Rev 4 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
2 | pmbaty | 1 | // **************************************************************************** |
2 | // * This file is part of the HqMAME project. It is distributed under * |
||
3 | // * GNU General Public License: https://www.gnu.org/licenses/gpl-3.0 * |
||
4 | // * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved * |
||
5 | // * * |
||
6 | // * Additionally and as a special exception, the author gives permission * |
||
7 | // * to link the code of this program with the MAME library (or with modified * |
||
8 | // * versions of MAME that use the same license as MAME), and distribute * |
||
9 | // * linked combinations including the two. You must obey the GNU General * |
||
10 | // * Public License in all respects for all of the code used other than MAME. * |
||
11 | // * If you modify this file, you may extend this exception to your version * |
||
12 | // * of the file, but you are not obligated to do so. If you do not wish to * |
||
13 | // * do so, delete this exception statement from your version. * |
||
14 | // **************************************************************************** |
||
15 | |||
3 | pmbaty | 16 | // ------------------------------------------------------------------------- |
17 | // | xBRZ: "Scale by rules" - high quality image upscaling filter by Zenju | |
||
18 | // ------------------------------------------------------------------------- |
||
19 | // using a modified approach of xBR: |
||
20 | // http://board.byuu.org/viewtopic.php?f=10&t=2248 |
||
21 | // - new rule set preserving small image features |
||
22 | // - highly optimized for performance |
||
23 | // - support alpha channel |
||
24 | // - support multithreading |
||
25 | // - support 64-bit architectures |
||
26 | // - support processing image slices |
||
27 | // - support scaling up to 6xBRZ |
||
2 | pmbaty | 28 | |
3 | pmbaty | 29 | // -> map source (srcWidth * srcHeight) to target (scale * width x scale * height) image, optionally processing a half-open slice of rows [yFirst, yLast) only |
30 | // -> support for source/target pitch in bytes! |
||
31 | // -> if your emulator changes only a few image slices during each cycle (e.g. DOSBox) then there's no need to run xBRZ on the complete image: |
||
32 | // Just make sure you enlarge the source image slice by 2 rows on top and 2 on bottom (this is the additional range the xBRZ algorithm is using during analysis) |
||
33 | // CAVEAT: If there are multiple changed slices, make sure they do not overlap after adding these additional rows in order to avoid a memory race condition |
||
34 | // in the target image data if you are using multiple threads for processing each enlarged slice! |
||
35 | // |
||
36 | // THREAD-SAFETY: - parts of the same image may be scaled by multiple threads as long as the [yFirst, yLast) ranges do not overlap! |
||
37 | // - there is a minor inefficiency for the first row of a slice, so avoid processing single rows only; suggestion: process at least 8-16 rows |
||
38 | |||
39 | |||
40 | #include <stddef.h> // for size_t |
||
41 | #include <stdint.h> // for uint32_t |
||
42 | #include <memory.h> // for memset() |
||
43 | #include <limits.h> |
||
2 | pmbaty | 44 | #include <math.h> |
45 | |||
46 | |||
47 | #ifdef __cplusplus |
||
48 | #define EXTERN_C extern "C" |
||
49 | #else // !__cplusplus |
||
50 | #define EXTERN_C |
||
51 | #endif // __cplusplus |
||
52 | |||
53 | |||
4 | pmbaty | 54 | #ifdef _MSC_VER |
55 | #define FORCE_INLINE __forceinline |
||
56 | #elif defined __GNUC__ |
||
57 | #define FORCE_INLINE __attribute__((always_inline)) inline |
||
58 | #else |
||
59 | #define FORCE_INLINE inline |
||
60 | #endif |
||
61 | |||
62 | |||
2 | pmbaty | 63 | // scaler configuration |
64 | #define XBRZ_CFG_LUMINANCE_WEIGHT 1 |
||
65 | #define XBRZ_CFG_EQUAL_COLOR_TOLERANCE 30 |
||
66 | #define XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD 3.6 |
||
67 | #define XBRZ_CFG_STEEP_DIRECTION_THRESHOLD 2.2 |
||
68 | |||
69 | |||
70 | // slice types |
||
71 | #define XBRZ_SLICETYPE_SOURCE 1 |
||
72 | #define XBRZ_SLICETYPE_TARGET 2 |
||
73 | |||
74 | |||
75 | // handy macros |
||
76 | #define GET_BYTE(val,byteno) ((unsigned char) (((val) >> ((byteno) << 3)) & 0xff)) |
||
77 | #define GET_BLUE(val) GET_BYTE (val, 0) |
||
78 | #define GET_GREEN(val) GET_BYTE (val, 1) |
||
79 | #define GET_RED(val) GET_BYTE (val, 2) |
||
80 | #define GET_ALPHA(val) GET_BYTE (val, 3) |
||
3 | pmbaty | 81 | #define CALC_COLOR24(colFront,colBack,M,N) (unsigned char) ((((unsigned char) (colFront)) * ((unsigned int) (M)) + ((unsigned char) (colBack)) * (((unsigned int) (N)) - ((unsigned int) (M)))) / ((unsigned int) (N))) |
82 | #define CALC_COLOR32(colFront,colBack,weightFront,weightBack,weightSum) ((unsigned char) ((((unsigned char) (colFront)) * ((unsigned int) (weightFront)) + ((unsigned char) (colBack)) * ((unsigned int) (weightBack))) / ((unsigned int) (weightSum)))) |
||
83 | #define BYTE_ADVANCE(buffer,offset) (((char *) buffer) + (offset)) |
||
84 | #ifndef MIN |
||
85 | #define MIN(a,b) ((a) < (b) ? (a) : (b)) |
||
86 | #endif // MIN |
||
87 | #ifndef MAX |
||
88 | #define MAX(a,b) ((a) > (b) ? (a) : (b)) |
||
89 | #endif // MAX |
||
2 | pmbaty | 90 | |
91 | |||
4 | pmbaty | 92 | enum BlendType |
2 | pmbaty | 93 | { |
4 | pmbaty | 94 | BLEND_NONE = 0, |
95 | BLEND_NORMAL, //a normal indication to blend |
||
96 | BLEND_DOMINANT, //a strong indication to blend |
||
97 | //attention: BlendType must fit into the value range of 2 bit!!! |
||
2 | pmbaty | 98 | }; |
99 | |||
3 | pmbaty | 100 | |
4 | pmbaty | 101 | typedef struct blendresult_s |
2 | pmbaty | 102 | { |
4 | pmbaty | 103 | BlendType |
104 | /**/blend_f, blend_g, |
||
105 | /**/blend_j, blend_k; |
||
106 | } blendresult_t; |
||
2 | pmbaty | 107 | |
108 | |||
4 | pmbaty | 109 | typedef struct kernel_3x3_s |
2 | pmbaty | 110 | { |
4 | pmbaty | 111 | uint32_t |
112 | /**/a, b, c, |
||
113 | /**/d, e, f, |
||
114 | /**/g, h, i; |
||
115 | } kernel_3x3_t; |
||
2 | pmbaty | 116 | |
3 | pmbaty | 117 | |
4 | pmbaty | 118 | typedef struct kernel_4x4_s //kernel for preprocessing step |
119 | { |
||
120 | uint32_t |
||
121 | /**/a, b, c, d, |
||
122 | /**/e, f, g, h, |
||
123 | /**/i, j, k, l, |
||
124 | /**/m, n, o, p; |
||
125 | } kernel_4x4_t; |
||
2 | pmbaty | 126 | |
127 | |||
4 | pmbaty | 128 | typedef struct outmatrix_s |
129 | { |
||
130 | size_t size; |
||
131 | uint32_t* ptr; |
||
132 | int stride; |
||
5 | pmbaty | 133 | int rotDeg; // either 0, 90, 180 or 270 |
4 | pmbaty | 134 | } outmatrix_t; |
2 | pmbaty | 135 | |
136 | |||
5 | pmbaty | 137 | static void outmatrix_create (outmatrix_t *mat, size_t size, uint32_t *ptr, int stride, int rotDeg) //access matrix area, top-left at position "out" for image with given width |
2 | pmbaty | 138 | { |
4 | pmbaty | 139 | mat->size = size; |
140 | mat->ptr = ptr; |
||
141 | mat->stride = stride; |
||
142 | mat->rotDeg = rotDeg; |
||
143 | } |
||
2 | pmbaty | 144 | |
4 | pmbaty | 145 | |
146 | static uint32_t *outmatrix_ref (outmatrix_t *mat, size_t I, size_t J) |
||
2 | pmbaty | 147 | { |
4 | pmbaty | 148 | size_t I_old; |
149 | size_t J_old; |
||
150 | // calculate input matrix coordinates after rotation: (i, j) = (row, col) indices, N = size of (square) matrix |
||
5 | pmbaty | 151 | if (mat->rotDeg == 270) { I_old = J; J_old = mat->size - 1 - I; } |
152 | else if (mat->rotDeg == 180) { I_old = mat->size - 1 - I; J_old = mat->size - 1 - J; } |
||
153 | else if (mat->rotDeg == 90) { I_old = mat->size - 1 - J; J_old = I; } |
||
154 | else { I_old = I; J_old = J; } |
||
2 | pmbaty | 155 | |
4 | pmbaty | 156 | return (mat->ptr + I_old * mat->stride + J_old); |
157 | } |
||
2 | pmbaty | 158 | |
159 | |||
5 | pmbaty | 160 | typedef void (alphagrad_func) (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N); |
161 | typedef double (dist_func) (uint32_t pix1, uint32_t pix2); |
||
162 | |||
163 | |||
164 | typedef struct scaler_s |
||
165 | { |
||
166 | int factor; |
||
167 | void (*blend_line_shallow) (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad); |
||
168 | void (*blend_line_steep) (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad); |
||
169 | void (*blend_line_steep_and_shallow) (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad); |
||
170 | void (*blend_line_diagonal) (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad); |
||
171 | void (*blend_corner) (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad); |
||
172 | } scaler_t; |
||
173 | |||
174 | |||
175 | ///////////////////////////////// |
||
176 | // shallow line scaling functions |
||
177 | |||
178 | static void blend_line_shallow_2x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
179 | { |
||
180 | alphagrad (outmatrix_ref (out, 2 - 1, 0), col, 1, 4); |
||
181 | alphagrad (outmatrix_ref (out, 2 - 1, 1), col, 3, 4); |
||
182 | } |
||
183 | static void blend_line_shallow_3x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
184 | { |
||
185 | alphagrad (outmatrix_ref (out, 3 - 1, 0), col, 1, 4); |
||
186 | alphagrad (outmatrix_ref (out, 3 - 2, 2), col, 1, 4); |
||
187 | alphagrad (outmatrix_ref (out, 3 - 1, 1), col, 3, 4); |
||
188 | *outmatrix_ref (out, 3 - 1, 2) = col; |
||
189 | } |
||
190 | static void blend_line_shallow_4x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
191 | { |
||
192 | alphagrad (outmatrix_ref (out, 4 - 1, 0), col, 1, 4); |
||
193 | alphagrad (outmatrix_ref (out, 4 - 2, 2), col, 1, 4); |
||
194 | alphagrad (outmatrix_ref (out, 4 - 1, 1), col, 3, 4); |
||
195 | alphagrad (outmatrix_ref (out, 4 - 2, 3), col, 3, 4); |
||
196 | *outmatrix_ref (out, 4 - 1, 2) = col; |
||
197 | *outmatrix_ref (out, 4 - 1, 3) = col; |
||
198 | } |
||
199 | static void blend_line_shallow_5x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
200 | { |
||
201 | alphagrad (outmatrix_ref (out, 5 - 1, 0), col, 1, 4); |
||
202 | alphagrad (outmatrix_ref (out, 5 - 2, 2), col, 1, 4); |
||
203 | alphagrad (outmatrix_ref (out, 5 - 3, 4), col, 1, 4); |
||
204 | alphagrad (outmatrix_ref (out, 5 - 1, 1), col, 3, 4); |
||
205 | alphagrad (outmatrix_ref (out, 5 - 2, 3), col, 3, 4); |
||
206 | *outmatrix_ref (out, 5 - 1, 2) = col; |
||
207 | *outmatrix_ref (out, 5 - 1, 3) = col; |
||
208 | *outmatrix_ref (out, 5 - 1, 4) = col; |
||
209 | *outmatrix_ref (out, 5 - 2, 4) = col; |
||
210 | } |
||
211 | static void blend_line_shallow_6x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
212 | { |
||
213 | alphagrad (outmatrix_ref (out, 6 - 1, 0), col, 1, 4); |
||
214 | alphagrad (outmatrix_ref (out, 6 - 2, 2), col, 1, 4); |
||
215 | alphagrad (outmatrix_ref (out, 6 - 3, 4), col, 1, 4); |
||
216 | alphagrad (outmatrix_ref (out, 6 - 1, 1), col, 3, 4); |
||
217 | alphagrad (outmatrix_ref (out, 6 - 2, 3), col, 3, 4); |
||
218 | alphagrad (outmatrix_ref (out, 6 - 3, 5), col, 3, 4); |
||
219 | *outmatrix_ref (out, 6 - 1, 2) = col; |
||
220 | *outmatrix_ref (out, 6 - 1, 3) = col; |
||
221 | *outmatrix_ref (out, 6 - 1, 4) = col; |
||
222 | *outmatrix_ref (out, 6 - 1, 5) = col; |
||
223 | *outmatrix_ref (out, 6 - 2, 4) = col; |
||
224 | *outmatrix_ref (out, 6 - 2, 5) = col; |
||
225 | } |
||
226 | |||
227 | /////////////////////////////// |
||
228 | // steep line scaling functions |
||
229 | |||
230 | static void blend_line_steep_2x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
231 | { |
||
232 | alphagrad (outmatrix_ref (out, 0, 2 - 1), col, 1, 4); |
||
233 | alphagrad (outmatrix_ref (out, 1, 2 - 1), col, 3, 4); |
||
234 | } |
||
235 | static void blend_line_steep_3x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
236 | { |
||
237 | alphagrad (outmatrix_ref (out, 0, 3 - 1), col, 1, 4); |
||
238 | alphagrad (outmatrix_ref (out, 2, 3 - 2), col, 1, 4); |
||
239 | alphagrad (outmatrix_ref (out, 1, 3 - 1), col, 3, 4); |
||
240 | *outmatrix_ref (out, 2, 3 - 1) = col; |
||
241 | } |
||
242 | static void blend_line_steep_4x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
243 | { |
||
244 | alphagrad (outmatrix_ref (out, 0, 4 - 1), col, 1, 4); |
||
245 | alphagrad (outmatrix_ref (out, 2, 4 - 2), col, 1, 4); |
||
246 | alphagrad (outmatrix_ref (out, 1, 4 - 1), col, 3, 4); |
||
247 | alphagrad (outmatrix_ref (out, 3, 4 - 2), col, 3, 4); |
||
248 | *outmatrix_ref (out, 2, 4 - 1) = col; |
||
249 | *outmatrix_ref (out, 3, 4 - 1) = col; |
||
250 | } |
||
251 | static void blend_line_steep_5x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
252 | { |
||
253 | alphagrad (outmatrix_ref (out, 0, 5 - 1), col, 1, 4); |
||
254 | alphagrad (outmatrix_ref (out, 2, 5 - 2), col, 1, 4); |
||
255 | alphagrad (outmatrix_ref (out, 4, 5 - 3), col, 1, 4); |
||
256 | alphagrad (outmatrix_ref (out, 1, 5 - 1), col, 3, 4); |
||
257 | alphagrad (outmatrix_ref (out, 3, 5 - 2), col, 3, 4); |
||
258 | *outmatrix_ref (out, 2, 5 - 1) = col; |
||
259 | *outmatrix_ref (out, 3, 5 - 1) = col; |
||
260 | *outmatrix_ref (out, 4, 5 - 1) = col; |
||
261 | *outmatrix_ref (out, 4, 5 - 2) = col; |
||
262 | } |
||
263 | static void blend_line_steep_6x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
264 | { |
||
265 | alphagrad (outmatrix_ref (out, 0, 6 - 1), col, 1, 4); |
||
266 | alphagrad (outmatrix_ref (out, 2, 6 - 2), col, 1, 4); |
||
267 | alphagrad (outmatrix_ref (out, 4, 6 - 3), col, 1, 4); |
||
268 | alphagrad (outmatrix_ref (out, 1, 6 - 1), col, 3, 4); |
||
269 | alphagrad (outmatrix_ref (out, 3, 6 - 2), col, 3, 4); |
||
270 | alphagrad (outmatrix_ref (out, 5, 6 - 3), col, 3, 4); |
||
271 | *outmatrix_ref (out, 2, 6 - 1) = col; |
||
272 | *outmatrix_ref (out, 3, 6 - 1) = col; |
||
273 | *outmatrix_ref (out, 4, 6 - 1) = col; |
||
274 | *outmatrix_ref (out, 5, 6 - 1) = col; |
||
275 | *outmatrix_ref (out, 4, 6 - 2) = col; |
||
276 | *outmatrix_ref (out, 5, 6 - 2) = col; |
||
277 | } |
||
278 | |||
279 | /////////////////////////////////////////// |
||
280 | // steep and shallow line scaling functions |
||
281 | |||
282 | static void blend_line_steep_and_shallow_2x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
283 | { |
||
284 | alphagrad (outmatrix_ref (out, 1, 0), col, 1, 4); |
||
285 | alphagrad (outmatrix_ref (out, 0, 1), col, 1, 4); |
||
286 | alphagrad (outmatrix_ref (out, 1, 1), col, 5, 6); //[!] fixes 7/8 used in xBR |
||
287 | } |
||
288 | static void blend_line_steep_and_shallow_3x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
289 | { |
||
290 | alphagrad (outmatrix_ref (out, 2, 0), col, 1, 4); |
||
291 | alphagrad (outmatrix_ref (out, 0, 2), col, 1, 4); |
||
292 | alphagrad (outmatrix_ref (out, 2, 1), col, 3, 4); |
||
293 | alphagrad (outmatrix_ref (out, 1, 2), col, 3, 4); |
||
294 | *outmatrix_ref (out, 2, 2) = col; |
||
295 | } |
||
296 | static void blend_line_steep_and_shallow_4x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
297 | { |
||
298 | alphagrad (outmatrix_ref (out, 3, 1), col, 3, 4); |
||
299 | alphagrad (outmatrix_ref (out, 1, 3), col, 3, 4); |
||
300 | alphagrad (outmatrix_ref (out, 3, 0), col, 1, 4); |
||
301 | alphagrad (outmatrix_ref (out, 0, 3), col, 1, 4); |
||
302 | alphagrad (outmatrix_ref (out, 2, 2), col, 1, 3); //[!] fixes 1/4 used in xBR |
||
303 | *outmatrix_ref (out, 3, 3) = col; |
||
304 | *outmatrix_ref (out, 3, 2) = col; |
||
305 | *outmatrix_ref (out, 2, 3) = col; |
||
306 | } |
||
307 | static void blend_line_steep_and_shallow_5x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
308 | { |
||
309 | alphagrad (outmatrix_ref (out, 0, 5 - 1), col, 1, 4); |
||
310 | alphagrad (outmatrix_ref (out, 2, 5 - 2), col, 1, 4); |
||
311 | alphagrad (outmatrix_ref (out, 1, 5 - 1), col, 3, 4); |
||
312 | alphagrad (outmatrix_ref (out, 5 - 1, 0), col, 1, 4); |
||
313 | alphagrad (outmatrix_ref (out, 5 - 2, 2), col, 1, 4); |
||
314 | alphagrad (outmatrix_ref (out, 5 - 1, 1), col, 3, 4); |
||
315 | alphagrad (outmatrix_ref (out, 3, 3), col, 2, 3); |
||
316 | *outmatrix_ref (out, 2, 5 - 1) = col; |
||
317 | *outmatrix_ref (out, 3, 5 - 1) = col; |
||
318 | *outmatrix_ref (out, 4, 5 - 1) = col; |
||
319 | *outmatrix_ref (out, 5 - 1, 2) = col; |
||
320 | *outmatrix_ref (out, 5 - 1, 3) = col; |
||
321 | } |
||
322 | static void blend_line_steep_and_shallow_6x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
323 | { |
||
324 | alphagrad (outmatrix_ref (out, 0, 6 - 1), col, 1, 4); |
||
325 | alphagrad (outmatrix_ref (out, 2, 6 - 2), col, 1, 4); |
||
326 | alphagrad (outmatrix_ref (out, 1, 6 - 1), col, 3, 4); |
||
327 | alphagrad (outmatrix_ref (out, 3, 6 - 2), col, 3, 4); |
||
328 | alphagrad (outmatrix_ref (out, 6 - 1, 0), col, 1, 4); |
||
329 | alphagrad (outmatrix_ref (out, 6 - 2, 2), col, 1, 4); |
||
330 | alphagrad (outmatrix_ref (out, 6 - 1, 1), col, 3, 4); |
||
331 | alphagrad (outmatrix_ref (out, 6 - 2, 3), col, 3, 4); |
||
332 | *outmatrix_ref (out, 2, 6 - 1) = col; |
||
333 | *outmatrix_ref (out, 3, 6 - 1) = col; |
||
334 | *outmatrix_ref (out, 4, 6 - 1) = col; |
||
335 | *outmatrix_ref (out, 5, 6 - 1) = col; |
||
336 | *outmatrix_ref (out, 4, 6 - 2) = col; |
||
337 | *outmatrix_ref (out, 5, 6 - 2) = col; |
||
338 | *outmatrix_ref (out, 6 - 1, 2) = col; |
||
339 | *outmatrix_ref (out, 6 - 1, 3) = col; |
||
340 | } |
||
341 | |||
342 | ////////////////////////////////// |
||
343 | // diagonal line scaling functions |
||
344 | |||
345 | static void blend_line_diagonal_2x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
346 | { |
||
347 | alphagrad (outmatrix_ref (out, 1, 1), col, 1, 2); |
||
348 | } |
||
349 | static void blend_line_diagonal_3x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
350 | { |
||
351 | alphagrad (outmatrix_ref (out, 1, 2), col, 1, 8); //conflict with other rotations for this odd scale |
||
352 | alphagrad (outmatrix_ref (out, 2, 1), col, 1, 8); |
||
353 | alphagrad (outmatrix_ref (out, 2, 2), col, 7, 8); // |
||
354 | } |
||
355 | static void blend_line_diagonal_4x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
356 | { |
||
357 | alphagrad (outmatrix_ref (out, 4 - 1, 4 / 2), col, 1, 2); |
||
358 | alphagrad (outmatrix_ref (out, 4 - 2, 4 / 2 + 1), col, 1, 2); |
||
359 | *outmatrix_ref (out, 4 - 1, 4 - 1) = col; |
||
360 | } |
||
361 | static void blend_line_diagonal_5x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
362 | { |
||
363 | alphagrad (outmatrix_ref (out, 5 - 1, 5 / 2 + 0), col, 1, 8); //conflict with other rotations for this odd scale |
||
364 | alphagrad (outmatrix_ref (out, 5 - 2, 5 / 2 + 1), col, 1, 8); |
||
365 | alphagrad (outmatrix_ref (out, 5 - 3, 5 / 2 + 2), col, 1, 8); // |
||
366 | alphagrad (outmatrix_ref (out, 4, 3), col, 7, 8); |
||
367 | alphagrad (outmatrix_ref (out, 3, 4), col, 7, 8); |
||
368 | *outmatrix_ref (out, 4, 4) = col; |
||
369 | } |
||
370 | static void blend_line_diagonal_6x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
371 | { |
||
372 | alphagrad (outmatrix_ref (out, 6 - 1, 6 / 2 + 0), col, 1, 2); |
||
373 | alphagrad (outmatrix_ref (out, 6 - 2, 6 / 2 + 1), col, 1, 2); |
||
374 | alphagrad (outmatrix_ref (out, 6 - 3, 6 / 2 + 2), col, 1, 2); |
||
375 | *outmatrix_ref (out, 6 - 2, 6 - 1) = col; |
||
376 | *outmatrix_ref (out, 6 - 1, 6 - 1) = col; |
||
377 | *outmatrix_ref (out, 6 - 1, 6 - 2) = col; |
||
378 | } |
||
379 | |||
380 | /////////////////////////// |
||
381 | // corner scaling functions |
||
382 | |||
383 | static void blend_corner_2x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
384 | { |
||
385 | //model a round corner |
||
386 | alphagrad (outmatrix_ref (out, 1, 1), col, 21, 100); //exact: 1 - pi/4 = 0.2146018366 |
||
387 | } |
||
388 | static void blend_corner_3x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
389 | { |
||
390 | //model a round corner |
||
391 | alphagrad (outmatrix_ref (out, 2, 2), col, 45, 100); //exact: 0.4545939598 |
||
392 | //alphagrad (outmatrix_ref (out, 2, 1), col, 7, 256); //0.02826017254 -> negligible + avoid conflicts with other rotations for this odd scale |
||
393 | //alphagrad (outmatrix_ref (out, 1, 2), col, 7, 256); //0.02826017254 |
||
394 | } |
||
395 | static void blend_corner_4x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
396 | { |
||
397 | //model a round corner |
||
398 | alphagrad (outmatrix_ref (out, 3, 3), col, 68, 100); //exact: 0.6848532563 |
||
399 | alphagrad (outmatrix_ref (out, 3, 2), col, 9, 100); //0.08677704501 |
||
400 | alphagrad (outmatrix_ref (out, 2, 3), col, 9, 100); //0.08677704501 |
||
401 | } |
||
402 | static void blend_corner_5x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
403 | { |
||
404 | // model a round corner |
||
405 | alphagrad (outmatrix_ref (out, 4, 4), col, 86, 100); //exact: 0.8631434088 |
||
406 | alphagrad (outmatrix_ref (out, 4, 3), col, 23, 100); //0.2306749731 |
||
407 | alphagrad (outmatrix_ref (out, 3, 4), col, 23, 100); //0.2306749731 |
||
408 | //alphagrad (outmatrix_ref (out, 4, 2), col, 1, 64); //0.01676812367 -> negligible + avoid conflicts with other rotations for this odd scale |
||
409 | //alphagrad (outmatrix_ref (out, 2, 4), col, 1, 64); //0.01676812367 |
||
410 | } |
||
411 | static void blend_corner_6x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad) |
||
412 | { |
||
413 | //model a round corner |
||
414 | alphagrad (outmatrix_ref (out, 5, 5), col, 97, 100); //exact: 0.9711013910 |
||
415 | alphagrad (outmatrix_ref (out, 4, 5), col, 42, 100); //0.4236372243 |
||
416 | alphagrad (outmatrix_ref (out, 5, 4), col, 42, 100); //0.4236372243 |
||
417 | alphagrad (outmatrix_ref (out, 5, 3), col, 6, 100); //0.05652034508 |
||
418 | alphagrad (outmatrix_ref (out, 3, 5), col, 6, 100); //0.05652034508 |
||
419 | } |
||
420 | |||
421 | ///////////////////////////////////// |
||
422 | // scaler objects for various factors |
||
423 | |||
424 | static const scaler_t scalers[] = |
||
425 | { |
||
426 | { 2, blend_line_shallow_2x, blend_line_steep_2x, blend_line_steep_and_shallow_2x, blend_line_diagonal_2x, blend_corner_2x }, |
||
427 | { 3, blend_line_shallow_3x, blend_line_steep_3x, blend_line_steep_and_shallow_3x, blend_line_diagonal_3x, blend_corner_3x }, |
||
428 | { 4, blend_line_shallow_4x, blend_line_steep_4x, blend_line_steep_and_shallow_4x, blend_line_diagonal_4x, blend_corner_4x }, |
||
429 | { 5, blend_line_shallow_5x, blend_line_steep_5x, blend_line_steep_and_shallow_5x, blend_line_diagonal_5x, blend_corner_5x }, |
||
430 | { 6, blend_line_shallow_6x, blend_line_steep_6x, blend_line_steep_and_shallow_6x, blend_line_diagonal_6x, blend_corner_6x }, |
||
431 | }; |
||
432 | |||
433 | |||
4 | pmbaty | 434 | static FORCE_INLINE void preProcessCorners (blendresult_t *result, const kernel_4x4_t *ker, dist_func dist) |
2 | pmbaty | 435 | { |
4 | pmbaty | 436 | // detect blend direction |
437 | // result: F, G, J, K corners of "GradientType" |
||
2 | pmbaty | 438 | |
4 | pmbaty | 439 | // input kernel area naming convention: |
440 | // ----------------- |
||
441 | // | A | B | C | D | |
||
442 | // ----|---|---|---| |
||
443 | // | E | F | G | H | //evaluate the four corners between F, G, J, K |
||
444 | // ----|---|---|---| //input pixel is at position F |
||
445 | // | I | J | K | L | |
||
446 | // ----|---|---|---| |
||
447 | // | M | N | O | P | |
||
448 | // ----------------- |
||
2 | pmbaty | 449 | |
4 | pmbaty | 450 | memset (result, 0, sizeof (blendresult_t)); |
2 | pmbaty | 451 | |
4 | pmbaty | 452 | if (((ker->f == ker->g) && (ker->j == ker->k)) || ((ker->f == ker->j) && (ker->g == ker->k))) |
453 | return; |
||
2 | pmbaty | 454 | |
4 | pmbaty | 455 | const int weight = 4; |
456 | double jg = dist (ker->i, ker->f) + dist (ker->f, ker->c) + dist (ker->n, ker->k) + dist (ker->k, ker->h) + weight * dist (ker->j, ker->g); |
||
457 | double fk = dist (ker->e, ker->j) + dist (ker->j, ker->o) + dist (ker->b, ker->g) + dist (ker->g, ker->l) + weight * dist (ker->f, ker->k); |
||
2 | pmbaty | 458 | |
4 | pmbaty | 459 | if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8 |
460 | { |
||
461 | const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * jg < fk; |
||
462 | if (ker->f != ker->g && ker->f != ker->j) |
||
463 | result->blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; |
||
2 | pmbaty | 464 | |
4 | pmbaty | 465 | if (ker->k != ker->j && ker->k != ker->g) |
466 | result->blend_k = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; |
||
467 | } |
||
468 | else if (fk < jg) |
||
469 | { |
||
470 | const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * fk < jg; |
||
471 | if (ker->j != ker->f && ker->j != ker->k) |
||
472 | result->blend_j = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; |
||
2 | pmbaty | 473 | |
4 | pmbaty | 474 | if (ker->g != ker->f && ker->g != ker->k) |
475 | result->blend_g = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; |
||
476 | } |
||
477 | return; |
||
478 | } |
||
2 | pmbaty | 479 | |
4 | pmbaty | 480 | // compress four blend types into a single byte |
5 | pmbaty | 481 | #define getTopL(b) ((BlendType) (0x3 & ((unsigned char) (b) >> 0))) |
482 | #define getTopR(b) ((BlendType) (0x3 & ((unsigned char) (b) >> 2))) |
||
483 | #define getBottomR(b) ((BlendType) (0x3 & ((unsigned char) (b) >> 4))) |
||
484 | #define getBottomL(b) ((BlendType) (0x3 & ((unsigned char) (b) >> 6))) |
||
2 | pmbaty | 485 | |
5 | pmbaty | 486 | static inline void setTopL (unsigned char& b, BlendType bt) { b |= (((BlendType) (bt)) << 0); } //buffer is assumed to be initialized before preprocessing! |
487 | static inline void setTopR (unsigned char& b, BlendType bt) { b |= (((BlendType) (bt)) << 2); } |
||
488 | static inline void setBottomR (unsigned char& b, BlendType bt) { b |= (((BlendType) (bt)) << 4); } |
||
489 | static inline void setBottomL (unsigned char& b, BlendType bt) { b |= (((BlendType) (bt)) << 6); } |
||
2 | pmbaty | 490 | |
491 | |||
5 | pmbaty | 492 | FORCE_INLINE void blend_pixel (const scaler_t *scaler, const kernel_3x3_t *ker, uint32_t *target, int trgWidth, unsigned char blendInfo, alphagrad_func alphagrad, dist_func dist, int rotDeg) //result of preprocessing all four corners of pixel "e" |
4 | pmbaty | 493 | { |
5 | pmbaty | 494 | // input kernel area naming convention: |
495 | // ------------- |
||
496 | // | A | B | C | |
||
497 | // ----|---|---| |
||
498 | // | D | E | F | //input pixel is at position E |
||
499 | // ----|---|---| |
||
500 | // | G | H | I | |
||
501 | // ------------- |
||
3 | pmbaty | 502 | |
5 | pmbaty | 503 | uint32_t |
504 | a, b, c, |
||
505 | d, e, f, |
||
506 | g, h, i; |
||
507 | unsigned char blend; |
||
3 | pmbaty | 508 | |
5 | pmbaty | 509 | if (rotDeg == 270) { a = ker->c; b = ker->f; c = ker->i; d = ker->b; e = ker->e; f = ker->h; g = ker->a; h = ker->d; i = ker->g; blend = ((blendInfo << 6) | (blendInfo >> 2)) & 0xff; } |
510 | else if (rotDeg == 180) { a = ker->i; b = ker->h; c = ker->g; d = ker->f; e = ker->e; f = ker->d; g = ker->c; h = ker->b; i = ker->a; blend = ((blendInfo << 4) | (blendInfo >> 4)) & 0xff; } |
||
511 | else if (rotDeg == 90) { a = ker->g; b = ker->d; c = ker->a; d = ker->h; e = ker->e; f = ker->b; g = ker->i; h = ker->f; i = ker->c; blend = ((blendInfo << 2) | (blendInfo >> 6)) & 0xff; } |
||
512 | else { a = ker->a; b = ker->b; c = ker->c; d = ker->d; e = ker->e; f = ker->f; g = ker->g; h = ker->h; i = ker->i; blend = ((blendInfo << 0) | (blendInfo >> 8)) & 0xff; } |
||
3 | pmbaty | 513 | |
5 | pmbaty | 514 | if (getBottomR (blend) >= BLEND_NORMAL) |
4 | pmbaty | 515 | { |
5 | pmbaty | 516 | outmatrix_t out; |
517 | uint32_t px; |
||
518 | bool doLineBlend; |
||
2 | pmbaty | 519 | |
5 | pmbaty | 520 | if (getBottomR (blend) >= BLEND_DOMINANT) |
521 | doLineBlend = true; |
||
522 | else if (getTopR (blend) != BLEND_NONE && (dist (e, g) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE)) //but support double-blending for 90° corners |
||
523 | doLineBlend = false; // make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes |
||
524 | else if (getBottomL (blend) != BLEND_NONE && (dist (e, c) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE)) |
||
525 | doLineBlend = false; // make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes |
||
526 | else if ((dist (e, i) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE) |
||
527 | && (dist (g, h) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE) |
||
528 | && (dist (h, i) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE) |
||
529 | && (dist (i, f) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE) |
||
530 | && (dist (f, c) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE)) |
||
531 | doLineBlend = false; // no full blending for L-shapes; blend corner only (handles "mario mushroom eyes") |
||
532 | else |
||
533 | doLineBlend = true; |
||
2 | pmbaty | 534 | |
5 | pmbaty | 535 | outmatrix_create (&out, scaler->factor, target, trgWidth, rotDeg); |
536 | px = (dist (e, f) <= dist (e, h) ? f : h); //choose most similar color |
||
2 | pmbaty | 537 | |
5 | pmbaty | 538 | if (doLineBlend) |
4 | pmbaty | 539 | { |
5 | pmbaty | 540 | const double fg = dist (f, g); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9 |
541 | const double hc = dist (h, c); // |
||
542 | const bool haveShallowLine = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * fg <= hc) && (e != g) && (d != g); |
||
543 | const bool haveSteepLine = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * hc <= fg) && (e != c) && (b != c); |
||
2 | pmbaty | 544 | |
5 | pmbaty | 545 | if (haveShallowLine) |
546 | { |
||
547 | if (haveSteepLine) |
||
548 | scaler->blend_line_steep_and_shallow (px, &out, alphagrad); |
||
549 | else |
||
550 | scaler->blend_line_shallow (px, &out, alphagrad); |
||
551 | } |
||
4 | pmbaty | 552 | else |
553 | { |
||
5 | pmbaty | 554 | if (haveSteepLine) |
555 | scaler->blend_line_steep (px, &out, alphagrad); |
||
2 | pmbaty | 556 | else |
5 | pmbaty | 557 | scaler->blend_line_diagonal (px, &out, alphagrad); |
4 | pmbaty | 558 | } |
559 | } |
||
5 | pmbaty | 560 | else |
561 | scaler->blend_corner (px, &out, alphagrad); |
||
4 | pmbaty | 562 | } |
5 | pmbaty | 563 | } |
2 | pmbaty | 564 | |
565 | |||
5 | pmbaty | 566 | void scale_image (const scaler_t *scaler, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight, int yFirst, int yLast, alphagrad_func alphagrad, dist_func dist) |
567 | { |
||
568 | yFirst = MAX (yFirst, 0); |
||
569 | yLast = MIN (yLast, srcHeight); |
||
570 | if (yFirst >= yLast || srcWidth <= 0) |
||
571 | return; |
||
2 | pmbaty | 572 | |
5 | pmbaty | 573 | const int trgWidth = srcWidth * scaler->factor; |
2 | pmbaty | 574 | |
5 | pmbaty | 575 | //"use" space at the end of the image as temporary buffer for "on the fly preprocessing": we even could use larger area of |
576 | //"sizeof(uint32_t) * srcWidth * (yLast - yFirst)" bytes without risk of accidental overwriting before accessing |
||
577 | const int bufferSize = srcWidth; |
||
578 | unsigned char *preProcBuffer = (unsigned char *) (trg + yLast * scaler->factor * trgWidth) - bufferSize; |
||
579 | memset (preProcBuffer, 0, bufferSize); |
||
580 | static_assert(BLEND_NONE == 0, ""); |
||
2 | pmbaty | 581 | |
5 | pmbaty | 582 | //initialize preprocessing buffer for first row of current stripe: detect upper left and right corner blending |
583 | //this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition! |
||
584 | if (yFirst > 0) |
||
585 | { |
||
586 | const int y = yFirst - 1; |
||
2 | pmbaty | 587 | |
5 | pmbaty | 588 | const uint32_t* s_m1 = src + srcWidth * MAX (y - 1, 0); |
589 | const uint32_t* s_0 = src + srcWidth * y; //center line |
||
590 | const uint32_t* s_p1 = src + srcWidth * MIN (y + 1, srcHeight - 1); |
||
591 | const uint32_t* s_p2 = src + srcWidth * MIN (y + 2, srcHeight - 1); |
||
2 | pmbaty | 592 | |
5 | pmbaty | 593 | for (int x = 0; x < srcWidth; ++x) |
4 | pmbaty | 594 | { |
5 | pmbaty | 595 | blendresult_t res; |
596 | const int x_m1 = MAX (x - 1, 0); |
||
597 | const int x_p1 = MIN (x + 1, srcWidth - 1); |
||
598 | const int x_p2 = MIN (x + 2, srcWidth - 1); |
||
2 | pmbaty | 599 | |
5 | pmbaty | 600 | kernel_4x4_t ker; //perf: initialization is negligible |
601 | ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible |
||
602 | ker.b = s_m1[x]; |
||
603 | ker.c = s_m1[x_p1]; |
||
604 | ker.d = s_m1[x_p2]; |
||
2 | pmbaty | 605 | |
5 | pmbaty | 606 | ker.e = s_0[x_m1]; |
607 | ker.f = s_0[x]; |
||
608 | ker.g = s_0[x_p1]; |
||
609 | ker.h = s_0[x_p2]; |
||
2 | pmbaty | 610 | |
5 | pmbaty | 611 | ker.i = s_p1[x_m1]; |
612 | ker.j = s_p1[x]; |
||
613 | ker.k = s_p1[x_p1]; |
||
614 | ker.l = s_p1[x_p2]; |
||
2 | pmbaty | 615 | |
5 | pmbaty | 616 | ker.m = s_p2[x_m1]; |
617 | ker.n = s_p2[x]; |
||
618 | ker.o = s_p2[x_p1]; |
||
619 | ker.p = s_p2[x_p2]; |
||
2 | pmbaty | 620 | |
5 | pmbaty | 621 | preProcessCorners (&res, &ker, dist); |
622 | /* |
||
623 | preprocessing blend result: |
||
624 | --------- |
||
625 | | F | G | //evalute corner between F, G, J, K |
||
626 | ----|---| //input pixel is at position F |
||
627 | | J | K | |
||
628 | --------- |
||
629 | */ |
||
630 | setTopR (preProcBuffer[x], res.blend_j); |
||
2 | pmbaty | 631 | |
5 | pmbaty | 632 | if (x + 1 < bufferSize) |
633 | setTopL (preProcBuffer[x + 1], res.blend_k); |
||
4 | pmbaty | 634 | } |
635 | } |
||
636 | //------------------------------------------------------------------------------------ |
||
2 | pmbaty | 637 | |
5 | pmbaty | 638 | for (int y = yFirst; y < yLast; ++y) |
4 | pmbaty | 639 | { |
5 | pmbaty | 640 | uint32_t *out = trg + scaler->factor * y * trgWidth; //consider MT "striped" access |
2 | pmbaty | 641 | |
5 | pmbaty | 642 | const uint32_t* s_m1 = src + srcWidth * MAX (y - 1, 0); |
643 | const uint32_t* s_0 = src + srcWidth * y; //center line |
||
644 | const uint32_t* s_p1 = src + srcWidth * MIN (y + 1, srcHeight - 1); |
||
645 | const uint32_t* s_p2 = src + srcWidth * MIN (y + 2, srcHeight - 1); |
||
2 | pmbaty | 646 | |
5 | pmbaty | 647 | unsigned char blend_xy1 = 0; //corner blending for current (x, y + 1) position |
2 | pmbaty | 648 | |
5 | pmbaty | 649 | for (int x = 0; x < srcWidth; ++x, out += scaler->factor) |
4 | pmbaty | 650 | { |
5 | pmbaty | 651 | //all those bounds checks have only insignificant impact on performance! |
652 | const int x_m1 = MAX (x - 1, 0); //perf: prefer array indexing to additional pointers! |
||
653 | const int x_p1 = MIN (x + 1, srcWidth - 1); |
||
654 | const int x_p2 = MIN (x + 2, srcWidth - 1); |
||
655 | kernel_4x4_t ker4; //perf: initialization is negligible |
||
2 | pmbaty | 656 | |
5 | pmbaty | 657 | ker4.a = s_m1[x_m1]; //read sequentially from memory as far as possible |
658 | ker4.b = s_m1[x]; |
||
659 | ker4.c = s_m1[x_p1]; |
||
660 | ker4.d = s_m1[x_p2]; |
||
2 | pmbaty | 661 | |
5 | pmbaty | 662 | ker4.e = s_0[x_m1]; |
663 | ker4.f = s_0[x]; |
||
664 | ker4.g = s_0[x_p1]; |
||
665 | ker4.h = s_0[x_p2]; |
||
2 | pmbaty | 666 | |
5 | pmbaty | 667 | ker4.i = s_p1[x_m1]; |
668 | ker4.j = s_p1[x]; |
||
669 | ker4.k = s_p1[x_p1]; |
||
670 | ker4.l = s_p1[x_p2]; |
||
2 | pmbaty | 671 | |
5 | pmbaty | 672 | ker4.m = s_p2[x_m1]; |
673 | ker4.n = s_p2[x]; |
||
674 | ker4.o = s_p2[x_p1]; |
||
675 | ker4.p = s_p2[x_p2]; |
||
2 | pmbaty | 676 | |
5 | pmbaty | 677 | //evaluate the four corners on bottom-right of current pixel |
678 | unsigned char blend_xy = 0; //for current (x, y) position |
||
679 | { |
||
680 | blendresult_t res; |
||
681 | preProcessCorners (&res, &ker4, dist); |
||
682 | /* |
||
683 | preprocessing blend result: |
||
684 | --------- |
||
685 | | F | G | //evalute corner between F, G, J, K |
||
686 | ----|---| //current input pixel is at position F |
||
687 | | J | K | |
||
688 | --------- |
||
689 | */ |
||
690 | blend_xy = preProcBuffer[x]; |
||
691 | setBottomR (blend_xy, res.blend_f); //all four corners of (x, y) have been determined at this point due to processing sequence! |
||
2 | pmbaty | 692 | |
5 | pmbaty | 693 | setTopR (blend_xy1, res.blend_j); //set 2nd known corner for (x, y + 1) |
694 | preProcBuffer[x] = blend_xy1; //store on current buffer position for use on next row |
||
2 | pmbaty | 695 | |
5 | pmbaty | 696 | blend_xy1 = 0; |
697 | setTopL (blend_xy1, res.blend_k); //set 1st known corner for (x + 1, y + 1) and buffer for use on next column |
||
2 | pmbaty | 698 | |
5 | pmbaty | 699 | if (x + 1 < bufferSize) //set 3rd known corner for (x + 1, y) |
700 | setBottomL (preProcBuffer[x + 1], res.blend_g); |
||
701 | } |
||
2 | pmbaty | 702 | |
5 | pmbaty | 703 | //fill block of size scale * scale with the given color |
704 | { |
||
705 | uint32_t *blk = out; |
||
706 | for (int _blk_y = 0; _blk_y < scaler->factor; ++_blk_y, blk = (uint32_t *) BYTE_ADVANCE (blk, trgWidth * sizeof (uint32_t))) |
||
707 | for (int _blk_x = 0; _blk_x < scaler->factor; ++_blk_x) |
||
708 | blk[_blk_x] = ker4.f; |
||
709 | } |
||
710 | //place *after* preprocessing step, to not overwrite the results while processing the the last pixel! |
||
2 | pmbaty | 711 | |
5 | pmbaty | 712 | //blend four corners of current pixel |
713 | if (blend_xy != 0) //good 5% perf-improvement |
||
714 | { |
||
715 | kernel_3x3_t ker3; //perf: initialization is negligible |
||
2 | pmbaty | 716 | |
5 | pmbaty | 717 | ker3.a = ker4.a; |
718 | ker3.b = ker4.b; |
||
719 | ker3.c = ker4.c; |
||
2 | pmbaty | 720 | |
5 | pmbaty | 721 | ker3.d = ker4.e; |
722 | ker3.e = ker4.f; |
||
723 | ker3.f = ker4.g; |
||
2 | pmbaty | 724 | |
5 | pmbaty | 725 | ker3.g = ker4.i; |
726 | ker3.h = ker4.j; |
||
727 | ker3.i = ker4.k; |
||
3 | pmbaty | 728 | |
5 | pmbaty | 729 | blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, alphagrad, dist, 0); |
730 | blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, alphagrad, dist, 90); |
||
731 | blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, alphagrad, dist, 180); |
||
732 | blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, alphagrad, dist, 270); |
||
733 | } |
||
4 | pmbaty | 734 | } |
5 | pmbaty | 735 | } |
3 | pmbaty | 736 | } |
2 | pmbaty | 737 | |
738 | |||
3 | pmbaty | 739 | static double dist24 (uint32_t pix1, uint32_t pix2) |
740 | { |
||
4 | pmbaty | 741 | //30% perf boost compared to plain distYCbCr()! |
742 | //consumes 64 MB memory; using double is only 2% faster, but takes 128 MB |
||
743 | static float diffToDist[256 * 256 * 256]; |
||
744 | static bool is_initialized = false; |
||
745 | if (!is_initialized) |
||
746 | { |
||
747 | for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores) |
||
748 | { |
||
749 | const int r_diff = GET_RED (i) * 2 - 0xFF; |
||
750 | const int g_diff = GET_GREEN (i) * 2 - 0xFF; |
||
751 | const int b_diff = GET_BLUE (i) * 2 - 0xFF; |
||
2 | pmbaty | 752 | |
4 | pmbaty | 753 | const double k_b = 0.0593; //ITU-R BT.2020 conversion |
754 | const double k_r = 0.2627; // |
||
755 | const double k_g = 1 - k_b - k_r; |
||
2 | pmbaty | 756 | |
4 | pmbaty | 757 | const double scale_b = 0.5 / (1 - k_b); |
758 | const double scale_r = 0.5 / (1 - k_r); |
||
2 | pmbaty | 759 | |
4 | pmbaty | 760 | const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr! |
761 | const double c_b = scale_b * (b_diff - y); |
||
762 | const double c_r = scale_r * (r_diff - y); |
||
3 | pmbaty | 763 | |
4 | pmbaty | 764 | diffToDist[i] = (float) (sqrt ((y * y) + (c_b * c_b) + (c_r * c_r))); |
765 | } |
||
766 | is_initialized = true; |
||
767 | } |
||
3 | pmbaty | 768 | |
4 | pmbaty | 769 | const int r_diff = (int) GET_RED (pix1) - (int) GET_RED (pix2); |
770 | const int g_diff = (int) GET_GREEN (pix1) - (int) GET_GREEN (pix2); |
||
771 | const int b_diff = (int) GET_BLUE (pix1) - (int) GET_BLUE (pix2); |
||
3 | pmbaty | 772 | |
4 | pmbaty | 773 | return diffToDist[(((r_diff + 0xFF) / 2) << 16) | //slightly reduce precision (division by 2) to squeeze value into single byte |
774 | (((g_diff + 0xFF) / 2) << 8) | |
||
775 | (((b_diff + 0xFF) / 2) << 0)]; |
||
2 | pmbaty | 776 | } |
777 | |||
778 | |||
3 | pmbaty | 779 | static double dist32 (uint32_t pix1, uint32_t pix2) |
780 | { |
||
4 | pmbaty | 781 | const double a1 = GET_ALPHA (pix1) / 255.0; |
782 | const double a2 = GET_ALPHA (pix2) / 255.0; |
||
783 | /* |
||
784 | Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1] |
||
2 | pmbaty | 785 | |
4 | pmbaty | 786 | 1. if a1 = a2, distance should be: a1 * distYCbCr() |
787 | 2. if a1 = 0, distance should be: a2 * distYCbCr(black, white) = a2 * 255 |
||
788 | 3. if a1 = 1, ??? maybe: 255 * (1 - a2) + a2 * distYCbCr() |
||
789 | */ |
||
3 | pmbaty | 790 | |
4 | pmbaty | 791 | //return MIN (a1, a2) * distYCbCrBuffered(pix1, pix2) + 255 * abs(a1 - a2); |
792 | //=> following code is 15% faster: |
||
793 | const double d = dist24 (pix1, pix2); |
||
794 | return (a1 < a2 ? a1 * d + 255 * (a2 - a1) : a2 * d + 255 * (a1 - a2)); |
||
3 | pmbaty | 795 | } |
796 | |||
797 | |||
798 | static void alphagrad24 (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N) |
||
2 | pmbaty | 799 | { |
4 | pmbaty | 800 | // blend front color with opacity M / N over opaque background: http://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending |
801 | *pixBack = ((CALC_COLOR24 (GET_RED (pixFront), GET_RED (*pixBack), M, N) << 16) |
||
802 | | (CALC_COLOR24 (GET_GREEN (pixFront), GET_GREEN (*pixBack), M, N) << 8) |
||
803 | | (CALC_COLOR24 (GET_BLUE (pixFront), GET_BLUE (*pixBack), M, N) << 0)); |
||
2 | pmbaty | 804 | } |
805 | |||
806 | |||
3 | pmbaty | 807 | static void alphagrad32 (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N) |
808 | { |
||
4 | pmbaty | 809 | // find intermediate color between two colors with alpha channels (=> NO alpha blending!!!) |
810 | const unsigned int weightFront = GET_ALPHA (pixFront) * M; |
||
811 | const unsigned int weightBack = GET_ALPHA (*pixBack) * (N - M); |
||
812 | const unsigned int weightSum = weightFront + weightBack; |
||
813 | *pixBack = (weightSum == 0 ? 0 : |
||
814 | (((unsigned char) (weightSum / N)) << 24) |
||
815 | | (CALC_COLOR32 (GET_RED (pixFront), GET_RED (*pixBack), weightFront, weightBack, weightSum) << 16) |
||
816 | | (CALC_COLOR32 (GET_GREEN (pixFront), GET_GREEN (*pixBack), weightFront, weightBack, weightSum) << 8) |
||
817 | | (CALC_COLOR32 (GET_BLUE (pixFront), GET_BLUE (*pixBack), weightFront, weightBack, weightSum) << 0)); |
||
3 | pmbaty | 818 | } |
819 | |||
820 | |||
4 | pmbaty | 821 | EXTERN_C void nearestNeighborScale (const uint32_t *src, int srcWidth, int srcHeight, uint32_t *trg, int trgWidth, int trgHeight) |
3 | pmbaty | 822 | { |
4 | pmbaty | 823 | // nearestNeighborScale (src, srcWidth, srcHeight, srcWidth * sizeof (uint32_t), trg, trgWidth, trgHeight, trgWidth * sizeof (uint32_t), XBRZ_SLICETYPE_TARGET, 0, trgHeight, [](uint32_t pix) { return pix; }); |
824 | //static_assert(std::is_integral<PixSrc>::value, "PixSrc* is expected to be cast-able to char*"); |
||
825 | //static_assert(std::is_integral<PixTrg>::value, "PixTrg* is expected to be cast-able to char*"); |
||
826 | //static_assert(std::is_same<decltype(pixCvrt(PixSrc())), PixTrg>::value, "PixConverter returning wrong pixel format"); |
||
3 | pmbaty | 827 | |
4 | pmbaty | 828 | int srcPitch = srcWidth * sizeof (uint32_t); |
829 | int trgPitch = trgWidth * sizeof (uint32_t); |
||
830 | int yFirst; |
||
831 | int yLast; |
||
3 | pmbaty | 832 | |
833 | #if 0 // going over source image - fast for upscaling, since source is read only once |
||
4 | pmbaty | 834 | yFirst = 0; |
835 | yLast = MIN (trgHeight, srcHeight); |
||
3 | pmbaty | 836 | |
4 | pmbaty | 837 | if (yFirst >= yLast || trgWidth <= 0 || trgHeight <= 0) |
838 | return; // consistency check |
||
3 | pmbaty | 839 | |
4 | pmbaty | 840 | for (int y = yFirst; y < yLast; ++y) |
841 | { |
||
842 | //mathematically: ySrc = floor(srcHeight * yTrg / trgHeight) |
||
843 | // => search for integers in: [ySrc, ySrc + 1) * trgHeight / srcHeight |
||
3 | pmbaty | 844 | |
4 | pmbaty | 845 | //keep within for loop to support MT input slices! |
846 | const int yTrg_first = (y * trgHeight + srcHeight - 1) / srcHeight; //=ceil(y * trgHeight / srcHeight) |
||
847 | const int yTrg_last = ((y + 1) * trgHeight + srcHeight - 1) / srcHeight; //=ceil(((y + 1) * trgHeight) / srcHeight) |
||
848 | const int blockHeight = yTrg_last - yTrg_first; |
||
3 | pmbaty | 849 | |
4 | pmbaty | 850 | if (blockHeight > 0) |
851 | { |
||
852 | const uint32_t *srcLine = (const uint32_t *) BYTE_ADVANCE (src, y * srcPitch); |
||
853 | /**/ uint32_t *trgLine = (uint32_t *) BYTE_ADVANCE (trg, yTrg_first * trgPitch); |
||
854 | int xTrg_first = 0; |
||
3 | pmbaty | 855 | |
4 | pmbaty | 856 | for (int x = 0; x < srcWidth; ++x) |
857 | { |
||
858 | const int xTrg_last = ((x + 1) * trgWidth + srcWidth - 1) / srcWidth; |
||
859 | const int blockWidth = xTrg_last - xTrg_first; |
||
860 | if (blockWidth > 0) |
||
3 | pmbaty | 861 | { |
4 | pmbaty | 862 | const uint32_t trgColor = srcLine[x]; |
863 | uint32_t *blkLine = trgLine; |
||
3 | pmbaty | 864 | |
4 | pmbaty | 865 | xTrg_first = xTrg_last; |
3 | pmbaty | 866 | |
4 | pmbaty | 867 | for (int blk_y = 0; blk_y < blockHeight; ++blk_y, blkLine = (uint32_t *) BYTE_ADVANCE (blkLine, trgPitch)) |
868 | for (int blk_x = 0; blk_x < blockWidth; ++blk_x) |
||
869 | blkLine[blk_x] = trgColor; |
||
3 | pmbaty | 870 | |
4 | pmbaty | 871 | trgLine += blockWidth; |
3 | pmbaty | 872 | } |
4 | pmbaty | 873 | } |
874 | } |
||
875 | } |
||
3 | pmbaty | 876 | #else // going over target image - slow for upscaling, since source is read multiple times missing out on cache! Fast for similar image sizes! |
4 | pmbaty | 877 | yFirst = 0; |
878 | yLast = trgHeight; |
||
3 | pmbaty | 879 | |
4 | pmbaty | 880 | if (yFirst >= yLast || srcHeight <= 0 || srcWidth <= 0) |
881 | return; // consistency check |
||
3 | pmbaty | 882 | |
4 | pmbaty | 883 | for (int y = yFirst; y < yLast; ++y) |
884 | { |
||
885 | /**/ uint32_t *trgLine = (uint32_t *) BYTE_ADVANCE (trg, y * trgPitch); |
||
886 | const int ySrc = srcHeight * y / trgHeight; |
||
887 | const uint32_t *srcLine = (const uint32_t *) BYTE_ADVANCE (src, ySrc * srcPitch); |
||
888 | for (int x = 0; x < trgWidth; ++x) |
||
889 | { |
||
890 | const int xSrc = srcWidth * x / trgWidth; |
||
891 | trgLine[x] = srcLine[xSrc]; |
||
892 | } |
||
893 | } |
||
3 | pmbaty | 894 | #endif // going over source or target |
895 | |||
4 | pmbaty | 896 | return; |
3 | pmbaty | 897 | } |
898 | |||
899 | |||
2 | pmbaty | 900 | EXTERN_C bool xbrz_equalcolortest24 (uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance) |
901 | { |
||
4 | pmbaty | 902 | return (dist24 (col1, col2) < equalColorTolerance); |
2 | pmbaty | 903 | } |
904 | |||
905 | |||
906 | EXTERN_C bool xbrz_equalcolortest32 (uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance) |
||
907 | { |
||
4 | pmbaty | 908 | return (dist32 (col1, col2) < equalColorTolerance); |
2 | pmbaty | 909 | } |
910 | |||
911 | |||
912 | EXTERN_C void xbrz_scale24 (size_t factor, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight) |
||
913 | { |
||
5 | pmbaty | 914 | if (factor < 7) |
915 | return scale_image (&scalers[factor - 2], src, trg, srcWidth, srcHeight, 0, srcHeight, alphagrad24, dist24); |
||
2 | pmbaty | 916 | } |
917 | |||
918 | |||
919 | EXTERN_C void xbrz_scale32 (size_t factor, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight) |
||
920 | { |
||
5 | pmbaty | 921 | if (factor < 7) |
922 | return scale_image (&scalers[factor - 2], src, trg, srcWidth, srcHeight, 0, srcHeight, alphagrad32, dist32); |
||
2 | pmbaty | 923 | } |