Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pmbaty | 1 | // **************************************************************************** |
2 | // * This file is part of the HqMAME project. It is distributed under * |
||
3 | // * GNU General Public License: https://www.gnu.org/licenses/gpl-3.0 * |
||
4 | // * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved * |
||
5 | // * * |
||
6 | // * Additionally and as a special exception, the author gives permission * |
||
7 | // * to link the code of this program with the MAME library (or with modified * |
||
8 | // * versions of MAME that use the same license as MAME), and distribute * |
||
9 | // * linked combinations including the two. You must obey the GNU General * |
||
10 | // * Public License in all respects for all of the code used other than MAME. * |
||
11 | // * If you modify this file, you may extend this exception to your version * |
||
12 | // * of the file, but you are not obligated to do so. If you do not wish to * |
||
13 | // * do so, delete this exception statement from your version. * |
||
14 | // **************************************************************************** |
||
15 | |||
16 | |||
17 | #include <cstddef> //size_t |
||
18 | #include <cstdint> //uint32_t |
||
19 | #include <limits> |
||
20 | #include <cassert> |
||
21 | #include <algorithm> |
||
22 | #include <type_traits> |
||
23 | #include <vector> |
||
24 | #include <math.h> |
||
25 | |||
26 | |||
27 | #ifdef __cplusplus |
||
28 | #define EXTERN_C extern "C" |
||
29 | #else // !__cplusplus |
||
30 | #define EXTERN_C |
||
31 | #endif // __cplusplus |
||
32 | |||
33 | |||
34 | // scaler configuration |
||
35 | #define XBRZ_CFG_LUMINANCE_WEIGHT 1 |
||
36 | #define XBRZ_CFG_EQUAL_COLOR_TOLERANCE 30 |
||
37 | #define XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD 3.6 |
||
38 | #define XBRZ_CFG_STEEP_DIRECTION_THRESHOLD 2.2 |
||
39 | |||
40 | |||
41 | // slice types |
||
42 | #define XBRZ_SLICETYPE_SOURCE 1 |
||
43 | #define XBRZ_SLICETYPE_TARGET 2 |
||
44 | |||
45 | |||
46 | // handy macros |
||
47 | #define GET_BYTE(val,byteno) ((unsigned char) (((val) >> ((byteno) << 3)) & 0xff)) |
||
48 | #define GET_BLUE(val) GET_BYTE (val, 0) |
||
49 | #define GET_GREEN(val) GET_BYTE (val, 1) |
||
50 | #define GET_RED(val) GET_BYTE (val, 2) |
||
51 | #define GET_ALPHA(val) GET_BYTE (val, 3) |
||
52 | //inline uint32_t rgb555to888(uint16_t pix) { return ((pix & 0x7C00) << 9) | ((pix & 0x03E0) << 6) | ((pix & 0x001F) << 3); } |
||
53 | //inline uint32_t rgb565to888(uint16_t pix) { return ((pix & 0xF800) << 8) | ((pix & 0x07E0) << 5) | ((pix & 0x001F) << 3); } |
||
54 | //inline uint16_t rgb888to555(uint32_t pix) { return static_cast<uint16_t>(((pix & 0xF80000) >> 9) | ((pix & 0x00F800) >> 6) | ((pix & 0x0000F8) >> 3)); } |
||
55 | //inline uint16_t rgb888to565(uint32_t pix) { return static_cast<uint16_t>(((pix & 0xF80000) >> 8) | ((pix & 0x00FC00) >> 5) | ((pix & 0x0000F8) >> 3)); } |
||
56 | |||
57 | |||
58 | namespace xbrz |
||
59 | { |
||
60 | // ------------------------------------------------------------------------- |
||
61 | // | xBRZ: "Scale by rules" - high quality image upscaling filter by Zenju | |
||
62 | // ------------------------------------------------------------------------- |
||
63 | // using a modified approach of xBR: |
||
64 | // http://board.byuu.org/viewtopic.php?f=10&t=2248 |
||
65 | // - new rule set preserving small image features |
||
66 | // - highly optimized for performance |
||
67 | // - support alpha channel |
||
68 | // - support multithreading |
||
69 | // - support 64-bit architectures |
||
70 | // - support processing image slices |
||
71 | // - support scaling up to 6xBRZ |
||
72 | |||
73 | // -> map source (srcWidth * srcHeight) to target (scale * width x scale * height) image, optionally processing a half-open slice of rows [yFirst, yLast) only |
||
74 | // -> support for source/target pitch in bytes! |
||
75 | // -> if your emulator changes only a few image slices during each cycle (e.g. DOSBox) then there's no need to run xBRZ on the complete image: |
||
76 | // Just make sure you enlarge the source image slice by 2 rows on top and 2 on bottom (this is the additional range the xBRZ algorithm is using during analysis) |
||
77 | // CAVEAT: If there are multiple changed slices, make sure they do not overlap after adding these additional rows in order to avoid a memory race condition |
||
78 | // in the target image data if you are using multiple threads for processing each enlarged slice! |
||
79 | // |
||
80 | // THREAD-SAFETY: - parts of the same image may be scaled by multiple threads as long as the [yFirst, yLast) ranges do not overlap! |
||
81 | // - there is a minor inefficiency for the first row of a slice, so avoid processing single rows only; suggestion: process at least 8-16 rows |
||
82 | |||
83 | void nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, uint32_t* trg, int trgWidth, int trgHeight); |
||
84 | |||
85 | |||
86 | template <class Pix> inline Pix* byteAdvance(Pix* ptr, int bytes) |
||
87 | { |
||
88 | using PixNonConst = typename std::remove_cv<Pix>::type; |
||
89 | using PixByte = typename std::conditional<std::is_same<Pix, PixNonConst>::value, char, const char>::type; |
||
90 | |||
91 | static_assert(std::is_integral<PixNonConst>::value, "Pix* is expected to be cast-able to char*"); |
||
92 | |||
93 | return reinterpret_cast<Pix*>(reinterpret_cast<PixByte*>(ptr) + bytes); |
||
94 | } |
||
95 | |||
96 | |||
97 | //fill block with the given color |
||
98 | template <class Pix> inline void fillBlock(Pix* trg, int pitch, Pix col, int blockWidth, int blockHeight) |
||
99 | { |
||
100 | //for (int y = 0; y < blockHeight; ++y, trg = byteAdvance(trg, pitch)) |
||
101 | // std::fill(trg, trg + blockWidth, col); |
||
102 | |||
103 | for (int y = 0; y < blockHeight; ++y, trg = byteAdvance(trg, pitch)) |
||
104 | for (int x = 0; x < blockWidth; ++x) |
||
105 | trg[x] = col; |
||
106 | } |
||
107 | |||
108 | |||
109 | template <class PixSrc, class PixTrg, class PixConverter> |
||
110 | void nearestNeighborScale(const PixSrc* src, int srcWidth, int srcHeight, int srcPitch, |
||
111 | /**/ PixTrg* trg, int trgWidth, int trgHeight, int trgPitch, |
||
112 | int slice_type, int yFirst, int yLast, PixConverter pixCvrt /*convert PixSrc to PixTrg*/) |
||
113 | { |
||
114 | static_assert(std::is_integral<PixSrc>::value, "PixSrc* is expected to be cast-able to char*"); |
||
115 | static_assert(std::is_integral<PixTrg>::value, "PixTrg* is expected to be cast-able to char*"); |
||
116 | static_assert(std::is_same<decltype(pixCvrt(PixSrc())), PixTrg>::value, "PixConverter returning wrong pixel format"); |
||
117 | |||
118 | if (srcPitch < srcWidth * static_cast<int>(sizeof(PixSrc)) || |
||
119 | trgPitch < trgWidth * static_cast<int>(sizeof(PixTrg))) |
||
120 | { |
||
121 | assert(false); |
||
122 | return; |
||
123 | } |
||
124 | |||
125 | if (slice_type == XBRZ_SLICETYPE_SOURCE) |
||
126 | { |
||
127 | //nearest-neighbor (going over source image - fast for upscaling, since source is read only once |
||
128 | yFirst = std::max(yFirst, 0); |
||
129 | yLast = std::min(yLast, srcHeight); |
||
130 | if (yFirst >= yLast || trgWidth <= 0 || trgHeight <= 0) return; |
||
131 | |||
132 | for (int y = yFirst; y < yLast; ++y) |
||
133 | { |
||
134 | //mathematically: ySrc = floor(srcHeight * yTrg / trgHeight) |
||
135 | // => search for integers in: [ySrc, ySrc + 1) * trgHeight / srcHeight |
||
136 | |||
137 | //keep within for loop to support MT input slices! |
||
138 | const int yTrg_first = ( y * trgHeight + srcHeight - 1) / srcHeight; //=ceil(y * trgHeight / srcHeight) |
||
139 | const int yTrg_last = ((y + 1) * trgHeight + srcHeight - 1) / srcHeight; //=ceil(((y + 1) * trgHeight) / srcHeight) |
||
140 | const int blockHeight = yTrg_last - yTrg_first; |
||
141 | |||
142 | if (blockHeight > 0) |
||
143 | { |
||
144 | const PixSrc* srcLine = byteAdvance(src, y * srcPitch); |
||
145 | /**/ PixTrg* trgLine = byteAdvance(trg, yTrg_first * trgPitch); |
||
146 | int xTrg_first = 0; |
||
147 | |||
148 | for (int x = 0; x < srcWidth; ++x) |
||
149 | { |
||
150 | const int xTrg_last = ((x + 1) * trgWidth + srcWidth - 1) / srcWidth; |
||
151 | const int blockWidth = xTrg_last - xTrg_first; |
||
152 | if (blockWidth > 0) |
||
153 | { |
||
154 | xTrg_first = xTrg_last; |
||
155 | |||
156 | const auto trgPix = pixCvrt(srcLine[x]); |
||
157 | fillBlock(trgLine, trgPitch, trgPix, blockWidth, blockHeight); |
||
158 | trgLine += blockWidth; |
||
159 | } |
||
160 | } |
||
161 | } |
||
162 | } |
||
163 | } |
||
164 | else if (slice_type == XBRZ_SLICETYPE_TARGET) |
||
165 | { |
||
166 | //nearest-neighbor (going over target image - slow for upscaling, since source is read multiple times missing out on cache! Fast for similar image sizes!) |
||
167 | yFirst = std::max(yFirst, 0); |
||
168 | yLast = std::min(yLast, trgHeight); |
||
169 | if (yFirst >= yLast || srcHeight <= 0 || srcWidth <= 0) return; |
||
170 | |||
171 | for (int y = yFirst; y < yLast; ++y) |
||
172 | { |
||
173 | PixTrg* trgLine = byteAdvance(trg, y * trgPitch); |
||
174 | const int ySrc = srcHeight * y / trgHeight; |
||
175 | const PixSrc* srcLine = byteAdvance(src, ySrc * srcPitch); |
||
176 | for (int x = 0; x < trgWidth; ++x) |
||
177 | { |
||
178 | const int xSrc = srcWidth * x / trgWidth; |
||
179 | trgLine[x] = pixCvrt(srcLine[xSrc]); |
||
180 | } |
||
181 | } |
||
182 | } |
||
183 | } |
||
184 | } |
||
185 | |||
186 | |||
187 | |||
188 | |||
189 | namespace |
||
190 | { |
||
191 | template <unsigned int M, unsigned int N> inline |
||
192 | uint32_t gradientRGB(uint32_t pixFront, uint32_t pixBack) //blend front color with opacity M / N over opaque background: http://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending |
||
193 | { |
||
194 | static_assert(0 < M && M < N && N <= 1000, ""); |
||
195 | |||
196 | auto calcColor = [](unsigned char colFront, unsigned char colBack) -> unsigned char { return (colFront * M + colBack * (N - M)) / N; }; |
||
197 | |||
198 | return ((calcColor (GET_RED (pixFront), GET_RED (pixBack)) << 16) |
||
199 | | (calcColor (GET_GREEN (pixFront), GET_GREEN (pixBack)) << 8) |
||
200 | | (calcColor (GET_BLUE (pixFront), GET_BLUE (pixBack)) << 0)); |
||
201 | } |
||
202 | |||
203 | |||
204 | template <unsigned int M, unsigned int N> inline |
||
205 | uint32_t gradientARGB(uint32_t pixFront, uint32_t pixBack) //find intermediate color between two colors with alpha channels (=> NO alpha blending!!!) |
||
206 | { |
||
207 | static_assert(0 < M && M < N && N <= 1000, ""); |
||
208 | |||
209 | const unsigned int weightFront = GET_ALPHA (pixFront) * M; |
||
210 | const unsigned int weightBack = GET_ALPHA (pixBack) * (N - M); |
||
211 | const unsigned int weightSum = weightFront + weightBack; |
||
212 | if (weightSum == 0) |
||
213 | return 0; |
||
214 | |||
215 | auto calcColor = [=](unsigned char colFront, unsigned char colBack) |
||
216 | { |
||
217 | return static_cast<unsigned char>((colFront * weightFront + colBack * weightBack) / weightSum); |
||
218 | }; |
||
219 | |||
220 | return (((unsigned char) (weightSum / N)) << 24) |
||
221 | | (calcColor (GET_RED (pixFront), GET_RED (pixBack)) << 16) |
||
222 | | (calcColor (GET_GREEN (pixFront), GET_GREEN (pixBack)) << 8) |
||
223 | | (calcColor (GET_BLUE (pixFront), GET_BLUE (pixBack)) << 0); |
||
224 | } |
||
225 | |||
226 | |||
227 | //inline |
||
228 | //double fastSqrt(double n) |
||
229 | //{ |
||
230 | // __asm //speeds up xBRZ by about 9% compared to /*std::*/sqrt which internally uses the same assembler instructions but adds some "fluff" |
||
231 | // { |
||
232 | // fld n |
||
233 | // fsqrt |
||
234 | // } |
||
235 | //} |
||
236 | // |
||
237 | |||
238 | |||
239 | #ifdef _MSC_VER |
||
240 | #define FORCE_INLINE __forceinline |
||
241 | #elif defined __GNUC__ |
||
242 | #define FORCE_INLINE __attribute__((always_inline)) inline |
||
243 | #else |
||
244 | #define FORCE_INLINE inline |
||
245 | #endif |
||
246 | |||
247 | |||
248 | enum RotationDegree //clock-wise |
||
249 | { |
||
250 | ROT_0, |
||
251 | ROT_90, |
||
252 | ROT_180, |
||
253 | ROT_270 |
||
254 | }; |
||
255 | |||
256 | //calculate input matrix coordinates after rotation at compile time |
||
257 | template <RotationDegree rotDeg, size_t I, size_t J, size_t N> |
||
258 | struct MatrixRotation; |
||
259 | |||
260 | template <size_t I, size_t J, size_t N> |
||
261 | struct MatrixRotation<ROT_0, I, J, N> |
||
262 | { |
||
263 | static const size_t I_old = I; |
||
264 | static const size_t J_old = J; |
||
265 | }; |
||
266 | |||
267 | template <RotationDegree rotDeg, size_t I, size_t J, size_t N> //(i, j) = (row, col) indices, N = size of (square) matrix |
||
268 | struct MatrixRotation |
||
269 | { |
||
270 | static const size_t I_old = N - 1 - MatrixRotation<static_cast<RotationDegree>(rotDeg - 1), I, J, N>::J_old; //old coordinates before rotation! |
||
271 | static const size_t J_old = MatrixRotation<static_cast<RotationDegree>(rotDeg - 1), I, J, N>::I_old; // |
||
272 | }; |
||
273 | |||
274 | |||
275 | template <size_t N, RotationDegree rotDeg> |
||
276 | class OutputMatrix |
||
277 | { |
||
278 | public: |
||
279 | OutputMatrix(uint32_t* out, int outWidth) : //access matrix area, top-left at position "out" for image with given width |
||
280 | out_(out), |
||
281 | outWidth_(outWidth) {} |
||
282 | |||
283 | template <size_t I, size_t J> |
||
284 | uint32_t& ref() const |
||
285 | { |
||
286 | static const size_t I_old = MatrixRotation<rotDeg, I, J, N>::I_old; |
||
287 | static const size_t J_old = MatrixRotation<rotDeg, I, J, N>::J_old; |
||
288 | return *(out_ + J_old + I_old * outWidth_); |
||
289 | } |
||
290 | |||
291 | private: |
||
292 | uint32_t* out_; |
||
293 | const int outWidth_; |
||
294 | }; |
||
295 | |||
296 | |||
297 | template <class T> inline |
||
298 | T square(T value) { return value * value; } |
||
299 | |||
300 | |||
301 | |||
302 | inline |
||
303 | double distRGB(uint32_t pix1, uint32_t pix2) |
||
304 | { |
||
305 | const double r_diff = static_cast<int>(GET_RED (pix1)) - GET_RED (pix2); |
||
306 | const double g_diff = static_cast<int>(GET_GREEN (pix1)) - GET_GREEN (pix2); |
||
307 | const double b_diff = static_cast<int>(GET_BLUE (pix1)) - GET_BLUE (pix2); |
||
308 | |||
309 | //euklidean RGB distance |
||
310 | return /*std::*/sqrt(square(r_diff) + square(g_diff) + square(b_diff)); |
||
311 | } |
||
312 | |||
313 | |||
314 | inline |
||
315 | double distYCbCr(uint32_t pix1, uint32_t pix2, double lumaWeight) |
||
316 | { |
||
317 | //http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion |
||
318 | //YCbCr conversion is a matrix multiplication => take advantage of linearity by subtracting first! |
||
319 | const int r_diff = static_cast<int>(GET_RED (pix1)) - GET_RED (pix2); //we may delay division by 255 to after matrix multiplication |
||
320 | const int g_diff = static_cast<int>(GET_GREEN (pix1)) - GET_GREEN (pix2); // |
||
321 | const int b_diff = static_cast<int>(GET_BLUE (pix1)) - GET_BLUE (pix2); //substraction for int is noticeable faster than for double! |
||
322 | |||
323 | //const double k_b = 0.0722; //ITU-R BT.709 conversion |
||
324 | //const double k_r = 0.2126; // |
||
325 | const double k_b = 0.0593; //ITU-R BT.2020 conversion |
||
326 | const double k_r = 0.2627; // |
||
327 | const double k_g = 1 - k_b - k_r; |
||
328 | |||
329 | const double scale_b = 0.5 / (1 - k_b); |
||
330 | const double scale_r = 0.5 / (1 - k_r); |
||
331 | |||
332 | const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr! |
||
333 | const double c_b = scale_b * (b_diff - y); |
||
334 | const double c_r = scale_r * (r_diff - y); |
||
335 | |||
336 | //we skip division by 255 to have similar range like other distance functions |
||
337 | return /*std::*/sqrt(square(lumaWeight * y) + square(c_b) + square(c_r)); |
||
338 | } |
||
339 | |||
340 | |||
341 | inline double distYCbCrBuffered(uint32_t pix1, uint32_t pix2) |
||
342 | { |
||
343 | //30% perf boost compared to plain distYCbCr()! |
||
344 | //consumes 64 MB memory; using double is only 2% faster, but takes 128 MB |
||
345 | static const std::vector<float> diffToDist = [] |
||
346 | { |
||
347 | std::vector<float> tmp; |
||
348 | |||
349 | for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores) |
||
350 | { |
||
351 | const int r_diff = GET_RED (i) * 2 - 0xFF; |
||
352 | const int g_diff = GET_GREEN (i) * 2 - 0xFF; |
||
353 | const int b_diff = GET_BLUE (i) * 2 - 0xFF; |
||
354 | |||
355 | const double k_b = 0.0593; //ITU-R BT.2020 conversion |
||
356 | const double k_r = 0.2627; // |
||
357 | const double k_g = 1 - k_b - k_r; |
||
358 | |||
359 | const double scale_b = 0.5 / (1 - k_b); |
||
360 | const double scale_r = 0.5 / (1 - k_r); |
||
361 | |||
362 | const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr! |
||
363 | const double c_b = scale_b * (b_diff - y); |
||
364 | const double c_r = scale_r * (r_diff - y); |
||
365 | |||
366 | tmp.push_back(static_cast<float>(/*std::*/sqrt(square(y) + square(c_b) + square(c_r)))); |
||
367 | } |
||
368 | return tmp; |
||
369 | }(); |
||
370 | |||
371 | //if (pix1 == pix2) -> 8% perf degradation! |
||
372 | // return 0; |
||
373 | //if (pix1 < pix2) |
||
374 | // std::swap(pix1, pix2); -> 30% perf degradation!!! |
||
375 | #if 1 |
||
376 | const int r_diff = static_cast<int>(GET_RED (pix1)) - GET_RED (pix2); |
||
377 | const int g_diff = static_cast<int>(GET_GREEN (pix1)) - GET_GREEN (pix2); |
||
378 | const int b_diff = static_cast<int>(GET_BLUE (pix1)) - GET_BLUE (pix2); |
||
379 | |||
380 | return diffToDist[(((r_diff + 0xFF) / 2) << 16) | //slightly reduce precision (division by 2) to squeeze value into single byte |
||
381 | (((g_diff + 0xFF) / 2) << 8) | |
||
382 | (( b_diff + 0xFF) / 2)]; |
||
383 | #else //not noticeably faster: |
||
384 | const int r_diff_tmp = ((pix1 & 0xFF0000) + 0xFF0000 - (pix2 & 0xFF0000)) / 2; |
||
385 | const int g_diff_tmp = ((pix1 & 0x00FF00) + 0x00FF00 - (pix2 & 0x00FF00)) / 2; //slightly reduce precision (division by 2) to squeeze value into single byte |
||
386 | const int b_diff_tmp = ((pix1 & 0x0000FF) + 0x0000FF - (pix2 & 0x0000FF)) / 2; |
||
387 | |||
388 | return diffToDist[(r_diff_tmp & 0xFF0000) | (g_diff_tmp & 0x00FF00) | (b_diff_tmp & 0x0000FF)]; |
||
389 | #endif |
||
390 | } |
||
391 | |||
392 | |||
393 | enum BlendType |
||
394 | { |
||
395 | BLEND_NONE = 0, |
||
396 | BLEND_NORMAL, //a normal indication to blend |
||
397 | BLEND_DOMINANT, //a strong indication to blend |
||
398 | //attention: BlendType must fit into the value range of 2 bit!!! |
||
399 | }; |
||
400 | |||
401 | struct BlendResult |
||
402 | { |
||
403 | BlendType |
||
404 | /**/blend_f, blend_g, |
||
405 | /**/blend_j, blend_k; |
||
406 | }; |
||
407 | |||
408 | |||
409 | struct Kernel_4x4 //kernel for preprocessing step |
||
410 | { |
||
411 | uint32_t |
||
412 | /**/a, b, c, d, |
||
413 | /**/e, f, g, h, |
||
414 | /**/i, j, k, l, |
||
415 | /**/m, n, o, p; |
||
416 | }; |
||
417 | |||
418 | /* |
||
419 | input kernel area naming convention: |
||
420 | ----------------- |
||
421 | | A | B | C | D | |
||
422 | ----|---|---|---| |
||
423 | | E | F | G | H | //evaluate the four corners between F, G, J, K |
||
424 | ----|---|---|---| //input pixel is at position F |
||
425 | | I | J | K | L | |
||
426 | ----|---|---|---| |
||
427 | | M | N | O | P | |
||
428 | ----------------- |
||
429 | */ |
||
430 | template <class ColorDistance> |
||
431 | FORCE_INLINE //detect blend direction |
||
432 | BlendResult preProcessCorners(const Kernel_4x4& ker) //result: F, G, J, K corners of "GradientType" |
||
433 | { |
||
434 | BlendResult result = {}; |
||
435 | |||
436 | if ((ker.f == ker.g && |
||
437 | ker.j == ker.k) || |
||
438 | (ker.f == ker.j && |
||
439 | ker.g == ker.k)) |
||
440 | return result; |
||
441 | |||
442 | auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, XBRZ_CFG_LUMINANCE_WEIGHT); }; |
||
443 | |||
444 | const int weight = 4; |
||
445 | double jg = dist(ker.i, ker.f) + dist(ker.f, ker.c) + dist(ker.n, ker.k) + dist(ker.k, ker.h) + weight * dist(ker.j, ker.g); |
||
446 | double fk = dist(ker.e, ker.j) + dist(ker.j, ker.o) + dist(ker.b, ker.g) + dist(ker.g, ker.l) + weight * dist(ker.f, ker.k); |
||
447 | |||
448 | if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8 |
||
449 | { |
||
450 | const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * jg < fk; |
||
451 | if (ker.f != ker.g && ker.f != ker.j) |
||
452 | result.blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; |
||
453 | |||
454 | if (ker.k != ker.j && ker.k != ker.g) |
||
455 | result.blend_k = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; |
||
456 | } |
||
457 | else if (fk < jg) |
||
458 | { |
||
459 | const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * fk < jg; |
||
460 | if (ker.j != ker.f && ker.j != ker.k) |
||
461 | result.blend_j = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; |
||
462 | |||
463 | if (ker.g != ker.f && ker.g != ker.k) |
||
464 | result.blend_g = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; |
||
465 | } |
||
466 | return result; |
||
467 | } |
||
468 | |||
469 | struct Kernel_3x3 |
||
470 | { |
||
471 | uint32_t |
||
472 | /**/a, b, c, |
||
473 | /**/d, e, f, |
||
474 | /**/g, h, i; |
||
475 | }; |
||
476 | |||
477 | #define DEF_GETTER(x) template <RotationDegree rotDeg> uint32_t inline get_##x(const Kernel_3x3& ker) { return ker.x; } |
||
478 | //we cannot and NEED NOT write "ker.##x" since ## concatenates preprocessor tokens but "." is not a token |
||
479 | DEF_GETTER(a) DEF_GETTER(b) DEF_GETTER(c) |
||
480 | DEF_GETTER(d) DEF_GETTER(e) DEF_GETTER(f) |
||
481 | DEF_GETTER(g) DEF_GETTER(h) DEF_GETTER(i) |
||
482 | #undef DEF_GETTER |
||
483 | |||
484 | #define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_90>(const Kernel_3x3& ker) { return ker.y; } |
||
485 | DEF_GETTER(a, g) DEF_GETTER(b, d) DEF_GETTER(c, a) |
||
486 | DEF_GETTER(d, h) DEF_GETTER(e, e) DEF_GETTER(f, b) |
||
487 | DEF_GETTER(g, i) DEF_GETTER(h, f) DEF_GETTER(i, c) |
||
488 | #undef DEF_GETTER |
||
489 | |||
490 | #define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_180>(const Kernel_3x3& ker) { return ker.y; } |
||
491 | DEF_GETTER(a, i) DEF_GETTER(b, h) DEF_GETTER(c, g) |
||
492 | DEF_GETTER(d, f) DEF_GETTER(e, e) DEF_GETTER(f, d) |
||
493 | DEF_GETTER(g, c) DEF_GETTER(h, b) DEF_GETTER(i, a) |
||
494 | #undef DEF_GETTER |
||
495 | |||
496 | #define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_270>(const Kernel_3x3& ker) { return ker.y; } |
||
497 | DEF_GETTER(a, c) DEF_GETTER(b, f) DEF_GETTER(c, i) |
||
498 | DEF_GETTER(d, b) DEF_GETTER(e, e) DEF_GETTER(f, h) |
||
499 | DEF_GETTER(g, a) DEF_GETTER(h, d) DEF_GETTER(i, g) |
||
500 | #undef DEF_GETTER |
||
501 | |||
502 | |||
503 | //compress four blend types into a single byte |
||
504 | inline BlendType getTopL (unsigned char b) { return static_cast<BlendType>(0x3 & b); } |
||
505 | inline BlendType getTopR (unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 2)); } |
||
506 | inline BlendType getBottomR(unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 4)); } |
||
507 | inline BlendType getBottomL(unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 6)); } |
||
508 | |||
509 | inline void setTopL (unsigned char& b, BlendType bt) { b |= bt; } //buffer is assumed to be initialized before preprocessing! |
||
510 | inline void setTopR (unsigned char& b, BlendType bt) { b |= (bt << 2); } |
||
511 | inline void setBottomR(unsigned char& b, BlendType bt) { b |= (bt << 4); } |
||
512 | inline void setBottomL(unsigned char& b, BlendType bt) { b |= (bt << 6); } |
||
513 | |||
514 | inline bool blendingNeeded(unsigned char b) { return b != 0; } |
||
515 | |||
516 | template <RotationDegree rotDeg> inline |
||
517 | unsigned char rotateBlendInfo(unsigned char b) { return b; } |
||
518 | template <> inline unsigned char rotateBlendInfo<ROT_90 >(unsigned char b) { return ((b << 2) | (b >> 6)) & 0xff; } |
||
519 | template <> inline unsigned char rotateBlendInfo<ROT_180>(unsigned char b) { return ((b << 4) | (b >> 4)) & 0xff; } |
||
520 | template <> inline unsigned char rotateBlendInfo<ROT_270>(unsigned char b) { return ((b << 6) | (b >> 2)) & 0xff; } |
||
521 | |||
522 | |||
523 | /* |
||
524 | input kernel area naming convention: |
||
525 | ------------- |
||
526 | | A | B | C | |
||
527 | ----|---|---| |
||
528 | | D | E | F | //input pixel is at position E |
||
529 | ----|---|---| |
||
530 | | G | H | I | |
||
531 | ------------- |
||
532 | */ |
||
533 | template <class Scaler, class ColorDistance, RotationDegree rotDeg> |
||
534 | FORCE_INLINE //perf: quite worth it! |
||
535 | void blendPixel(const Kernel_3x3& ker, |
||
536 | uint32_t* target, int trgWidth, |
||
537 | unsigned char blendInfo) //result of preprocessing all four corners of pixel "e" |
||
538 | { |
||
539 | #define a get_a<rotDeg>(ker) |
||
540 | #define b get_b<rotDeg>(ker) |
||
541 | #define c get_c<rotDeg>(ker) |
||
542 | #define d get_d<rotDeg>(ker) |
||
543 | #define e get_e<rotDeg>(ker) |
||
544 | #define f get_f<rotDeg>(ker) |
||
545 | #define g get_g<rotDeg>(ker) |
||
546 | #define h get_h<rotDeg>(ker) |
||
547 | #define i get_i<rotDeg>(ker) |
||
548 | |||
549 | const unsigned char blend = rotateBlendInfo<rotDeg>(blendInfo); |
||
550 | |||
551 | if (getBottomR(blend) >= BLEND_NORMAL) |
||
552 | { |
||
553 | auto eq = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, XBRZ_CFG_LUMINANCE_WEIGHT) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE; }; |
||
554 | auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, XBRZ_CFG_LUMINANCE_WEIGHT); }; |
||
555 | |||
556 | const bool doLineBlend = [&]() -> bool |
||
557 | { |
||
558 | if (getBottomR(blend) >= BLEND_DOMINANT) |
||
559 | return true; |
||
560 | |||
561 | //make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes |
||
562 | if (getTopR(blend) != BLEND_NONE && !eq(e, g)) //but support double-blending for 90° corners |
||
563 | return false; |
||
564 | if (getBottomL(blend) != BLEND_NONE && !eq(e, c)) |
||
565 | return false; |
||
566 | |||
567 | //no full blending for L-shapes; blend corner only (handles "mario mushroom eyes") |
||
568 | if (!eq(e, i) && eq(g, h) && eq(h, i) && eq(i, f) && eq(f, c)) |
||
569 | return false; |
||
570 | |||
571 | return true; |
||
572 | }(); |
||
573 | |||
574 | const uint32_t px = dist(e, f) <= dist(e, h) ? f : h; //choose most similar color |
||
575 | |||
576 | OutputMatrix<Scaler::scale, rotDeg> out(target, trgWidth); |
||
577 | |||
578 | if (doLineBlend) |
||
579 | { |
||
580 | const double fg = dist(f, g); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9 |
||
581 | const double hc = dist(h, c); // |
||
582 | |||
583 | const bool haveShallowLine = XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * fg <= hc && e != g && d != g; |
||
584 | const bool haveSteepLine = XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * hc <= fg && e != c && b != c; |
||
585 | |||
586 | if (haveShallowLine) |
||
587 | { |
||
588 | if (haveSteepLine) |
||
589 | Scaler::blendLineSteepAndShallow(px, out); |
||
590 | else |
||
591 | Scaler::blendLineShallow(px, out); |
||
592 | } |
||
593 | else |
||
594 | { |
||
595 | if (haveSteepLine) |
||
596 | Scaler::blendLineSteep(px, out); |
||
597 | else |
||
598 | Scaler::blendLineDiagonal(px, out); |
||
599 | } |
||
600 | } |
||
601 | else |
||
602 | Scaler::blendCorner(px, out); |
||
603 | } |
||
604 | |||
605 | #undef a |
||
606 | #undef b |
||
607 | #undef c |
||
608 | #undef d |
||
609 | #undef e |
||
610 | #undef f |
||
611 | #undef g |
||
612 | #undef h |
||
613 | #undef i |
||
614 | } |
||
615 | |||
616 | |||
617 | template <class Scaler, class ColorDistance> //scaler policy: see "Scaler2x" reference implementation |
||
618 | void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, int yFirst, int yLast) |
||
619 | { |
||
620 | yFirst = std::max(yFirst, 0); |
||
621 | yLast = std::min(yLast, srcHeight); |
||
622 | if (yFirst >= yLast || srcWidth <= 0) |
||
623 | return; |
||
624 | |||
625 | const int trgWidth = srcWidth * Scaler::scale; |
||
626 | |||
627 | //"use" space at the end of the image as temporary buffer for "on the fly preprocessing": we even could use larger area of |
||
628 | //"sizeof(uint32_t) * srcWidth * (yLast - yFirst)" bytes without risk of accidental overwriting before accessing |
||
629 | const int bufferSize = srcWidth; |
||
630 | unsigned char* preProcBuffer = reinterpret_cast<unsigned char*>(trg + yLast * Scaler::scale * trgWidth) - bufferSize; |
||
631 | std::fill(preProcBuffer, preProcBuffer + bufferSize, '\0'); |
||
632 | static_assert(BLEND_NONE == 0, ""); |
||
633 | |||
634 | //initialize preprocessing buffer for first row of current stripe: detect upper left and right corner blending |
||
635 | //this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition! |
||
636 | if (yFirst > 0) |
||
637 | { |
||
638 | const int y = yFirst - 1; |
||
639 | |||
640 | const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0); |
||
641 | const uint32_t* s_0 = src + srcWidth * y; //center line |
||
642 | const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1); |
||
643 | const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1); |
||
644 | |||
645 | for (int x = 0; x < srcWidth; ++x) |
||
646 | { |
||
647 | const int x_m1 = std::max(x - 1, 0); |
||
648 | const int x_p1 = std::min(x + 1, srcWidth - 1); |
||
649 | const int x_p2 = std::min(x + 2, srcWidth - 1); |
||
650 | |||
651 | Kernel_4x4 ker = {}; //perf: initialization is negligible |
||
652 | ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible |
||
653 | ker.b = s_m1[x]; |
||
654 | ker.c = s_m1[x_p1]; |
||
655 | ker.d = s_m1[x_p2]; |
||
656 | |||
657 | ker.e = s_0[x_m1]; |
||
658 | ker.f = s_0[x]; |
||
659 | ker.g = s_0[x_p1]; |
||
660 | ker.h = s_0[x_p2]; |
||
661 | |||
662 | ker.i = s_p1[x_m1]; |
||
663 | ker.j = s_p1[x]; |
||
664 | ker.k = s_p1[x_p1]; |
||
665 | ker.l = s_p1[x_p2]; |
||
666 | |||
667 | ker.m = s_p2[x_m1]; |
||
668 | ker.n = s_p2[x]; |
||
669 | ker.o = s_p2[x_p1]; |
||
670 | ker.p = s_p2[x_p2]; |
||
671 | |||
672 | const BlendResult res = preProcessCorners<ColorDistance>(ker); |
||
673 | /* |
||
674 | preprocessing blend result: |
||
675 | --------- |
||
676 | | F | G | //evalute corner between F, G, J, K |
||
677 | ----|---| //input pixel is at position F |
||
678 | | J | K | |
||
679 | --------- |
||
680 | */ |
||
681 | setTopR(preProcBuffer[x], res.blend_j); |
||
682 | |||
683 | if (x + 1 < bufferSize) |
||
684 | setTopL(preProcBuffer[x + 1], res.blend_k); |
||
685 | } |
||
686 | } |
||
687 | //------------------------------------------------------------------------------------ |
||
688 | |||
689 | for (int y = yFirst; y < yLast; ++y) |
||
690 | { |
||
691 | uint32_t* out = trg + Scaler::scale * y * trgWidth; //consider MT "striped" access |
||
692 | |||
693 | const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0); |
||
694 | const uint32_t* s_0 = src + srcWidth * y; //center line |
||
695 | const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1); |
||
696 | const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1); |
||
697 | |||
698 | unsigned char blend_xy1 = 0; //corner blending for current (x, y + 1) position |
||
699 | |||
700 | for (int x = 0; x < srcWidth; ++x, out += Scaler::scale) |
||
701 | { |
||
702 | //all those bounds checks have only insignificant impact on performance! |
||
703 | const int x_m1 = std::max(x - 1, 0); //perf: prefer array indexing to additional pointers! |
||
704 | const int x_p1 = std::min(x + 1, srcWidth - 1); |
||
705 | const int x_p2 = std::min(x + 2, srcWidth - 1); |
||
706 | |||
707 | Kernel_4x4 ker4 = {}; //perf: initialization is negligible |
||
708 | |||
709 | ker4.a = s_m1[x_m1]; //read sequentially from memory as far as possible |
||
710 | ker4.b = s_m1[x]; |
||
711 | ker4.c = s_m1[x_p1]; |
||
712 | ker4.d = s_m1[x_p2]; |
||
713 | |||
714 | ker4.e = s_0[x_m1]; |
||
715 | ker4.f = s_0[x]; |
||
716 | ker4.g = s_0[x_p1]; |
||
717 | ker4.h = s_0[x_p2]; |
||
718 | |||
719 | ker4.i = s_p1[x_m1]; |
||
720 | ker4.j = s_p1[x]; |
||
721 | ker4.k = s_p1[x_p1]; |
||
722 | ker4.l = s_p1[x_p2]; |
||
723 | |||
724 | ker4.m = s_p2[x_m1]; |
||
725 | ker4.n = s_p2[x]; |
||
726 | ker4.o = s_p2[x_p1]; |
||
727 | ker4.p = s_p2[x_p2]; |
||
728 | |||
729 | //evaluate the four corners on bottom-right of current pixel |
||
730 | unsigned char blend_xy = 0; //for current (x, y) position |
||
731 | { |
||
732 | const BlendResult res = preProcessCorners<ColorDistance>(ker4); |
||
733 | /* |
||
734 | preprocessing blend result: |
||
735 | --------- |
||
736 | | F | G | //evalute corner between F, G, J, K |
||
737 | ----|---| //current input pixel is at position F |
||
738 | | J | K | |
||
739 | --------- |
||
740 | */ |
||
741 | blend_xy = preProcBuffer[x]; |
||
742 | setBottomR(blend_xy, res.blend_f); //all four corners of (x, y) have been determined at this point due to processing sequence! |
||
743 | |||
744 | setTopR(blend_xy1, res.blend_j); //set 2nd known corner for (x, y + 1) |
||
745 | preProcBuffer[x] = blend_xy1; //store on current buffer position for use on next row |
||
746 | |||
747 | blend_xy1 = 0; |
||
748 | setTopL(blend_xy1, res.blend_k); //set 1st known corner for (x + 1, y + 1) and buffer for use on next column |
||
749 | |||
750 | if (x + 1 < bufferSize) //set 3rd known corner for (x + 1, y) |
||
751 | setBottomL(preProcBuffer[x + 1], res.blend_g); |
||
752 | } |
||
753 | |||
754 | //fill block of size scale * scale with the given color |
||
755 | xbrz::fillBlock(out, trgWidth * sizeof(uint32_t), ker4.f, Scaler::scale, Scaler::scale); |
||
756 | //place *after* preprocessing step, to not overwrite the results while processing the the last pixel! |
||
757 | |||
758 | //blend four corners of current pixel |
||
759 | if (blendingNeeded(blend_xy)) //good 5% perf-improvement |
||
760 | { |
||
761 | Kernel_3x3 ker3 = {}; //perf: initialization is negligible |
||
762 | |||
763 | ker3.a = ker4.a; |
||
764 | ker3.b = ker4.b; |
||
765 | ker3.c = ker4.c; |
||
766 | |||
767 | ker3.d = ker4.e; |
||
768 | ker3.e = ker4.f; |
||
769 | ker3.f = ker4.g; |
||
770 | |||
771 | ker3.g = ker4.i; |
||
772 | ker3.h = ker4.j; |
||
773 | ker3.i = ker4.k; |
||
774 | |||
775 | blendPixel<Scaler, ColorDistance, ROT_0 >(ker3, out, trgWidth, blend_xy); |
||
776 | blendPixel<Scaler, ColorDistance, ROT_90 >(ker3, out, trgWidth, blend_xy); |
||
777 | blendPixel<Scaler, ColorDistance, ROT_180>(ker3, out, trgWidth, blend_xy); |
||
778 | blendPixel<Scaler, ColorDistance, ROT_270>(ker3, out, trgWidth, blend_xy); |
||
779 | } |
||
780 | } |
||
781 | } |
||
782 | } |
||
783 | |||
784 | |||
785 | //------------------------------------------------------------------------------------ |
||
786 | template <class ColorGradient> struct Scaler2x : public ColorGradient |
||
787 | { |
||
788 | static const int scale = 2; |
||
789 | |||
790 | template <unsigned int M, unsigned int N> //bring template function into scope for GCC |
||
791 | static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); } |
||
792 | |||
793 | |||
794 | template <class OutputMatrix> |
||
795 | static void blendLineShallow(uint32_t col, OutputMatrix& out) |
||
796 | { |
||
797 | alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col); |
||
798 | alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col); |
||
799 | } |
||
800 | |||
801 | template <class OutputMatrix> |
||
802 | static void blendLineSteep(uint32_t col, OutputMatrix& out) |
||
803 | { |
||
804 | alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); |
||
805 | alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); |
||
806 | } |
||
807 | |||
808 | template <class OutputMatrix> |
||
809 | static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) |
||
810 | { |
||
811 | alphaGrad<1, 4>(out.template ref<1, 0>(), col); |
||
812 | alphaGrad<1, 4>(out.template ref<0, 1>(), col); |
||
813 | alphaGrad<5, 6>(out.template ref<1, 1>(), col); //[!] fixes 7/8 used in xBR |
||
814 | } |
||
815 | |||
816 | template <class OutputMatrix> |
||
817 | static void blendLineDiagonal(uint32_t col, OutputMatrix& out) |
||
818 | { |
||
819 | alphaGrad<1, 2>(out.template ref<1, 1>(), col); |
||
820 | } |
||
821 | |||
822 | template <class OutputMatrix> |
||
823 | static void blendCorner(uint32_t col, OutputMatrix& out) |
||
824 | { |
||
825 | //model a round corner |
||
826 | alphaGrad<21, 100>(out.template ref<1, 1>(), col); //exact: 1 - pi/4 = 0.2146018366 |
||
827 | } |
||
828 | }; |
||
829 | |||
830 | |||
831 | template <class ColorGradient> struct Scaler3x : public ColorGradient |
||
832 | { |
||
833 | static const int scale = 3; |
||
834 | |||
835 | template <unsigned int M, unsigned int N> //bring template function into scope for GCC |
||
836 | static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); } |
||
837 | |||
838 | |||
839 | template <class OutputMatrix> |
||
840 | static void blendLineShallow(uint32_t col, OutputMatrix& out) |
||
841 | { |
||
842 | alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col); |
||
843 | alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col); |
||
844 | |||
845 | alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col); |
||
846 | out.template ref<scale - 1, 2>() = col; |
||
847 | } |
||
848 | |||
849 | template <class OutputMatrix> |
||
850 | static void blendLineSteep(uint32_t col, OutputMatrix& out) |
||
851 | { |
||
852 | alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); |
||
853 | alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); |
||
854 | |||
855 | alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); |
||
856 | out.template ref<2, scale - 1>() = col; |
||
857 | } |
||
858 | |||
859 | template <class OutputMatrix> |
||
860 | static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) |
||
861 | { |
||
862 | alphaGrad<1, 4>(out.template ref<2, 0>(), col); |
||
863 | alphaGrad<1, 4>(out.template ref<0, 2>(), col); |
||
864 | alphaGrad<3, 4>(out.template ref<2, 1>(), col); |
||
865 | alphaGrad<3, 4>(out.template ref<1, 2>(), col); |
||
866 | out.template ref<2, 2>() = col; |
||
867 | } |
||
868 | |||
869 | template <class OutputMatrix> |
||
870 | static void blendLineDiagonal(uint32_t col, OutputMatrix& out) |
||
871 | { |
||
872 | alphaGrad<1, 8>(out.template ref<1, 2>(), col); //conflict with other rotations for this odd scale |
||
873 | alphaGrad<1, 8>(out.template ref<2, 1>(), col); |
||
874 | alphaGrad<7, 8>(out.template ref<2, 2>(), col); // |
||
875 | } |
||
876 | |||
877 | template <class OutputMatrix> |
||
878 | static void blendCorner(uint32_t col, OutputMatrix& out) |
||
879 | { |
||
880 | //model a round corner |
||
881 | alphaGrad<45, 100>(out.template ref<2, 2>(), col); //exact: 0.4545939598 |
||
882 | //alphaGrad<7, 256>(out.template ref<2, 1>(), col); //0.02826017254 -> negligible + avoid conflicts with other rotations for this odd scale |
||
883 | //alphaGrad<7, 256>(out.template ref<1, 2>(), col); //0.02826017254 |
||
884 | } |
||
885 | }; |
||
886 | |||
887 | |||
888 | template <class ColorGradient> struct Scaler4x : public ColorGradient |
||
889 | { |
||
890 | static const int scale = 4; |
||
891 | |||
892 | template <unsigned int M, unsigned int N> //bring template function into scope for GCC |
||
893 | static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); } |
||
894 | |||
895 | |||
896 | template <class OutputMatrix> |
||
897 | static void blendLineShallow(uint32_t col, OutputMatrix& out) |
||
898 | { |
||
899 | alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col); |
||
900 | alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col); |
||
901 | |||
902 | alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col); |
||
903 | alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col); |
||
904 | |||
905 | out.template ref<scale - 1, 2>() = col; |
||
906 | out.template ref<scale - 1, 3>() = col; |
||
907 | } |
||
908 | |||
909 | template <class OutputMatrix> |
||
910 | static void blendLineSteep(uint32_t col, OutputMatrix& out) |
||
911 | { |
||
912 | alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); |
||
913 | alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); |
||
914 | |||
915 | alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); |
||
916 | alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col); |
||
917 | |||
918 | out.template ref<2, scale - 1>() = col; |
||
919 | out.template ref<3, scale - 1>() = col; |
||
920 | } |
||
921 | |||
922 | template <class OutputMatrix> |
||
923 | static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) |
||
924 | { |
||
925 | alphaGrad<3, 4>(out.template ref<3, 1>(), col); |
||
926 | alphaGrad<3, 4>(out.template ref<1, 3>(), col); |
||
927 | alphaGrad<1, 4>(out.template ref<3, 0>(), col); |
||
928 | alphaGrad<1, 4>(out.template ref<0, 3>(), col); |
||
929 | |||
930 | alphaGrad<1, 3>(out.template ref<2, 2>(), col); //[!] fixes 1/4 used in xBR |
||
931 | |||
932 | out.template ref<3, 3>() = col; |
||
933 | out.template ref<3, 2>() = col; |
||
934 | out.template ref<2, 3>() = col; |
||
935 | } |
||
936 | |||
937 | template <class OutputMatrix> |
||
938 | static void blendLineDiagonal(uint32_t col, OutputMatrix& out) |
||
939 | { |
||
940 | alphaGrad<1, 2>(out.template ref<scale - 1, scale / 2 >(), col); |
||
941 | alphaGrad<1, 2>(out.template ref<scale - 2, scale / 2 + 1>(), col); |
||
942 | out.template ref<scale - 1, scale - 1>() = col; |
||
943 | } |
||
944 | |||
945 | template <class OutputMatrix> |
||
946 | static void blendCorner(uint32_t col, OutputMatrix& out) |
||
947 | { |
||
948 | //model a round corner |
||
949 | alphaGrad<68, 100>(out.template ref<3, 3>(), col); //exact: 0.6848532563 |
||
950 | alphaGrad< 9, 100>(out.template ref<3, 2>(), col); //0.08677704501 |
||
951 | alphaGrad< 9, 100>(out.template ref<2, 3>(), col); //0.08677704501 |
||
952 | } |
||
953 | }; |
||
954 | |||
955 | |||
956 | template <class ColorGradient> struct Scaler5x : public ColorGradient |
||
957 | { |
||
958 | static const int scale = 5; |
||
959 | |||
960 | template <unsigned int M, unsigned int N> //bring template function into scope for GCC |
||
961 | static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); } |
||
962 | |||
963 | |||
964 | template <class OutputMatrix> |
||
965 | static void blendLineShallow(uint32_t col, OutputMatrix& out) |
||
966 | { |
||
967 | alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col); |
||
968 | alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col); |
||
969 | alphaGrad<1, 4>(out.template ref<scale - 3, 4>(), col); |
||
970 | |||
971 | alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col); |
||
972 | alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col); |
||
973 | |||
974 | out.template ref<scale - 1, 2>() = col; |
||
975 | out.template ref<scale - 1, 3>() = col; |
||
976 | out.template ref<scale - 1, 4>() = col; |
||
977 | out.template ref<scale - 2, 4>() = col; |
||
978 | } |
||
979 | |||
980 | template <class OutputMatrix> |
||
981 | static void blendLineSteep(uint32_t col, OutputMatrix& out) |
||
982 | { |
||
983 | alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); |
||
984 | alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); |
||
985 | alphaGrad<1, 4>(out.template ref<4, scale - 3>(), col); |
||
986 | |||
987 | alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); |
||
988 | alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col); |
||
989 | |||
990 | out.template ref<2, scale - 1>() = col; |
||
991 | out.template ref<3, scale - 1>() = col; |
||
992 | out.template ref<4, scale - 1>() = col; |
||
993 | out.template ref<4, scale - 2>() = col; |
||
994 | } |
||
995 | |||
996 | template <class OutputMatrix> |
||
997 | static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) |
||
998 | { |
||
999 | alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); |
||
1000 | alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); |
||
1001 | alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); |
||
1002 | |||
1003 | alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col); |
||
1004 | alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col); |
||
1005 | alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col); |
||
1006 | |||
1007 | alphaGrad<2, 3>(out.template ref<3, 3>(), col); |
||
1008 | |||
1009 | out.template ref<2, scale - 1>() = col; |
||
1010 | out.template ref<3, scale - 1>() = col; |
||
1011 | out.template ref<4, scale - 1>() = col; |
||
1012 | |||
1013 | out.template ref<scale - 1, 2>() = col; |
||
1014 | out.template ref<scale - 1, 3>() = col; |
||
1015 | } |
||
1016 | |||
1017 | template <class OutputMatrix> |
||
1018 | static void blendLineDiagonal(uint32_t col, OutputMatrix& out) |
||
1019 | { |
||
1020 | alphaGrad<1, 8>(out.template ref<scale - 1, scale / 2 >(), col); //conflict with other rotations for this odd scale |
||
1021 | alphaGrad<1, 8>(out.template ref<scale - 2, scale / 2 + 1>(), col); |
||
1022 | alphaGrad<1, 8>(out.template ref<scale - 3, scale / 2 + 2>(), col); // |
||
1023 | |||
1024 | alphaGrad<7, 8>(out.template ref<4, 3>(), col); |
||
1025 | alphaGrad<7, 8>(out.template ref<3, 4>(), col); |
||
1026 | |||
1027 | out.template ref<4, 4>() = col; |
||
1028 | } |
||
1029 | |||
1030 | template <class OutputMatrix> |
||
1031 | static void blendCorner(uint32_t col, OutputMatrix& out) |
||
1032 | { |
||
1033 | // model a round corner |
||
1034 | alphaGrad<86, 100>(out.template ref<4, 4>(), col); //exact: 0.8631434088 |
||
1035 | alphaGrad<23, 100>(out.template ref<4, 3>(), col); //0.2306749731 |
||
1036 | alphaGrad<23, 100>(out.template ref<3, 4>(), col); //0.2306749731 |
||
1037 | //alphaGrad<1, 64>(out.template ref<4, 2>(), col); //0.01676812367 -> negligible + avoid conflicts with other rotations for this odd scale |
||
1038 | //alphaGrad<1, 64>(out.template ref<2, 4>(), col); //0.01676812367 |
||
1039 | } |
||
1040 | }; |
||
1041 | |||
1042 | |||
1043 | template <class ColorGradient> struct Scaler6x : public ColorGradient |
||
1044 | { |
||
1045 | static const int scale = 6; |
||
1046 | |||
1047 | template <unsigned int M, unsigned int N> //bring template function into scope for GCC |
||
1048 | static void alphaGrad(uint32_t& pixBack, uint32_t pixFront) { ColorGradient::template alphaGrad<M, N>(pixBack, pixFront); } |
||
1049 | |||
1050 | |||
1051 | template <class OutputMatrix> |
||
1052 | static void blendLineShallow(uint32_t col, OutputMatrix& out) |
||
1053 | { |
||
1054 | alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col); |
||
1055 | alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col); |
||
1056 | alphaGrad<1, 4>(out.template ref<scale - 3, 4>(), col); |
||
1057 | |||
1058 | alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col); |
||
1059 | alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col); |
||
1060 | alphaGrad<3, 4>(out.template ref<scale - 3, 5>(), col); |
||
1061 | |||
1062 | out.template ref<scale - 1, 2>() = col; |
||
1063 | out.template ref<scale - 1, 3>() = col; |
||
1064 | out.template ref<scale - 1, 4>() = col; |
||
1065 | out.template ref<scale - 1, 5>() = col; |
||
1066 | |||
1067 | out.template ref<scale - 2, 4>() = col; |
||
1068 | out.template ref<scale - 2, 5>() = col; |
||
1069 | } |
||
1070 | |||
1071 | template <class OutputMatrix> |
||
1072 | static void blendLineSteep(uint32_t col, OutputMatrix& out) |
||
1073 | { |
||
1074 | alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); |
||
1075 | alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); |
||
1076 | alphaGrad<1, 4>(out.template ref<4, scale - 3>(), col); |
||
1077 | |||
1078 | alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); |
||
1079 | alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col); |
||
1080 | alphaGrad<3, 4>(out.template ref<5, scale - 3>(), col); |
||
1081 | |||
1082 | out.template ref<2, scale - 1>() = col; |
||
1083 | out.template ref<3, scale - 1>() = col; |
||
1084 | out.template ref<4, scale - 1>() = col; |
||
1085 | out.template ref<5, scale - 1>() = col; |
||
1086 | |||
1087 | out.template ref<4, scale - 2>() = col; |
||
1088 | out.template ref<5, scale - 2>() = col; |
||
1089 | } |
||
1090 | |||
1091 | template <class OutputMatrix> |
||
1092 | static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) |
||
1093 | { |
||
1094 | alphaGrad<1, 4>(out.template ref<0, scale - 1>(), col); |
||
1095 | alphaGrad<1, 4>(out.template ref<2, scale - 2>(), col); |
||
1096 | alphaGrad<3, 4>(out.template ref<1, scale - 1>(), col); |
||
1097 | alphaGrad<3, 4>(out.template ref<3, scale - 2>(), col); |
||
1098 | |||
1099 | alphaGrad<1, 4>(out.template ref<scale - 1, 0>(), col); |
||
1100 | alphaGrad<1, 4>(out.template ref<scale - 2, 2>(), col); |
||
1101 | alphaGrad<3, 4>(out.template ref<scale - 1, 1>(), col); |
||
1102 | alphaGrad<3, 4>(out.template ref<scale - 2, 3>(), col); |
||
1103 | |||
1104 | out.template ref<2, scale - 1>() = col; |
||
1105 | out.template ref<3, scale - 1>() = col; |
||
1106 | out.template ref<4, scale - 1>() = col; |
||
1107 | out.template ref<5, scale - 1>() = col; |
||
1108 | |||
1109 | out.template ref<4, scale - 2>() = col; |
||
1110 | out.template ref<5, scale - 2>() = col; |
||
1111 | |||
1112 | out.template ref<scale - 1, 2>() = col; |
||
1113 | out.template ref<scale - 1, 3>() = col; |
||
1114 | } |
||
1115 | |||
1116 | template <class OutputMatrix> |
||
1117 | static void blendLineDiagonal(uint32_t col, OutputMatrix& out) |
||
1118 | { |
||
1119 | alphaGrad<1, 2>(out.template ref<scale - 1, scale / 2 >(), col); |
||
1120 | alphaGrad<1, 2>(out.template ref<scale - 2, scale / 2 + 1>(), col); |
||
1121 | alphaGrad<1, 2>(out.template ref<scale - 3, scale / 2 + 2>(), col); |
||
1122 | |||
1123 | out.template ref<scale - 2, scale - 1>() = col; |
||
1124 | out.template ref<scale - 1, scale - 1>() = col; |
||
1125 | out.template ref<scale - 1, scale - 2>() = col; |
||
1126 | } |
||
1127 | |||
1128 | template <class OutputMatrix> |
||
1129 | static void blendCorner(uint32_t col, OutputMatrix& out) |
||
1130 | { |
||
1131 | //model a round corner |
||
1132 | alphaGrad<97, 100>(out.template ref<5, 5>(), col); //exact: 0.9711013910 |
||
1133 | alphaGrad<42, 100>(out.template ref<4, 5>(), col); //0.4236372243 |
||
1134 | alphaGrad<42, 100>(out.template ref<5, 4>(), col); //0.4236372243 |
||
1135 | alphaGrad< 6, 100>(out.template ref<5, 3>(), col); //0.05652034508 |
||
1136 | alphaGrad< 6, 100>(out.template ref<3, 5>(), col); //0.05652034508 |
||
1137 | } |
||
1138 | }; |
||
1139 | |||
1140 | //------------------------------------------------------------------------------------ |
||
1141 | struct ColorDistanceRGB |
||
1142 | { |
||
1143 | static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight) |
||
1144 | { |
||
1145 | return distYCbCrBuffered(pix1, pix2); |
||
1146 | |||
1147 | //if (pix1 == pix2) //about 4% perf boost |
||
1148 | // return 0; |
||
1149 | //return distYCbCr(pix1, pix2, luminanceWeight); |
||
1150 | } |
||
1151 | }; |
||
1152 | |||
1153 | struct ColorDistanceARGB |
||
1154 | { |
||
1155 | static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight) |
||
1156 | { |
||
1157 | const double a1 = GET_ALPHA (pix1) / 255.0 ; |
||
1158 | const double a2 = GET_ALPHA (pix2) / 255.0 ; |
||
1159 | /* |
||
1160 | Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1] |
||
1161 | |||
1162 | 1. if a1 = a2, distance should be: a1 * distYCbCr() |
||
1163 | 2. if a1 = 0, distance should be: a2 * distYCbCr(black, white) = a2 * 255 |
||
1164 | 3. if a1 = 1, ??? maybe: 255 * (1 - a2) + a2 * distYCbCr() |
||
1165 | */ |
||
1166 | |||
1167 | //return std::min(a1, a2) * distYCbCrBuffered(pix1, pix2) + 255 * abs(a1 - a2); |
||
1168 | //=> following code is 15% faster: |
||
1169 | const double d = distYCbCrBuffered(pix1, pix2); |
||
1170 | if (a1 < a2) |
||
1171 | return a1 * d + 255 * (a2 - a1); |
||
1172 | else |
||
1173 | return a2 * d + 255 * (a1 - a2); |
||
1174 | |||
1175 | //alternative? return /*std::*/sqrt(a1 * a2 * square(distYCbCrBuffered(pix1, pix2)) + square(255 * (a1 - a2))); |
||
1176 | } |
||
1177 | }; |
||
1178 | |||
1179 | struct ColorGradientRGB |
||
1180 | { |
||
1181 | template <unsigned int M, unsigned int N> static void alphaGrad (uint32_t &pixBack, uint32_t pixFront) |
||
1182 | { |
||
1183 | pixBack = gradientRGB<M, N> (pixFront, pixBack); |
||
1184 | } |
||
1185 | }; |
||
1186 | |||
1187 | struct ColorGradientARGB |
||
1188 | { |
||
1189 | template <unsigned int M, unsigned int N> static void alphaGrad (uint32_t &pixBack, uint32_t pixFront) |
||
1190 | { |
||
1191 | pixBack = gradientARGB<M, N> (pixFront, pixBack); |
||
1192 | } |
||
1193 | }; |
||
1194 | } |
||
1195 | |||
1196 | |||
1197 | |||
1198 | void xbrz::nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, uint32_t* trg, int trgWidth, int trgHeight) |
||
1199 | { |
||
1200 | nearestNeighborScale (src, srcWidth, srcHeight, srcWidth * sizeof (uint32_t), trg, trgWidth, trgHeight, trgWidth * sizeof (uint32_t), XBRZ_SLICETYPE_TARGET, 0, trgHeight, [](uint32_t pix) { return pix; }); |
||
1201 | } |
||
1202 | |||
1203 | |||
1204 | EXTERN_C bool xbrz_equalcolortest24 (uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance) |
||
1205 | { |
||
1206 | return (ColorDistanceRGB::dist(col1, col2, luminanceWeight) < equalColorTolerance); |
||
1207 | } |
||
1208 | |||
1209 | |||
1210 | EXTERN_C bool xbrz_equalcolortest32 (uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance) |
||
1211 | { |
||
1212 | return (ColorDistanceARGB::dist(col1, col2, luminanceWeight) < equalColorTolerance); |
||
1213 | } |
||
1214 | |||
1215 | |||
1216 | EXTERN_C void xbrz_scale24 (size_t factor, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight) |
||
1217 | { |
||
1218 | if (factor == 2) return scaleImage<Scaler2x<ColorGradientRGB>, ColorDistanceRGB> (src, trg, srcWidth, srcHeight, 0, srcHeight); |
||
1219 | else if (factor == 3) return scaleImage<Scaler3x<ColorGradientRGB>, ColorDistanceRGB> (src, trg, srcWidth, srcHeight, 0, srcHeight); |
||
1220 | else if (factor == 4) return scaleImage<Scaler4x<ColorGradientRGB>, ColorDistanceRGB> (src, trg, srcWidth, srcHeight, 0, srcHeight); |
||
1221 | else if (factor == 5) return scaleImage<Scaler5x<ColorGradientRGB>, ColorDistanceRGB> (src, trg, srcWidth, srcHeight, 0, srcHeight); |
||
1222 | else if (factor == 6) return scaleImage<Scaler6x<ColorGradientRGB>, ColorDistanceRGB> (src, trg, srcWidth, srcHeight, 0, srcHeight); |
||
1223 | } |
||
1224 | |||
1225 | |||
1226 | EXTERN_C void xbrz_scale32 (size_t factor, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight) |
||
1227 | { |
||
1228 | if (factor == 2) return scaleImage<Scaler2x<ColorGradientARGB>, ColorDistanceARGB> (src, trg, srcWidth, srcHeight, 0, srcHeight); |
||
1229 | else if (factor == 3) return scaleImage<Scaler3x<ColorGradientARGB>, ColorDistanceARGB> (src, trg, srcWidth, srcHeight, 0, srcHeight); |
||
1230 | else if (factor == 4) return scaleImage<Scaler4x<ColorGradientARGB>, ColorDistanceARGB> (src, trg, srcWidth, srcHeight, 0, srcHeight); |
||
1231 | else if (factor == 5) return scaleImage<Scaler5x<ColorGradientARGB>, ColorDistanceARGB> (src, trg, srcWidth, srcHeight, 0, srcHeight); |
||
1232 | else if (factor == 6) return scaleImage<Scaler6x<ColorGradientARGB>, ColorDistanceARGB> (src, trg, srcWidth, srcHeight, 0, srcHeight); |
||
1233 | } |