Subversion Repositories Games.Chess Giants

Rev

Rev 176 | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 176 Rev 185
Line 18... Line 18...
18
*/
18
*/
19
 
19
 
20
#include <algorithm>
20
#include <algorithm>
21
#include <atomic>
21
#include <atomic>
22
#include <cstdint>
22
#include <cstdint>
23
#include <cstring>   // For std::memset
23
#include <cstring>   // For std::memset and std::memcpy
24
#include <deque>
24
#include <deque>
25
#include <fstream>
25
#include <fstream>
26
#include <iostream>
26
#include <iostream>
27
#include <list>
27
#include <list>
28
#include <sstream>
28
#include <sstream>
Line 32... Line 32...
32
#include "../movegen.h"
32
#include "../movegen.h"
33
#include "../position.h"
33
#include "../position.h"
34
#include "../search.h"
34
#include "../search.h"
35
#include "../thread_win32.h"
35
#include "../thread_win32.h"
36
#include "../types.h"
36
#include "../types.h"
-
 
37
#include "../uci.h"
37
 
38
 
38
#include "tbprobe.h"
39
#include "tbprobe.h"
39
 
40
 
40
#ifndef _WIN32
41
#ifndef _WIN32
41
#include <fcntl.h>
42
#include <fcntl.h>
Line 51... Line 52...
51
using namespace Tablebases;
52
using namespace Tablebases;
52
 
53
 
53
int Tablebases::MaxCardinality;
54
int Tablebases::MaxCardinality;
54
 
55
 
55
namespace {
56
namespace {
-
 
57
 
-
 
58
constexpr int TBPIECES = 7; // Max number of supported pieces
-
 
59
 
-
 
60
enum { BigEndian, LittleEndian };
-
 
61
enum TBType { KEY, WDL, DTZ }; // Used as template parameter
56
 
62
 
57
// Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables
63
// Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables
58
enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, SingleValue = 128 };
64
enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, Wide = 16, SingleValue = 128 };
59
 
65
 
60
inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); }
66
inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); }
61
inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); }
67
inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); }
62
inline Square operator^(Square s, int i) { return Square(int(s) ^ i); }
68
inline Square operator^(Square s, int i) { return Square(int(s) ^ i); }
63
 
69
 
64
// DTZ tables don't store valid scores for moves that reset the rule50 counter
-
 
65
// like captures and pawn moves but we can easily recover the correct dtz of the
-
 
66
// previous move if we know the position's WDL score.
-
 
67
int dtz_before_zeroing(WDLScore wdl) {
-
 
68
    return wdl == WDLWin         ?  1   :
-
 
69
           wdl == WDLCursedWin   ?  101 :
-
 
70
           wdl == WDLBlessedLoss ? -101 :
-
 
71
           wdl == WDLLoss        ? -1   : 0;
-
 
72
}
-
 
73
 
-
 
74
// Return the sign of a number (-1, 0, 1)
-
 
75
template <typename T> int sign_of(T val) {
-
 
76
    return (T(0) < val) - (val < T(0));
-
 
77
}
-
 
78
 
-
 
79
// Numbers in little endian used by sparseIndex[] to point into blockLength[]
-
 
80
struct SparseEntry {
-
 
81
    char block[4];   // Number of block
-
 
82
    char offset[2];  // Offset within the block
-
 
83
};
-
 
84
 
-
 
85
static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes");
-
 
86
 
-
 
87
typedef uint16_t Sym; // Huffman symbol
-
 
88
 
-
 
89
struct LR {
-
 
90
    enum Side { Left, Right, Value };
-
 
91
 
-
 
92
    uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12
-
 
93
                   // bits is the right-hand symbol. If symbol has length 1,
-
 
94
                   // then the first byte is the stored value.
-
 
95
    template<Side S>
-
 
96
    Sym get() {
-
 
97
        return S == Left  ? ((lr[1] & 0xF) << 8) | lr[0] :
-
 
98
               S == Right ?  (lr[2] << 4) | (lr[1] >> 4) :
-
 
99
               S == Value ?   lr[0] : (assert(false), Sym(-1));
-
 
100
    }
-
 
101
};
-
 
102
 
-
 
103
static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes");
-
 
104
 
-
 
105
const int TBPIECES = 6;
-
 
106
 
-
 
107
struct PairsData {
-
 
108
    int flags;
-
 
109
    size_t sizeofBlock;            // Block size in bytes
-
 
110
    size_t span;                   // About every span values there is a SparseIndex[] entry
-
 
111
    int blocksNum;                 // Number of blocks in the TB file
-
 
112
    int maxSymLen;                 // Maximum length in bits of the Huffman symbols
-
 
113
    int minSymLen;                 // Minimum length in bits of the Huffman symbols
-
 
114
    Sym* lowestSym;                // lowestSym[l] is the symbol of length l with the lowest value
-
 
115
    LR* btree;                     // btree[sym] stores the left and right symbols that expand sym
-
 
116
    uint16_t* blockLength;         // Number of stored positions (minus one) for each block: 1..65536
-
 
117
    int blockLengthSize;           // Size of blockLength[] table: padded so it's bigger than blocksNum
-
 
118
    SparseEntry* sparseIndex;      // Partial indices into blockLength[]
-
 
119
    size_t sparseIndexSize;        // Size of SparseIndex[] table
-
 
120
    uint8_t* data;                 // Start of Huffman compressed data
-
 
121
    std::vector<uint64_t> base64;  // base64[l - min_sym_len] is the 64bit-padded lowest symbol of length l
-
 
122
    std::vector<uint8_t> symlen;   // Number of values (-1) represented by a given Huffman symbol: 1..256
-
 
123
    Piece pieces[TBPIECES];        // Position pieces: the order of pieces defines the groups
-
 
124
    uint64_t groupIdx[TBPIECES+1]; // Start index used for the encoding of the group's pieces
-
 
125
    int groupLen[TBPIECES+1];      // Number of pieces in a given group: KRKN -> (3, 1)
-
 
126
};
-
 
127
 
-
 
128
// Helper struct to avoid manually defining entry copy constructor as we
-
 
129
// should because the default one is not compatible with std::atomic_bool.
-
 
130
struct Atomic {
-
 
131
    Atomic() = default;
-
 
132
    Atomic(const Atomic& e) { ready = e.ready.load(); } // MSVC 2013 wants assignment within body
-
 
133
    std::atomic_bool ready;
-
 
134
};
-
 
135
 
-
 
136
// We define types for the different parts of the WDLEntry and DTZEntry with
-
 
137
// corresponding specializations for pieces or pawns.
-
 
138
 
-
 
139
struct WDLEntryPiece {
-
 
140
    PairsData* precomp;
-
 
141
};
-
 
142
 
-
 
143
struct WDLEntryPawn {
-
 
144
    uint8_t pawnCount[2];     // [Lead color / other color]
-
 
145
    WDLEntryPiece file[2][4]; // [wtm / btm][FILE_A..FILE_D]
-
 
146
};
-
 
147
 
-
 
148
struct DTZEntryPiece {
-
 
149
    PairsData* precomp;
-
 
150
    uint16_t map_idx[4]; // WDLWin, WDLLoss, WDLCursedWin, WDLBlessedLoss
-
 
151
    uint8_t* map;
-
 
152
};
-
 
153
 
-
 
154
struct DTZEntryPawn {
-
 
155
    uint8_t pawnCount[2];
-
 
156
    DTZEntryPiece file[4];
-
 
157
    uint8_t* map;
-
 
158
};
-
 
159
 
-
 
160
struct TBEntry : public Atomic {
-
 
161
    void* baseAddress;
-
 
162
    uint64_t mapping;
-
 
163
    Key key;
-
 
164
    Key key2;
-
 
165
    int pieceCount;
-
 
166
    bool hasPawns;
-
 
167
    bool hasUniquePieces;
-
 
168
};
-
 
169
 
-
 
170
// Now the main types: WDLEntry and DTZEntry
-
 
171
struct WDLEntry : public TBEntry {
-
 
172
    WDLEntry(const std::string& code);
-
 
173
   ~WDLEntry();
-
 
174
    union {
-
 
175
        WDLEntryPiece pieceTable[2]; // [wtm / btm]
70
const std::string PieceToChar = " PNBRQK  pnbrqk";
176
        WDLEntryPawn  pawnTable;
-
 
177
    };
-
 
178
};
-
 
179
 
-
 
180
struct DTZEntry : public TBEntry {
-
 
181
    DTZEntry(const WDLEntry& wdl);
-
 
182
   ~DTZEntry();
-
 
183
    union {
-
 
184
        DTZEntryPiece pieceTable;
-
 
185
        DTZEntryPawn  pawnTable;
-
 
186
    };
-
 
187
};
-
 
188
 
-
 
189
typedef decltype(WDLEntry::pieceTable) WDLPieceTable;
-
 
190
typedef decltype(DTZEntry::pieceTable) DTZPieceTable;
-
 
191
typedef decltype(WDLEntry::pawnTable ) WDLPawnTable;
-
 
192
typedef decltype(DTZEntry::pawnTable ) DTZPawnTable;
-
 
193
 
-
 
194
auto item(WDLPieceTable& e, int stm, int  ) -> decltype(e[stm])& { return e[stm]; }
-
 
195
auto item(DTZPieceTable& e, int    , int  ) -> decltype(e)& { return e; }
-
 
196
auto item(WDLPawnTable&  e, int stm, int f) -> decltype(e.file[stm][f])& { return e.file[stm][f]; }
-
 
197
auto item(DTZPawnTable&  e, int    , int f) -> decltype(e.file[f])& { return e.file[f]; }
-
 
198
 
-
 
199
template<typename E> struct Ret { typedef int type; };
-
 
200
template<> struct Ret<WDLEntry> { typedef WDLScore type; };
-
 
201
 
71
 
202
int MapPawns[SQUARE_NB];
72
int MapPawns[SQUARE_NB];
203
int MapB1H1H7[SQUARE_NB];
73
int MapB1H1H7[SQUARE_NB];
204
int MapA1D1D4[SQUARE_NB];
74
int MapA1D1D4[SQUARE_NB];
205
int MapKK[10][SQUARE_NB]; // [MapA1D1D4][SQUARE_NB]
75
int MapKK[10][SQUARE_NB]; // [MapA1D1D4][SQUARE_NB]
-
 
76
 
-
 
77
int Binomial[6][SQUARE_NB];    // [k][n] k elements from a set of n elements
-
 
78
int LeadPawnIdx[6][SQUARE_NB]; // [leadPawnsCnt][SQUARE_NB]
-
 
79
int LeadPawnsSize[6][4];       // [leadPawnsCnt][FILE_A..FILE_D]
206
 
80
 
207
// Comparison function to sort leading pawns in ascending MapPawns[] order
81
// Comparison function to sort leading pawns in ascending MapPawns[] order
208
bool pawns_comp(Square i, Square j) { return MapPawns[i] < MapPawns[j]; }
82
bool pawns_comp(Square i, Square j) { return MapPawns[i] < MapPawns[j]; }
209
int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); }
83
int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); }
210
 
84
 
211
const Value WDL_to_value[] = {
85
constexpr Value WDL_to_value[] = {
212
   -VALUE_MATE + MAX_PLY + 1,
86
   -VALUE_MATE + MAX_PLY + 1,
213
    VALUE_DRAW - 2,
87
    VALUE_DRAW - 2,
214
    VALUE_DRAW,
88
    VALUE_DRAW,
215
    VALUE_DRAW + 2,
89
    VALUE_DRAW + 2,
216
    VALUE_MATE - MAX_PLY - 1
90
    VALUE_MATE - MAX_PLY - 1
217
};
91
};
218
 
-
 
219
const std::string PieceToChar = " PNBRQK  pnbrqk";
-
 
220
 
-
 
221
int Binomial[6][SQUARE_NB];    // [k][n] k elements from a set of n elements
-
 
222
int LeadPawnIdx[5][SQUARE_NB]; // [leadPawnsCnt][SQUARE_NB]
-
 
223
int LeadPawnsSize[5][4];       // [leadPawnsCnt][FILE_A..FILE_D]
-
 
224
 
-
 
225
enum { BigEndian, LittleEndian };
-
 
226
 
92
 
227
template<typename T, int Half = sizeof(T) / 2, int End = sizeof(T) - 1>
93
template<typename T, int Half = sizeof(T) / 2, int End = sizeof(T) - 1>
228
inline void swap_byte(T& x)
94
inline void swap_endian(T& x)
229
{
95
{
-
 
96
    static_assert(std::is_unsigned<T>::value, "Argument of swap_endian not unsigned");
-
 
97
 
230
    char tmp, *c = (char*)&x;
98
    uint8_t tmp, *c = (uint8_t*)&x;
231
    for (int i = 0; i < Half; ++i)
99
    for (int i = 0; i < Half; ++i)
232
        tmp = c[i], c[i] = c[End - i], c[End - i] = tmp;
100
        tmp = c[i], c[i] = c[End - i], c[End - i] = tmp;
233
}
101
}
234
template<> inline void swap_byte<uint8_t, 0, 0>(uint8_t&) {}
102
template<> inline void swap_endian<uint8_t>(uint8_t&) {}
235
 
103
 
236
template<typename T, int LE> T number(void* addr)
104
template<typename T, int LE> T number(void* addr)
237
{
105
{
238
    const union { uint32_t i; char c[4]; } Le = { 0x01020304 };
106
    static const union { uint32_t i; char c[4]; } Le = { 0x01020304 };
239
    const bool IsLittleEndian = (Le.c[0] == 4);
107
    static const bool IsLittleEndian = (Le.c[0] == 4);
240
 
108
 
241
    T v;
109
    T v;
242
 
110
 
243
    if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare)
111
    if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare)
244
        std::memcpy(&v, addr, sizeof(T));
112
        std::memcpy(&v, addr, sizeof(T));
245
    else
113
    else
246
        v = *((T*)addr);
114
        v = *((T*)addr);
247
 
115
 
248
    if (LE != IsLittleEndian)
116
    if (LE != IsLittleEndian)
249
        swap_byte(v);
117
        swap_endian(v);
250
    return v;
118
    return v;
251
}
119
}
252
 
120
 
-
 
121
// DTZ tables don't store valid scores for moves that reset the rule50 counter
-
 
122
// like captures and pawn moves but we can easily recover the correct dtz of the
-
 
123
// previous move if we know the position's WDL score.
-
 
124
int dtz_before_zeroing(WDLScore wdl) {
-
 
125
    return wdl == WDLWin         ?  1   :
-
 
126
           wdl == WDLCursedWin   ?  101 :
253
class HashTable {
127
           wdl == WDLBlessedLoss ? -101 :
-
 
128
           wdl == WDLLoss        ? -1   : 0;
-
 
129
}
254
 
130
 
-
 
131
// Return the sign of a number (-1, 0, 1)
255
    typedef std::pair<WDLEntry*, DTZEntry*> EntryPair;
132
template <typename T> int sign_of(T val) {
256
    typedef std::pair<Key, EntryPair> Entry;
133
    return (T(0) < val) - (val < T(0));
-
 
134
}
257
 
135
 
-
 
136
// Numbers in little endian used by sparseIndex[] to point into blockLength[]
-
 
137
struct SparseEntry {
258
    static const int TBHASHBITS = 10;
138
    char block[4];   // Number of block
259
    static const int HSHMAX     = 5;
139
    char offset[2];  // Offset within the block
-
 
140
};
260
 
141
 
261
    Entry hashTable[1 << TBHASHBITS][HSHMAX];
142
static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes");
262
 
143
 
263
    std::deque<WDLEntry> wdlTable;
-
 
264
    std::deque<DTZEntry> dtzTable;
144
typedef uint16_t Sym; // Huffman symbol
265
 
145
 
266
    void insert(Key key, WDLEntry* wdl, DTZEntry* dtz) {
146
struct LR {
267
        Entry* entry = hashTable[key >> (64 - TBHASHBITS)];
147
    enum Side { Left, Right };
268
 
148
 
269
        for (int i = 0; i < HSHMAX; ++i, ++entry)
149
    uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12
270
            if (!entry->second.first || entry->first == key) {
150
                   // bits is the right-hand symbol. If symbol has length 1,
271
                *entry = std::make_pair(key, std::make_pair(wdl, dtz));
151
                   // then the left-hand symbol is the stored value.
272
                return;
152
    template<Side S>
273
            }
153
    Sym get() {
274
 
-
 
275
        std::cerr << "HSHMAX too low!" << std::endl;
154
        return S == Left  ? ((lr[1] & 0xF) << 8) | lr[0] :
276
        exit(1);
155
               S == Right ?  (lr[2] << 4) | (lr[1] >> 4) : (assert(false), Sym(-1));
277
    }
156
    }
-
 
157
};
278
 
158
 
279
public:
-
 
280
    template<typename E, int I = std::is_same<E, WDLEntry>::value ? 0 : 1>
159
static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes");
281
    E* get(Key key) {
-
 
282
      Entry* entry = hashTable[key >> (64 - TBHASHBITS)];
-
 
283
 
160
 
284
      for (int i = 0; i < HSHMAX; ++i, ++entry)
-
 
285
          if (entry->first == key)
-
 
286
              return std::get<I>(entry->second);
161
// Tablebases data layout is structured as following:
287
 
162
//
288
      return nullptr;
-
 
289
  }
-
 
290
 
-
 
291
  void clear() {
-
 
292
      std::memset(hashTable, 0, sizeof(hashTable));
163
//  TBFile:   memory maps/unmaps the physical .rtbw and .rtbz files
293
      wdlTable.clear();
-
 
294
      dtzTable.clear();
-
 
295
  }
-
 
296
  size_t size() const { return wdlTable.size(); }
164
//  TBTable:  one object for each file with corresponding indexing information
297
  void insert(const std::vector<PieceType>& pieces);
165
//  TBTables: has ownership of TBTable objects, keeping a list and a hash
298
};
-
 
299
 
-
 
300
HashTable EntryTable;
-
 
301
 
166
 
-
 
167
// class TBFile memory maps/unmaps the single .rtbw and .rtbz files. Files are
-
 
168
// memory mapped for best performance. Files are mapped at first access: at init
-
 
169
// time only existence of the file is checked.
302
class TBFile : public std::ifstream {
170
class TBFile : public std::ifstream {
303
 
171
 
304
    std::string fname;
172
    std::string fname;
305
 
173
 
306
public:
174
public:
Line 313... Line 181...
313
    static std::string Paths;
181
    static std::string Paths;
314
 
182
 
315
    TBFile(const std::string& f) {
183
    TBFile(const std::string& f) {
316
 
184
 
317
#ifndef _WIN32
185
#ifndef _WIN32
318
        const char SepChar = ':';
186
        constexpr char SepChar = ':';
319
#else
187
#else
320
        const char SepChar = ';';
188
        constexpr char SepChar = ';';
321
#endif
189
#endif
322
        std::stringstream ss(Paths);
190
        std::stringstream ss(Paths);
323
        std::string path;
191
        std::string path;
324
 
192
 
325
        while (std::getline(ss, path, SepChar)) {
193
        while (std::getline(ss, path, SepChar)) {
Line 330... Line 198...
330
        }
198
        }
331
    }
199
    }
332
 
200
 
333
    // Memory map the file and check it. File should be already open and will be
201
    // Memory map the file and check it. File should be already open and will be
334
    // closed after mapping.
202
    // closed after mapping.
335
    uint8_t* map(void** baseAddress, uint64_t* mapping, const uint8_t* TB_MAGIC) {
203
    uint8_t* map(void** baseAddress, uint64_t* mapping, TBType type) {
336
 
204
 
337
        assert(is_open());
205
        assert(is_open());
338
 
206
 
339
        close(); // Need to re-open to get native file descriptor
207
        close(); // Need to re-open to get native file descriptor
340
 
208
 
Line 346... Line 214...
346
            return *baseAddress = nullptr, nullptr;
214
            return *baseAddress = nullptr, nullptr;
347
 
215
 
348
        fstat(fd, &statbuf);
216
        fstat(fd, &statbuf);
349
        *mapping = statbuf.st_size;
217
        *mapping = statbuf.st_size;
350
        *baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0);
218
        *baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0);
-
 
219
        madvise(*baseAddress, statbuf.st_size, MADV_RANDOM);
351
        ::close(fd);
220
        ::close(fd);
352
 
221
 
353
        if (*baseAddress == MAP_FAILED) {
222
        if (*baseAddress == MAP_FAILED) {
354
            std::cerr << "Could not mmap() " << fname << std::endl;
223
            std::cerr << "Could not mmap() " << fname << std::endl;
355
            exit(1);
224
            exit(1);
Line 380... Line 249...
380
            exit(1);
249
            exit(1);
381
        }
250
        }
382
#endif
251
#endif
383
        uint8_t* data = (uint8_t*)*baseAddress;
252
        uint8_t* data = (uint8_t*)*baseAddress;
384
 
253
 
385
        if (   *data++ != *TB_MAGIC++
254
        constexpr uint8_t Magics[][4] = { { 0xD7, 0x66, 0x0C, 0xA5 },
386
            || *data++ != *TB_MAGIC++
255
                                          { 0x71, 0xE8, 0x23, 0x5D } };
387
            || *data++ != *TB_MAGIC++
-
 
-
 
256
 
388
            || *data++ != *TB_MAGIC) {
257
        if (memcmp(data, Magics[type == WDL], 4)) {
389
            std::cerr << "Corrupted table in file " << fname << std::endl;
258
            std::cerr << "Corrupted table in file " << fname << std::endl;
390
            unmap(*baseAddress, *mapping);
259
            unmap(*baseAddress, *mapping);
391
            return *baseAddress = nullptr, nullptr;
260
            return *baseAddress = nullptr, nullptr;
392
        }
261
        }
393
 
262
 
394
        return data;
263
        return data + 4; // Skip Magics's header
395
    }
264
    }
396
 
265
 
397
    static void unmap(void* baseAddress, uint64_t mapping) {
266
    static void unmap(void* baseAddress, uint64_t mapping) {
398
 
267
 
399
#ifndef _WIN32
268
#ifndef _WIN32
Line 405... Line 274...
405
    }
274
    }
406
};
275
};
407
 
276
 
408
std::string TBFile::Paths;
277
std::string TBFile::Paths;
409
 
278
 
-
 
279
// struct PairsData contains low level indexing information to access TB data.
-
 
280
// There are 8, 4 or 2 PairsData records for each TBTable, according to type of
-
 
281
// table and if positions have pawns or not. It is populated at first access.
-
 
282
struct PairsData {
-
 
283
    uint8_t flags;                 // Table flags, see enum TBFlag
-
 
284
    uint8_t maxSymLen;             // Maximum length in bits of the Huffman symbols
-
 
285
    uint8_t minSymLen;             // Minimum length in bits of the Huffman symbols
-
 
286
    uint32_t blocksNum;            // Number of blocks in the TB file
-
 
287
    size_t sizeofBlock;            // Block size in bytes
-
 
288
    size_t span;                   // About every span values there is a SparseIndex[] entry
-
 
289
    Sym* lowestSym;                // lowestSym[l] is the symbol of length l with the lowest value
-
 
290
    LR* btree;                     // btree[sym] stores the left and right symbols that expand sym
-
 
291
    uint16_t* blockLength;         // Number of stored positions (minus one) for each block: 1..65536
-
 
292
    uint32_t blockLengthSize;      // Size of blockLength[] table: padded so it's bigger than blocksNum
-
 
293
    SparseEntry* sparseIndex;      // Partial indices into blockLength[]
-
 
294
    size_t sparseIndexSize;        // Size of SparseIndex[] table
-
 
295
    uint8_t* data;                 // Start of Huffman compressed data
-
 
296
    std::vector<uint64_t> base64;  // base64[l - min_sym_len] is the 64bit-padded lowest symbol of length l
-
 
297
    std::vector<uint8_t> symlen;   // Number of values (-1) represented by a given Huffman symbol: 1..256
-
 
298
    Piece pieces[TBPIECES];        // Position pieces: the order of pieces defines the groups
-
 
299
    uint64_t groupIdx[TBPIECES+1]; // Start index used for the encoding of the group's pieces
-
 
300
    int groupLen[TBPIECES+1];      // Number of pieces in a given group: KRKN -> (3, 1)
-
 
301
    uint16_t map_idx[4];           // WDLWin, WDLLoss, WDLCursedWin, WDLBlessedLoss (used in DTZ)
-
 
302
};
-
 
303
 
-
 
304
// struct TBTable contains indexing information to access the corresponding TBFile.
-
 
305
// There are 2 types of TBTable, corresponding to a WDL or a DTZ file. TBTable
-
 
306
// is populated at init time but the nested PairsData records are populated at
-
 
307
// first access, when the corresponding file is memory mapped.
-
 
308
template<TBType Type>
-
 
309
struct TBTable {
-
 
310
    typedef typename std::conditional<Type == WDL, WDLScore, int>::type Ret;
-
 
311
 
-
 
312
    static constexpr int Sides = Type == WDL ? 2 : 1;
-
 
313
 
-
 
314
    std::atomic_bool ready;
-
 
315
    void* baseAddress;
-
 
316
    uint8_t* map;
-
 
317
    uint64_t mapping;
-
 
318
    Key key;
-
 
319
    Key key2;
-
 
320
    int pieceCount;
-
 
321
    bool hasPawns;
-
 
322
    bool hasUniquePieces;
-
 
323
    uint8_t pawnCount[2]; // [Lead color / other color]
-
 
324
    PairsData items[Sides][4]; // [wtm / btm][FILE_A..FILE_D or 0]
-
 
325
 
-
 
326
    PairsData* get(int stm, int f) {
-
 
327
        return &items[stm % Sides][hasPawns ? f : 0];
-
 
328
    }
-
 
329
 
-
 
330
    TBTable() : ready(false), baseAddress(nullptr) {}
410
WDLEntry::WDLEntry(const std::string& code) {
331
    explicit TBTable(const std::string& code);
-
 
332
    explicit TBTable(const TBTable<WDL>& wdl);
-
 
333
 
-
 
334
    ~TBTable() {
-
 
335
        if (baseAddress)
-
 
336
            TBFile::unmap(baseAddress, mapping);
-
 
337
    }
-
 
338
};
-
 
339
 
-
 
340
template<>
-
 
341
TBTable<WDL>::TBTable(const std::string& code) : TBTable() {
411
 
342
 
412
    StateInfo st;
343
    StateInfo st;
413
    Position pos;
344
    Position pos;
414
 
345
 
415
    memset(this, 0, sizeof(WDLEntry));
-
 
416
 
-
 
417
    ready = false;
-
 
418
    key = pos.set(code, WHITE, &st).material_key();
346
    key = pos.set(code, WHITE, &st).material_key();
419
    pieceCount = popcount(pos.pieces());
347
    pieceCount = pos.count<ALL_PIECES>();
420
    hasPawns = pos.pieces(PAWN);
348
    hasPawns = pos.pieces(PAWN);
421
 
349
 
-
 
350
    hasUniquePieces = false;
422
    for (Color c = WHITE; c <= BLACK; ++c)
351
    for (Color c = WHITE; c <= BLACK; ++c)
423
        for (PieceType pt = PAWN; pt < KING; ++pt)
352
        for (PieceType pt = PAWN; pt < KING; ++pt)
424
            if (popcount(pos.pieces(c, pt)) == 1)
353
            if (popcount(pos.pieces(c, pt)) == 1)
425
                hasUniquePieces = true;
354
                hasUniquePieces = true;
426
 
355
 
427
    if (hasPawns) {
-
 
428
        // Set the leading color. In case both sides have pawns the leading color
356
    // Set the leading color. In case both sides have pawns the leading color
429
        // is the side with less pawns because this leads to better compression.
357
    // is the side with less pawns because this leads to better compression.
430
        bool c =   !pos.count<PAWN>(BLACK)
358
    bool c =   !pos.count<PAWN>(BLACK)
431
                || (   pos.count<PAWN>(WHITE)
359
            || (   pos.count<PAWN>(WHITE)
432
                    && pos.count<PAWN>(BLACK) >= pos.count<PAWN>(WHITE));
360
                && pos.count<PAWN>(BLACK) >= pos.count<PAWN>(WHITE));
433
 
361
 
434
        pawnTable.pawnCount[0] = pos.count<PAWN>(c ? WHITE : BLACK);
362
    pawnCount[0] = pos.count<PAWN>(c ? WHITE : BLACK);
435
        pawnTable.pawnCount[1] = pos.count<PAWN>(c ? BLACK : WHITE);
363
    pawnCount[1] = pos.count<PAWN>(c ? BLACK : WHITE);
436
    }
-
 
437
 
364
 
438
    key2 = pos.set(code, BLACK, &st).material_key();
365
    key2 = pos.set(code, BLACK, &st).material_key();
439
}
366
}
440
 
367
 
441
WDLEntry::~WDLEntry() {
368
template<>
-
 
369
TBTable<DTZ>::TBTable(const TBTable<WDL>& wdl) : TBTable() {
442
 
370
 
443
    if (baseAddress)
-
 
444
        TBFile::unmap(baseAddress, mapping);
-
 
445
 
-
 
446
    for (int i = 0; i < 2; ++i)
-
 
447
        if (hasPawns)
-
 
448
            for (File f = FILE_A; f <= FILE_D; ++f)
-
 
449
                delete pawnTable.file[i][f].precomp;
371
    // Use the corresponding WDL table to avoid recalculating all from scratch
450
        else
-
 
451
            delete pieceTable[i].precomp;
-
 
452
}
-
 
453
 
-
 
454
DTZEntry::DTZEntry(const WDLEntry& wdl) {
-
 
455
 
-
 
456
    memset(this, 0, sizeof(DTZEntry));
-
 
457
 
-
 
458
    ready = false;
-
 
459
    key = wdl.key;
372
    key = wdl.key;
460
    key2 = wdl.key2;
373
    key2 = wdl.key2;
461
    pieceCount = wdl.pieceCount;
374
    pieceCount = wdl.pieceCount;
462
    hasPawns = wdl.hasPawns;
375
    hasPawns = wdl.hasPawns;
463
    hasUniquePieces = wdl.hasUniquePieces;
376
    hasUniquePieces = wdl.hasUniquePieces;
-
 
377
    pawnCount[0] = wdl.pawnCount[0];
-
 
378
    pawnCount[1] = wdl.pawnCount[1];
-
 
379
}
464
 
380
 
-
 
381
// class TBTables creates and keeps ownership of the TBTable objects, one for
-
 
382
// each TB file found. It supports a fast, hash based, table lookup. Populated
-
 
383
// at init time, accessed at probe time.
465
    if (hasPawns) {
384
class TBTables {
-
 
385
 
-
 
386
    typedef std::tuple<Key, TBTable<WDL>*, TBTable<DTZ>*> Entry;
-
 
387
 
-
 
388
    static constexpr int Size = 1 << 12; // 4K table, indexed by key's 12 lsb
-
 
389
    static constexpr int Overflow = 1;  // Number of elements allowed to map to the last bucket
-
 
390
 
-
 
391
    Entry hashTable[Size + Overflow];
-
 
392
 
-
 
393
    std::deque<TBTable<WDL>> wdlTable;
-
 
394
    std::deque<TBTable<DTZ>> dtzTable;
-
 
395
 
-
 
396
    void insert(Key key, TBTable<WDL>* wdl, TBTable<DTZ>* dtz) {
-
 
397
        uint32_t homeBucket = (uint32_t)key & (Size - 1);
466
        pawnTable.pawnCount[0] = wdl.pawnTable.pawnCount[0];
398
        Entry entry = std::make_tuple(key, wdl, dtz);
-
 
399
 
-
 
400
        // Ensure last element is empty to avoid overflow when looking up
-
 
401
        for (uint32_t bucket = homeBucket; bucket < Size + Overflow - 1; ++bucket) {
-
 
402
            Key otherKey = std::get<KEY>(hashTable[bucket]);
-
 
403
            if (otherKey == key || !std::get<WDL>(hashTable[bucket])) {
-
 
404
                hashTable[bucket] = entry;
-
 
405
                return;
-
 
406
            }
-
 
407
 
-
 
408
            // Robin Hood hashing: If we've probed for longer than this element,
-
 
409
            // insert here and search for a new spot for the other element instead.
-
 
410
            uint32_t otherHomeBucket = (uint32_t)otherKey & (Size - 1);
-
 
411
            if (otherHomeBucket > homeBucket) {
467
        pawnTable.pawnCount[1] = wdl.pawnTable.pawnCount[1];
412
                swap(entry, hashTable[bucket]);
-
 
413
                key = otherKey;
-
 
414
                homeBucket = otherHomeBucket;
-
 
415
            }
-
 
416
        }
-
 
417
        std::cerr << "TB hash table size too low!" << std::endl;
-
 
418
        exit(1);
468
    }
419
    }
469
}
-
 
470
 
420
 
-
 
421
public:
-
 
422
    template<TBType Type>
471
DTZEntry::~DTZEntry() {
423
    TBTable<Type>* get(Key key) {
-
 
424
        for (const Entry* entry = &hashTable[(uint32_t)key & (Size - 1)]; ; ++entry) {
-
 
425
            if (std::get<KEY>(*entry) == key || !std::get<Type>(*entry))
-
 
426
                return std::get<Type>(*entry);
-
 
427
        }
-
 
428
    }
472
 
429
 
473
    if (baseAddress)
430
    void clear() {
474
        TBFile::unmap(baseAddress, mapping);
431
        memset(hashTable, 0, sizeof(hashTable));
-
 
432
        wdlTable.clear();
-
 
433
        dtzTable.clear();
-
 
434
    }
-
 
435
    size_t size() const { return wdlTable.size(); }
-
 
436
    void add(const std::vector<PieceType>& pieces);
-
 
437
};
475
 
438
 
476
    if (hasPawns)
439
TBTables TBTables;
477
        for (File f = FILE_A; f <= FILE_D; ++f)
-
 
478
            delete pawnTable.file[f].precomp;
-
 
479
    else
-
 
480
        delete pieceTable.precomp;
-
 
481
}
-
 
482
 
440
 
-
 
441
// If the corresponding file exists two new objects TBTable<WDL> and TBTable<DTZ>
-
 
442
// are created and added to the lists and hash table. Called at init time.
483
void HashTable::insert(const std::vector<PieceType>& pieces) {
443
void TBTables::add(const std::vector<PieceType>& pieces) {
484
 
444
 
485
    std::string code;
445
    std::string code;
486
 
446
 
487
    for (PieceType pt : pieces)
447
    for (PieceType pt : pieces)
488
        code += PieceToChar[pt];
448
        code += PieceToChar[pt];
Line 497... Line 457...
497
    MaxCardinality = std::max((int)pieces.size(), MaxCardinality);
457
    MaxCardinality = std::max((int)pieces.size(), MaxCardinality);
498
 
458
 
499
    wdlTable.emplace_back(code);
459
    wdlTable.emplace_back(code);
500
    dtzTable.emplace_back(wdlTable.back());
460
    dtzTable.emplace_back(wdlTable.back());
501
 
461
 
-
 
462
    // Insert into the hash keys for both colors: KRvK with KR white and black
502
    insert(wdlTable.back().key , &wdlTable.back(), &dtzTable.back());
463
    insert(wdlTable.back().key , &wdlTable.back(), &dtzTable.back());
503
    insert(wdlTable.back().key2, &wdlTable.back(), &dtzTable.back());
464
    insert(wdlTable.back().key2, &wdlTable.back(), &dtzTable.back());
504
}
465
}
505
 
466
 
506
// TB tables are compressed with canonical Huffman code. The compressed data is divided into
467
// TB tables are compressed with canonical Huffman code. The compressed data is divided into
Line 537... Line 498...
537
    // with index I(k), where:
498
    // with index I(k), where:
538
    //
499
    //
539
    //       I(k) = k * d->span + d->span / 2      (1)
500
    //       I(k) = k * d->span + d->span / 2      (1)
540
 
501
 
541
    // First step is to get the 'k' of the I(k) nearest to our idx, using definition (1)
502
    // First step is to get the 'k' of the I(k) nearest to our idx, using definition (1)
542
    uint32_t k = (uint32_t) (idx / d->span); // Pierre-Marie Baty -- added type cast
503
    uint32_t k = idx / d->span;
543
 
504
 
544
    // Then we read the corresponding SparseIndex[] entry
505
    // Then we read the corresponding SparseIndex[] entry
545
    uint32_t block = number<uint32_t, LittleEndian>(&d->sparseIndex[k].block);
506
    uint32_t block = number<uint32_t, LittleEndian>(&d->sparseIndex[k].block);
546
    int offset     = number<uint16_t, LittleEndian>(&d->sparseIndex[k].offset);
507
    int offset     = number<uint16_t, LittleEndian>(&d->sparseIndex[k].offset);
547
 
508
 
Line 562... Line 523...
562
 
523
 
563
    while (offset > d->blockLength[block])
524
    while (offset > d->blockLength[block])
564
        offset -= d->blockLength[block++] + 1;
525
        offset -= d->blockLength[block++] + 1;
565
 
526
 
566
    // Finally, we find the start address of our block of canonical Huffman symbols
527
    // Finally, we find the start address of our block of canonical Huffman symbols
567
    uint32_t* ptr = (uint32_t*)(d->data + block * d->sizeofBlock);
528
    uint32_t* ptr = (uint32_t*)(d->data + ((uint64_t)block * d->sizeofBlock));
568
 
529
 
569
    // Read the first 64 bits in our block, this is a (truncated) sequence of
530
    // Read the first 64 bits in our block, this is a (truncated) sequence of
570
    // unknown number of symbols of unknown length but we know the first one
531
    // unknown number of symbols of unknown length but we know the first one
571
    // is at the beginning of this 64 bits sequence.
532
    // is at the beginning of this 64 bits sequence.
572
    uint64_t buf64 = number<uint64_t, BigEndian>(ptr); ptr += 2;
533
    uint64_t buf64 = number<uint64_t, BigEndian>(ptr); ptr += 2;
Line 583... Line 544...
583
            ++len;
544
            ++len;
584
 
545
 
585
        // All the symbols of a given length are consecutive integers (numerical
546
        // All the symbols of a given length are consecutive integers (numerical
586
        // sequence property), so we can compute the offset of our symbol of
547
        // sequence property), so we can compute the offset of our symbol of
587
        // length len, stored at the beginning of buf64.
548
        // length len, stored at the beginning of buf64.
588
        sym = (Sym) ((buf64 - d->base64[len]) >> (64 - len - d->minSymLen)); // Pierre-Marie Baty -- added type cast
549
        sym = (buf64 - d->base64[len]) >> (64 - len - d->minSymLen);
589
 
550
 
590
        // Now add the value of the lowest symbol of length len to get our symbol
551
        // Now add the value of the lowest symbol of length len to get our symbol
591
        sym += number<Sym, LittleEndian>(&d->lowestSym[len]);
552
        sym += number<Sym, LittleEndian>(&d->lowestSym[len]);
592
 
553
 
593
        // If our offset is within the number of values represented by symbol sym
554
        // If our offset is within the number of values represented by symbol sym
Line 625... Line 586...
625
            offset -= d->symlen[left] + 1;
586
            offset -= d->symlen[left] + 1;
626
            sym = d->btree[sym].get<LR::Right>();
587
            sym = d->btree[sym].get<LR::Right>();
627
        }
588
        }
628
    }
589
    }
629
 
590
 
630
    return d->btree[sym].get<LR::Value>();
591
    return d->btree[sym].get<LR::Left>();
631
}
592
}
632
 
593
 
633
bool check_dtz_stm(WDLEntry*, int, File) { return true; }
594
bool check_dtz_stm(TBTable<WDL>*, int, File) { return true; }
634
 
595
 
635
bool check_dtz_stm(DTZEntry* entry, int stm, File f) {
596
bool check_dtz_stm(TBTable<DTZ>* entry, int stm, File f) {
636
 
-
 
637
    int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags
-
 
638
                                : entry->pieceTable.precomp->flags;
-
 
639
 
597
 
-
 
598
    auto flags = entry->get(stm, f)->flags;
640
    return   (flags & TBFlag::STM) == stm
599
    return   (flags & TBFlag::STM) == stm
641
          || ((entry->key == entry->key2) && !entry->hasPawns);
600
          || ((entry->key == entry->key2) && !entry->hasPawns);
642
}
601
}
643
 
602
 
644
// DTZ scores are sorted by frequency of occurrence and then assigned the
603
// DTZ scores are sorted by frequency of occurrence and then assigned the
645
// values 0, 1, 2, ... in order of decreasing frequency. This is done for each
604
// values 0, 1, 2, ... in order of decreasing frequency. This is done for each
646
// of the four WDLScore values. The mapping information necessary to reconstruct
605
// of the four WDLScore values. The mapping information necessary to reconstruct
647
// the original values is stored in the TB file and read during map[] init.
606
// the original values is stored in the TB file and read during map[] init.
648
WDLScore map_score(WDLEntry*, File, int value, WDLScore) { return WDLScore(value - 2); }
607
WDLScore map_score(TBTable<WDL>*, File, int value, WDLScore) { return WDLScore(value - 2); }
649
 
608
 
650
int map_score(DTZEntry* entry, File f, int value, WDLScore wdl) {
609
int map_score(TBTable<DTZ>* entry, File f, int value, WDLScore wdl) {
651
 
610
 
652
    const int WDLMap[] = { 1, 3, 0, 2, 0 };
611
    constexpr int WDLMap[] = { 1, 3, 0, 2, 0 };
653
 
612
 
654
    int flags = entry->hasPawns ? entry->pawnTable.file[f].precomp->flags
613
    auto flags = entry->get(0, f)->flags;
655
                                : entry->pieceTable.precomp->flags;
-
 
656
 
614
 
657
    uint8_t* map = entry->hasPawns ? entry->pawnTable.map
615
    uint8_t* map = entry->map;
658
                                   : entry->pieceTable.map;
-
 
659
 
-
 
660
    uint16_t* idx = entry->hasPawns ? entry->pawnTable.file[f].map_idx
616
    uint16_t* idx = entry->get(0, f)->map_idx;
661
                                    : entry->pieceTable.map_idx;
617
    if (flags & TBFlag::Mapped) {
662
    if (flags & TBFlag::Mapped)
618
        if (flags & TBFlag::Wide)
-
 
619
            value = ((uint16_t *)map)[idx[WDLMap[wdl + 2]] + value];
-
 
620
        else
663
        value = map[idx[WDLMap[wdl + 2]] + value];
621
            value = map[idx[WDLMap[wdl + 2]] + value];
-
 
622
    }
664
 
623
 
665
    // DTZ tables store distance to zero in number of moves or plies. We
624
    // DTZ tables store distance to zero in number of moves or plies. We
666
    // want to return plies, so we have convert to plies when needed.
625
    // want to return plies, so we have convert to plies when needed.
667
    if (   (wdl == WDLWin  && !(flags & TBFlag::WinPlies))
626
    if (   (wdl == WDLWin  && !(flags & TBFlag::WinPlies))
668
        || (wdl == WDLLoss && !(flags & TBFlag::LossPlies))
627
        || (wdl == WDLLoss && !(flags & TBFlag::LossPlies))
Line 677... Line 636...
677
// encode k pieces of same type and color, first sort the pieces by square in
636
// encode k pieces of same type and color, first sort the pieces by square in
678
// ascending order s1 <= s2 <= ... <= sk then compute the unique index as:
637
// ascending order s1 <= s2 <= ... <= sk then compute the unique index as:
679
//
638
//
680
//      idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk]
639
//      idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk]
681
//
640
//
682
template<typename Entry, typename T = typename Ret<Entry>::type>
641
template<typename T, typename Ret = typename T::Ret>
683
T do_probe_table(const Position& pos, Entry* entry, WDLScore wdl, ProbeState* result) {
642
Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* result) {
684
 
-
 
685
    const bool IsWDL = std::is_same<Entry, WDLEntry>::value;
-
 
686
 
643
 
687
    Square squares[TBPIECES];
644
    Square squares[TBPIECES];
688
    Piece pieces[TBPIECES];
645
    Piece pieces[TBPIECES];
689
    uint64_t idx;
646
    uint64_t idx;
690
    int next = 0, size = 0, leadPawnsCnt = 0;
647
    int next = 0, size = 0, leadPawnsCnt = 0;
Line 713... Line 670...
713
    // MapPawns[] value, that is the one most toward the edges and with lowest rank.
670
    // MapPawns[] value, that is the one most toward the edges and with lowest rank.
714
    if (entry->hasPawns) {
671
    if (entry->hasPawns) {
715
 
672
 
716
        // In all the 4 tables, pawns are at the beginning of the piece sequence and
673
        // In all the 4 tables, pawns are at the beginning of the piece sequence and
717
        // their color is the reference one. So we just pick the first one.
674
        // their color is the reference one. So we just pick the first one.
718
        Piece pc = Piece(item(entry->pawnTable, 0, 0).precomp->pieces[0] ^ flipColor);
675
        Piece pc = Piece(entry->get(0, 0)->pieces[0] ^ flipColor);
719
 
676
 
720
        assert(type_of(pc) == PAWN);
677
        assert(type_of(pc) == PAWN);
721
 
678
 
722
        leadPawns = b = pos.pieces(color_of(pc), PAWN);
679
        leadPawns = b = pos.pieces(color_of(pc), PAWN);
723
        do
680
        do
Line 729... Line 686...
729
        std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp));
686
        std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp));
730
 
687
 
731
        tbFile = file_of(squares[0]);
688
        tbFile = file_of(squares[0]);
732
        if (tbFile > FILE_D)
689
        if (tbFile > FILE_D)
733
            tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1
690
            tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1
734
 
-
 
735
        d = item(entry->pawnTable , stm, tbFile).precomp;
-
 
736
    } else
691
    }
737
        d = item(entry->pieceTable, stm, tbFile).precomp;
-
 
738
 
692
 
739
    // DTZ tables are one-sided, i.e. they store positions only for white to
693
    // DTZ tables are one-sided, i.e. they store positions only for white to
740
    // move or only for black to move, so check for side to move to be stm,
694
    // move or only for black to move, so check for side to move to be stm,
741
    // early exit otherwise.
695
    // early exit otherwise.
742
    if (!IsWDL && !check_dtz_stm(entry, stm, tbFile))
696
    if (!check_dtz_stm(entry, stm, tbFile))
743
        return *result = CHANGE_STM, T();
697
        return *result = CHANGE_STM, Ret();
744
 
698
 
745
    // Now we are ready to get all the position pieces (but the lead pawns) and
699
    // Now we are ready to get all the position pieces (but the lead pawns) and
746
    // directly map them to the correct color and square.
700
    // directly map them to the correct color and square.
747
    b = pos.pieces() ^ leadPawns;
701
    b = pos.pieces() ^ leadPawns;
748
    do {
702
    do {
Line 750... Line 704...
750
        squares[size] = s ^ flipSquares;
704
        squares[size] = s ^ flipSquares;
751
        pieces[size++] = Piece(pos.piece_on(s) ^ flipColor);
705
        pieces[size++] = Piece(pos.piece_on(s) ^ flipColor);
752
    } while (b);
706
    } while (b);
753
 
707
 
754
    assert(size >= 2);
708
    assert(size >= 2);
-
 
709
 
-
 
710
    d = entry->get(stm, tbFile);
755
 
711
 
756
    // Then we reorder the pieces to have the same sequence as the one stored
712
    // Then we reorder the pieces to have the same sequence as the one stored
757
    // in precomp->pieces[i]: the sequence that ensures the best compression.
713
    // in pieces[i]: the sequence that ensures the best compression.
758
    for (int i = leadPawnsCnt; i < size; ++i)
714
    for (int i = leadPawnsCnt; i < size; ++i)
759
        for (int j = i; j < size; ++j)
715
        for (int j = i; j < size; ++j)
760
            if (d->pieces[i] == pieces[j])
716
            if (d->pieces[i] == pieces[j])
761
            {
717
            {
762
                std::swap(pieces[i], pieces[j]);
718
                std::swap(pieces[i], pieces[j]);
Line 870... Line 826...
870
encode_remaining:
826
encode_remaining:
871
    idx *= d->groupIdx[0];
827
    idx *= d->groupIdx[0];
872
    Square* groupSq = squares + d->groupLen[0];
828
    Square* groupSq = squares + d->groupLen[0];
873
 
829
 
874
    // Encode remainig pawns then pieces according to square, in ascending order
830
    // Encode remainig pawns then pieces according to square, in ascending order
875
    bool remainingPawns = entry->hasPawns && entry->pawnTable.pawnCount[1];
831
    bool remainingPawns = entry->hasPawns && entry->pawnCount[1];
876
 
832
 
877
    while (d->groupLen[++next])
833
    while (d->groupLen[++next])
878
    {
834
    {
879
        std::sort(groupSq, groupSq + d->groupLen[next]);
835
        std::sort(groupSq, groupSq + d->groupLen[next]);
880
        uint64_t n = 0;
836
        uint64_t n = 0;
Line 932... Line 888...
932
    // This ensures unique encoding for the whole position. The order of the
888
    // This ensures unique encoding for the whole position. The order of the
933
    // groups is a per-table parameter and could not follow the canonical leading
889
    // groups is a per-table parameter and could not follow the canonical leading
934
    // pawns/pieces -> remainig pawns -> remaining pieces. In particular the
890
    // pawns/pieces -> remainig pawns -> remaining pieces. In particular the
935
    // first group is at order[0] position and the remaining pawns, when present,
891
    // first group is at order[0] position and the remaining pawns, when present,
936
    // are at order[1] position.
892
    // are at order[1] position.
937
    bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides
893
    bool pp = e.hasPawns && e.pawnCount[1]; // Pawns on both sides
938
    int next = pp ? 2 : 1;
894
    int next = pp ? 2 : 1;
939
    int freeSquares = 64 - d->groupLen[0] - (pp ? d->groupLen[1] : 0);
895
    int freeSquares = 64 - d->groupLen[0] - (pp ? d->groupLen[1] : 0);
940
    uint64_t idx = 1;
896
    uint64_t idx = 1;
941
 
897
 
942
    for (int k = 0; next < n || k == order[0] || k == order[1]; ++k)
898
    for (int k = 0; next < n || k == order[0] || k == order[1]; ++k)
Line 998... Line 954...
998
    // element stores the biggest index that is the tb size.
954
    // element stores the biggest index that is the tb size.
999
    uint64_t tbSize = d->groupIdx[std::find(d->groupLen, d->groupLen + 7, 0) - d->groupLen];
955
    uint64_t tbSize = d->groupIdx[std::find(d->groupLen, d->groupLen + 7, 0) - d->groupLen];
1000
 
956
 
1001
    d->sizeofBlock = 1ULL << *data++;
957
    d->sizeofBlock = 1ULL << *data++;
1002
    d->span = 1ULL << *data++;
958
    d->span = 1ULL << *data++;
1003
    d->sparseIndexSize = (size_t) ((tbSize + d->span - 1) / d->span); // Round up // Pierre-Marie Baty -- added type cast
959
    d->sparseIndexSize = (tbSize + d->span - 1) / d->span; // Round up
1004
    int padding = number<uint8_t, LittleEndian>(data++);
960
    auto padding = number<uint8_t, LittleEndian>(data++);
1005
    d->blocksNum = number<uint32_t, LittleEndian>(data); data += sizeof(uint32_t);
961
    d->blocksNum = number<uint32_t, LittleEndian>(data); data += sizeof(uint32_t);
1006
    d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[]
962
    d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[]
1007
                                                 // does not point out of range.
963
                                                 // does not point out of range.
1008
    d->maxSymLen = *data++;
964
    d->maxSymLen = *data++;
1009
    d->minSymLen = *data++;
965
    d->minSymLen = *data++;
Line 1032... Line 988...
1032
 
988
 
1033
    data += d->base64.size() * sizeof(Sym);
989
    data += d->base64.size() * sizeof(Sym);
1034
    d->symlen.resize(number<uint16_t, LittleEndian>(data)); data += sizeof(uint16_t);
990
    d->symlen.resize(number<uint16_t, LittleEndian>(data)); data += sizeof(uint16_t);
1035
    d->btree = (LR*)data;
991
    d->btree = (LR*)data;
1036
 
992
 
1037
    // The comrpession scheme used is "Recursive Pairing", that replaces the most
993
    // The compression scheme used is "Recursive Pairing", that replaces the most
1038
    // frequent adjacent pair of symbols in the source message by a new symbol,
994
    // frequent adjacent pair of symbols in the source message by a new symbol,
1039
    // reevaluating the frequencies of all of the symbol pairs with respect to
995
    // reevaluating the frequencies of all of the symbol pairs with respect to
1040
    // the extended alphabet, and then repeating the process.
996
    // the extended alphabet, and then repeating the process.
1041
    // See http://www.larsson.dogma.net/dcc99.pdf
997
    // See http://www.larsson.dogma.net/dcc99.pdf
1042
    std::vector<bool> visited(d->symlen.size());
998
    std::vector<bool> visited(d->symlen.size());
Line 1046... Line 1002...
1046
            d->symlen[sym] = set_symlen(d, sym, visited);
1002
            d->symlen[sym] = set_symlen(d, sym, visited);
1047
 
1003
 
1048
    return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1);
1004
    return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1);
1049
}
1005
}
1050
 
1006
 
1051
template<typename T>
-
 
1052
uint8_t* set_dtz_map(WDLEntry&, T&, uint8_t*, File) { return nullptr; }
1007
uint8_t* set_dtz_map(TBTable<WDL>&, uint8_t* data, File) { return data; }
1053
 
1008
 
1054
template<typename T>
-
 
1055
uint8_t* set_dtz_map(DTZEntry&, T& p, uint8_t* data, File maxFile) {
1009
uint8_t* set_dtz_map(TBTable<DTZ>& e, uint8_t* data, File maxFile) {
1056
 
1010
 
1057
    p.map = data;
1011
    e.map = data;
1058
 
1012
 
1059
    for (File f = FILE_A; f <= maxFile; ++f) {
1013
    for (File f = FILE_A; f <= maxFile; ++f) {
-
 
1014
        auto flags = e.get(0, f)->flags;
1060
        if (item(p, 0, f).precomp->flags & TBFlag::Mapped)
1015
        if (flags & TBFlag::Mapped) {
-
 
1016
            if (flags & TBFlag::Wide) {
-
 
1017
                data += (uintptr_t)data & 1;  // Word alignment, we may have a mixed table
1061
            for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x
1018
                for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x
1062
                item(p, 0, f).map_idx[i] = (uint16_t)(data - p.map + 1);
1019
                    e.get(0, f)->map_idx[i] = (uint16_t)((uint16_t *)data - (uint16_t *)e.map + 1);
-
 
1020
                    data += 2 * number<uint16_t, LittleEndian>(data) + 2;
1063
                data += *data + 1;
1021
                }
1064
            }
1022
            }
-
 
1023
            else {
-
 
1024
                for (int i = 0; i < 4; ++i) {
-
 
1025
                    e.get(0, f)->map_idx[i] = (uint16_t)(data - e.map + 1);
-
 
1026
                    data += *data + 1;
-
 
1027
                }
-
 
1028
            }
-
 
1029
        }
1065
    }
1030
    }
1066
 
1031
 
1067
    return data += (uintptr_t)data & 1; // Word alignment
1032
    return data += (uintptr_t)data & 1; // Word alignment
1068
}
1033
}
1069
 
1034
 
-
 
1035
// Populate entry's PairsData records with data from the just memory mapped file.
-
 
1036
// Called at first access.
1070
template<typename Entry, typename T>
1037
template<typename T>
1071
void do_init(Entry& e, T& p, uint8_t* data) {
1038
void set(T& e, uint8_t* data) {
1072
 
-
 
1073
    const bool IsWDL = std::is_same<Entry, WDLEntry>::value;
-
 
1074
 
1039
 
1075
    PairsData* d;
1040
    PairsData* d;
1076
 
1041
 
1077
    enum { Split = 1, HasPawns = 2 };
1042
    enum { Split = 1, HasPawns = 2 };
1078
 
1043
 
1079
    assert(e.hasPawns        == !!(*data & HasPawns));
1044
    assert(e.hasPawns        == !!(*data & HasPawns));
1080
    assert((e.key != e.key2) == !!(*data & Split));
1045
    assert((e.key != e.key2) == !!(*data & Split));
1081
 
1046
 
1082
    data++; // First byte stores flags
1047
    data++; // First byte stores flags
1083
 
1048
 
1084
    const int Sides = IsWDL && (e.key != e.key2) ? 2 : 1;
1049
    const int sides = T::Sides == 2 && (e.key != e.key2) ? 2 : 1;
1085
    const File MaxFile = e.hasPawns ? FILE_D : FILE_A;
1050
    const File maxFile = e.hasPawns ? FILE_D : FILE_A;
1086
 
1051
 
1087
    bool pp = e.hasPawns && e.pawnTable.pawnCount[1]; // Pawns on both sides
1052
    bool pp = e.hasPawns && e.pawnCount[1]; // Pawns on both sides
1088
 
1053
 
1089
    assert(!pp || e.pawnTable.pawnCount[0]);
1054
    assert(!pp || e.pawnCount[0]);
1090
 
1055
 
1091
    for (File f = FILE_A; f <= MaxFile; ++f) {
1056
    for (File f = FILE_A; f <= maxFile; ++f) {
1092
 
1057
 
1093
        for (int i = 0; i < Sides; i++)
1058
        for (int i = 0; i < sides; i++)
1094
            item(p, i, f).precomp = new PairsData();
1059
            *e.get(i, f) = PairsData();
1095
 
1060
 
1096
        int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF },
1061
        int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF },
1097
                           { *data >>  4, pp ? *(data + 1) >>  4 : 0xF } };
1062
                           { *data >>  4, pp ? *(data + 1) >>  4 : 0xF } };
1098
        data += 1 + pp;
1063
        data += 1 + pp;
1099
 
1064
 
1100
        for (int k = 0; k < e.pieceCount; ++k, ++data)
1065
        for (int k = 0; k < e.pieceCount; ++k, ++data)
1101
            for (int i = 0; i < Sides; i++)
1066
            for (int i = 0; i < sides; i++)
1102
                item(p, i, f).precomp->pieces[k] = Piece(i ? *data >>  4 : *data & 0xF);
1067
                e.get(i, f)->pieces[k] = Piece(i ? *data >>  4 : *data & 0xF);
1103
 
1068
 
1104
        for (int i = 0; i < Sides; ++i)
1069
        for (int i = 0; i < sides; ++i)
1105
            set_groups(e, item(p, i, f).precomp, order[i], f);
1070
            set_groups(e, e.get(i, f), order[i], f);
1106
    }
1071
    }
1107
 
1072
 
1108
    data += (uintptr_t)data & 1; // Word alignment
1073
    data += (uintptr_t)data & 1; // Word alignment
1109
 
1074
 
1110
    for (File f = FILE_A; f <= MaxFile; ++f)
1075
    for (File f = FILE_A; f <= maxFile; ++f)
1111
        for (int i = 0; i < Sides; i++)
1076
        for (int i = 0; i < sides; i++)
1112
            data = set_sizes(item(p, i, f).precomp, data);
1077
            data = set_sizes(e.get(i, f), data);
1113
 
1078
 
1114
    if (!IsWDL)
-
 
1115
        data = set_dtz_map(e, p, data, MaxFile);
1079
    data = set_dtz_map(e, data, maxFile);
1116
 
1080
 
1117
    for (File f = FILE_A; f <= MaxFile; ++f)
1081
    for (File f = FILE_A; f <= maxFile; ++f)
1118
        for (int i = 0; i < Sides; i++) {
1082
        for (int i = 0; i < sides; i++) {
1119
            (d = item(p, i, f).precomp)->sparseIndex = (SparseEntry*)data;
1083
            (d = e.get(i, f))->sparseIndex = (SparseEntry*)data;
1120
            data += d->sparseIndexSize * sizeof(SparseEntry);
1084
            data += d->sparseIndexSize * sizeof(SparseEntry);
1121
        }
1085
        }
1122
 
1086
 
1123
    for (File f = FILE_A; f <= MaxFile; ++f)
1087
    for (File f = FILE_A; f <= maxFile; ++f)
1124
        for (int i = 0; i < Sides; i++) {
1088
        for (int i = 0; i < sides; i++) {
1125
            (d = item(p, i, f).precomp)->blockLength = (uint16_t*)data;
1089
            (d = e.get(i, f))->blockLength = (uint16_t*)data;
1126
            data += d->blockLengthSize * sizeof(uint16_t);
1090
            data += d->blockLengthSize * sizeof(uint16_t);
1127
        }
1091
        }
1128
 
1092
 
1129
    for (File f = FILE_A; f <= MaxFile; ++f)
1093
    for (File f = FILE_A; f <= maxFile; ++f)
1130
        for (int i = 0; i < Sides; i++) {
1094
        for (int i = 0; i < sides; i++) {
1131
            data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment
1095
            data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment
1132
            (d = item(p, i, f).precomp)->data = data;
1096
            (d = e.get(i, f))->data = data;
1133
            data += d->blocksNum * d->sizeofBlock;
1097
            data += d->blocksNum * d->sizeofBlock;
1134
        }
1098
        }
1135
}
1099
}
1136
 
1100
 
-
 
1101
// If the TB file corresponding to the given position is already memory mapped
-
 
1102
// then return its base address, otherwise try to memory map and init it. Called
-
 
1103
// at every probe, memory map and init only at first access. Function is thread
-
 
1104
// safe and can be called concurrently.
1137
template<typename Entry>
1105
template<TBType Type>
1138
void* init(Entry& e, const Position& pos) {
1106
void* mapped(TBTable<Type>& e, const Position& pos) {
1139
 
-
 
1140
    const bool IsWDL = std::is_same<Entry, WDLEntry>::value;
-
 
1141
 
1107
 
1142
    static Mutex mutex;
1108
    static Mutex mutex;
1143
 
1109
 
1144
    // Avoid a thread reads 'ready' == true while another is still in do_init(),
1110
    // Use 'aquire' to avoid a thread reads 'ready' == true while another is
1145
    // this could happen due to compiler reordering.
1111
    // still working, this could happen due to compiler reordering.
1146
    if (e.ready.load(std::memory_order_acquire))
1112
    if (e.ready.load(std::memory_order_acquire))
1147
        return e.baseAddress;
1113
        return e.baseAddress; // Could be nullptr if file does not exsist
1148
 
1114
 
1149
    std::unique_lock<Mutex> lk(mutex);
1115
    std::unique_lock<Mutex> lk(mutex);
1150
 
1116
 
1151
    if (e.ready.load(std::memory_order_relaxed)) // Recheck under lock
1117
    if (e.ready.load(std::memory_order_relaxed)) // Recheck under lock
1152
        return e.baseAddress;
1118
        return e.baseAddress;
Line 1155... Line 1121...
1155
    std::string fname, w, b;
1121
    std::string fname, w, b;
1156
    for (PieceType pt = KING; pt >= PAWN; --pt) {
1122
    for (PieceType pt = KING; pt >= PAWN; --pt) {
1157
        w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]);
1123
        w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]);
1158
        b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]);
1124
        b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]);
1159
    }
1125
    }
1160
 
-
 
1161
    const uint8_t TB_MAGIC[][4] = { { 0xD7, 0x66, 0x0C, 0xA5 },
-
 
1162
                                    { 0x71, 0xE8, 0x23, 0x5D } };
-
 
1163
 
1126
 
1164
    fname =  (e.key == pos.material_key() ? w + 'v' + b : b + 'v' + w)
1127
    fname =  (e.key == pos.material_key() ? w + 'v' + b : b + 'v' + w)
1165
           + (IsWDL ? ".rtbw" : ".rtbz");
1128
           + (Type == WDL ? ".rtbw" : ".rtbz");
-
 
1129
 
-
 
1130
    uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, Type);
1166
 
1131
 
1167
    uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, TB_MAGIC[IsWDL]);
-
 
1168
    if (data)
1132
    if (data)
1169
        e.hasPawns ? do_init(e, e.pawnTable, data) : do_init(e, e.pieceTable, data);
1133
        set(e, data);
1170
 
1134
 
1171
    e.ready.store(true, std::memory_order_release);
1135
    e.ready.store(true, std::memory_order_release);
1172
    return e.baseAddress;
1136
    return e.baseAddress;
1173
}
1137
}
1174
 
1138
 
1175
template<typename E, typename T = typename Ret<E>::type>
1139
template<TBType Type, typename Ret = typename TBTable<Type>::Ret>
1176
T probe_table(const Position& pos, ProbeState* result, WDLScore wdl = WDLDraw) {
1140
Ret probe_table(const Position& pos, ProbeState* result, WDLScore wdl = WDLDraw) {
1177
 
1141
 
1178
    if (!(pos.pieces() ^ pos.pieces(KING)))
1142
    if (pos.count<ALL_PIECES>() == 2) // KvK
1179
        return T(WDLDraw); // KvK
1143
        return Ret(WDLDraw);
1180
 
1144
 
1181
    E* entry = EntryTable.get<E>(pos.material_key());
1145
    TBTable<Type>* entry = TBTables.get<Type>(pos.material_key());
1182
 
1146
 
1183
    if (!entry || !init(*entry, pos))
1147
    if (!entry || !mapped(*entry, pos))
1184
        return *result = FAIL, T();
1148
        return *result = FAIL, Ret();
1185
 
1149
 
1186
    return do_probe_table(pos, entry, wdl, result);
1150
    return do_probe_table(pos, entry, wdl, result);
1187
}
1151
}
1188
 
1152
 
1189
// For a position where the side to move has a winning capture it is not necessary
1153
// For a position where the side to move has a winning capture it is not necessary
Line 1193... Line 1157...
1193
// If the position is won, then the TB needs to store a win value. But if the
1157
// If the position is won, then the TB needs to store a win value. But if the
1194
// position is drawn, the TB may store a loss value if that is better for compression.
1158
// position is drawn, the TB may store a loss value if that is better for compression.
1195
// All of this means that during probing, the engine must look at captures and probe
1159
// All of this means that during probing, the engine must look at captures and probe
1196
// their results and must probe the position itself. The "best" result of these
1160
// their results and must probe the position itself. The "best" result of these
1197
// probes is the correct result for the position.
1161
// probes is the correct result for the position.
1198
// DTZ table don't store values when a following move is a zeroing winning move
1162
// DTZ tables do not store values when a following move is a zeroing winning move
1199
// (winning capture or winning pawn move). Also DTZ store wrong values for positions
1163
// (winning capture or winning pawn move). Also DTZ store wrong values for positions
1200
// where the best move is an ep-move (even if losing). So in all these cases set
1164
// where the best move is an ep-move (even if losing). So in all these cases set
1201
// the state to ZEROING_BEST_MOVE.
1165
// the state to ZEROING_BEST_MOVE.
1202
template<bool CheckZeroingMoves = false>
1166
template<bool CheckZeroingMoves>
1203
WDLScore search(Position& pos, ProbeState* result) {
1167
WDLScore search(Position& pos, ProbeState* result) {
1204
 
1168
 
1205
    WDLScore value, bestValue = WDLLoss;
1169
    WDLScore value, bestValue = WDLLoss;
1206
    StateInfo st;
1170
    StateInfo st;
1207
 
1171
 
Line 1215... Line 1179...
1215
            continue;
1179
            continue;
1216
 
1180
 
1217
        moveCount++;
1181
        moveCount++;
1218
 
1182
 
1219
        pos.do_move(move, st);
1183
        pos.do_move(move, st);
1220
        value = -search(pos, result);
1184
        value = -search<false>(pos, result);
1221
        pos.undo_move(move);
1185
        pos.undo_move(move);
1222
 
1186
 
1223
        if (*result == FAIL)
1187
        if (*result == FAIL)
1224
            return WDLDraw;
1188
            return WDLDraw;
1225
 
1189
 
Line 1245... Line 1209...
1245
 
1209
 
1246
    if (noMoreMoves)
1210
    if (noMoreMoves)
1247
        value = bestValue;
1211
        value = bestValue;
1248
    else
1212
    else
1249
    {
1213
    {
1250
        value = probe_table<WDLEntry>(pos, result);
1214
        value = probe_table<WDL>(pos, result);
1251
 
1215
 
1252
        if (*result == FAIL)
1216
        if (*result == FAIL)
1253
            return WDLDraw;
1217
            return WDLDraw;
1254
    }
1218
    }
1255
 
1219
 
Line 1261... Line 1225...
1261
    return *result = OK, value;
1225
    return *result = OK, value;
1262
}
1226
}
1263
 
1227
 
1264
} // namespace
1228
} // namespace
1265
 
1229
 
-
 
1230
 
-
 
1231
/// Tablebases::init() is called at startup and after every change to
-
 
1232
/// "SyzygyPath" UCI option to (re)create the various tables. It is not thread
-
 
1233
/// safe, nor it needs to be.
1266
void Tablebases::init(const std::string& paths) {
1234
void Tablebases::init(const std::string& paths) {
1267
 
1235
 
1268
    EntryTable.clear();
1236
    TBTables.clear();
1269
    MaxCardinality = 0;
1237
    MaxCardinality = 0;
1270
    TBFile::Paths = paths;
1238
    TBFile::Paths = paths;
1271
 
1239
 
1272
    if (paths.empty() || paths == "") // Pierre-Marie Baty -- was: || paths == "<empty>"
1240
    if (paths.empty() || paths == "<empty>")
1273
        return;
1241
        return;
1274
 
1242
 
1275
    // MapB1H1H7[] encodes a square below a1-h8 diagonal to 0..27
1243
    // MapB1H1H7[] encodes a square below a1-h8 diagonal to 0..27
1276
    int code = 0;
1244
    int code = 0;
1277
    for (Square s = SQ_A1; s <= SQ_H8; ++s)
1245
    for (Square s = SQ_A1; s <= SQ_H8; ++s)
Line 1307... Line 1275...
1307
 
1275
 
1308
                    else if (!off_A1H8(s1) && off_A1H8(s2) > 0)
1276
                    else if (!off_A1H8(s1) && off_A1H8(s2) > 0)
1309
                        continue; // First on diagonal, second above
1277
                        continue; // First on diagonal, second above
1310
 
1278
 
1311
                    else if (!off_A1H8(s1) && !off_A1H8(s2))
1279
                    else if (!off_A1H8(s1) && !off_A1H8(s2))
1312
                        bothOnDiagonal.push_back(std::make_pair(idx, s2));
1280
                        bothOnDiagonal.emplace_back(idx, s2);
1313
 
1281
 
1314
                    else
1282
                    else
1315
                        MapKK[idx][s2] = code++;
1283
                        MapKK[idx][s2] = code++;
1316
            }
1284
            }
1317
 
1285
 
Line 1332... Line 1300...
1332
    // available squares when the leading one is in 's'. Moreover the pawn with
1300
    // available squares when the leading one is in 's'. Moreover the pawn with
1333
    // highest MapPawns[] is the leading pawn, the one nearest the edge and,
1301
    // highest MapPawns[] is the leading pawn, the one nearest the edge and,
1334
    // among pawns with same file, the one with lowest rank.
1302
    // among pawns with same file, the one with lowest rank.
1335
    int availableSquares = 47; // Available squares when lead pawn is in a2
1303
    int availableSquares = 47; // Available squares when lead pawn is in a2
1336
 
1304
 
1337
    // Init the tables for the encoding of leading pawns group: with 6-men TB we
1305
    // Init the tables for the encoding of leading pawns group: with 7-men TB we
1338
    // can have up to 4 leading pawns (KPPPPK).
1306
    // can have up to 5 leading pawns (KPPPPPK).
1339
    for (int leadPawnsCnt = 1; leadPawnsCnt <= 4; ++leadPawnsCnt)
1307
    for (int leadPawnsCnt = 1; leadPawnsCnt <= 5; ++leadPawnsCnt)
1340
        for (File f = FILE_A; f <= FILE_D; ++f)
1308
        for (File f = FILE_A; f <= FILE_D; ++f)
1341
        {
1309
        {
1342
            // Restart the index at every file because TB table is splitted
1310
            // Restart the index at every file because TB table is splitted
1343
            // by file, so we can reuse the same index for different files.
1311
            // by file, so we can reuse the same index for different files.
1344
            int idx = 0;
1312
            int idx = 0;
Line 1364... Line 1332...
1364
            }
1332
            }
1365
            // After a file is traversed, store the cumulated per-file index
1333
            // After a file is traversed, store the cumulated per-file index
1366
            LeadPawnsSize[leadPawnsCnt][f] = idx;
1334
            LeadPawnsSize[leadPawnsCnt][f] = idx;
1367
        }
1335
        }
1368
 
1336
 
-
 
1337
    // Add entries in TB tables if the corresponding ".rtbw" file exsists
1369
    for (PieceType p1 = PAWN; p1 < KING; ++p1) {
1338
    for (PieceType p1 = PAWN; p1 < KING; ++p1) {
1370
        EntryTable.insert({KING, p1, KING});
1339
        TBTables.add({KING, p1, KING});
1371
 
1340
 
1372
        for (PieceType p2 = PAWN; p2 <= p1; ++p2) {
1341
        for (PieceType p2 = PAWN; p2 <= p1; ++p2) {
1373
            EntryTable.insert({KING, p1, p2, KING});
1342
            TBTables.add({KING, p1, p2, KING});
1374
            EntryTable.insert({KING, p1, KING, p2});
1343
            TBTables.add({KING, p1, KING, p2});
1375
 
1344
 
1376
            for (PieceType p3 = PAWN; p3 < KING; ++p3)
1345
            for (PieceType p3 = PAWN; p3 < KING; ++p3)
1377
                EntryTable.insert({KING, p1, p2, KING, p3});
1346
                TBTables.add({KING, p1, p2, KING, p3});
1378
 
1347
 
1379
            for (PieceType p3 = PAWN; p3 <= p2; ++p3) {
1348
            for (PieceType p3 = PAWN; p3 <= p2; ++p3) {
1380
                EntryTable.insert({KING, p1, p2, p3, KING});
1349
                TBTables.add({KING, p1, p2, p3, KING});
-
 
1350
 
-
 
1351
                for (PieceType p4 = PAWN; p4 <= p3; ++p4) {
-
 
1352
                    TBTables.add({KING, p1, p2, p3, p4, KING});
1381
 
1353
 
1382
                for (PieceType p4 = PAWN; p4 <= p3; ++p4)
1354
                    for (PieceType p5 = PAWN; p5 <= p4; ++p5)
1383
                    EntryTable.insert({KING, p1, p2, p3, p4, KING});
1355
                        TBTables.add({KING, p1, p2, p3, p4, p5, KING});
1384
 
1356
 
-
 
1357
                    for (PieceType p5 = PAWN; p5 < KING; ++p5)
-
 
1358
                        TBTables.add({KING, p1, p2, p3, p4, KING, p5});
-
 
1359
                }
-
 
1360
 
1385
                for (PieceType p4 = PAWN; p4 < KING; ++p4)
1361
                for (PieceType p4 = PAWN; p4 < KING; ++p4) {
1386
                    EntryTable.insert({KING, p1, p2, p3, KING, p4});
1362
                    TBTables.add({KING, p1, p2, p3, KING, p4});
-
 
1363
 
-
 
1364
                    for (PieceType p5 = PAWN; p5 <= p4; ++p5)
-
 
1365
                        TBTables.add({KING, p1, p2, p3, KING, p4, p5});
-
 
1366
                }
1387
            }
1367
            }
1388
 
1368
 
1389
            for (PieceType p3 = PAWN; p3 <= p1; ++p3)
1369
            for (PieceType p3 = PAWN; p3 <= p1; ++p3)
1390
                for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4)
1370
                for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4)
1391
                    EntryTable.insert({KING, p1, p2, KING, p3, p4});
1371
                    TBTables.add({KING, p1, p2, KING, p3, p4});
1392
        }
1372
        }
1393
    }
1373
    }
1394
 
1374
 
1395
    sync_cout << "info string Found " << EntryTable.size() << " tablebases" << sync_endl;
1375
    sync_cout << "info string Found " << TBTables.size() << " tablebases" << sync_endl;
1396
}
1376
}
1397
 
1377
 
1398
// Probe the WDL table for a particular position.
1378
// Probe the WDL table for a particular position.
1399
// If *result != FAIL, the probe was successful.
1379
// If *result != FAIL, the probe was successful.
1400
// The return value is from the point of view of the side to move:
1380
// The return value is from the point of view of the side to move:
Line 1404... Line 1384...
1404
//  1 : win, but draw under 50-move rule
1384
//  1 : win, but draw under 50-move rule
1405
//  2 : win
1385
//  2 : win
1406
WDLScore Tablebases::probe_wdl(Position& pos, ProbeState* result) {
1386
WDLScore Tablebases::probe_wdl(Position& pos, ProbeState* result) {
1407
 
1387
 
1408
    *result = OK;
1388
    *result = OK;
1409
    return search(pos, result);
1389
    return search<false>(pos, result);
1410
}
1390
}
1411
 
1391
 
1412
// Probe the DTZ table for a particular position.
1392
// Probe the DTZ table for a particular position.
1413
// If *result != FAIL, the probe was successful.
1393
// If *result != FAIL, the probe was successful.
1414
// The return value is from the point of view of the side to move:
1394
// The return value is from the point of view of the side to move:
1415
//         n < -100 : loss, but draw under 50-move rule
1395
//         n < -100 : loss, but draw under 50-move rule
1416
// -100 <= n < -1   : loss in n ply (assuming 50-move counter == 0)
1396
// -100 <= n < -1   : loss in n ply (assuming 50-move counter == 0)
-
 
1397
//        -1        : loss, the side to move is mated
1417
//         0        : draw
1398
//         0        : draw
1418
//     1 < n <= 100 : win in n ply (assuming 50-move counter == 0)
1399
//     1 < n <= 100 : win in n ply (assuming 50-move counter == 0)
1419
//   100 < n        : win, but draw under 50-move rule
1400
//   100 < n        : win, but draw under 50-move rule
1420
//
1401
//
1421
// The return value n can be off by 1: a return value -n can mean a loss
1402
// The return value n can be off by 1: a return value -n can mean a loss
Line 1445... Line 1426...
1445
    // DTZ stores a 'don't care' value in this case, or even a plain wrong
1426
    // DTZ stores a 'don't care' value in this case, or even a plain wrong
1446
    // one as in case the best move is a losing ep, so it cannot be probed.
1427
    // one as in case the best move is a losing ep, so it cannot be probed.
1447
    if (*result == ZEROING_BEST_MOVE)
1428
    if (*result == ZEROING_BEST_MOVE)
1448
        return dtz_before_zeroing(wdl);
1429
        return dtz_before_zeroing(wdl);
1449
 
1430
 
1450
    int dtz = probe_table<DTZEntry>(pos, result, wdl);
1431
    int dtz = probe_table<DTZ>(pos, result, wdl);
1451
 
1432
 
1452
    if (*result == FAIL)
1433
    if (*result == FAIL)
1453
        return 0;
1434
        return 0;
1454
 
1435
 
1455
    if (*result != CHANGE_STM)
1436
    if (*result != CHANGE_STM)
Line 1468... Line 1449...
1468
 
1449
 
1469
        // For zeroing moves we want the dtz of the move _before_ doing it,
1450
        // For zeroing moves we want the dtz of the move _before_ doing it,
1470
        // otherwise we will get the dtz of the next move sequence. Search the
1451
        // otherwise we will get the dtz of the next move sequence. Search the
1471
        // position after the move to get the score sign (because even in a
1452
        // position after the move to get the score sign (because even in a
1472
        // winning position we could make a losing capture or going for a draw).
1453
        // winning position we could make a losing capture or going for a draw).
1473
        dtz = zeroing ? -dtz_before_zeroing(search(pos, result))
1454
        dtz = zeroing ? -dtz_before_zeroing(search<false>(pos, result))
1474
                      : -probe_dtz(pos, result);
1455
                      : -probe_dtz(pos, result);
1475
 
1456
 
1476
        pos.undo_move(move);
1457
        // If the move mates, force minDTZ to 1
1477
 
-
 
1478
        if (*result == FAIL)
1458
        if (dtz == 1 && pos.checkers() && MoveList<LEGAL>(pos).size() == 0)
1479
            return 0;
1459
            minDTZ = 1;
1480
 
1460
 
1481
        // Convert result from 1-ply search. Zeroing moves are already accounted
1461
        // Convert result from 1-ply search. Zeroing moves are already accounted
1482
        // by dtz_before_zeroing() that returns the DTZ of the previous move.
1462
        // by dtz_before_zeroing() that returns the DTZ of the previous move.
1483
        if (!zeroing)
1463
        if (!zeroing)
1484
            dtz += sign_of(dtz);
1464
            dtz += sign_of(dtz);
1485
 
1465
 
1486
        // Skip the draws and if we are winning only pick positive dtz
1466
        // Skip the draws and if we are winning only pick positive dtz
1487
        if (dtz < minDTZ && sign_of(dtz) == sign_of(wdl))
1467
        if (dtz < minDTZ && sign_of(dtz) == sign_of(wdl))
1488
            minDTZ = dtz;
1468
            minDTZ = dtz;
-
 
1469
 
-
 
1470
        pos.undo_move(move);
-
 
1471
 
-
 
1472
        if (*result == FAIL)
-
 
1473
            return 0;
1489
    }
1474
    }
1490
 
1475
 
1491
    // Special handle a mate position, when there are no legal moves, in this
1476
    // When there are no legal moves, the position is mate: we return -1
1492
    // case return value is somewhat arbitrary, so stick to the original TB code
-
 
1493
    // that returns -1 in this case.
-
 
1494
    return minDTZ == 0xFFFF ? -1 : minDTZ;
1477
    return minDTZ == 0xFFFF ? -1 : minDTZ;
1495
}
1478
}
1496
 
1479
 
1497
// Check whether there has been at least one repetition of positions
-
 
1498
// since the last capture or pawn move.
-
 
1499
static int has_repeated(StateInfo *st)
-
 
1500
{
-
 
1501
    while (1) {
-
 
1502
        int i = 4, e = std::min(st->rule50, st->pliesFromNull);
-
 
1503
 
1480
 
1504
        if (e < i)
-
 
1505
            return 0;
-
 
1506
 
-
 
1507
        StateInfo *stp = st->previous->previous;
-
 
1508
 
-
 
1509
        do {
-
 
1510
            stp = stp->previous->previous;
-
 
1511
 
-
 
1512
            if (stp->key == st->key)
-
 
1513
                return 1;
-
 
1514
 
-
 
1515
            i += 2;
-
 
1516
        } while (i <= e);
-
 
1517
 
-
 
1518
        st = st->previous;
-
 
1519
    }
-
 
1520
}
-
 
1521
 
-
 
1522
// Use the DTZ tables to filter out moves that don't preserve the win or draw.
1481
// Use the DTZ tables to rank root moves.
1523
// If the position is lost, but DTZ is fairly high, only keep moves that
-
 
1524
// maximise DTZ.
-
 
1525
//
1482
//
1526
// A return value false indicates that not all probes were successful and that
1483
// A return value false indicates that not all probes were successful.
1527
// no moves were filtered out.
-
 
1528
bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves, Value& score)
1484
bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves) {
1529
{
-
 
1530
    assert(rootMoves.size());
-
 
1531
 
1485
 
1532
    ProbeState result;
1486
    ProbeState result;
1533
    int dtz = probe_dtz(pos, &result);
1487
    StateInfo st;
1534
 
1488
 
1535
    if (result == FAIL)
1489
    // Obtain 50-move counter for the root position
1536
        return false;
1490
    int cnt50 = pos.rule50_count();
1537
 
1491
 
-
 
1492
    // Check whether a position was repeated since the last zeroing move.
1538
    StateInfo st;
1493
    bool rep = pos.has_repeated();
1539
 
1494
 
1540
    // Probe each move
-
 
1541
    for (size_t i = 0; i < rootMoves.size(); ++i) {
1495
    int dtz, bound = Options["Syzygy50MoveRule"] ? 900 : 1;
1542
        Move move = rootMoves[i].pv[0];
-
 
1543
        pos.do_move(move, st);
-
 
1544
        int v = 0;
-
 
1545
 
1496
 
1546
        if (pos.checkers() && dtz > 0) {
1497
    // Probe and rank each move
-
 
1498
    for (auto& m : rootMoves)
-
 
1499
    {
1547
            ExtMove s[MAX_MOVES];
1500
        pos.do_move(m.pv[0], st);
1548
 
1501
 
-
 
1502
        // Calculate dtz for the current move counting from the root position
-
 
1503
        if (pos.rule50_count() == 0)
-
 
1504
        {
-
 
1505
            // In case of a zeroing move, dtz is one of -101/-1/0/1/101
-
 
1506
            WDLScore wdl = -probe_wdl(pos, &result);
-
 
1507
            dtz = dtz_before_zeroing(wdl);
-
 
1508
        }
-
 
1509
        else
-
 
1510
        {
-
 
1511
            // Otherwise, take dtz for the new position and correct by 1 ply
1549
            if (generate<LEGAL>(pos, s) == s)
1512
            dtz = -probe_dtz(pos, &result);
1550
                v = 1;
1513
            dtz =  dtz > 0 ? dtz + 1
-
 
1514
                 : dtz < 0 ? dtz - 1 : dtz;
1551
        }
1515
        }
1552
 
1516
 
-
 
1517
        // Make sure that a mating move is assigned a dtz value of 1
1553
        if (!v) {
1518
        if (   pos.checkers()
1554
            if (st.rule50 != 0) {
1519
            && dtz == 2
1555
                v = -probe_dtz(pos, &result);
1520
            && MoveList<LEGAL>(pos).size() == 0)
-
 
1521
            dtz = 1;
1556
 
1522
 
1557
                if (v > 0)
-
 
1558
                    ++v;
-
 
1559
                else if (v < 0)
-
 
1560
                    --v;
-
 
1561
            } else {
-
 
1562
                v = -probe_wdl(pos, &result);
-
 
1563
                v = dtz_before_zeroing(WDLScore(v));
-
 
1564
            }
-
 
1565
        }
-
 
1566
 
-
 
1567
        pos.undo_move(move);
1523
        pos.undo_move(m.pv[0]);
1568
 
1524
 
1569
        if (result == FAIL)
1525
        if (result == FAIL)
1570
            return false;
1526
            return false;
1571
 
1527
 
1572
        rootMoves[i].score = (Value)v;
1528
        // Better moves are ranked higher. Certain wins are ranked equally.
-
 
1529
        // Losing moves are ranked equally unless a 50-move draw is in sight.
-
 
1530
        int r =  dtz > 0 ? (dtz + cnt50 <= 99 && !rep ? 1000 : 1000 - (dtz + cnt50))
-
 
1531
               : dtz < 0 ? (-dtz * 2 + cnt50 < 100 ? -1000 : -1000 + (-dtz + cnt50))
1573
    }
1532
               : 0;
-
 
1533
        m.tbRank = r;
1574
 
1534
 
1575
    // Obtain 50-move counter for the root position.
-
 
1576
    // In Stockfish there seems to be no clean way, so we do it like this:
1535
        // Determine the score to be displayed for this move. Assign at least
1577
    int cnt50 = st.previous ? st.previous->rule50 : 0;
-
 
1578
 
-
 
1579
    // Use 50-move counter to determine whether the root position is
1536
        // 1 cp to cursed wins and let it grow to 49 cp as the positions gets
1580
    // won, lost or drawn.
1537
        // closer to a real win.
1581
    WDLScore wdl = WDLDraw;
-
 
1582
 
-
 
1583
    if (dtz > 0)
-
 
1584
        wdl = (dtz + cnt50 <= 100) ? WDLWin : WDLCursedWin;
1538
        m.tbScore =  r >= bound ? VALUE_MATE - MAX_PLY - 1
1585
    else if (dtz < 0)
-
 
1586
        wdl = (-dtz + cnt50 <= 100) ? WDLLoss : WDLBlessedLoss;
-
 
1587
 
-
 
1588
    // Determine the score to report to the user.
-
 
1589
    score = WDL_to_value[wdl + 2];
-
 
1590
 
-
 
1591
    // If the position is winning or losing, but too few moves left, adjust the
-
 
1592
    // score to show how close it is to winning or losing.
-
 
1593
    // NOTE: int(PawnValueEg) is used as scaling factor in score_to_uci().
-
 
1594
    if (wdl == WDLCursedWin && dtz <= 100)
-
 
1595
        score = (Value)(((200 - dtz - cnt50) * int(PawnValueEg)) / 200);
1539
                   : r >  0     ? Value((std::max( 3, r - 800) * int(PawnValueEg)) / 200)
1596
    else if (wdl == WDLBlessedLoss && dtz >= -100)
1540
                   : r == 0     ? VALUE_DRAW
1597
        score = -(Value)(((200 + dtz - cnt50) * int(PawnValueEg)) / 200);
1541
                   : r > -bound ? Value((std::min(-3, r + 800) * int(PawnValueEg)) / 200)
1598
 
-
 
1599
    // Now be a bit smart about filtering out moves.
-
 
1600
    size_t j = 0;
-
 
1601
 
-
 
1602
    if (dtz > 0) { // winning (or 50-move rule draw)
-
 
1603
        int best = 0xffff;
-
 
1604
 
-
 
1605
        for (size_t i = 0; i < rootMoves.size(); ++i) {
-
 
1606
            int v = rootMoves[i].score;
-
 
1607
 
-
 
1608
            if (v > 0 && v < best)
-
 
1609
                best = v;
-
 
1610
        }
-
 
1611
 
-
 
1612
        int max = best;
-
 
1613
 
-
 
1614
        // If the current phase has not seen repetitions, then try all moves
-
 
1615
        // that stay safely within the 50-move budget, if there are any.
-
 
1616
        if (!has_repeated(st.previous) && best + cnt50 <= 99)
-
 
1617
            max = 99 - cnt50;
-
 
1618
 
-
 
1619
        for (size_t i = 0; i < rootMoves.size(); ++i) {
-
 
1620
            int v = rootMoves[i].score;
-
 
1621
 
-
 
1622
            if (v > 0 && v <= max)
-
 
1623
                rootMoves[j++] = rootMoves[i];
-
 
1624
        }
-
 
1625
    } else if (dtz < 0) { // losing (or 50-move rule draw)
-
 
1626
        int best = 0;
-
 
1627
 
-
 
1628
        for (size_t i = 0; i < rootMoves.size(); ++i) {
-
 
1629
            int v = rootMoves[i].score;
-
 
1630
 
-
 
1631
            if (v < best)
-
 
1632
                best = v;
-
 
1633
        }
-
 
1634
 
-
 
1635
        // Try all moves, unless we approach or have a 50-move rule draw.
-
 
1636
        if (-best * 2 + cnt50 < 100)
-
 
1637
            return true;
-
 
1638
 
-
 
1639
        for (size_t i = 0; i < rootMoves.size(); ++i) {
-
 
1640
            if (rootMoves[i].score == best)
-
 
1641
                rootMoves[j++] = rootMoves[i];
-
 
1642
        }
-
 
1643
    } else { // drawing
-
 
1644
        // Try all moves that preserve the draw.
-
 
1645
        for (size_t i = 0; i < rootMoves.size(); ++i) {
-
 
1646
            if (rootMoves[i].score == 0)
-
 
1647
                rootMoves[j++] = rootMoves[i];
1542
                   :             -VALUE_MATE + MAX_PLY + 1;
1648
        }
-
 
1649
    }
1543
    }
1650
 
-
 
1651
    rootMoves.resize(j, Search::RootMove(MOVE_NONE));
-
 
1652
 
1544
 
1653
    return true;
1545
    return true;
1654
}
1546
}
1655
 
1547
 
-
 
1548
 
1656
// Use the WDL tables to filter out moves that don't preserve the win or draw.
1549
// Use the WDL tables to rank root moves.
1657
// This is a fallback for the case that some or all DTZ tables are missing.
1550
// This is a fallback for the case that some or all DTZ tables are missing.
1658
//
1551
//
1659
// A return value false indicates that not all probes were successful and that
1552
// A return value false indicates that not all probes were successful.
1660
// no moves were filtered out.
-
 
1661
bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves, Value& score)
1553
bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves) {
1662
{
-
 
1663
    ProbeState result;
-
 
1664
 
1554
 
1665
    WDLScore wdl = Tablebases::probe_wdl(pos, &result);
1555
    static const int WDL_to_rank[] = { -1000, -899, 0, 899, 1000 };
1666
 
1556
 
1667
    if (result == FAIL)
1557
    ProbeState result;
1668
        return false;
1558
    StateInfo st;
1669
 
1559
 
1670
    score = WDL_to_value[wdl + 2];
1560
    bool rule50 = Options["Syzygy50MoveRule"];
1671
 
1561
 
-
 
1562
    // Probe and rank each move
1672
    StateInfo st;
1563
    for (auto& m : rootMoves)
-
 
1564
    {
-
 
1565
        pos.do_move(m.pv[0], st);
1673
 
1566
 
1674
    int best = WDLLoss;
1567
        WDLScore wdl = -probe_wdl(pos, &result);
1675
 
1568
 
1676
    // Probe each move
-
 
1677
    for (size_t i = 0; i < rootMoves.size(); ++i) {
-
 
1678
        Move move = rootMoves[i].pv[0];
-
 
1679
        pos.do_move(move, st);
-
 
1680
        WDLScore v = -Tablebases::probe_wdl(pos, &result);
-
 
1681
        pos.undo_move(move);
1569
        pos.undo_move(m.pv[0]);
1682
 
1570
 
1683
        if (result == FAIL)
1571
        if (result == FAIL)
1684
            return false;
1572
            return false;
1685
 
1573
 
1686
        rootMoves[i].score = (Value)v;
1574
        m.tbRank = WDL_to_rank[wdl + 2];
1687
 
1575
 
1688
        if (v > best)
1576
        if (!rule50)
1689
            best = v;
1577
            wdl =  wdl > WDLDraw ? WDLWin
-
 
1578
                 : wdl < WDLDraw ? WDLLoss : WDLDraw;
-
 
1579
        m.tbScore = WDL_to_value[wdl + 2];
1690
    }
1580
    }
1691
 
-
 
1692
    size_t j = 0;
-
 
1693
 
-
 
1694
    for (size_t i = 0; i < rootMoves.size(); ++i) {
-
 
1695
        if (rootMoves[i].score == best)
-
 
1696
            rootMoves[j++] = rootMoves[i];
-
 
1697
    }
-
 
1698
 
-
 
1699
    rootMoves.resize(j, Search::RootMove(MOVE_NONE));
-
 
1700
 
1581
 
1701
    return true;
1582
    return true;
1702
}
1583
}