Subversion Repositories Games.Prince of Persia

Rev

Rev 4 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 pmbaty 1
// ****************************************************************************
2
// * This file is part of the HqMAME project. It is distributed under         *
3
// * GNU General Public License: https://www.gnu.org/licenses/gpl-3.0         *
4
// * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved          *
5
// *                                                                          *
6
// * Additionally and as a special exception, the author gives permission     *
7
// * to link the code of this program with the MAME library (or with modified *
8
// * versions of MAME that use the same license as MAME), and distribute      *
9
// * linked combinations including the two. You must obey the GNU General     *
10
// * Public License in all respects for all of the code used other than MAME. *
11
// * If you modify this file, you may extend this exception to your version   *
12
// * of the file, but you are not obligated to do so. If you do not wish to   *
13
// * do so, delete this exception statement from your version.                *
14
// ****************************************************************************
15
 
3 pmbaty 16
// -------------------------------------------------------------------------
17
// | xBRZ: "Scale by rules" - high quality image upscaling filter by Zenju |
18
// -------------------------------------------------------------------------
19
// using a modified approach of xBR:
20
// http://board.byuu.org/viewtopic.php?f=10&t=2248
21
//  - new rule set preserving small image features
22
//  - highly optimized for performance
23
//  - support alpha channel
24
//  - support multithreading
25
//  - support 64-bit architectures
26
//  - support processing image slices
27
//  - support scaling up to 6xBRZ
2 pmbaty 28
 
3 pmbaty 29
// -> map source (srcWidth * srcHeight) to target (scale * width x scale * height) image, optionally processing a half-open slice of rows [yFirst, yLast) only
30
// -> support for source/target pitch in bytes!
31
// -> if your emulator changes only a few image slices during each cycle (e.g. DOSBox) then there's no need to run xBRZ on the complete image:
32
//    Just make sure you enlarge the source image slice by 2 rows on top and 2 on bottom (this is the additional range the xBRZ algorithm is using during analysis)
33
//    CAVEAT: If there are multiple changed slices, make sure they do not overlap after adding these additional rows in order to avoid a memory race condition
34
//    in the target image data if you are using multiple threads for processing each enlarged slice!
35
// 
36
// THREAD-SAFETY: - parts of the same image may be scaled by multiple threads as long as the [yFirst, yLast) ranges do not overlap!
37
//                - there is a minor inefficiency for the first row of a slice, so avoid processing single rows only; suggestion: process at least 8-16 rows
38
 
39
 
40
#include <stddef.h> // for size_t
41
#include <stdint.h> // for uint32_t
42
#include <memory.h> // for memset()
43
#include <limits.h>
2 pmbaty 44
#include <math.h>
45
 
46
 
47
#ifdef __cplusplus
48
#define EXTERN_C extern "C"
49
#else // !__cplusplus
50
#define EXTERN_C
51
#endif // __cplusplus
52
 
53
 
4 pmbaty 54
#ifdef _MSC_VER
55
#define FORCE_INLINE __forceinline
56
#elif defined __GNUC__
57
#define FORCE_INLINE __attribute__((always_inline)) inline
58
#else
59
#define FORCE_INLINE inline
60
#endif
61
 
62
 
2 pmbaty 63
// scaler configuration
64
#define XBRZ_CFG_LUMINANCE_WEIGHT 1
65
#define XBRZ_CFG_EQUAL_COLOR_TOLERANCE 30
66
#define XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD 3.6
67
#define XBRZ_CFG_STEEP_DIRECTION_THRESHOLD 2.2
68
 
69
 
70
// slice types
71
#define XBRZ_SLICETYPE_SOURCE 1
72
#define XBRZ_SLICETYPE_TARGET 2
73
 
74
 
75
// handy macros
76
#define GET_BYTE(val,byteno) ((unsigned char) (((val) >> ((byteno) << 3)) & 0xff))
77
#define GET_BLUE(val)  GET_BYTE (val, 0)
78
#define GET_GREEN(val) GET_BYTE (val, 1)
79
#define GET_RED(val)   GET_BYTE (val, 2)
80
#define GET_ALPHA(val) GET_BYTE (val, 3)
3 pmbaty 81
#define CALC_COLOR24(colFront,colBack,M,N) (unsigned char) ((((unsigned char) (colFront)) * ((unsigned int) (M)) + ((unsigned char) (colBack)) * (((unsigned int) (N)) - ((unsigned int) (M)))) / ((unsigned int) (N)))
82
#define CALC_COLOR32(colFront,colBack,weightFront,weightBack,weightSum) ((unsigned char) ((((unsigned char) (colFront)) * ((unsigned int) (weightFront)) + ((unsigned char) (colBack)) * ((unsigned int) (weightBack))) / ((unsigned int) (weightSum))))
83
#define BYTE_ADVANCE(buffer,offset) (((char *) buffer) + (offset))
84
#ifndef MIN
85
#define MIN(a,b) ((a) < (b) ? (a) : (b))
86
#endif // MIN
87
#ifndef MAX
88
#define MAX(a,b) ((a) > (b) ? (a) : (b))
89
#endif // MAX
2 pmbaty 90
 
91
 
4 pmbaty 92
enum BlendType
2 pmbaty 93
{
4 pmbaty 94
   BLEND_NONE = 0,
95
   BLEND_NORMAL,   //a normal indication to blend
96
   BLEND_DOMINANT, //a strong indication to blend
97
   //attention: BlendType must fit into the value range of 2 bit!!!
2 pmbaty 98
};
99
 
3 pmbaty 100
 
4 pmbaty 101
typedef struct blendresult_s
2 pmbaty 102
{
4 pmbaty 103
   BlendType
104
      /**/blend_f, blend_g,
105
      /**/blend_j, blend_k;
106
} blendresult_t;
2 pmbaty 107
 
108
 
4 pmbaty 109
typedef struct kernel_3x3_s
2 pmbaty 110
{
4 pmbaty 111
   uint32_t
112
      /**/a, b, c,
113
      /**/d, e, f,
114
      /**/g, h, i;
115
} kernel_3x3_t;
2 pmbaty 116
 
3 pmbaty 117
 
4 pmbaty 118
typedef struct kernel_4x4_s //kernel for preprocessing step
119
{
120
   uint32_t
121
      /**/a, b, c, d,
122
      /**/e, f, g, h,
123
      /**/i, j, k, l,
124
      /**/m, n, o, p;
125
} kernel_4x4_t;
2 pmbaty 126
 
127
 
4 pmbaty 128
typedef struct outmatrix_s
129
{
130
   size_t size;
131
   uint32_t* ptr;
132
   int stride;
5 pmbaty 133
   int rotDeg; // either 0, 90, 180 or 270
4 pmbaty 134
} outmatrix_t;
2 pmbaty 135
 
136
 
5 pmbaty 137
static void outmatrix_create (outmatrix_t *mat, size_t size, uint32_t *ptr, int stride, int rotDeg) //access matrix area, top-left at position "out" for image with given width
2 pmbaty 138
{
4 pmbaty 139
   mat->size = size;
140
   mat->ptr = ptr;
141
   mat->stride = stride;
142
   mat->rotDeg = rotDeg;
143
}
2 pmbaty 144
 
4 pmbaty 145
 
146
static uint32_t *outmatrix_ref (outmatrix_t *mat, size_t I, size_t J)
2 pmbaty 147
{
4 pmbaty 148
   size_t I_old;
149
   size_t J_old;
150
   // calculate input matrix coordinates after rotation: (i, j) = (row, col) indices, N = size of (square) matrix
5 pmbaty 151
   if (mat->rotDeg == 270) { I_old = J;                 J_old = mat->size - 1 - I; }
152
   else if (mat->rotDeg == 180) { I_old = mat->size - 1 - I; J_old = mat->size - 1 - J; }
153
   else if (mat->rotDeg == 90) { I_old = mat->size - 1 - J; J_old = I; }
154
   else { I_old = I;                 J_old = J; }
2 pmbaty 155
 
4 pmbaty 156
   return (mat->ptr + I_old * mat->stride + J_old);
157
}
2 pmbaty 158
 
159
 
5 pmbaty 160
typedef void (alphagrad_func) (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N);
161
typedef double (dist_func) (uint32_t pix1, uint32_t pix2);
162
 
163
 
164
typedef struct scaler_s
165
{
166
   int factor;
167
   void (*blend_line_shallow) (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad);
168
   void (*blend_line_steep) (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad);
169
   void (*blend_line_steep_and_shallow) (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad);
170
   void (*blend_line_diagonal) (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad);
171
   void (*blend_corner) (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad);
172
} scaler_t;
173
 
174
 
175
/////////////////////////////////
176
// shallow line scaling functions
177
 
178
static void blend_line_shallow_2x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
179
{
180
   alphagrad (outmatrix_ref (out, 2 - 1, 0), col, 1, 4);
181
   alphagrad (outmatrix_ref (out, 2 - 1, 1), col, 3, 4);
182
}
183
static void blend_line_shallow_3x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
184
{
185
   alphagrad (outmatrix_ref (out, 3 - 1, 0), col, 1, 4);
186
   alphagrad (outmatrix_ref (out, 3 - 2, 2), col, 1, 4);
187
   alphagrad (outmatrix_ref (out, 3 - 1, 1), col, 3, 4);
188
   *outmatrix_ref (out, 3 - 1, 2) = col;
189
}
190
static void blend_line_shallow_4x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
191
{
192
   alphagrad (outmatrix_ref (out, 4 - 1, 0), col, 1, 4);
193
   alphagrad (outmatrix_ref (out, 4 - 2, 2), col, 1, 4);
194
   alphagrad (outmatrix_ref (out, 4 - 1, 1), col, 3, 4);
195
   alphagrad (outmatrix_ref (out, 4 - 2, 3), col, 3, 4);
196
   *outmatrix_ref (out, 4 - 1, 2) = col;
197
   *outmatrix_ref (out, 4 - 1, 3) = col;
198
}
199
static void blend_line_shallow_5x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
200
{
201
   alphagrad (outmatrix_ref (out, 5 - 1, 0), col, 1, 4);
202
   alphagrad (outmatrix_ref (out, 5 - 2, 2), col, 1, 4);
203
   alphagrad (outmatrix_ref (out, 5 - 3, 4), col, 1, 4);
204
   alphagrad (outmatrix_ref (out, 5 - 1, 1), col, 3, 4);
205
   alphagrad (outmatrix_ref (out, 5 - 2, 3), col, 3, 4);
206
   *outmatrix_ref (out, 5 - 1, 2) = col;
207
   *outmatrix_ref (out, 5 - 1, 3) = col;
208
   *outmatrix_ref (out, 5 - 1, 4) = col;
209
   *outmatrix_ref (out, 5 - 2, 4) = col;
210
}
211
static void blend_line_shallow_6x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
212
{
213
   alphagrad (outmatrix_ref (out, 6 - 1, 0), col, 1, 4);
214
   alphagrad (outmatrix_ref (out, 6 - 2, 2), col, 1, 4);
215
   alphagrad (outmatrix_ref (out, 6 - 3, 4), col, 1, 4);
216
   alphagrad (outmatrix_ref (out, 6 - 1, 1), col, 3, 4);
217
   alphagrad (outmatrix_ref (out, 6 - 2, 3), col, 3, 4);
218
   alphagrad (outmatrix_ref (out, 6 - 3, 5), col, 3, 4);
219
   *outmatrix_ref (out, 6 - 1, 2) = col;
220
   *outmatrix_ref (out, 6 - 1, 3) = col;
221
   *outmatrix_ref (out, 6 - 1, 4) = col;
222
   *outmatrix_ref (out, 6 - 1, 5) = col;
223
   *outmatrix_ref (out, 6 - 2, 4) = col;
224
   *outmatrix_ref (out, 6 - 2, 5) = col;
225
}
226
 
227
///////////////////////////////
228
// steep line scaling functions
229
 
230
static void blend_line_steep_2x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
231
{
232
   alphagrad (outmatrix_ref (out, 0, 2 - 1), col, 1, 4);
233
   alphagrad (outmatrix_ref (out, 1, 2 - 1), col, 3, 4);
234
}
235
static void blend_line_steep_3x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
236
{
237
   alphagrad (outmatrix_ref (out, 0, 3 - 1), col, 1, 4);
238
   alphagrad (outmatrix_ref (out, 2, 3 - 2), col, 1, 4);
239
   alphagrad (outmatrix_ref (out, 1, 3 - 1), col, 3, 4);
240
   *outmatrix_ref (out, 2, 3 - 1) = col;
241
}
242
static void blend_line_steep_4x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
243
{
244
   alphagrad (outmatrix_ref (out, 0, 4 - 1), col, 1, 4);
245
   alphagrad (outmatrix_ref (out, 2, 4 - 2), col, 1, 4);
246
   alphagrad (outmatrix_ref (out, 1, 4 - 1), col, 3, 4);
247
   alphagrad (outmatrix_ref (out, 3, 4 - 2), col, 3, 4);
248
   *outmatrix_ref (out, 2, 4 - 1) = col;
249
   *outmatrix_ref (out, 3, 4 - 1) = col;
250
}
251
static void blend_line_steep_5x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
252
{
253
   alphagrad (outmatrix_ref (out, 0, 5 - 1), col, 1, 4);
254
   alphagrad (outmatrix_ref (out, 2, 5 - 2), col, 1, 4);
255
   alphagrad (outmatrix_ref (out, 4, 5 - 3), col, 1, 4);
256
   alphagrad (outmatrix_ref (out, 1, 5 - 1), col, 3, 4);
257
   alphagrad (outmatrix_ref (out, 3, 5 - 2), col, 3, 4);
258
   *outmatrix_ref (out, 2, 5 - 1) = col;
259
   *outmatrix_ref (out, 3, 5 - 1) = col;
260
   *outmatrix_ref (out, 4, 5 - 1) = col;
261
   *outmatrix_ref (out, 4, 5 - 2) = col;
262
}
263
static void blend_line_steep_6x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
264
{
265
   alphagrad (outmatrix_ref (out, 0, 6 - 1), col, 1, 4);
266
   alphagrad (outmatrix_ref (out, 2, 6 - 2), col, 1, 4);
267
   alphagrad (outmatrix_ref (out, 4, 6 - 3), col, 1, 4);
268
   alphagrad (outmatrix_ref (out, 1, 6 - 1), col, 3, 4);
269
   alphagrad (outmatrix_ref (out, 3, 6 - 2), col, 3, 4);
270
   alphagrad (outmatrix_ref (out, 5, 6 - 3), col, 3, 4);
271
   *outmatrix_ref (out, 2, 6 - 1) = col;
272
   *outmatrix_ref (out, 3, 6 - 1) = col;
273
   *outmatrix_ref (out, 4, 6 - 1) = col;
274
   *outmatrix_ref (out, 5, 6 - 1) = col;
275
   *outmatrix_ref (out, 4, 6 - 2) = col;
276
   *outmatrix_ref (out, 5, 6 - 2) = col;
277
}
278
 
279
///////////////////////////////////////////
280
// steep and shallow line scaling functions
281
 
282
static void blend_line_steep_and_shallow_2x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
283
{
284
   alphagrad (outmatrix_ref (out, 1, 0), col, 1, 4);
285
   alphagrad (outmatrix_ref (out, 0, 1), col, 1, 4);
286
   alphagrad (outmatrix_ref (out, 1, 1), col, 5, 6); //[!] fixes 7/8 used in xBR
287
}
288
static void blend_line_steep_and_shallow_3x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
289
{
290
   alphagrad (outmatrix_ref (out, 2, 0), col, 1, 4);
291
   alphagrad (outmatrix_ref (out, 0, 2), col, 1, 4);
292
   alphagrad (outmatrix_ref (out, 2, 1), col, 3, 4);
293
   alphagrad (outmatrix_ref (out, 1, 2), col, 3, 4);
294
   *outmatrix_ref (out, 2, 2) = col;
295
}
296
static void blend_line_steep_and_shallow_4x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
297
{
298
   alphagrad (outmatrix_ref (out, 3, 1), col, 3, 4);
299
   alphagrad (outmatrix_ref (out, 1, 3), col, 3, 4);
300
   alphagrad (outmatrix_ref (out, 3, 0), col, 1, 4);
301
   alphagrad (outmatrix_ref (out, 0, 3), col, 1, 4);
302
   alphagrad (outmatrix_ref (out, 2, 2), col, 1, 3); //[!] fixes 1/4 used in xBR
303
   *outmatrix_ref (out, 3, 3) = col;
304
   *outmatrix_ref (out, 3, 2) = col;
305
   *outmatrix_ref (out, 2, 3) = col;
306
}
307
static void blend_line_steep_and_shallow_5x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
308
{
309
   alphagrad (outmatrix_ref (out, 0, 5 - 1), col, 1, 4);
310
   alphagrad (outmatrix_ref (out, 2, 5 - 2), col, 1, 4);
311
   alphagrad (outmatrix_ref (out, 1, 5 - 1), col, 3, 4);
312
   alphagrad (outmatrix_ref (out, 5 - 1, 0), col, 1, 4);
313
   alphagrad (outmatrix_ref (out, 5 - 2, 2), col, 1, 4);
314
   alphagrad (outmatrix_ref (out, 5 - 1, 1), col, 3, 4);
315
   alphagrad (outmatrix_ref (out, 3, 3), col, 2, 3);
316
   *outmatrix_ref (out, 2, 5 - 1) = col;
317
   *outmatrix_ref (out, 3, 5 - 1) = col;
318
   *outmatrix_ref (out, 4, 5 - 1) = col;
319
   *outmatrix_ref (out, 5 - 1, 2) = col;
320
   *outmatrix_ref (out, 5 - 1, 3) = col;
321
}
322
static void blend_line_steep_and_shallow_6x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
323
{
324
   alphagrad (outmatrix_ref (out, 0, 6 - 1), col, 1, 4);
325
   alphagrad (outmatrix_ref (out, 2, 6 - 2), col, 1, 4);
326
   alphagrad (outmatrix_ref (out, 1, 6 - 1), col, 3, 4);
327
   alphagrad (outmatrix_ref (out, 3, 6 - 2), col, 3, 4);
328
   alphagrad (outmatrix_ref (out, 6 - 1, 0), col, 1, 4);
329
   alphagrad (outmatrix_ref (out, 6 - 2, 2), col, 1, 4);
330
   alphagrad (outmatrix_ref (out, 6 - 1, 1), col, 3, 4);
331
   alphagrad (outmatrix_ref (out, 6 - 2, 3), col, 3, 4);
332
   *outmatrix_ref (out, 2, 6 - 1) = col;
333
   *outmatrix_ref (out, 3, 6 - 1) = col;
334
   *outmatrix_ref (out, 4, 6 - 1) = col;
335
   *outmatrix_ref (out, 5, 6 - 1) = col;
336
   *outmatrix_ref (out, 4, 6 - 2) = col;
337
   *outmatrix_ref (out, 5, 6 - 2) = col;
338
   *outmatrix_ref (out, 6 - 1, 2) = col;
339
   *outmatrix_ref (out, 6 - 1, 3) = col;
340
}
341
 
342
//////////////////////////////////
343
// diagonal line scaling functions
344
 
345
static void blend_line_diagonal_2x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
346
{
347
   alphagrad (outmatrix_ref (out, 1, 1), col, 1, 2);
348
}
349
static void blend_line_diagonal_3x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
350
{
351
   alphagrad (outmatrix_ref (out, 1, 2), col, 1, 8); //conflict with other rotations for this odd scale
352
   alphagrad (outmatrix_ref (out, 2, 1), col, 1, 8);
353
   alphagrad (outmatrix_ref (out, 2, 2), col, 7, 8); //
354
}
355
static void blend_line_diagonal_4x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
356
{
357
   alphagrad (outmatrix_ref (out, 4 - 1, 4 / 2), col, 1, 2);
358
   alphagrad (outmatrix_ref (out, 4 - 2, 4 / 2 + 1), col, 1, 2);
359
   *outmatrix_ref (out, 4 - 1, 4 - 1) = col;
360
}
361
static void blend_line_diagonal_5x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
362
{
363
   alphagrad (outmatrix_ref (out, 5 - 1, 5 / 2 + 0), col, 1, 8); //conflict with other rotations for this odd scale
364
   alphagrad (outmatrix_ref (out, 5 - 2, 5 / 2 + 1), col, 1, 8);
365
   alphagrad (outmatrix_ref (out, 5 - 3, 5 / 2 + 2), col, 1, 8); //
366
   alphagrad (outmatrix_ref (out, 4, 3), col, 7, 8);
367
   alphagrad (outmatrix_ref (out, 3, 4), col, 7, 8);
368
   *outmatrix_ref (out, 4, 4) = col;
369
}
370
static void blend_line_diagonal_6x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
371
{
372
   alphagrad (outmatrix_ref (out, 6 - 1, 6 / 2 + 0), col, 1, 2);
373
   alphagrad (outmatrix_ref (out, 6 - 2, 6 / 2 + 1), col, 1, 2);
374
   alphagrad (outmatrix_ref (out, 6 - 3, 6 / 2 + 2), col, 1, 2);
375
   *outmatrix_ref (out, 6 - 2, 6 - 1) = col;
376
   *outmatrix_ref (out, 6 - 1, 6 - 1) = col;
377
   *outmatrix_ref (out, 6 - 1, 6 - 2) = col;
378
}
379
 
380
///////////////////////////
381
// corner scaling functions
382
 
383
static void blend_corner_2x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
384
{
385
   //model a round corner
386
   alphagrad (outmatrix_ref (out, 1, 1), col, 21, 100); //exact: 1 - pi/4 = 0.2146018366
387
}
388
static void blend_corner_3x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
389
{
390
   //model a round corner
391
   alphagrad (outmatrix_ref (out, 2, 2), col, 45, 100); //exact: 0.4545939598
392
   //alphagrad (outmatrix_ref (out, 2, 1), col, 7, 256); //0.02826017254 -> negligible + avoid conflicts with other rotations for this odd scale
393
   //alphagrad (outmatrix_ref (out, 1, 2), col, 7, 256); //0.02826017254
394
}
395
static void blend_corner_4x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
396
{
397
   //model a round corner
398
   alphagrad (outmatrix_ref (out, 3, 3), col, 68, 100); //exact: 0.6848532563
399
   alphagrad (outmatrix_ref (out, 3, 2), col, 9, 100); //0.08677704501
400
   alphagrad (outmatrix_ref (out, 2, 3), col, 9, 100); //0.08677704501
401
}
402
static void blend_corner_5x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
403
{
404
   // model a round corner
405
   alphagrad (outmatrix_ref (out, 4, 4), col, 86, 100); //exact: 0.8631434088
406
   alphagrad (outmatrix_ref (out, 4, 3), col, 23, 100); //0.2306749731
407
   alphagrad (outmatrix_ref (out, 3, 4), col, 23, 100); //0.2306749731
408
   //alphagrad (outmatrix_ref (out, 4, 2), col, 1, 64); //0.01676812367 -> negligible + avoid conflicts with other rotations for this odd scale
409
   //alphagrad (outmatrix_ref (out, 2, 4), col, 1, 64); //0.01676812367
410
}
411
static void blend_corner_6x (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
412
{
413
   //model a round corner
414
   alphagrad (outmatrix_ref (out, 5, 5), col, 97, 100); //exact: 0.9711013910
415
   alphagrad (outmatrix_ref (out, 4, 5), col, 42, 100); //0.4236372243
416
   alphagrad (outmatrix_ref (out, 5, 4), col, 42, 100); //0.4236372243
417
   alphagrad (outmatrix_ref (out, 5, 3), col, 6, 100); //0.05652034508
418
   alphagrad (outmatrix_ref (out, 3, 5), col, 6, 100); //0.05652034508
419
}
420
 
421
/////////////////////////////////////
422
// scaler objects for various factors
423
 
424
static const scaler_t scalers[] =
425
{
426
   { 2, blend_line_shallow_2x, blend_line_steep_2x, blend_line_steep_and_shallow_2x, blend_line_diagonal_2x, blend_corner_2x },
427
   { 3, blend_line_shallow_3x, blend_line_steep_3x, blend_line_steep_and_shallow_3x, blend_line_diagonal_3x, blend_corner_3x },
428
   { 4, blend_line_shallow_4x, blend_line_steep_4x, blend_line_steep_and_shallow_4x, blend_line_diagonal_4x, blend_corner_4x },
429
   { 5, blend_line_shallow_5x, blend_line_steep_5x, blend_line_steep_and_shallow_5x, blend_line_diagonal_5x, blend_corner_5x },
430
   { 6, blend_line_shallow_6x, blend_line_steep_6x, blend_line_steep_and_shallow_6x, blend_line_diagonal_6x, blend_corner_6x },
431
};
432
 
433
 
4 pmbaty 434
static FORCE_INLINE void preProcessCorners (blendresult_t *result, const kernel_4x4_t *ker, dist_func dist)
2 pmbaty 435
{
4 pmbaty 436
   // detect blend direction
437
   // result: F, G, J, K corners of "GradientType"
2 pmbaty 438
 
4 pmbaty 439
   // input kernel area naming convention:
440
   // -----------------
441
   // | A | B | C | D |
442
   // ----|---|---|---|
443
   // | E | F | G | H |   //evaluate the four corners between F, G, J, K
444
   // ----|---|---|---|   //input pixel is at position F
445
   // | I | J | K | L |
446
   // ----|---|---|---|
447
   // | M | N | O | P |
448
   // -----------------
2 pmbaty 449
 
4 pmbaty 450
   memset (result, 0, sizeof (blendresult_t));
2 pmbaty 451
 
4 pmbaty 452
   if (((ker->f == ker->g) && (ker->j == ker->k)) || ((ker->f == ker->j) && (ker->g == ker->k)))
453
      return;
2 pmbaty 454
 
4 pmbaty 455
   const int weight = 4;
456
   double jg = dist (ker->i, ker->f) + dist (ker->f, ker->c) + dist (ker->n, ker->k) + dist (ker->k, ker->h) + weight * dist (ker->j, ker->g);
457
   double fk = dist (ker->e, ker->j) + dist (ker->j, ker->o) + dist (ker->b, ker->g) + dist (ker->g, ker->l) + weight * dist (ker->f, ker->k);
2 pmbaty 458
 
4 pmbaty 459
   if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8
460
   {
461
      const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * jg < fk;
462
      if (ker->f != ker->g && ker->f != ker->j)
463
         result->blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
2 pmbaty 464
 
4 pmbaty 465
      if (ker->k != ker->j && ker->k != ker->g)
466
         result->blend_k = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
467
   }
468
   else if (fk < jg)
469
   {
470
      const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * fk < jg;
471
      if (ker->j != ker->f && ker->j != ker->k)
472
         result->blend_j = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
2 pmbaty 473
 
4 pmbaty 474
      if (ker->g != ker->f && ker->g != ker->k)
475
         result->blend_g = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
476
   }
477
   return;
478
}
2 pmbaty 479
 
4 pmbaty 480
// compress four blend types into a single byte
5 pmbaty 481
#define getTopL(b)    ((BlendType) (0x3 & ((unsigned char) (b) >> 0)))
482
#define getTopR(b)    ((BlendType) (0x3 & ((unsigned char) (b) >> 2)))
483
#define getBottomR(b) ((BlendType) (0x3 & ((unsigned char) (b) >> 4)))
484
#define getBottomL(b) ((BlendType) (0x3 & ((unsigned char) (b) >> 6)))
2 pmbaty 485
 
5 pmbaty 486
static inline void setTopL (unsigned char& b, BlendType bt) { b |= (((BlendType) (bt)) << 0); } //buffer is assumed to be initialized before preprocessing!
487
static inline void setTopR (unsigned char& b, BlendType bt) { b |= (((BlendType) (bt)) << 2); }
488
static inline void setBottomR (unsigned char& b, BlendType bt) { b |= (((BlendType) (bt)) << 4); }
489
static inline void setBottomL (unsigned char& b, BlendType bt) { b |= (((BlendType) (bt)) << 6); }
2 pmbaty 490
 
491
 
5 pmbaty 492
FORCE_INLINE void blend_pixel (const scaler_t *scaler, const kernel_3x3_t *ker, uint32_t *target, int trgWidth, unsigned char blendInfo, alphagrad_func alphagrad, dist_func dist, int rotDeg) //result of preprocessing all four corners of pixel "e"
4 pmbaty 493
{
5 pmbaty 494
   // input kernel area naming convention:
495
   // -------------
496
   // | A | B | C |
497
   // ----|---|---|
498
   // | D | E | F | //input pixel is at position E
499
   // ----|---|---|
500
   // | G | H | I |
501
   // -------------
3 pmbaty 502
 
5 pmbaty 503
   uint32_t
504
      a, b, c,
505
      d, e, f,
506
      g, h, i;
507
   unsigned char blend;
3 pmbaty 508
 
5 pmbaty 509
   if      (rotDeg == 270) { a = ker->c; b = ker->f; c = ker->i; d = ker->b; e = ker->e; f = ker->h; g = ker->a; h = ker->d; i = ker->g; blend = ((blendInfo << 6) | (blendInfo >> 2)) & 0xff; }
510
   else if (rotDeg == 180) { a = ker->i; b = ker->h; c = ker->g; d = ker->f; e = ker->e; f = ker->d; g = ker->c; h = ker->b; i = ker->a; blend = ((blendInfo << 4) | (blendInfo >> 4)) & 0xff; }
511
   else if (rotDeg == 90)  { a = ker->g; b = ker->d; c = ker->a; d = ker->h; e = ker->e; f = ker->b; g = ker->i; h = ker->f; i = ker->c; blend = ((blendInfo << 2) | (blendInfo >> 6)) & 0xff; }
512
   else                    { a = ker->a; b = ker->b; c = ker->c; d = ker->d; e = ker->e; f = ker->f; g = ker->g; h = ker->h; i = ker->i; blend = ((blendInfo << 0) | (blendInfo >> 8)) & 0xff; }
3 pmbaty 513
 
5 pmbaty 514
   if (getBottomR (blend) >= BLEND_NORMAL)
4 pmbaty 515
   {
5 pmbaty 516
      outmatrix_t out;
517
      uint32_t px;
518
      bool doLineBlend;
2 pmbaty 519
 
5 pmbaty 520
      if (getBottomR (blend) >= BLEND_DOMINANT)
521
         doLineBlend = true;
522
      else if (getTopR (blend) != BLEND_NONE && (dist (e, g) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE)) //but support double-blending for 90° corners
523
         doLineBlend = false; // make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
524
      else if (getBottomL (blend) != BLEND_NONE && (dist (e, c) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE))
525
         doLineBlend = false; // make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
526
      else if ((dist (e, i) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
527
         && (dist (g, h) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
528
         && (dist (h, i) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
529
         && (dist (i, f) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
530
         && (dist (f, c) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE))
531
         doLineBlend = false; // no full blending for L-shapes; blend corner only (handles "mario mushroom eyes")
532
      else
533
         doLineBlend = true;
2 pmbaty 534
 
5 pmbaty 535
      outmatrix_create (&out, scaler->factor, target, trgWidth, rotDeg);
536
      px = (dist (e, f) <= dist (e, h) ? f : h); //choose most similar color
2 pmbaty 537
 
5 pmbaty 538
      if (doLineBlend)
4 pmbaty 539
      {
5 pmbaty 540
         const double fg = dist (f, g); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9
541
         const double hc = dist (h, c); //
542
         const bool haveShallowLine = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * fg <= hc) && (e != g) && (d != g);
543
         const bool haveSteepLine   = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * hc <= fg) && (e != c) && (b != c);
2 pmbaty 544
 
5 pmbaty 545
         if (haveShallowLine)
546
         {
547
            if (haveSteepLine)
548
               scaler->blend_line_steep_and_shallow (px, &out, alphagrad);
549
            else
550
               scaler->blend_line_shallow (px, &out, alphagrad);
551
         }
4 pmbaty 552
         else
553
         {
5 pmbaty 554
            if (haveSteepLine)
555
               scaler->blend_line_steep (px, &out, alphagrad);
2 pmbaty 556
            else
5 pmbaty 557
               scaler->blend_line_diagonal (px, &out, alphagrad);
4 pmbaty 558
         }
559
      }
5 pmbaty 560
      else
561
         scaler->blend_corner (px, &out, alphagrad);
4 pmbaty 562
   }
5 pmbaty 563
}
2 pmbaty 564
 
565
 
5 pmbaty 566
void scale_image (const scaler_t *scaler, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight, int yFirst, int yLast, alphagrad_func alphagrad, dist_func dist)
567
{
568
   yFirst = MAX (yFirst, 0);
569
   yLast = MIN (yLast, srcHeight);
570
   if (yFirst >= yLast || srcWidth <= 0)
571
      return;
2 pmbaty 572
 
5 pmbaty 573
   const int trgWidth = srcWidth * scaler->factor;
2 pmbaty 574
 
5 pmbaty 575
   //"use" space at the end of the image as temporary buffer for "on the fly preprocessing": we even could use larger area of
576
   //"sizeof(uint32_t) * srcWidth * (yLast - yFirst)" bytes without risk of accidental overwriting before accessing
577
   const int bufferSize = srcWidth;
578
   unsigned char *preProcBuffer = (unsigned char *) (trg + yLast * scaler->factor * trgWidth) - bufferSize;
579
   memset (preProcBuffer, 0, bufferSize);
580
   static_assert(BLEND_NONE == 0, "");
2 pmbaty 581
 
5 pmbaty 582
   //initialize preprocessing buffer for first row of current stripe: detect upper left and right corner blending
583
   //this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition!
584
   if (yFirst > 0)
585
   {
586
      const int y = yFirst - 1;
2 pmbaty 587
 
5 pmbaty 588
      const uint32_t* s_m1 = src + srcWidth * MAX (y - 1, 0);
589
      const uint32_t* s_0 = src + srcWidth * y; //center line
590
      const uint32_t* s_p1 = src + srcWidth * MIN (y + 1, srcHeight - 1);
591
      const uint32_t* s_p2 = src + srcWidth * MIN (y + 2, srcHeight - 1);
2 pmbaty 592
 
5 pmbaty 593
      for (int x = 0; x < srcWidth; ++x)
4 pmbaty 594
      {
5 pmbaty 595
         blendresult_t res;
596
         const int x_m1 = MAX (x - 1, 0);
597
         const int x_p1 = MIN (x + 1, srcWidth - 1);
598
         const int x_p2 = MIN (x + 2, srcWidth - 1);
2 pmbaty 599
 
5 pmbaty 600
         kernel_4x4_t ker; //perf: initialization is negligible
601
         ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible
602
         ker.b = s_m1[x];
603
         ker.c = s_m1[x_p1];
604
         ker.d = s_m1[x_p2];
2 pmbaty 605
 
5 pmbaty 606
         ker.e = s_0[x_m1];
607
         ker.f = s_0[x];
608
         ker.g = s_0[x_p1];
609
         ker.h = s_0[x_p2];
2 pmbaty 610
 
5 pmbaty 611
         ker.i = s_p1[x_m1];
612
         ker.j = s_p1[x];
613
         ker.k = s_p1[x_p1];
614
         ker.l = s_p1[x_p2];
2 pmbaty 615
 
5 pmbaty 616
         ker.m = s_p2[x_m1];
617
         ker.n = s_p2[x];
618
         ker.o = s_p2[x_p1];
619
         ker.p = s_p2[x_p2];
2 pmbaty 620
 
5 pmbaty 621
         preProcessCorners (&res, &ker, dist);
622
         /*
623
         preprocessing blend result:
624
         ---------
625
         | F | G |   //evalute corner between F, G, J, K
626
         ----|---|   //input pixel is at position F
627
         | J | K |
628
         ---------
629
         */
630
         setTopR (preProcBuffer[x], res.blend_j);
2 pmbaty 631
 
5 pmbaty 632
         if (x + 1 < bufferSize)
633
            setTopL (preProcBuffer[x + 1], res.blend_k);
4 pmbaty 634
      }
635
   }
636
   //------------------------------------------------------------------------------------
2 pmbaty 637
 
5 pmbaty 638
   for (int y = yFirst; y < yLast; ++y)
4 pmbaty 639
   {
5 pmbaty 640
      uint32_t *out = trg + scaler->factor * y * trgWidth; //consider MT "striped" access
2 pmbaty 641
 
5 pmbaty 642
      const uint32_t* s_m1 = src + srcWidth * MAX (y - 1, 0);
643
      const uint32_t* s_0 = src + srcWidth * y; //center line
644
      const uint32_t* s_p1 = src + srcWidth * MIN (y + 1, srcHeight - 1);
645
      const uint32_t* s_p2 = src + srcWidth * MIN (y + 2, srcHeight - 1);
2 pmbaty 646
 
5 pmbaty 647
      unsigned char blend_xy1 = 0; //corner blending for current (x, y + 1) position
2 pmbaty 648
 
5 pmbaty 649
      for (int x = 0; x < srcWidth; ++x, out += scaler->factor)
4 pmbaty 650
      {
5 pmbaty 651
         //all those bounds checks have only insignificant impact on performance!
652
         const int x_m1 = MAX (x - 1, 0); //perf: prefer array indexing to additional pointers!
653
         const int x_p1 = MIN (x + 1, srcWidth - 1);
654
         const int x_p2 = MIN (x + 2, srcWidth - 1);
655
         kernel_4x4_t ker4; //perf: initialization is negligible
2 pmbaty 656
 
5 pmbaty 657
         ker4.a = s_m1[x_m1]; //read sequentially from memory as far as possible
658
         ker4.b = s_m1[x];
659
         ker4.c = s_m1[x_p1];
660
         ker4.d = s_m1[x_p2];
2 pmbaty 661
 
5 pmbaty 662
         ker4.e = s_0[x_m1];
663
         ker4.f = s_0[x];
664
         ker4.g = s_0[x_p1];
665
         ker4.h = s_0[x_p2];
2 pmbaty 666
 
5 pmbaty 667
         ker4.i = s_p1[x_m1];
668
         ker4.j = s_p1[x];
669
         ker4.k = s_p1[x_p1];
670
         ker4.l = s_p1[x_p2];
2 pmbaty 671
 
5 pmbaty 672
         ker4.m = s_p2[x_m1];
673
         ker4.n = s_p2[x];
674
         ker4.o = s_p2[x_p1];
675
         ker4.p = s_p2[x_p2];
2 pmbaty 676
 
5 pmbaty 677
         //evaluate the four corners on bottom-right of current pixel
678
         unsigned char blend_xy = 0; //for current (x, y) position
679
         {
680
            blendresult_t res;
681
            preProcessCorners (&res, &ker4, dist);
682
            /*
683
            preprocessing blend result:
684
            ---------
685
            | F | G |   //evalute corner between F, G, J, K
686
            ----|---|   //current input pixel is at position F
687
            | J | K |
688
            ---------
689
            */
690
            blend_xy = preProcBuffer[x];
691
            setBottomR (blend_xy, res.blend_f); //all four corners of (x, y) have been determined at this point due to processing sequence!
2 pmbaty 692
 
5 pmbaty 693
            setTopR (blend_xy1, res.blend_j); //set 2nd known corner for (x, y + 1)
694
            preProcBuffer[x] = blend_xy1; //store on current buffer position for use on next row
2 pmbaty 695
 
5 pmbaty 696
            blend_xy1 = 0;
697
            setTopL (blend_xy1, res.blend_k); //set 1st known corner for (x + 1, y + 1) and buffer for use on next column
2 pmbaty 698
 
5 pmbaty 699
            if (x + 1 < bufferSize) //set 3rd known corner for (x + 1, y)
700
               setBottomL (preProcBuffer[x + 1], res.blend_g);
701
         }
2 pmbaty 702
 
5 pmbaty 703
         //fill block of size scale * scale with the given color
704
         {
705
            uint32_t *blk = out;
706
            for (int _blk_y = 0; _blk_y < scaler->factor; ++_blk_y, blk = (uint32_t *) BYTE_ADVANCE (blk, trgWidth * sizeof (uint32_t)))
707
               for (int _blk_x = 0; _blk_x < scaler->factor; ++_blk_x)
708
                  blk[_blk_x] = ker4.f;
709
         }
710
         //place *after* preprocessing step, to not overwrite the results while processing the the last pixel!
2 pmbaty 711
 
5 pmbaty 712
         //blend four corners of current pixel
713
         if (blend_xy != 0) //good 5% perf-improvement
714
         {
715
            kernel_3x3_t ker3; //perf: initialization is negligible
2 pmbaty 716
 
5 pmbaty 717
            ker3.a = ker4.a;
718
            ker3.b = ker4.b;
719
            ker3.c = ker4.c;
2 pmbaty 720
 
5 pmbaty 721
            ker3.d = ker4.e;
722
            ker3.e = ker4.f;
723
            ker3.f = ker4.g;
2 pmbaty 724
 
5 pmbaty 725
            ker3.g = ker4.i;
726
            ker3.h = ker4.j;
727
            ker3.i = ker4.k;
3 pmbaty 728
 
5 pmbaty 729
            blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, alphagrad, dist, 0);
730
            blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, alphagrad, dist, 90);
731
            blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, alphagrad, dist, 180);
732
            blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, alphagrad, dist, 270);
733
         }
4 pmbaty 734
      }
5 pmbaty 735
   }
3 pmbaty 736
}
2 pmbaty 737
 
738
 
3 pmbaty 739
static double dist24 (uint32_t pix1, uint32_t pix2)
740
{
4 pmbaty 741
   //30% perf boost compared to plain distYCbCr()!
742
   //consumes 64 MB memory; using double is only 2% faster, but takes 128 MB
743
   static float diffToDist[256 * 256 * 256];
744
   static bool is_initialized = false;
745
   if (!is_initialized)
746
   {
747
      for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores)
748
      {
749
         const int r_diff = GET_RED (i) * 2 - 0xFF;
750
         const int g_diff = GET_GREEN (i) * 2 - 0xFF;
751
         const int b_diff = GET_BLUE (i) * 2 - 0xFF;
2 pmbaty 752
 
4 pmbaty 753
         const double k_b = 0.0593; //ITU-R BT.2020 conversion
754
         const double k_r = 0.2627; //
755
         const double k_g = 1 - k_b - k_r;
2 pmbaty 756
 
4 pmbaty 757
         const double scale_b = 0.5 / (1 - k_b);
758
         const double scale_r = 0.5 / (1 - k_r);
2 pmbaty 759
 
4 pmbaty 760
         const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr!
761
         const double c_b = scale_b * (b_diff - y);
762
         const double c_r = scale_r * (r_diff - y);
3 pmbaty 763
 
4 pmbaty 764
         diffToDist[i] = (float) (sqrt ((y * y) + (c_b * c_b) + (c_r * c_r)));
765
      }
766
      is_initialized = true;
767
   }
3 pmbaty 768
 
4 pmbaty 769
   const int r_diff = (int) GET_RED (pix1) - (int) GET_RED (pix2);
770
   const int g_diff = (int) GET_GREEN (pix1) - (int) GET_GREEN (pix2);
771
   const int b_diff = (int) GET_BLUE (pix1) - (int) GET_BLUE (pix2);
3 pmbaty 772
 
4 pmbaty 773
   return diffToDist[(((r_diff + 0xFF) / 2) << 16) | //slightly reduce precision (division by 2) to squeeze value into single byte
774
      (((g_diff + 0xFF) / 2) << 8) |
775
      (((b_diff + 0xFF) / 2) << 0)];
2 pmbaty 776
}
777
 
778
 
3 pmbaty 779
static double dist32 (uint32_t pix1, uint32_t pix2)
780
{
4 pmbaty 781
   const double a1 = GET_ALPHA (pix1) / 255.0;
782
   const double a2 = GET_ALPHA (pix2) / 255.0;
783
   /*
784
   Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1]
2 pmbaty 785
 
4 pmbaty 786
       1. if a1 = a2, distance should be: a1 * distYCbCr()
787
       2. if a1 = 0,  distance should be: a2 * distYCbCr(black, white) = a2 * 255
788
       3. if a1 = 1,  ??? maybe: 255 * (1 - a2) + a2 * distYCbCr()
789
   */
3 pmbaty 790
 
4 pmbaty 791
   //return MIN (a1, a2) * distYCbCrBuffered(pix1, pix2) + 255 * abs(a1 - a2);
792
   //=> following code is 15% faster:
793
   const double d = dist24 (pix1, pix2);
794
   return (a1 < a2 ? a1 * d + 255 * (a2 - a1) : a2 * d + 255 * (a1 - a2));
3 pmbaty 795
}
796
 
797
 
798
static void alphagrad24 (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N)
2 pmbaty 799
{
4 pmbaty 800
   // blend front color with opacity M / N over opaque background: http://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending
801
   *pixBack = ((CALC_COLOR24 (GET_RED (pixFront), GET_RED (*pixBack), M, N) << 16)
802
      | (CALC_COLOR24 (GET_GREEN (pixFront), GET_GREEN (*pixBack), M, N) << 8)
803
      | (CALC_COLOR24 (GET_BLUE (pixFront), GET_BLUE (*pixBack), M, N) << 0));
2 pmbaty 804
}
805
 
806
 
3 pmbaty 807
static void alphagrad32 (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N)
808
{
4 pmbaty 809
   // find intermediate color between two colors with alpha channels (=> NO alpha blending!!!)
810
   const unsigned int weightFront = GET_ALPHA (pixFront) * M;
811
   const unsigned int weightBack = GET_ALPHA (*pixBack) * (N - M);
812
   const unsigned int weightSum = weightFront + weightBack;
813
   *pixBack = (weightSum == 0 ? 0 :
814
      (((unsigned char) (weightSum / N)) << 24)
815
      | (CALC_COLOR32 (GET_RED (pixFront), GET_RED (*pixBack), weightFront, weightBack, weightSum) << 16)
816
      | (CALC_COLOR32 (GET_GREEN (pixFront), GET_GREEN (*pixBack), weightFront, weightBack, weightSum) << 8)
817
      | (CALC_COLOR32 (GET_BLUE (pixFront), GET_BLUE (*pixBack), weightFront, weightBack, weightSum) << 0));
3 pmbaty 818
}
819
 
820
 
4 pmbaty 821
EXTERN_C void nearestNeighborScale (const uint32_t *src, int srcWidth, int srcHeight, uint32_t *trg, int trgWidth, int trgHeight)
3 pmbaty 822
{
4 pmbaty 823
   //    nearestNeighborScale (src, srcWidth, srcHeight, srcWidth * sizeof (uint32_t), trg, trgWidth, trgHeight, trgWidth * sizeof (uint32_t), XBRZ_SLICETYPE_TARGET, 0, trgHeight, [](uint32_t pix) { return pix; });
824
       //static_assert(std::is_integral<PixSrc>::value, "PixSrc* is expected to be cast-able to char*");
825
       //static_assert(std::is_integral<PixTrg>::value, "PixTrg* is expected to be cast-able to char*");
826
       //static_assert(std::is_same<decltype(pixCvrt(PixSrc())), PixTrg>::value, "PixConverter returning wrong pixel format");
3 pmbaty 827
 
4 pmbaty 828
   int srcPitch = srcWidth * sizeof (uint32_t);
829
   int trgPitch = trgWidth * sizeof (uint32_t);
830
   int yFirst;
831
   int yLast;
3 pmbaty 832
 
833
#if 0 // going over source image - fast for upscaling, since source is read only once
4 pmbaty 834
   yFirst = 0;
835
   yLast = MIN (trgHeight, srcHeight);
3 pmbaty 836
 
4 pmbaty 837
   if (yFirst >= yLast || trgWidth <= 0 || trgHeight <= 0)
838
      return; // consistency check
3 pmbaty 839
 
4 pmbaty 840
   for (int y = yFirst; y < yLast; ++y)
841
   {
842
      //mathematically: ySrc = floor(srcHeight * yTrg / trgHeight)
843
      // => search for integers in: [ySrc, ySrc + 1) * trgHeight / srcHeight
3 pmbaty 844
 
4 pmbaty 845
      //keep within for loop to support MT input slices!
846
      const int yTrg_first = (y      * trgHeight + srcHeight - 1) / srcHeight; //=ceil(y * trgHeight / srcHeight)
847
      const int yTrg_last = ((y + 1) * trgHeight + srcHeight - 1) / srcHeight; //=ceil(((y + 1) * trgHeight) / srcHeight)
848
      const int blockHeight = yTrg_last - yTrg_first;
3 pmbaty 849
 
4 pmbaty 850
      if (blockHeight > 0)
851
      {
852
         const uint32_t *srcLine = (const uint32_t *) BYTE_ADVANCE (src, y * srcPitch);
853
         /**/  uint32_t *trgLine = (uint32_t *) BYTE_ADVANCE (trg, yTrg_first * trgPitch);
854
         int xTrg_first = 0;
3 pmbaty 855
 
4 pmbaty 856
         for (int x = 0; x < srcWidth; ++x)
857
         {
858
            const int xTrg_last = ((x + 1) * trgWidth + srcWidth - 1) / srcWidth;
859
            const int blockWidth = xTrg_last - xTrg_first;
860
            if (blockWidth > 0)
3 pmbaty 861
            {
4 pmbaty 862
               const uint32_t trgColor = srcLine[x];
863
               uint32_t *blkLine = trgLine;
3 pmbaty 864
 
4 pmbaty 865
               xTrg_first = xTrg_last;
3 pmbaty 866
 
4 pmbaty 867
               for (int blk_y = 0; blk_y < blockHeight; ++blk_y, blkLine = (uint32_t *) BYTE_ADVANCE (blkLine, trgPitch))
868
                  for (int blk_x = 0; blk_x < blockWidth; ++blk_x)
869
                     blkLine[blk_x] = trgColor;
3 pmbaty 870
 
4 pmbaty 871
               trgLine += blockWidth;
3 pmbaty 872
            }
4 pmbaty 873
         }
874
      }
875
   }
3 pmbaty 876
#else // going over target image - slow for upscaling, since source is read multiple times missing out on cache! Fast for similar image sizes!
4 pmbaty 877
   yFirst = 0;
878
   yLast = trgHeight;
3 pmbaty 879
 
4 pmbaty 880
   if (yFirst >= yLast || srcHeight <= 0 || srcWidth <= 0)
881
      return; // consistency check
3 pmbaty 882
 
4 pmbaty 883
   for (int y = yFirst; y < yLast; ++y)
884
   {
885
      /**/  uint32_t *trgLine = (uint32_t *) BYTE_ADVANCE (trg, y * trgPitch);
886
      const int ySrc = srcHeight * y / trgHeight;
887
      const uint32_t *srcLine = (const uint32_t *) BYTE_ADVANCE (src, ySrc * srcPitch);
888
      for (int x = 0; x < trgWidth; ++x)
889
      {
890
         const int xSrc = srcWidth * x / trgWidth;
891
         trgLine[x] = srcLine[xSrc];
892
      }
893
   }
3 pmbaty 894
#endif // going over source or target
895
 
4 pmbaty 896
   return;
3 pmbaty 897
}
898
 
899
 
2 pmbaty 900
EXTERN_C bool xbrz_equalcolortest24 (uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance)
901
{
4 pmbaty 902
   return (dist24 (col1, col2) < equalColorTolerance);
2 pmbaty 903
}
904
 
905
 
906
EXTERN_C bool xbrz_equalcolortest32 (uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance)
907
{
4 pmbaty 908
   return (dist32 (col1, col2) < equalColorTolerance);
2 pmbaty 909
}
910
 
911
 
912
EXTERN_C void xbrz_scale24 (size_t factor, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight)
913
{
5 pmbaty 914
   if (factor < 7)
915
      return scale_image (&scalers[factor - 2], src, trg, srcWidth, srcHeight, 0, srcHeight, alphagrad24, dist24);
2 pmbaty 916
}
917
 
918
 
919
EXTERN_C void xbrz_scale32 (size_t factor, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight)
920
{
5 pmbaty 921
   if (factor < 7)
922
      return scale_image (&scalers[factor - 2], src, trg, srcWidth, srcHeight, 0, srcHeight, alphagrad32, dist32);
2 pmbaty 923
}