Subversion Repositories Games.Prince of Persia

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
2 pmbaty 1
// ****************************************************************************
2
// * This file is part of the HqMAME project. It is distributed under         *
3
// * GNU General Public License: https://www.gnu.org/licenses/gpl-3.0         *
4
// * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved          *
5
// *                                                                          *
6
// * Additionally and as a special exception, the author gives permission     *
7
// * to link the code of this program with the MAME library (or with modified *
8
// * versions of MAME that use the same license as MAME), and distribute      *
9
// * linked combinations including the two. You must obey the GNU General     *
10
// * Public License in all respects for all of the code used other than MAME. *
11
// * If you modify this file, you may extend this exception to your version   *
12
// * of the file, but you are not obligated to do so. If you do not wish to   *
13
// * do so, delete this exception statement from your version.                *
14
// ****************************************************************************
15
 
3 pmbaty 16
// -------------------------------------------------------------------------
17
// | xBRZ: "Scale by rules" - high quality image upscaling filter by Zenju |
18
// -------------------------------------------------------------------------
19
// using a modified approach of xBR:
20
// http://board.byuu.org/viewtopic.php?f=10&t=2248
21
//  - new rule set preserving small image features
22
//  - highly optimized for performance
23
//  - support alpha channel
24
//  - support multithreading
25
//  - support 64-bit architectures
26
//  - support processing image slices
27
//  - support scaling up to 6xBRZ
2 pmbaty 28
 
3 pmbaty 29
// -> map source (srcWidth * srcHeight) to target (scale * width x scale * height) image, optionally processing a half-open slice of rows [yFirst, yLast) only
30
// -> support for source/target pitch in bytes!
31
// -> if your emulator changes only a few image slices during each cycle (e.g. DOSBox) then there's no need to run xBRZ on the complete image:
32
//    Just make sure you enlarge the source image slice by 2 rows on top and 2 on bottom (this is the additional range the xBRZ algorithm is using during analysis)
33
//    CAVEAT: If there are multiple changed slices, make sure they do not overlap after adding these additional rows in order to avoid a memory race condition
34
//    in the target image data if you are using multiple threads for processing each enlarged slice!
35
// 
36
// THREAD-SAFETY: - parts of the same image may be scaled by multiple threads as long as the [yFirst, yLast) ranges do not overlap!
37
//                - there is a minor inefficiency for the first row of a slice, so avoid processing single rows only; suggestion: process at least 8-16 rows
38
 
39
 
40
#include <stddef.h> // for size_t
41
#include <stdint.h> // for uint32_t
42
#include <memory.h> // for memset()
43
#include <limits.h>
2 pmbaty 44
#include <math.h>
45
 
46
 
47
#ifdef __cplusplus
48
#define EXTERN_C extern "C"
49
#else // !__cplusplus
50
#define EXTERN_C
51
#endif // __cplusplus
52
 
53
 
4 pmbaty 54
#ifdef _MSC_VER
55
#define FORCE_INLINE __forceinline
56
#elif defined __GNUC__
57
#define FORCE_INLINE __attribute__((always_inline)) inline
58
#else
59
#define FORCE_INLINE inline
60
#endif
61
 
62
 
2 pmbaty 63
// scaler configuration
64
#define XBRZ_CFG_LUMINANCE_WEIGHT 1
65
#define XBRZ_CFG_EQUAL_COLOR_TOLERANCE 30
66
#define XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD 3.6
67
#define XBRZ_CFG_STEEP_DIRECTION_THRESHOLD 2.2
68
 
69
 
70
// slice types
71
#define XBRZ_SLICETYPE_SOURCE 1
72
#define XBRZ_SLICETYPE_TARGET 2
73
 
74
 
75
// handy macros
76
#define GET_BYTE(val,byteno) ((unsigned char) (((val) >> ((byteno) << 3)) & 0xff))
77
#define GET_BLUE(val)  GET_BYTE (val, 0)
78
#define GET_GREEN(val) GET_BYTE (val, 1)
79
#define GET_RED(val)   GET_BYTE (val, 2)
80
#define GET_ALPHA(val) GET_BYTE (val, 3)
3 pmbaty 81
#define CALC_COLOR24(colFront,colBack,M,N) (unsigned char) ((((unsigned char) (colFront)) * ((unsigned int) (M)) + ((unsigned char) (colBack)) * (((unsigned int) (N)) - ((unsigned int) (M)))) / ((unsigned int) (N)))
82
#define CALC_COLOR32(colFront,colBack,weightFront,weightBack,weightSum) ((unsigned char) ((((unsigned char) (colFront)) * ((unsigned int) (weightFront)) + ((unsigned char) (colBack)) * ((unsigned int) (weightBack))) / ((unsigned int) (weightSum))))
83
#define BYTE_ADVANCE(buffer,offset) (((char *) buffer) + (offset))
84
#ifndef MIN
85
#define MIN(a,b) ((a) < (b) ? (a) : (b))
86
#endif // MIN
87
#ifndef MAX
88
#define MAX(a,b) ((a) > (b) ? (a) : (b))
89
#endif // MAX
2 pmbaty 90
 
91
 
3 pmbaty 92
typedef void (alphagrad_func) (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N);
93
typedef double (dist_func) (uint32_t pix1, uint32_t pix2);
2 pmbaty 94
 
95
 
96
 
97
enum RotationDegree //clock-wise
98
{
4 pmbaty 99
   ROT_0 = 0,
100
   ROT_90,
101
   ROT_180,
102
   ROT_270
2 pmbaty 103
};
104
 
3 pmbaty 105
 
4 pmbaty 106
enum BlendType
2 pmbaty 107
{
4 pmbaty 108
   BLEND_NONE = 0,
109
   BLEND_NORMAL,   //a normal indication to blend
110
   BLEND_DOMINANT, //a strong indication to blend
111
   //attention: BlendType must fit into the value range of 2 bit!!!
2 pmbaty 112
};
113
 
3 pmbaty 114
 
4 pmbaty 115
typedef struct blendresult_s
2 pmbaty 116
{
4 pmbaty 117
   BlendType
118
      /**/blend_f, blend_g,
119
      /**/blend_j, blend_k;
120
} blendresult_t;
2 pmbaty 121
 
122
 
4 pmbaty 123
typedef struct kernel_3x3_s
2 pmbaty 124
{
4 pmbaty 125
   uint32_t
126
      /**/a, b, c,
127
      /**/d, e, f,
128
      /**/g, h, i;
129
} kernel_3x3_t;
2 pmbaty 130
 
3 pmbaty 131
 
4 pmbaty 132
typedef struct kernel_4x4_s //kernel for preprocessing step
133
{
134
   uint32_t
135
      /**/a, b, c, d,
136
      /**/e, f, g, h,
137
      /**/i, j, k, l,
138
      /**/m, n, o, p;
139
} kernel_4x4_t;
2 pmbaty 140
 
141
 
4 pmbaty 142
typedef struct outmatrix_s
143
{
144
   size_t size;
145
   uint32_t* ptr;
146
   int stride;
147
   RotationDegree rotDeg;
148
} outmatrix_t;
2 pmbaty 149
 
150
 
4 pmbaty 151
static void outmatrix_create (outmatrix_t *mat, size_t size, uint32_t *ptr, int stride, RotationDegree rotDeg) //access matrix area, top-left at position "out" for image with given width
2 pmbaty 152
{
4 pmbaty 153
   mat->size = size;
154
   mat->ptr = ptr;
155
   mat->stride = stride;
156
   mat->rotDeg = rotDeg;
157
}
2 pmbaty 158
 
4 pmbaty 159
 
160
static uint32_t *outmatrix_ref (outmatrix_t *mat, size_t I, size_t J)
2 pmbaty 161
{
4 pmbaty 162
   size_t I_old;
163
   size_t J_old;
164
   // calculate input matrix coordinates after rotation: (i, j) = (row, col) indices, N = size of (square) matrix
165
   if      (mat->rotDeg == ROT_270) { I_old = J;                 J_old = mat->size - 1 - I; }
166
   else if (mat->rotDeg == ROT_180) { I_old = mat->size - 1 - I; J_old = mat->size - 1 - J; }
167
   else if (mat->rotDeg == ROT_90)  { I_old = mat->size - 1 - J; J_old = I;                 }
168
   else                             { I_old = I;                 J_old = J;                 }
2 pmbaty 169
 
4 pmbaty 170
   return (mat->ptr + I_old * mat->stride + J_old);
171
}
2 pmbaty 172
 
173
 
4 pmbaty 174
static FORCE_INLINE void preProcessCorners (blendresult_t *result, const kernel_4x4_t *ker, dist_func dist)
2 pmbaty 175
{
4 pmbaty 176
   // detect blend direction
177
   // result: F, G, J, K corners of "GradientType"
2 pmbaty 178
 
4 pmbaty 179
   // input kernel area naming convention:
180
   // -----------------
181
   // | A | B | C | D |
182
   // ----|---|---|---|
183
   // | E | F | G | H |   //evaluate the four corners between F, G, J, K
184
   // ----|---|---|---|   //input pixel is at position F
185
   // | I | J | K | L |
186
   // ----|---|---|---|
187
   // | M | N | O | P |
188
   // -----------------
2 pmbaty 189
 
4 pmbaty 190
   memset (result, 0, sizeof (blendresult_t));
2 pmbaty 191
 
4 pmbaty 192
   if (((ker->f == ker->g) && (ker->j == ker->k)) || ((ker->f == ker->j) && (ker->g == ker->k)))
193
      return;
2 pmbaty 194
 
4 pmbaty 195
   const int weight = 4;
196
   double jg = dist (ker->i, ker->f) + dist (ker->f, ker->c) + dist (ker->n, ker->k) + dist (ker->k, ker->h) + weight * dist (ker->j, ker->g);
197
   double fk = dist (ker->e, ker->j) + dist (ker->j, ker->o) + dist (ker->b, ker->g) + dist (ker->g, ker->l) + weight * dist (ker->f, ker->k);
2 pmbaty 198
 
4 pmbaty 199
   if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8
200
   {
201
      const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * jg < fk;
202
      if (ker->f != ker->g && ker->f != ker->j)
203
         result->blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
2 pmbaty 204
 
4 pmbaty 205
      if (ker->k != ker->j && ker->k != ker->g)
206
         result->blend_k = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
207
   }
208
   else if (fk < jg)
209
   {
210
      const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * fk < jg;
211
      if (ker->j != ker->f && ker->j != ker->k)
212
         result->blend_j = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
2 pmbaty 213
 
4 pmbaty 214
      if (ker->g != ker->f && ker->g != ker->k)
215
         result->blend_g = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
216
   }
217
   return;
218
}
2 pmbaty 219
 
4 pmbaty 220
// compress four blend types into a single byte
221
static inline BlendType getTopL (unsigned char b) { return (BlendType) (0x3 & (b >> 0)); }
222
static inline BlendType getTopR (unsigned char b) { return (BlendType) (0x3 & (b >> 2)); }
223
static inline BlendType getBottomR (unsigned char b) { return (BlendType) (0x3 & (b >> 4)); }
224
static inline BlendType getBottomL (unsigned char b) { return (BlendType) (0x3 & (b >> 6)); }
2 pmbaty 225
 
4 pmbaty 226
static inline void setTopL (unsigned char& b, BlendType bt) { b |= bt; } //buffer is assumed to be initialized before preprocessing!
227
static inline void setTopR (unsigned char& b, BlendType bt) { b |= (bt << 2); }
228
static inline void setBottomR (unsigned char& b, BlendType bt) { b |= (bt << 4); }
229
static inline void setBottomL (unsigned char& b, BlendType bt) { b |= (bt << 6); }
2 pmbaty 230
 
231
 
4 pmbaty 232
namespace
233
{
3 pmbaty 234
 
235
 
236
 
2 pmbaty 237
 
4 pmbaty 238
   template <class Scaler>
239
   FORCE_INLINE void blendPixel (const int scale_factor, const kernel_3x3_t *ker, uint32_t *target, int trgWidth, unsigned char blendInfo, alphagrad_func alphagrad, dist_func dist, RotationDegree rotDeg) //result of preprocessing all four corners of pixel "e"
240
   {
241
      // input kernel area naming convention:
242
      // -------------
243
      // | A | B | C |
244
      // ----|---|---|
245
      // | D | E | F | //input pixel is at position E
246
      // ----|---|---|
247
      // | G | H | I |
248
      // -------------
2 pmbaty 249
 
4 pmbaty 250
      uint32_t
251
         a, b, c,
252
         d, e, f,
253
         g, h, i;
254
      unsigned char blend;
2 pmbaty 255
 
4 pmbaty 256
      if      (rotDeg == ROT_270) { a = ker->c; b = ker->f; c = ker->i; d = ker->b; e = ker->e; f = ker->h; g = ker->a; h = ker->d; i = ker->g; blend = ((blendInfo << 6) | (blendInfo >> 2)) & 0xff; }
257
      else if (rotDeg == ROT_180) { a = ker->i; b = ker->h; c = ker->g; d = ker->f; e = ker->e; f = ker->d; g = ker->c; h = ker->b; i = ker->a; blend = ((blendInfo << 4) | (blendInfo >> 4)) & 0xff; }
258
      else if (rotDeg == ROT_90)  { a = ker->g; b = ker->d; c = ker->a; d = ker->h; e = ker->e; f = ker->b; g = ker->i; h = ker->f; i = ker->c; blend = ((blendInfo << 2) | (blendInfo >> 6)) & 0xff; }
259
      else                        { a = ker->a; b = ker->b; c = ker->c; d = ker->d; e = ker->e; f = ker->f; g = ker->g; h = ker->h; i = ker->i; blend = ((blendInfo << 0) | (blendInfo >> 8)) & 0xff; }
2 pmbaty 260
 
4 pmbaty 261
      if (getBottomR (blend) >= BLEND_NORMAL)
262
      {
263
         outmatrix_t out;
264
         uint32_t px;
265
         bool doLineBlend;
2 pmbaty 266
 
4 pmbaty 267
         if (getBottomR (blend) >= BLEND_DOMINANT)
3 pmbaty 268
            doLineBlend = true;
4 pmbaty 269
         else if (getTopR (blend) != BLEND_NONE && (dist (e, g) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE)) //but support double-blending for 90° corners
3 pmbaty 270
            doLineBlend = false; // make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
4 pmbaty 271
         else if (getBottomL (blend) != BLEND_NONE && (dist (e, c) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE))
3 pmbaty 272
            doLineBlend = false; // make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
4 pmbaty 273
         else if ((dist (e, i) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
3 pmbaty 274
            && (dist (g, h) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
275
            && (dist (h, i) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
276
            && (dist (i, f) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
277
            && (dist (f, c) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE))
278
            doLineBlend = false; // no full blending for L-shapes; blend corner only (handles "mario mushroom eyes")
4 pmbaty 279
         else
3 pmbaty 280
            doLineBlend = true;
2 pmbaty 281
 
4 pmbaty 282
         outmatrix_create (&out, scale_factor, target, trgWidth, rotDeg);
283
         px = (dist (e, f) <= dist (e, h) ? f : h); //choose most similar color
2 pmbaty 284
 
4 pmbaty 285
         if (doLineBlend)
286
         {
3 pmbaty 287
            const double fg = dist (f, g); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9
288
            const double hc = dist (h, c); //
4 pmbaty 289
            const bool haveShallowLine = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * fg <= hc) && (e != g) && (d != g);
290
            const bool haveSteepLine   = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * hc <= fg) && (e != c) && (b != c);
2 pmbaty 291
 
292
            if (haveShallowLine)
293
            {
4 pmbaty 294
               if (haveSteepLine)
295
                  Scaler::blendLineSteepAndShallow (px, &out, alphagrad);
296
               else
297
                  Scaler::blendLineShallow (px, &out, alphagrad);
2 pmbaty 298
            }
299
            else
300
            {
4 pmbaty 301
               if (haveSteepLine)
302
                  Scaler::blendLineSteep (px, &out, alphagrad);
303
               else
304
                  Scaler::blendLineDiagonal (px, &out, alphagrad);
2 pmbaty 305
            }
4 pmbaty 306
         }
307
         else
308
            Scaler::blendCorner (px, &out, alphagrad);
309
      }
310
   }
2 pmbaty 311
 
312
 
4 pmbaty 313
   template <class Scaler> //scaler policy: see "Scaler2x" reference implementation
314
   void scaleImage (const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight, int yFirst, int yLast, alphagrad_func alphagrad, dist_func dist)
315
   {
316
      yFirst = MAX (yFirst, 0);
317
      yLast = MIN (yLast, srcHeight);
318
      if (yFirst >= yLast || srcWidth <= 0)
319
         return;
2 pmbaty 320
 
4 pmbaty 321
      const int trgWidth = srcWidth * Scaler::scale;
2 pmbaty 322
 
4 pmbaty 323
      //"use" space at the end of the image as temporary buffer for "on the fly preprocessing": we even could use larger area of
324
      //"sizeof(uint32_t) * srcWidth * (yLast - yFirst)" bytes without risk of accidental overwriting before accessing
325
      const int bufferSize = srcWidth;
326
      unsigned char* preProcBuffer = reinterpret_cast<unsigned char*>(trg + yLast * Scaler::scale * trgWidth) - bufferSize;
327
      memset (preProcBuffer, 0, bufferSize);
328
      static_assert(BLEND_NONE == 0, "");
2 pmbaty 329
 
4 pmbaty 330
      //initialize preprocessing buffer for first row of current stripe: detect upper left and right corner blending
331
      //this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition!
332
      if (yFirst > 0)
333
      {
334
         const int y = yFirst - 1;
2 pmbaty 335
 
4 pmbaty 336
         const uint32_t* s_m1 = src + srcWidth * MAX (y - 1, 0);
337
         const uint32_t* s_0 = src + srcWidth * y; //center line
338
         const uint32_t* s_p1 = src + srcWidth * MIN (y + 1, srcHeight - 1);
339
         const uint32_t* s_p2 = src + srcWidth * MIN (y + 2, srcHeight - 1);
2 pmbaty 340
 
4 pmbaty 341
         for (int x = 0; x < srcWidth; ++x)
342
         {
343
            blendresult_t res;
3 pmbaty 344
            const int x_m1 = MAX (x - 1, 0);
345
            const int x_p1 = MIN (x + 1, srcWidth - 1);
346
            const int x_p2 = MIN (x + 2, srcWidth - 1);
2 pmbaty 347
 
4 pmbaty 348
            kernel_4x4_t ker; //perf: initialization is negligible
2 pmbaty 349
            ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible
350
            ker.b = s_m1[x];
351
            ker.c = s_m1[x_p1];
352
            ker.d = s_m1[x_p2];
353
 
354
            ker.e = s_0[x_m1];
355
            ker.f = s_0[x];
356
            ker.g = s_0[x_p1];
357
            ker.h = s_0[x_p2];
358
 
359
            ker.i = s_p1[x_m1];
360
            ker.j = s_p1[x];
361
            ker.k = s_p1[x_p1];
362
            ker.l = s_p1[x_p2];
363
 
364
            ker.m = s_p2[x_m1];
365
            ker.n = s_p2[x];
366
            ker.o = s_p2[x_p1];
367
            ker.p = s_p2[x_p2];
368
 
4 pmbaty 369
            preProcessCorners (&res, &ker, dist);
2 pmbaty 370
            /*
371
            preprocessing blend result:
372
            ---------
373
            | F | G |   //evalute corner between F, G, J, K
374
            ----|---|   //input pixel is at position F
375
            | J | K |
376
            ---------
377
            */
4 pmbaty 378
            setTopR (preProcBuffer[x], res.blend_j);
2 pmbaty 379
 
380
            if (x + 1 < bufferSize)
4 pmbaty 381
               setTopL (preProcBuffer[x + 1], res.blend_k);
382
         }
383
      }
384
      //------------------------------------------------------------------------------------
2 pmbaty 385
 
4 pmbaty 386
      for (int y = yFirst; y < yLast; ++y)
387
      {
388
         uint32_t *out = trg + Scaler::scale * y * trgWidth; //consider MT "striped" access
2 pmbaty 389
 
4 pmbaty 390
         const uint32_t* s_m1 = src + srcWidth * MAX (y - 1, 0);
391
         const uint32_t* s_0 = src + srcWidth * y; //center line
392
         const uint32_t* s_p1 = src + srcWidth * MIN (y + 1, srcHeight - 1);
393
         const uint32_t* s_p2 = src + srcWidth * MIN (y + 2, srcHeight - 1);
2 pmbaty 394
 
4 pmbaty 395
         unsigned char blend_xy1 = 0; //corner blending for current (x, y + 1) position
2 pmbaty 396
 
4 pmbaty 397
         for (int x = 0; x < srcWidth; ++x, out += Scaler::scale)
398
         {
2 pmbaty 399
            //all those bounds checks have only insignificant impact on performance!
3 pmbaty 400
            const int x_m1 = MAX (x - 1, 0); //perf: prefer array indexing to additional pointers!
401
            const int x_p1 = MIN (x + 1, srcWidth - 1);
402
            const int x_p2 = MIN (x + 2, srcWidth - 1);
4 pmbaty 403
            kernel_4x4_t ker4; //perf: initialization is negligible
2 pmbaty 404
 
405
            ker4.a = s_m1[x_m1]; //read sequentially from memory as far as possible
406
            ker4.b = s_m1[x];
407
            ker4.c = s_m1[x_p1];
408
            ker4.d = s_m1[x_p2];
409
 
410
            ker4.e = s_0[x_m1];
411
            ker4.f = s_0[x];
412
            ker4.g = s_0[x_p1];
413
            ker4.h = s_0[x_p2];
414
 
415
            ker4.i = s_p1[x_m1];
416
            ker4.j = s_p1[x];
417
            ker4.k = s_p1[x_p1];
418
            ker4.l = s_p1[x_p2];
419
 
420
            ker4.m = s_p2[x_m1];
421
            ker4.n = s_p2[x];
422
            ker4.o = s_p2[x_p1];
423
            ker4.p = s_p2[x_p2];
424
 
425
            //evaluate the four corners on bottom-right of current pixel
426
            unsigned char blend_xy = 0; //for current (x, y) position
427
            {
4 pmbaty 428
               blendresult_t res;
429
               preProcessCorners (&res, &ker4, dist);
430
               /*
431
               preprocessing blend result:
432
               ---------
433
               | F | G |   //evalute corner between F, G, J, K
434
               ----|---|   //current input pixel is at position F
435
               | J | K |
436
               ---------
437
               */
438
               blend_xy = preProcBuffer[x];
439
               setBottomR (blend_xy, res.blend_f); //all four corners of (x, y) have been determined at this point due to processing sequence!
2 pmbaty 440
 
4 pmbaty 441
               setTopR (blend_xy1, res.blend_j); //set 2nd known corner for (x, y + 1)
442
               preProcBuffer[x] = blend_xy1; //store on current buffer position for use on next row
2 pmbaty 443
 
4 pmbaty 444
               blend_xy1 = 0;
445
               setTopL (blend_xy1, res.blend_k); //set 1st known corner for (x + 1, y + 1) and buffer for use on next column
2 pmbaty 446
 
4 pmbaty 447
               if (x + 1 < bufferSize) //set 3rd known corner for (x + 1, y)
448
                  setBottomL (preProcBuffer[x + 1], res.blend_g);
2 pmbaty 449
            }
450
 
451
            //fill block of size scale * scale with the given color
4 pmbaty 452
            {
453
               uint32_t *blk = out;
454
               for (int _blk_y = 0; _blk_y < Scaler::scale; ++_blk_y, blk = (uint32_t *) BYTE_ADVANCE (blk, trgWidth * sizeof (uint32_t)))
455
                  for (int _blk_x = 0; _blk_x < Scaler::scale; ++_blk_x)
456
                     blk[_blk_x] = ker4.f;
457
            }
2 pmbaty 458
            //place *after* preprocessing step, to not overwrite the results while processing the the last pixel!
459
 
460
            //blend four corners of current pixel
3 pmbaty 461
            if (blend_xy != 0) //good 5% perf-improvement
2 pmbaty 462
            {
4 pmbaty 463
               kernel_3x3_t ker3; //perf: initialization is negligible
2 pmbaty 464
 
4 pmbaty 465
               ker3.a = ker4.a;
466
               ker3.b = ker4.b;
467
               ker3.c = ker4.c;
2 pmbaty 468
 
4 pmbaty 469
               ker3.d = ker4.e;
470
               ker3.e = ker4.f;
471
               ker3.f = ker4.g;
2 pmbaty 472
 
4 pmbaty 473
               ker3.g = ker4.i;
474
               ker3.h = ker4.j;
475
               ker3.i = ker4.k;
2 pmbaty 476
 
4 pmbaty 477
               blendPixel<Scaler> (Scaler::scale, &ker3, out, trgWidth, blend_xy, alphagrad, dist, ROT_0);
478
               blendPixel<Scaler> (Scaler::scale, &ker3, out, trgWidth, blend_xy, alphagrad, dist, ROT_90);
479
               blendPixel<Scaler> (Scaler::scale, &ker3, out, trgWidth, blend_xy, alphagrad, dist, ROT_180);
480
               blendPixel<Scaler> (Scaler::scale, &ker3, out, trgWidth, blend_xy, alphagrad, dist, ROT_270);
2 pmbaty 481
            }
4 pmbaty 482
         }
483
      }
484
   }
2 pmbaty 485
 
486
 
4 pmbaty 487
   //------------------------------------------------------------------------------------
488
   struct Scaler2x
489
   {
490
      static const int scale = 2;
2 pmbaty 491
 
492
 
4 pmbaty 493
      static void blendLineShallow (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
494
      {
495
         alphagrad (outmatrix_ref (out, scale - 1, 0), col, 1, 4);
496
         alphagrad (outmatrix_ref (out, scale - 1, 1), col, 3, 4);
497
      }
2 pmbaty 498
 
4 pmbaty 499
      static void blendLineSteep (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
500
      {
501
         alphagrad (outmatrix_ref (out, 0, scale - 1), col, 1, 4);
502
         alphagrad (outmatrix_ref (out, 1, scale - 1), col, 3, 4);
503
      }
2 pmbaty 504
 
4 pmbaty 505
      static void blendLineSteepAndShallow (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
506
      {
507
         alphagrad (outmatrix_ref (out, 1, 0), col, 1, 4);
508
         alphagrad (outmatrix_ref (out, 0, 1), col, 1, 4);
509
         alphagrad (outmatrix_ref (out, 1, 1), col, 5, 6); //[!] fixes 7/8 used in xBR
510
      }
2 pmbaty 511
 
4 pmbaty 512
      static void blendLineDiagonal (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
513
      {
514
         alphagrad (outmatrix_ref (out, 1, 1), col, 1, 2);
515
      }
2 pmbaty 516
 
4 pmbaty 517
      static void blendCorner (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
518
      {
519
         //model a round corner
520
         alphagrad (outmatrix_ref (out, 1, 1), col, 21, 100); //exact: 1 - pi/4 = 0.2146018366
521
      }
522
   };
2 pmbaty 523
 
524
 
4 pmbaty 525
   struct Scaler3x
526
   {
527
      static const int scale = 3;
2 pmbaty 528
 
529
 
4 pmbaty 530
      static void blendLineShallow (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
531
      {
532
         alphagrad (outmatrix_ref (out, scale - 1, 0), col, 1, 4);
533
         alphagrad (outmatrix_ref (out, scale - 2, 2), col, 1, 4);
534
         alphagrad (outmatrix_ref (out, scale - 1, 1), col, 3, 4);
535
         *outmatrix_ref (out, scale - 1, 2) = col;
536
      }
2 pmbaty 537
 
4 pmbaty 538
      static void blendLineSteep (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
539
      {
540
         alphagrad (outmatrix_ref (out, 0, scale - 1), col, 1, 4);
541
         alphagrad (outmatrix_ref (out, 2, scale - 2), col, 1, 4);
542
         alphagrad (outmatrix_ref (out, 1, scale - 1), col, 3, 4);
543
         *outmatrix_ref (out, 2, scale - 1) = col;
544
      }
2 pmbaty 545
 
4 pmbaty 546
      static void blendLineSteepAndShallow (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
547
      {
548
         alphagrad (outmatrix_ref (out, 2, 0), col, 1, 4);
549
         alphagrad (outmatrix_ref (out, 0, 2), col, 1, 4);
550
         alphagrad (outmatrix_ref (out, 2, 1), col, 3, 4);
551
         alphagrad (outmatrix_ref (out, 1, 2), col, 3, 4);
552
         *outmatrix_ref (out, 2, 2) = col;
553
      }
2 pmbaty 554
 
4 pmbaty 555
      static void blendLineDiagonal (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
556
      {
557
         alphagrad (outmatrix_ref (out, 1, 2), col, 1, 8); //conflict with other rotations for this odd scale
558
         alphagrad (outmatrix_ref (out, 2, 1), col, 1, 8);
559
         alphagrad (outmatrix_ref (out, 2, 2), col, 7, 8); //
560
      }
2 pmbaty 561
 
4 pmbaty 562
      static void blendCorner (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
563
      {
564
         //model a round corner
565
         alphagrad (outmatrix_ref (out, 2, 2), col, 45, 100); //exact: 0.4545939598
566
         //alphagrad (outmatrix_ref (out, 2, 1), col, 7, 256); //0.02826017254 -> negligible + avoid conflicts with other rotations for this odd scale
567
         //alphagrad (outmatrix_ref (out, 1, 2), col, 7, 256); //0.02826017254
568
      }
569
   };
2 pmbaty 570
 
571
 
4 pmbaty 572
   struct Scaler4x
573
   {
574
      static const int scale = 4;
2 pmbaty 575
 
576
 
4 pmbaty 577
      static void blendLineShallow (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
578
      {
579
         alphagrad (outmatrix_ref (out, scale - 1, 0), col, 1, 4);
580
         alphagrad (outmatrix_ref (out, scale - 2, 2), col, 1, 4);
581
         alphagrad (outmatrix_ref (out, scale - 1, 1), col, 3, 4);
582
         alphagrad (outmatrix_ref (out, scale - 2, 3), col, 3, 4);
583
         *outmatrix_ref (out, scale - 1, 2) = col;
584
         *outmatrix_ref (out, scale - 1, 3) = col;
585
      }
2 pmbaty 586
 
4 pmbaty 587
      static void blendLineSteep (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
588
      {
589
         alphagrad (outmatrix_ref (out, 0, scale - 1), col, 1, 4);
590
         alphagrad (outmatrix_ref (out, 2, scale - 2), col, 1, 4);
591
         alphagrad (outmatrix_ref (out, 1, scale - 1), col, 3, 4);
592
         alphagrad (outmatrix_ref (out, 3, scale - 2), col, 3, 4);
593
         *outmatrix_ref (out, 2, scale - 1) = col;
594
         *outmatrix_ref (out, 3, scale - 1) = col;
595
      }
2 pmbaty 596
 
4 pmbaty 597
      static void blendLineSteepAndShallow (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
598
      {
599
         alphagrad (outmatrix_ref (out, 3, 1), col, 3, 4);
600
         alphagrad (outmatrix_ref (out, 1, 3), col, 3, 4);
601
         alphagrad (outmatrix_ref (out, 3, 0), col, 1, 4);
602
         alphagrad (outmatrix_ref (out, 0, 3), col, 1, 4);
603
         alphagrad (outmatrix_ref (out, 2, 2), col, 1, 3); //[!] fixes 1/4 used in xBR
604
         *outmatrix_ref (out, 3, 3) = col;
605
         *outmatrix_ref (out, 3, 2) = col;
606
         *outmatrix_ref (out, 2, 3) = col;
607
      }
2 pmbaty 608
 
4 pmbaty 609
      static void blendLineDiagonal (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
610
      {
611
         alphagrad (outmatrix_ref (out, scale - 1, scale / 2), col, 1, 2);
612
         alphagrad (outmatrix_ref (out, scale - 2, scale / 2 + 1), col, 1, 2);
613
         *outmatrix_ref (out, scale - 1, scale - 1) = col;
614
      }
2 pmbaty 615
 
4 pmbaty 616
      static void blendCorner (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
617
      {
618
         //model a round corner
619
         alphagrad (outmatrix_ref (out, 3, 3), col, 68, 100); //exact: 0.6848532563
620
         alphagrad (outmatrix_ref (out, 3, 2), col, 9, 100); //0.08677704501
621
         alphagrad (outmatrix_ref (out, 2, 3), col, 9, 100); //0.08677704501
622
      }
623
   };
2 pmbaty 624
 
625
 
4 pmbaty 626
   struct Scaler5x
627
   {
628
      static const int scale = 5;
3 pmbaty 629
 
2 pmbaty 630
 
4 pmbaty 631
      static void blendLineShallow (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
632
      {
633
         alphagrad (outmatrix_ref (out, scale - 1, 0), col, 1, 4);
634
         alphagrad (outmatrix_ref (out, scale - 2, 2), col, 1, 4);
635
         alphagrad (outmatrix_ref (out, scale - 3, 4), col, 1, 4);
636
         alphagrad (outmatrix_ref (out, scale - 1, 1), col, 3, 4);
637
         alphagrad (outmatrix_ref (out, scale - 2, 3), col, 3, 4);
638
         *outmatrix_ref (out, scale - 1, 2) = col;
639
         *outmatrix_ref (out, scale - 1, 3) = col;
640
         *outmatrix_ref (out, scale - 1, 4) = col;
641
         *outmatrix_ref (out, scale - 2, 4) = col;
642
      }
2 pmbaty 643
 
4 pmbaty 644
      static void blendLineSteep (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
645
      {
646
         alphagrad (outmatrix_ref (out, 0, scale - 1), col, 1, 4);
647
         alphagrad (outmatrix_ref (out, 2, scale - 2), col, 1, 4);
648
         alphagrad (outmatrix_ref (out, 4, scale - 3), col, 1, 4);
649
         alphagrad (outmatrix_ref (out, 1, scale - 1), col, 3, 4);
650
         alphagrad (outmatrix_ref (out, 3, scale - 2), col, 3, 4);
651
         *outmatrix_ref (out, 2, scale - 1) = col;
652
         *outmatrix_ref (out, 3, scale - 1) = col;
653
         *outmatrix_ref (out, 4, scale - 1) = col;
654
         *outmatrix_ref (out, 4, scale - 2) = col;
655
      }
2 pmbaty 656
 
4 pmbaty 657
      static void blendLineSteepAndShallow (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
658
      {
659
         alphagrad (outmatrix_ref (out, 0, scale - 1), col, 1, 4);
660
         alphagrad (outmatrix_ref (out, 2, scale - 2), col, 1, 4);
661
         alphagrad (outmatrix_ref (out, 1, scale - 1), col, 3, 4);
662
         alphagrad (outmatrix_ref (out, scale - 1, 0), col, 1, 4);
663
         alphagrad (outmatrix_ref (out, scale - 2, 2), col, 1, 4);
664
         alphagrad (outmatrix_ref (out, scale - 1, 1), col, 3, 4);
665
         alphagrad (outmatrix_ref (out, 3, 3), col, 2, 3);
666
         *outmatrix_ref (out, 2, scale - 1) = col;
667
         *outmatrix_ref (out, 3, scale - 1) = col;
668
         *outmatrix_ref (out, 4, scale - 1) = col;
669
         *outmatrix_ref (out, scale - 1, 2) = col;
670
         *outmatrix_ref (out, scale - 1, 3) = col;
671
      }
2 pmbaty 672
 
4 pmbaty 673
      static void blendLineDiagonal (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
674
      {
675
         alphagrad (outmatrix_ref (out, scale - 1, scale / 2 + 0), col, 1, 8); //conflict with other rotations for this odd scale
676
         alphagrad (outmatrix_ref (out, scale - 2, scale / 2 + 1), col, 1, 8);
677
         alphagrad (outmatrix_ref (out, scale - 3, scale / 2 + 2), col, 1, 8); //
678
         alphagrad (outmatrix_ref (out, 4, 3), col, 7, 8);
679
         alphagrad (outmatrix_ref (out, 3, 4), col, 7, 8);
680
         *outmatrix_ref (out, 4, 4) = col;
681
      }
2 pmbaty 682
 
4 pmbaty 683
      static void blendCorner (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
684
      {
685
         // model a round corner
686
         alphagrad (outmatrix_ref (out, 4, 4), col, 86, 100); //exact: 0.8631434088
687
         alphagrad (outmatrix_ref (out, 4, 3), col, 23, 100); //0.2306749731
688
         alphagrad (outmatrix_ref (out, 3, 4), col, 23, 100); //0.2306749731
689
         //alphagrad (outmatrix_ref (out, 4, 2), col, 1, 64); //0.01676812367 -> negligible + avoid conflicts with other rotations for this odd scale
690
         //alphagrad (outmatrix_ref (out, 2, 4), col, 1, 64); //0.01676812367
691
      }
692
   };
2 pmbaty 693
 
694
 
4 pmbaty 695
   struct Scaler6x
696
   {
697
      static const int scale = 6;
2 pmbaty 698
 
699
 
4 pmbaty 700
      static void blendLineShallow (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
701
      {
702
         alphagrad (outmatrix_ref (out, scale - 1, 0), col, 1, 4);
703
         alphagrad (outmatrix_ref (out, scale - 2, 2), col, 1, 4);
704
         alphagrad (outmatrix_ref (out, scale - 3, 4), col, 1, 4);
705
         alphagrad (outmatrix_ref (out, scale - 1, 1), col, 3, 4);
706
         alphagrad (outmatrix_ref (out, scale - 2, 3), col, 3, 4);
707
         alphagrad (outmatrix_ref (out, scale - 3, 5), col, 3, 4);
2 pmbaty 708
 
4 pmbaty 709
         *outmatrix_ref (out, scale - 1, 2) = col;
710
         *outmatrix_ref (out, scale - 1, 3) = col;
711
         *outmatrix_ref (out, scale - 1, 4) = col;
712
         *outmatrix_ref (out, scale - 1, 5) = col;
713
         *outmatrix_ref (out, scale - 2, 4) = col;
714
         *outmatrix_ref (out, scale - 2, 5) = col;
715
      }
2 pmbaty 716
 
4 pmbaty 717
      static void blendLineSteep (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
718
      {
719
         alphagrad (outmatrix_ref (out, 0, scale - 1), col, 1, 4);
720
         alphagrad (outmatrix_ref (out, 2, scale - 2), col, 1, 4);
721
         alphagrad (outmatrix_ref (out, 4, scale - 3), col, 1, 4);
722
         alphagrad (outmatrix_ref (out, 1, scale - 1), col, 3, 4);
723
         alphagrad (outmatrix_ref (out, 3, scale - 2), col, 3, 4);
724
         alphagrad (outmatrix_ref (out, 5, scale - 3), col, 3, 4);
725
         *outmatrix_ref (out, 2, scale - 1) = col;
726
         *outmatrix_ref (out, 3, scale - 1) = col;
727
         *outmatrix_ref (out, 4, scale - 1) = col;
728
         *outmatrix_ref (out, 5, scale - 1) = col;
729
         *outmatrix_ref (out, 4, scale - 2) = col;
730
         *outmatrix_ref (out, 5, scale - 2) = col;
731
      }
2 pmbaty 732
 
4 pmbaty 733
      static void blendLineSteepAndShallow (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
734
      {
735
         alphagrad (outmatrix_ref (out, 0, scale - 1), col, 1, 4);
736
         alphagrad (outmatrix_ref (out, 2, scale - 2), col, 1, 4);
737
         alphagrad (outmatrix_ref (out, 1, scale - 1), col, 3, 4);
738
         alphagrad (outmatrix_ref (out, 3, scale - 2), col, 3, 4);
739
         alphagrad (outmatrix_ref (out, scale - 1, 0), col, 1, 4);
740
         alphagrad (outmatrix_ref (out, scale - 2, 2), col, 1, 4);
741
         alphagrad (outmatrix_ref (out, scale - 1, 1), col, 3, 4);
742
         alphagrad (outmatrix_ref (out, scale - 2, 3), col, 3, 4);
743
         *outmatrix_ref (out, 2, scale - 1) = col;
744
         *outmatrix_ref (out, 3, scale - 1) = col;
745
         *outmatrix_ref (out, 4, scale - 1) = col;
746
         *outmatrix_ref (out, 5, scale - 1) = col;
747
         *outmatrix_ref (out, 4, scale - 2) = col;
748
         *outmatrix_ref (out, 5, scale - 2) = col;
749
         *outmatrix_ref (out, scale - 1, 2) = col;
750
         *outmatrix_ref (out, scale - 1, 3) = col;
751
      }
2 pmbaty 752
 
4 pmbaty 753
      static void blendLineDiagonal (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
754
      {
755
         alphagrad (outmatrix_ref (out, scale - 1, scale / 2 + 0), col, 1, 2);
756
         alphagrad (outmatrix_ref (out, scale - 2, scale / 2 + 1), col, 1, 2);
757
         alphagrad (outmatrix_ref (out, scale - 3, scale / 2 + 2), col, 1, 2);
758
         *outmatrix_ref (out, scale - 2, scale - 1) = col;
759
         *outmatrix_ref (out, scale - 1, scale - 1) = col;
760
         *outmatrix_ref (out, scale - 1, scale - 2) = col;
761
      }
2 pmbaty 762
 
4 pmbaty 763
      static void blendCorner (uint32_t col, outmatrix_t *out, alphagrad_func alphagrad)
764
      {
765
         //model a round corner
766
         alphagrad (outmatrix_ref (out, 5, 5), col, 97, 100); //exact: 0.9711013910
767
         alphagrad (outmatrix_ref (out, 4, 5), col, 42, 100); //0.4236372243
768
         alphagrad (outmatrix_ref (out, 5, 4), col, 42, 100); //0.4236372243
769
         alphagrad (outmatrix_ref (out, 5, 3), col, 6, 100); //0.05652034508
770
         alphagrad (outmatrix_ref (out, 3, 5), col, 6, 100); //0.05652034508
771
      }
772
   };
2 pmbaty 773
 
4 pmbaty 774
   //------------------------------------------------------------------------------------
3 pmbaty 775
}
2 pmbaty 776
 
777
 
778
 
3 pmbaty 779
static double dist24 (uint32_t pix1, uint32_t pix2)
780
{
4 pmbaty 781
   //30% perf boost compared to plain distYCbCr()!
782
   //consumes 64 MB memory; using double is only 2% faster, but takes 128 MB
783
   static float diffToDist[256 * 256 * 256];
784
   static bool is_initialized = false;
785
   if (!is_initialized)
786
   {
787
      for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores)
788
      {
789
         const int r_diff = GET_RED (i) * 2 - 0xFF;
790
         const int g_diff = GET_GREEN (i) * 2 - 0xFF;
791
         const int b_diff = GET_BLUE (i) * 2 - 0xFF;
2 pmbaty 792
 
4 pmbaty 793
         const double k_b = 0.0593; //ITU-R BT.2020 conversion
794
         const double k_r = 0.2627; //
795
         const double k_g = 1 - k_b - k_r;
2 pmbaty 796
 
4 pmbaty 797
         const double scale_b = 0.5 / (1 - k_b);
798
         const double scale_r = 0.5 / (1 - k_r);
2 pmbaty 799
 
4 pmbaty 800
         const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr!
801
         const double c_b = scale_b * (b_diff - y);
802
         const double c_r = scale_r * (r_diff - y);
3 pmbaty 803
 
4 pmbaty 804
         diffToDist[i] = (float) (sqrt ((y * y) + (c_b * c_b) + (c_r * c_r)));
805
      }
806
      is_initialized = true;
807
   }
3 pmbaty 808
 
4 pmbaty 809
   const int r_diff = (int) GET_RED (pix1) - (int) GET_RED (pix2);
810
   const int g_diff = (int) GET_GREEN (pix1) - (int) GET_GREEN (pix2);
811
   const int b_diff = (int) GET_BLUE (pix1) - (int) GET_BLUE (pix2);
3 pmbaty 812
 
4 pmbaty 813
   return diffToDist[(((r_diff + 0xFF) / 2) << 16) | //slightly reduce precision (division by 2) to squeeze value into single byte
814
      (((g_diff + 0xFF) / 2) << 8) |
815
      (((b_diff + 0xFF) / 2) << 0)];
2 pmbaty 816
}
817
 
818
 
3 pmbaty 819
static double dist32 (uint32_t pix1, uint32_t pix2)
820
{
4 pmbaty 821
   const double a1 = GET_ALPHA (pix1) / 255.0;
822
   const double a2 = GET_ALPHA (pix2) / 255.0;
823
   /*
824
   Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1]
2 pmbaty 825
 
4 pmbaty 826
       1. if a1 = a2, distance should be: a1 * distYCbCr()
827
       2. if a1 = 0,  distance should be: a2 * distYCbCr(black, white) = a2 * 255
828
       3. if a1 = 1,  ??? maybe: 255 * (1 - a2) + a2 * distYCbCr()
829
   */
3 pmbaty 830
 
4 pmbaty 831
   //return MIN (a1, a2) * distYCbCrBuffered(pix1, pix2) + 255 * abs(a1 - a2);
832
   //=> following code is 15% faster:
833
   const double d = dist24 (pix1, pix2);
834
   return (a1 < a2 ? a1 * d + 255 * (a2 - a1) : a2 * d + 255 * (a1 - a2));
3 pmbaty 835
}
836
 
837
 
838
static void alphagrad24 (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N)
2 pmbaty 839
{
4 pmbaty 840
   // blend front color with opacity M / N over opaque background: http://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending
841
   *pixBack = ((CALC_COLOR24 (GET_RED (pixFront), GET_RED (*pixBack), M, N) << 16)
842
      | (CALC_COLOR24 (GET_GREEN (pixFront), GET_GREEN (*pixBack), M, N) << 8)
843
      | (CALC_COLOR24 (GET_BLUE (pixFront), GET_BLUE (*pixBack), M, N) << 0));
2 pmbaty 844
}
845
 
846
 
3 pmbaty 847
static void alphagrad32 (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N)
848
{
4 pmbaty 849
   // find intermediate color between two colors with alpha channels (=> NO alpha blending!!!)
850
   const unsigned int weightFront = GET_ALPHA (pixFront) * M;
851
   const unsigned int weightBack = GET_ALPHA (*pixBack) * (N - M);
852
   const unsigned int weightSum = weightFront + weightBack;
853
   *pixBack = (weightSum == 0 ? 0 :
854
      (((unsigned char) (weightSum / N)) << 24)
855
      | (CALC_COLOR32 (GET_RED (pixFront), GET_RED (*pixBack), weightFront, weightBack, weightSum) << 16)
856
      | (CALC_COLOR32 (GET_GREEN (pixFront), GET_GREEN (*pixBack), weightFront, weightBack, weightSum) << 8)
857
      | (CALC_COLOR32 (GET_BLUE (pixFront), GET_BLUE (*pixBack), weightFront, weightBack, weightSum) << 0));
3 pmbaty 858
}
859
 
860
 
4 pmbaty 861
EXTERN_C void nearestNeighborScale (const uint32_t *src, int srcWidth, int srcHeight, uint32_t *trg, int trgWidth, int trgHeight)
3 pmbaty 862
{
4 pmbaty 863
   //    nearestNeighborScale (src, srcWidth, srcHeight, srcWidth * sizeof (uint32_t), trg, trgWidth, trgHeight, trgWidth * sizeof (uint32_t), XBRZ_SLICETYPE_TARGET, 0, trgHeight, [](uint32_t pix) { return pix; });
864
       //static_assert(std::is_integral<PixSrc>::value, "PixSrc* is expected to be cast-able to char*");
865
       //static_assert(std::is_integral<PixTrg>::value, "PixTrg* is expected to be cast-able to char*");
866
       //static_assert(std::is_same<decltype(pixCvrt(PixSrc())), PixTrg>::value, "PixConverter returning wrong pixel format");
3 pmbaty 867
 
4 pmbaty 868
   int srcPitch = srcWidth * sizeof (uint32_t);
869
   int trgPitch = trgWidth * sizeof (uint32_t);
870
   int yFirst;
871
   int yLast;
3 pmbaty 872
 
873
#if 0 // going over source image - fast for upscaling, since source is read only once
4 pmbaty 874
   yFirst = 0;
875
   yLast = MIN (trgHeight, srcHeight);
3 pmbaty 876
 
4 pmbaty 877
   if (yFirst >= yLast || trgWidth <= 0 || trgHeight <= 0)
878
      return; // consistency check
3 pmbaty 879
 
4 pmbaty 880
   for (int y = yFirst; y < yLast; ++y)
881
   {
882
      //mathematically: ySrc = floor(srcHeight * yTrg / trgHeight)
883
      // => search for integers in: [ySrc, ySrc + 1) * trgHeight / srcHeight
3 pmbaty 884
 
4 pmbaty 885
      //keep within for loop to support MT input slices!
886
      const int yTrg_first = (y      * trgHeight + srcHeight - 1) / srcHeight; //=ceil(y * trgHeight / srcHeight)
887
      const int yTrg_last = ((y + 1) * trgHeight + srcHeight - 1) / srcHeight; //=ceil(((y + 1) * trgHeight) / srcHeight)
888
      const int blockHeight = yTrg_last - yTrg_first;
3 pmbaty 889
 
4 pmbaty 890
      if (blockHeight > 0)
891
      {
892
         const uint32_t *srcLine = (const uint32_t *) BYTE_ADVANCE (src, y * srcPitch);
893
         /**/  uint32_t *trgLine = (uint32_t *) BYTE_ADVANCE (trg, yTrg_first * trgPitch);
894
         int xTrg_first = 0;
3 pmbaty 895
 
4 pmbaty 896
         for (int x = 0; x < srcWidth; ++x)
897
         {
898
            const int xTrg_last = ((x + 1) * trgWidth + srcWidth - 1) / srcWidth;
899
            const int blockWidth = xTrg_last - xTrg_first;
900
            if (blockWidth > 0)
3 pmbaty 901
            {
4 pmbaty 902
               const uint32_t trgColor = srcLine[x];
903
               uint32_t *blkLine = trgLine;
3 pmbaty 904
 
4 pmbaty 905
               xTrg_first = xTrg_last;
3 pmbaty 906
 
4 pmbaty 907
               for (int blk_y = 0; blk_y < blockHeight; ++blk_y, blkLine = (uint32_t *) BYTE_ADVANCE (blkLine, trgPitch))
908
                  for (int blk_x = 0; blk_x < blockWidth; ++blk_x)
909
                     blkLine[blk_x] = trgColor;
3 pmbaty 910
 
4 pmbaty 911
               trgLine += blockWidth;
3 pmbaty 912
            }
4 pmbaty 913
         }
914
      }
915
   }
3 pmbaty 916
#else // going over target image - slow for upscaling, since source is read multiple times missing out on cache! Fast for similar image sizes!
4 pmbaty 917
   yFirst = 0;
918
   yLast = trgHeight;
3 pmbaty 919
 
4 pmbaty 920
   if (yFirst >= yLast || srcHeight <= 0 || srcWidth <= 0)
921
      return; // consistency check
3 pmbaty 922
 
4 pmbaty 923
   for (int y = yFirst; y < yLast; ++y)
924
   {
925
      /**/  uint32_t *trgLine = (uint32_t *) BYTE_ADVANCE (trg, y * trgPitch);
926
      const int ySrc = srcHeight * y / trgHeight;
927
      const uint32_t *srcLine = (const uint32_t *) BYTE_ADVANCE (src, ySrc * srcPitch);
928
      for (int x = 0; x < trgWidth; ++x)
929
      {
930
         const int xSrc = srcWidth * x / trgWidth;
931
         trgLine[x] = srcLine[xSrc];
932
      }
933
   }
3 pmbaty 934
#endif // going over source or target
935
 
4 pmbaty 936
   return;
3 pmbaty 937
}
938
 
939
 
2 pmbaty 940
EXTERN_C bool xbrz_equalcolortest24 (uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance)
941
{
4 pmbaty 942
   return (dist24 (col1, col2) < equalColorTolerance);
2 pmbaty 943
}
944
 
945
 
946
EXTERN_C bool xbrz_equalcolortest32 (uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance)
947
{
4 pmbaty 948
   return (dist32 (col1, col2) < equalColorTolerance);
2 pmbaty 949
}
950
 
951
 
952
EXTERN_C void xbrz_scale24 (size_t factor, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight)
953
{
4 pmbaty 954
   if (factor == 2) return scaleImage<Scaler2x> (src, trg, srcWidth, srcHeight, 0, srcHeight, alphagrad24, dist24);
955
   else if (factor == 3) return scaleImage<Scaler3x> (src, trg, srcWidth, srcHeight, 0, srcHeight, alphagrad24, dist24);
956
   else if (factor == 4) return scaleImage<Scaler4x> (src, trg, srcWidth, srcHeight, 0, srcHeight, alphagrad24, dist24);
957
   else if (factor == 5) return scaleImage<Scaler5x> (src, trg, srcWidth, srcHeight, 0, srcHeight, alphagrad24, dist24);
958
   else if (factor == 6) return scaleImage<Scaler6x> (src, trg, srcWidth, srcHeight, 0, srcHeight, alphagrad24, dist24);
2 pmbaty 959
}
960
 
961
 
962
EXTERN_C void xbrz_scale32 (size_t factor, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight)
963
{
4 pmbaty 964
   if (factor == 2) return scaleImage<Scaler2x> (src, trg, srcWidth, srcHeight, 0, srcHeight, alphagrad32, dist32);
965
   else if (factor == 3) return scaleImage<Scaler3x> (src, trg, srcWidth, srcHeight, 0, srcHeight, alphagrad32, dist32);
966
   else if (factor == 4) return scaleImage<Scaler4x> (src, trg, srcWidth, srcHeight, 0, srcHeight, alphagrad32, dist32);
967
   else if (factor == 5) return scaleImage<Scaler5x> (src, trg, srcWidth, srcHeight, 0, srcHeight, alphagrad32, dist32);
968
   else if (factor == 6) return scaleImage<Scaler6x> (src, trg, srcWidth, srcHeight, 0, srcHeight, alphagrad32, dist32);
2 pmbaty 969
}