for the case that some or all DTZ tables are missing. |
788 | // |
1658 | // |
789 | // A return value false indicates that not all probes were successful and that |
1659 | // A return value false indicates that not all probes were successful and that |
790 | // no moves were filtered out. |
1660 | // no moves were filtered out. |
791 | bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves, Value& score) |
1661 | bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves, Value& score) |
792 | { |
1662 | { |
793 |
|
1663 | ProbeState result; |
794 | 1664 | ||
795 |
|
1665 | WDLScore wdl = Tablebases::probe_wdl(pos, &result); |
796 | if (!success) return false; |
- | |
797 | score = wdl_to_Value[wdl + 2]; |
- | |
798 | 1666 | ||
- | 1667 | if (result == FAIL) |
|
799 |
|
1668 | return false; |
800 | 1669 | ||
801 |
|
1670 | score = WDL_to_value[wdl + 2]; |
802 | 1671 | ||
803 | // Probe each move. |
- | |
804 | for (size_t i = 0; i < rootMoves.size(); i++) { |
- | |
805 | Move move = rootMoves[i].pv[0]; |
- | |
806 | pos.do_move(move, st, pos.gives_check(move)); |
- | |
807 | int v = -Tablebases::probe_wdl(pos, &success); |
- | |
808 | pos.undo_move(move); |
- | |
809 | if (!success) return false; |
- | |
810 | rootMoves[i].score = (Value)v; |
- | |
811 | if (v > best) |
- | |
812 |
|
1672 | StateInfo st; |
813 | } |
- | |
814 | 1673 | ||
815 |
|
1674 | int best = WDLLoss; |
816 | for (size_t i = 0; i < rootMoves.size(); i++) { |
- | |
817 | if (rootMoves[i].score == best) |
- | |
818 | rootMoves[j++] = rootMoves[i]; |
- | |
819 | } |
- | |
820 | rootMoves.resize(j, Search::RootMove(MOVE_NONE)); |
- | |
821 | 1675 | ||
822 |
|
1676 | // Probe each move |
823 | } |
- | |
- | 1677 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
|
- | 1678 | Move move = rootMoves[i].pv[0]; |
|
- | 1679 | pos.do_move(move, st); |
|
- | 1680 | WDLScore v = -Tablebases::probe_wdl(pos, &result); |
|
- | 1681 | pos.undo_move(move); |
|
824 | 1682 | ||
- | 1683 | if (result == FAIL) |
|
- | 1684 | return false; |
|
- | 1685 | ||
- | 1686 | rootMoves[i].score = (Value)v; |
|
- | 1687 | ||
- | 1688 | if (v > best) |
|
- | 1689 | best = v; |
|
- | 1690 | } |
|
- | 1691 | ||
- | 1692 | size_t j = 0; |
|
- | 1693 | ||
- | 1694 | for (size_t i = 0; i < rootMoves.size(); ++i) { |
|
- | 1695 | if (rootMoves[i].score == best) |
|
- | 1696 | rootMoves[j++] = rootMoves[i]; |
|
- | 1697 | } |
|
- | 1698 | ||
- | 1699 | rootMoves.resize(j, Search::RootMove(MOVE_NONE)); |
|
- | 1700 | ||
- | 1701 | return true; |
|
- | 1702 | } |