Rev 7 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
7 | pmbaty | 1 | // ------------------------------------------------------------------------- |
2 | // | xBRZ: "Scale by rules" - high quality image upscaling filter by Zenju | |
||
3 | // ------------------------------------------------------------------------- |
||
4 | // using a modified approach of xBR: |
||
5 | // http://board.byuu.org/viewtopic.php?f=10&t=2248 |
||
6 | // - new rule set preserving small image features |
||
7 | // - highly optimized for performance |
||
8 | // - support alpha channel |
||
9 | // - support multithreading |
||
10 | // - support 64-bit architectures |
||
11 | // - support processing image slices |
||
12 | // - support scaling up to 6xBRZ |
||
13 | |||
14 | // -> map source (srcWidth * srcHeight) to target (scale * width x scale * height) image, optionally processing a half-open slice of rows [yFirst, yLast) only |
||
15 | // -> support for source/target pitch in bytes! |
||
16 | // -> if your emulator changes only a few image slices during each cycle (e.g. DOSBox) then there's no need to run xBRZ on the complete image: |
||
17 | // Just make sure you enlarge the source image slice by 2 rows on top and 2 on bottom (this is the additional range the xBRZ algorithm is using during analysis) |
||
18 | // CAVEAT: If there are multiple changed slices, make sure they do not overlap after adding these additional rows in order to avoid a memory race condition |
||
19 | // in the target image data if you are using multiple threads for processing each enlarged slice! |
||
20 | // |
||
21 | // THREAD-SAFETY: - parts of the same image may be scaled by multiple threads as long as the [yFirst, yLast) ranges do not overlap! |
||
22 | // - there is a minor inefficiency for the first row of a slice, so avoid processing single rows only; suggestion: process at least 8-16 rows |
||
23 | |||
24 | |||
25 | #include <stddef.h> // for size_t |
||
26 | #include <stdint.h> // for uint32_t |
||
27 | #include <stdbool.h> // for bool |
||
28 | #include <memory.h> // for memset() |
||
29 | #include <limits.h> |
||
30 | #include <math.h> |
||
31 | |||
32 | |||
33 | // prototypes of exported functions |
||
34 | void xbrz_scale (size_t factor, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight, bool has_alpha_channel); |
||
35 | void nearest_neighbor_scale (const uint32_t *src, int srcWidth, int srcHeight, uint32_t *trg, int trgWidth, int trgHeight); |
||
36 | |||
37 | |||
38 | // algorithm configuration |
||
39 | #define XBRZ_CFG_LUMINANCE_WEIGHT 1 |
||
40 | #define XBRZ_CFG_EQUAL_COLOR_TOLERANCE 30 |
||
41 | #define XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD 3.6 |
||
42 | #define XBRZ_CFG_STEEP_DIRECTION_THRESHOLD 2.2 |
||
43 | |||
44 | |||
45 | // blend types |
||
13 | pmbaty | 46 | #define BLEND_NONE 0 |
47 | #define BLEND_NORMAL 1 // a normal indication to blend |
||
7 | pmbaty | 48 | #define BLEND_DOMINANT 2 // a strong indication to blend |
49 | |||
50 | |||
51 | // handy macros |
||
52 | #ifndef MIN |
||
53 | #define MIN(a,b) ((a) < (b) ? (a) : (b)) |
||
54 | #endif // MIN |
||
55 | #ifndef MAX |
||
56 | #define MAX(a,b) ((a) > (b) ? (a) : (b)) |
||
57 | #endif // MAX |
||
58 | #define GET_BYTE(val,byteno) ((uint8_t) (((val) >> ((byteno) << 3)) & 0xff)) |
||
59 | #define GET_BLUE(val) GET_BYTE (val, 0) |
||
60 | #define GET_GREEN(val) GET_BYTE (val, 1) |
||
61 | #define GET_RED(val) GET_BYTE (val, 2) |
||
62 | #define GET_ALPHA(val) GET_BYTE (val, 3) |
||
63 | #define CALC_COLOR24(colFront,colBack,M,N) (uint8_t) ((((uint8_t) (colFront)) * ((unsigned int) (M)) + ((uint8_t) (colBack)) * (((unsigned int) (N)) - ((unsigned int) (M)))) / ((unsigned int) (N))) |
||
64 | #define CALC_COLOR32(colFront,colBack,weightFront,weightBack,weightSum) ((uint8_t) ((((uint8_t) (colFront)) * ((unsigned int) (weightFront)) + ((uint8_t) (colBack)) * ((unsigned int) (weightBack))) / ((unsigned int) (weightSum)))) |
||
65 | #define BYTE_ADVANCE(buffer,offset) (((char *) buffer) + (offset)) |
||
66 | |||
67 | |||
68 | // compress four blend types into a single byte |
||
69 | #define getTopL(b) ((uint8_t) (0x3 & ((uint8_t) (b) >> 0))) |
||
70 | #define getTopR(b) ((uint8_t) (0x3 & ((uint8_t) (b) >> 2))) |
||
71 | #define getBottomR(b) ((uint8_t) (0x3 & ((uint8_t) (b) >> 4))) |
||
72 | #define getBottomL(b) ((uint8_t) (0x3 & ((uint8_t) (b) >> 6))) |
||
73 | #define setTopL(b,blend_type) *(b) |= (((uint8_t) (blend_type)) << 0) // buffer is assumed to be initialized before preprocessing! |
||
74 | #define setTopR(b,blend_type) *(b) |= (((uint8_t) (blend_type)) << 2) |
||
75 | #define setBottomR(b,blend_type) *(b) |= (((uint8_t) (blend_type)) << 4) |
||
76 | #define setBottomL(b,blend_type) *(b) |= (((uint8_t) (blend_type)) << 6) |
||
77 | |||
78 | |||
79 | typedef struct blendresult_s |
||
80 | { |
||
81 | uint8_t |
||
82 | blend_f, blend_g, |
||
83 | blend_j, blend_k; |
||
84 | } blendresult_t; |
||
85 | |||
86 | |||
87 | typedef struct kernel_3x3_s |
||
88 | { |
||
89 | uint32_t |
||
90 | a, b, c, |
||
91 | d, e, f, |
||
92 | g, h, i; |
||
93 | } kernel_3x3_t; |
||
94 | |||
95 | |||
96 | typedef struct kernel_4x4_s //kernel for preprocessing step |
||
97 | { |
||
98 | uint32_t |
||
99 | a, b, c, d, |
||
100 | e, f, g, h, |
||
101 | i, j, k, l, |
||
102 | m, n, o, p; |
||
103 | } kernel_4x4_t; |
||
104 | |||
105 | |||
106 | typedef struct colorformat_s |
||
107 | { |
||
108 | int bpp; |
||
109 | void (*alphagrad) (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N); |
||
110 | double (*dist) (uint32_t pix1, uint32_t pix2); |
||
111 | } colorformat_t; |
||
112 | |||
113 | |||
114 | typedef struct outmatrix_s |
||
115 | { |
||
116 | size_t size; |
||
117 | uint32_t* ptr; |
||
118 | int stride; |
||
119 | } outmatrix_t; |
||
120 | |||
121 | |||
122 | typedef uint32_t *(outmatrixreffunc_t) (outmatrix_t *mat, size_t I, size_t J); |
||
123 | |||
124 | |||
125 | typedef struct scaler_s |
||
126 | { |
||
127 | int factor; |
||
128 | void (*blend_line_shallow) (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref); |
||
129 | void (*blend_line_steep) (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref); |
||
130 | void (*blend_line_steep_and_shallow) (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref); |
||
131 | void (*blend_line_diagonal) (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref); |
||
132 | void (*blend_corner) (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref); |
||
133 | } scaler_t; |
||
134 | |||
135 | |||
136 | ///////////////////////////////// |
||
137 | // shallow line scaling functions |
||
138 | |||
139 | static void blend_line_shallow_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
140 | { |
||
141 | color_format->alphagrad (outmatrix_ref (out, 2 - 1, 0), col, 1, 4); |
||
142 | color_format->alphagrad (outmatrix_ref (out, 2 - 1, 1), col, 3, 4); |
||
143 | } |
||
144 | static void blend_line_shallow_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
145 | { |
||
146 | color_format->alphagrad (outmatrix_ref (out, 3 - 1, 0), col, 1, 4); |
||
147 | color_format->alphagrad (outmatrix_ref (out, 3 - 2, 2), col, 1, 4); |
||
148 | color_format->alphagrad (outmatrix_ref (out, 3 - 1, 1), col, 3, 4); |
||
149 | *outmatrix_ref (out, 3 - 1, 2) = col; |
||
150 | } |
||
151 | static void blend_line_shallow_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
152 | { |
||
153 | color_format->alphagrad (outmatrix_ref (out, 4 - 1, 0), col, 1, 4); |
||
154 | color_format->alphagrad (outmatrix_ref (out, 4 - 2, 2), col, 1, 4); |
||
155 | color_format->alphagrad (outmatrix_ref (out, 4 - 1, 1), col, 3, 4); |
||
156 | color_format->alphagrad (outmatrix_ref (out, 4 - 2, 3), col, 3, 4); |
||
157 | *outmatrix_ref (out, 4 - 1, 2) = col; |
||
158 | *outmatrix_ref (out, 4 - 1, 3) = col; |
||
159 | } |
||
160 | static void blend_line_shallow_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
161 | { |
||
162 | color_format->alphagrad (outmatrix_ref (out, 5 - 1, 0), col, 1, 4); |
||
163 | color_format->alphagrad (outmatrix_ref (out, 5 - 2, 2), col, 1, 4); |
||
164 | color_format->alphagrad (outmatrix_ref (out, 5 - 3, 4), col, 1, 4); |
||
165 | color_format->alphagrad (outmatrix_ref (out, 5 - 1, 1), col, 3, 4); |
||
166 | color_format->alphagrad (outmatrix_ref (out, 5 - 2, 3), col, 3, 4); |
||
167 | *outmatrix_ref (out, 5 - 1, 2) = col; |
||
168 | *outmatrix_ref (out, 5 - 1, 3) = col; |
||
169 | *outmatrix_ref (out, 5 - 1, 4) = col; |
||
170 | *outmatrix_ref (out, 5 - 2, 4) = col; |
||
171 | } |
||
172 | static void blend_line_shallow_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
173 | { |
||
174 | color_format->alphagrad (outmatrix_ref (out, 6 - 1, 0), col, 1, 4); |
||
175 | color_format->alphagrad (outmatrix_ref (out, 6 - 2, 2), col, 1, 4); |
||
176 | color_format->alphagrad (outmatrix_ref (out, 6 - 3, 4), col, 1, 4); |
||
177 | color_format->alphagrad (outmatrix_ref (out, 6 - 1, 1), col, 3, 4); |
||
178 | color_format->alphagrad (outmatrix_ref (out, 6 - 2, 3), col, 3, 4); |
||
179 | color_format->alphagrad (outmatrix_ref (out, 6 - 3, 5), col, 3, 4); |
||
180 | *outmatrix_ref (out, 6 - 1, 2) = col; |
||
181 | *outmatrix_ref (out, 6 - 1, 3) = col; |
||
182 | *outmatrix_ref (out, 6 - 1, 4) = col; |
||
183 | *outmatrix_ref (out, 6 - 1, 5) = col; |
||
184 | *outmatrix_ref (out, 6 - 2, 4) = col; |
||
185 | *outmatrix_ref (out, 6 - 2, 5) = col; |
||
186 | } |
||
187 | |||
188 | /////////////////////////////// |
||
189 | // steep line scaling functions |
||
190 | |||
191 | static void blend_line_steep_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
192 | { |
||
193 | color_format->alphagrad (outmatrix_ref (out, 0, 2 - 1), col, 1, 4); |
||
194 | color_format->alphagrad (outmatrix_ref (out, 1, 2 - 1), col, 3, 4); |
||
195 | } |
||
196 | static void blend_line_steep_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
197 | { |
||
198 | color_format->alphagrad (outmatrix_ref (out, 0, 3 - 1), col, 1, 4); |
||
199 | color_format->alphagrad (outmatrix_ref (out, 2, 3 - 2), col, 1, 4); |
||
200 | color_format->alphagrad (outmatrix_ref (out, 1, 3 - 1), col, 3, 4); |
||
201 | *outmatrix_ref (out, 2, 3 - 1) = col; |
||
202 | } |
||
203 | static void blend_line_steep_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
204 | { |
||
205 | color_format->alphagrad (outmatrix_ref (out, 0, 4 - 1), col, 1, 4); |
||
206 | color_format->alphagrad (outmatrix_ref (out, 2, 4 - 2), col, 1, 4); |
||
207 | color_format->alphagrad (outmatrix_ref (out, 1, 4 - 1), col, 3, 4); |
||
208 | color_format->alphagrad (outmatrix_ref (out, 3, 4 - 2), col, 3, 4); |
||
209 | *outmatrix_ref (out, 2, 4 - 1) = col; |
||
210 | *outmatrix_ref (out, 3, 4 - 1) = col; |
||
211 | } |
||
212 | static void blend_line_steep_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
213 | { |
||
214 | color_format->alphagrad (outmatrix_ref (out, 0, 5 - 1), col, 1, 4); |
||
215 | color_format->alphagrad (outmatrix_ref (out, 2, 5 - 2), col, 1, 4); |
||
216 | color_format->alphagrad (outmatrix_ref (out, 4, 5 - 3), col, 1, 4); |
||
217 | color_format->alphagrad (outmatrix_ref (out, 1, 5 - 1), col, 3, 4); |
||
218 | color_format->alphagrad (outmatrix_ref (out, 3, 5 - 2), col, 3, 4); |
||
219 | *outmatrix_ref (out, 2, 5 - 1) = col; |
||
220 | *outmatrix_ref (out, 3, 5 - 1) = col; |
||
221 | *outmatrix_ref (out, 4, 5 - 1) = col; |
||
222 | *outmatrix_ref (out, 4, 5 - 2) = col; |
||
223 | } |
||
224 | static void blend_line_steep_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
225 | { |
||
226 | color_format->alphagrad (outmatrix_ref (out, 0, 6 - 1), col, 1, 4); |
||
227 | color_format->alphagrad (outmatrix_ref (out, 2, 6 - 2), col, 1, 4); |
||
228 | color_format->alphagrad (outmatrix_ref (out, 4, 6 - 3), col, 1, 4); |
||
229 | color_format->alphagrad (outmatrix_ref (out, 1, 6 - 1), col, 3, 4); |
||
230 | color_format->alphagrad (outmatrix_ref (out, 3, 6 - 2), col, 3, 4); |
||
231 | color_format->alphagrad (outmatrix_ref (out, 5, 6 - 3), col, 3, 4); |
||
232 | *outmatrix_ref (out, 2, 6 - 1) = col; |
||
233 | *outmatrix_ref (out, 3, 6 - 1) = col; |
||
234 | *outmatrix_ref (out, 4, 6 - 1) = col; |
||
235 | *outmatrix_ref (out, 5, 6 - 1) = col; |
||
236 | *outmatrix_ref (out, 4, 6 - 2) = col; |
||
237 | *outmatrix_ref (out, 5, 6 - 2) = col; |
||
238 | } |
||
239 | |||
240 | /////////////////////////////////////////// |
||
241 | // steep and shallow line scaling functions |
||
242 | |||
243 | static void blend_line_steep_and_shallow_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
244 | { |
||
245 | color_format->alphagrad (outmatrix_ref (out, 1, 0), col, 1, 4); |
||
246 | color_format->alphagrad (outmatrix_ref (out, 0, 1), col, 1, 4); |
||
13 | pmbaty | 247 | color_format->alphagrad (outmatrix_ref (out, 1, 1), col, 5, 6); // [!] fixes 7/8 used in xBR |
7 | pmbaty | 248 | } |
249 | static void blend_line_steep_and_shallow_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
250 | { |
||
251 | color_format->alphagrad (outmatrix_ref (out, 2, 0), col, 1, 4); |
||
252 | color_format->alphagrad (outmatrix_ref (out, 0, 2), col, 1, 4); |
||
253 | color_format->alphagrad (outmatrix_ref (out, 2, 1), col, 3, 4); |
||
254 | color_format->alphagrad (outmatrix_ref (out, 1, 2), col, 3, 4); |
||
255 | *outmatrix_ref (out, 2, 2) = col; |
||
256 | } |
||
257 | static void blend_line_steep_and_shallow_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
258 | { |
||
259 | color_format->alphagrad (outmatrix_ref (out, 3, 1), col, 3, 4); |
||
260 | color_format->alphagrad (outmatrix_ref (out, 1, 3), col, 3, 4); |
||
261 | color_format->alphagrad (outmatrix_ref (out, 3, 0), col, 1, 4); |
||
262 | color_format->alphagrad (outmatrix_ref (out, 0, 3), col, 1, 4); |
||
13 | pmbaty | 263 | color_format->alphagrad (outmatrix_ref (out, 2, 2), col, 1, 3); // [!] fixes 1/4 used in xBR |
7 | pmbaty | 264 | *outmatrix_ref (out, 3, 3) = col; |
265 | *outmatrix_ref (out, 3, 2) = col; |
||
266 | *outmatrix_ref (out, 2, 3) = col; |
||
267 | } |
||
268 | static void blend_line_steep_and_shallow_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
269 | { |
||
270 | color_format->alphagrad (outmatrix_ref (out, 0, 5 - 1), col, 1, 4); |
||
271 | color_format->alphagrad (outmatrix_ref (out, 2, 5 - 2), col, 1, 4); |
||
272 | color_format->alphagrad (outmatrix_ref (out, 1, 5 - 1), col, 3, 4); |
||
273 | color_format->alphagrad (outmatrix_ref (out, 5 - 1, 0), col, 1, 4); |
||
274 | color_format->alphagrad (outmatrix_ref (out, 5 - 2, 2), col, 1, 4); |
||
275 | color_format->alphagrad (outmatrix_ref (out, 5 - 1, 1), col, 3, 4); |
||
276 | color_format->alphagrad (outmatrix_ref (out, 3, 3), col, 2, 3); |
||
277 | *outmatrix_ref (out, 2, 5 - 1) = col; |
||
278 | *outmatrix_ref (out, 3, 5 - 1) = col; |
||
279 | *outmatrix_ref (out, 4, 5 - 1) = col; |
||
280 | *outmatrix_ref (out, 5 - 1, 2) = col; |
||
281 | *outmatrix_ref (out, 5 - 1, 3) = col; |
||
282 | } |
||
283 | static void blend_line_steep_and_shallow_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
284 | { |
||
285 | color_format->alphagrad (outmatrix_ref (out, 0, 6 - 1), col, 1, 4); |
||
286 | color_format->alphagrad (outmatrix_ref (out, 2, 6 - 2), col, 1, 4); |
||
287 | color_format->alphagrad (outmatrix_ref (out, 1, 6 - 1), col, 3, 4); |
||
288 | color_format->alphagrad (outmatrix_ref (out, 3, 6 - 2), col, 3, 4); |
||
289 | color_format->alphagrad (outmatrix_ref (out, 6 - 1, 0), col, 1, 4); |
||
290 | color_format->alphagrad (outmatrix_ref (out, 6 - 2, 2), col, 1, 4); |
||
291 | color_format->alphagrad (outmatrix_ref (out, 6 - 1, 1), col, 3, 4); |
||
292 | color_format->alphagrad (outmatrix_ref (out, 6 - 2, 3), col, 3, 4); |
||
293 | *outmatrix_ref (out, 2, 6 - 1) = col; |
||
294 | *outmatrix_ref (out, 3, 6 - 1) = col; |
||
295 | *outmatrix_ref (out, 4, 6 - 1) = col; |
||
296 | *outmatrix_ref (out, 5, 6 - 1) = col; |
||
297 | *outmatrix_ref (out, 4, 6 - 2) = col; |
||
298 | *outmatrix_ref (out, 5, 6 - 2) = col; |
||
299 | *outmatrix_ref (out, 6 - 1, 2) = col; |
||
300 | *outmatrix_ref (out, 6 - 1, 3) = col; |
||
301 | } |
||
302 | |||
303 | ////////////////////////////////// |
||
304 | // diagonal line scaling functions |
||
305 | |||
306 | static void blend_line_diagonal_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
307 | { |
||
308 | color_format->alphagrad (outmatrix_ref (out, 1, 1), col, 1, 2); |
||
309 | } |
||
310 | static void blend_line_diagonal_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
311 | { |
||
13 | pmbaty | 312 | color_format->alphagrad (outmatrix_ref (out, 1, 2), col, 1, 8); // conflict with other rotations for this odd scale |
7 | pmbaty | 313 | color_format->alphagrad (outmatrix_ref (out, 2, 1), col, 1, 8); |
13 | pmbaty | 314 | color_format->alphagrad (outmatrix_ref (out, 2, 2), col, 7, 8); |
7 | pmbaty | 315 | } |
316 | static void blend_line_diagonal_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
317 | { |
||
318 | color_format->alphagrad (outmatrix_ref (out, 4 - 1, 4 / 2), col, 1, 2); |
||
319 | color_format->alphagrad (outmatrix_ref (out, 4 - 2, 4 / 2 + 1), col, 1, 2); |
||
320 | *outmatrix_ref (out, 4 - 1, 4 - 1) = col; |
||
321 | } |
||
322 | static void blend_line_diagonal_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
323 | { |
||
13 | pmbaty | 324 | color_format->alphagrad (outmatrix_ref (out, 5 - 1, 5 / 2 + 0), col, 1, 8); // conflict with other rotations for this odd scale |
7 | pmbaty | 325 | color_format->alphagrad (outmatrix_ref (out, 5 - 2, 5 / 2 + 1), col, 1, 8); |
13 | pmbaty | 326 | color_format->alphagrad (outmatrix_ref (out, 5 - 3, 5 / 2 + 2), col, 1, 8); |
7 | pmbaty | 327 | color_format->alphagrad (outmatrix_ref (out, 4, 3), col, 7, 8); |
328 | color_format->alphagrad (outmatrix_ref (out, 3, 4), col, 7, 8); |
||
329 | *outmatrix_ref (out, 4, 4) = col; |
||
330 | } |
||
331 | static void blend_line_diagonal_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
332 | { |
||
333 | color_format->alphagrad (outmatrix_ref (out, 6 - 1, 6 / 2 + 0), col, 1, 2); |
||
334 | color_format->alphagrad (outmatrix_ref (out, 6 - 2, 6 / 2 + 1), col, 1, 2); |
||
335 | color_format->alphagrad (outmatrix_ref (out, 6 - 3, 6 / 2 + 2), col, 1, 2); |
||
336 | *outmatrix_ref (out, 6 - 2, 6 - 1) = col; |
||
337 | *outmatrix_ref (out, 6 - 1, 6 - 1) = col; |
||
338 | *outmatrix_ref (out, 6 - 1, 6 - 2) = col; |
||
339 | } |
||
340 | |||
341 | /////////////////////////// |
||
342 | // corner scaling functions |
||
343 | |||
344 | static void blend_corner_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
345 | { |
||
346 | // model a round corner |
||
13 | pmbaty | 347 | color_format->alphagrad (outmatrix_ref (out, 1, 1), col, 21, 100); // exact: 1 - pi/4 = 0.2146018366 |
7 | pmbaty | 348 | } |
349 | static void blend_corner_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
350 | { |
||
351 | // model a round corner |
||
13 | pmbaty | 352 | color_format->alphagrad (outmatrix_ref (out, 2, 2), col, 45, 100); // exact: 0.4545939598 |
353 | //color_format->alphagrad (outmatrix_ref (out, 2, 1), col, 7, 256); // 0.02826017254 -> negligible + avoid conflicts with other rotations for this odd scale |
||
354 | //color_format->alphagrad (outmatrix_ref (out, 1, 2), col, 7, 256); // 0.02826017254 |
||
7 | pmbaty | 355 | } |
356 | static void blend_corner_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
357 | { |
||
358 | // model a round corner |
||
13 | pmbaty | 359 | color_format->alphagrad (outmatrix_ref (out, 3, 3), col, 68, 100); // exact: 0.6848532563 |
360 | color_format->alphagrad (outmatrix_ref (out, 3, 2), col, 9, 100); // 0.08677704501 |
||
361 | color_format->alphagrad (outmatrix_ref (out, 2, 3), col, 9, 100); // 0.08677704501 |
||
7 | pmbaty | 362 | } |
363 | static void blend_corner_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
364 | { |
||
365 | // model a round corner |
||
13 | pmbaty | 366 | color_format->alphagrad (outmatrix_ref (out, 4, 4), col, 86, 100); // exact: 0.8631434088 |
367 | color_format->alphagrad (outmatrix_ref (out, 4, 3), col, 23, 100); // 0.2306749731 |
||
368 | color_format->alphagrad (outmatrix_ref (out, 3, 4), col, 23, 100); // 0.2306749731 |
||
369 | //color_format->alphagrad (outmatrix_ref (out, 4, 2), col, 1, 64); // 0.01676812367 -> negligible + avoid conflicts with other rotations for this odd scale |
||
370 | //color_format->alphagrad (outmatrix_ref (out, 2, 4), col, 1, 64); // 0.01676812367 |
||
7 | pmbaty | 371 | } |
372 | static void blend_corner_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) |
||
373 | { |
||
374 | // model a round corner |
||
13 | pmbaty | 375 | color_format->alphagrad (outmatrix_ref (out, 5, 5), col, 97, 100); // exact: 0.9711013910 |
376 | color_format->alphagrad (outmatrix_ref (out, 4, 5), col, 42, 100); // 0.4236372243 |
||
377 | color_format->alphagrad (outmatrix_ref (out, 5, 4), col, 42, 100); // 0.4236372243 |
||
378 | color_format->alphagrad (outmatrix_ref (out, 5, 3), col, 6, 100); // 0.05652034508 |
||
379 | color_format->alphagrad (outmatrix_ref (out, 3, 5), col, 6, 100); // 0.05652034508 |
||
7 | pmbaty | 380 | } |
381 | |||
382 | ///////////////////////////////////// |
||
383 | // scaler objects for various factors |
||
384 | |||
385 | static const scaler_t scalers[] = |
||
386 | { |
||
387 | { 2, blend_line_shallow_2x, blend_line_steep_2x, blend_line_steep_and_shallow_2x, blend_line_diagonal_2x, blend_corner_2x }, |
||
388 | { 3, blend_line_shallow_3x, blend_line_steep_3x, blend_line_steep_and_shallow_3x, blend_line_diagonal_3x, blend_corner_3x }, |
||
389 | { 4, blend_line_shallow_4x, blend_line_steep_4x, blend_line_steep_and_shallow_4x, blend_line_diagonal_4x, blend_corner_4x }, |
||
390 | { 5, blend_line_shallow_5x, blend_line_steep_5x, blend_line_steep_and_shallow_5x, blend_line_diagonal_5x, blend_corner_5x }, |
||
391 | { 6, blend_line_shallow_6x, blend_line_steep_6x, blend_line_steep_and_shallow_6x, blend_line_diagonal_6x, blend_corner_6x }, |
||
392 | }; |
||
393 | |||
394 | ///////////////////////////////////////////////////// |
||
395 | // alpha gradient functions for various color formats |
||
396 | |||
397 | static void alphagrad24 (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N) |
||
398 | { |
||
399 | // blend front color with opacity M / N over opaque background: http://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending |
||
400 | *pixBack = ((CALC_COLOR24 (GET_RED (pixFront), GET_RED (*pixBack), M, N) << 16) |
||
401 | | (CALC_COLOR24 (GET_GREEN (pixFront), GET_GREEN (*pixBack), M, N) << 8) |
||
402 | | (CALC_COLOR24 (GET_BLUE (pixFront), GET_BLUE (*pixBack), M, N) << 0)); |
||
403 | } |
||
404 | static void alphagrad32 (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N) |
||
405 | { |
||
406 | // find intermediate color between two colors with alpha channels (=> NO alpha blending!!!) |
||
407 | const unsigned int weightFront = GET_ALPHA (pixFront) * M; |
||
408 | const unsigned int weightBack = GET_ALPHA (*pixBack) * (N - M); |
||
409 | const unsigned int weightSum = weightFront + weightBack; |
||
410 | *pixBack = (weightSum == 0 ? 0 : |
||
411 | (((uint8_t) (weightSum / N)) << 24) |
||
412 | | (CALC_COLOR32 (GET_RED (pixFront), GET_RED (*pixBack), weightFront, weightBack, weightSum) << 16) |
||
413 | | (CALC_COLOR32 (GET_GREEN (pixFront), GET_GREEN (*pixBack), weightFront, weightBack, weightSum) << 8) |
||
414 | | (CALC_COLOR32 (GET_BLUE (pixFront), GET_BLUE (*pixBack), weightFront, weightBack, weightSum) << 0)); |
||
415 | } |
||
416 | |||
417 | ///////////////////////////////////////////////////// |
||
418 | // color distance functions for various color formats |
||
419 | |||
420 | static double dist24 (uint32_t pix1, uint32_t pix2) |
||
421 | { |
||
13 | pmbaty | 422 | // 30% perf boost compared to plain distYCbCr()! |
423 | // consumes 64 MB memory; using double is only 2% faster, but takes 128 MB |
||
424 | static float diffToDist[256 * 256 * 256] = { 0 }; |
||
7 | pmbaty | 425 | static bool is_initialized = false; |
426 | if (!is_initialized) |
||
427 | { |
||
428 | for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores) |
||
429 | { |
||
430 | const int r_diff = GET_RED (i) * 2 - 0xFF; |
||
431 | const int g_diff = GET_GREEN (i) * 2 - 0xFF; |
||
432 | const int b_diff = GET_BLUE (i) * 2 - 0xFF; |
||
433 | |||
434 | const double k_b = 0.0593; //ITU-R BT.2020 conversion |
||
435 | const double k_r = 0.2627; // |
||
436 | const double k_g = 1 - k_b - k_r; |
||
437 | |||
438 | const double scale_b = 0.5 / (1 - k_b); |
||
439 | const double scale_r = 0.5 / (1 - k_r); |
||
440 | |||
441 | const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr! |
||
442 | const double c_b = scale_b * (b_diff - y); |
||
443 | const double c_r = scale_r * (r_diff - y); |
||
444 | |||
445 | diffToDist[i] = (float) (sqrt ((y * y) + (c_b * c_b) + (c_r * c_r))); |
||
446 | } |
||
447 | is_initialized = true; |
||
448 | } |
||
449 | |||
450 | const int r_diff = (int) GET_RED (pix1) - (int) GET_RED (pix2); |
||
451 | const int g_diff = (int) GET_GREEN (pix1) - (int) GET_GREEN (pix2); |
||
452 | const int b_diff = (int) GET_BLUE (pix1) - (int) GET_BLUE (pix2); |
||
453 | |||
13 | pmbaty | 454 | return (diffToDist[ (((r_diff + 0xFF) / 2) << 16) // slightly reduce precision (division by 2) to squeeze value into single byte |
455 | | (((g_diff + 0xFF) / 2) << 8) |
||
456 | | (((b_diff + 0xFF) / 2) << 0)]); |
||
7 | pmbaty | 457 | } |
458 | static double dist32 (uint32_t pix1, uint32_t pix2) |
||
459 | { |
||
460 | // Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1] |
||
461 | // 1. if a1 = a2, distance should be: a1 * distYCbCr() |
||
462 | // 2. if a1 = 0, distance should be: a2 * distYCbCr(black, white) = a2 * 255 |
||
463 | // 3. if a1 = 1, ??? maybe: 255 * (1 - a2) + a2 * distYCbCr() |
||
13 | pmbaty | 464 | // return MIN (a1, a2) * distYCbCrBuffered(pix1, pix2) + 255 * abs(a1 - a2); |
465 | // => following code is 15% faster: |
||
7 | pmbaty | 466 | const double d = dist24 (pix1, pix2); |
467 | const double a1 = GET_ALPHA (pix1) / 255.0; |
||
468 | const double a2 = GET_ALPHA (pix2) / 255.0; |
||
469 | return (a1 < a2 ? a1 * d + 255 * (a2 - a1) : a2 * d + 255 * (a1 - a2)); |
||
470 | } |
||
471 | |||
472 | /////////////////////////////////////// |
||
473 | // color format objects for various bpp |
||
474 | |||
475 | static colorformat_t color_format_24 = { 24, alphagrad24, dist24 }; |
||
476 | static colorformat_t color_format_32 = { 32, alphagrad32, dist32 }; |
||
477 | |||
478 | ////////////////////////////////////////////////////////// |
||
479 | // output matrix reference functions for various rotations |
||
480 | |||
481 | static uint32_t *outmatrixref_0 (outmatrix_t *mat, size_t I, size_t J) { return (mat->ptr + I * mat->stride + J); } |
||
482 | static uint32_t *outmatrixref_90 (outmatrix_t *mat, size_t I, size_t J) { return (mat->ptr + (mat->size - 1 - J) * mat->stride + I); } |
||
483 | static uint32_t *outmatrixref_180 (outmatrix_t *mat, size_t I, size_t J) { return (mat->ptr + (mat->size - 1 - I) * mat->stride + (mat->size - 1 - J)); } |
||
484 | static uint32_t *outmatrixref_270 (outmatrix_t *mat, size_t I, size_t J) { return (mat->ptr + J * mat->stride + (mat->size - 1 - I)); } |
||
485 | |||
486 | |||
487 | /////////////////////////// |
||
488 | // core algorithm functions |
||
489 | |||
490 | |||
491 | #ifdef _MSC_VER |
||
492 | #define FORCE_INLINE __forceinline |
||
493 | #elif defined __GNUC__ |
||
494 | #define FORCE_INLINE __attribute__((always_inline)) inline |
||
495 | #else |
||
496 | #define FORCE_INLINE inline |
||
497 | #endif |
||
498 | |||
499 | |||
500 | static FORCE_INLINE void preprocess_corners (blendresult_t *result, const kernel_4x4_t *ker, colorformat_t *color_format) |
||
501 | { |
||
502 | // detect blend direction |
||
503 | // result: F, G, J, K corners of "GradientType" |
||
504 | |||
505 | // input kernel area naming convention: |
||
506 | // ----------------- |
||
507 | // | A | B | C | D | |
||
508 | // ----|---|---|---| |
||
509 | // | E | F | G | H | //evaluate the four corners between F, G, J, K |
||
510 | // ----|---|---|---| //input pixel is at position F |
||
511 | // | I | J | K | L | |
||
512 | // ----|---|---|---| |
||
513 | // | M | N | O | P | |
||
514 | // ----------------- |
||
515 | |||
516 | memset (result, 0, sizeof (blendresult_t)); |
||
517 | |||
518 | if (((ker->f == ker->g) && (ker->j == ker->k)) || ((ker->f == ker->j) && (ker->g == ker->k))) |
||
519 | return; |
||
520 | |||
521 | const int weight = 4; |
||
522 | double jg = color_format->dist (ker->i, ker->f) + color_format->dist (ker->f, ker->c) + color_format->dist (ker->n, ker->k) + color_format->dist (ker->k, ker->h) + weight * color_format->dist (ker->j, ker->g); |
||
523 | double fk = color_format->dist (ker->e, ker->j) + color_format->dist (ker->j, ker->o) + color_format->dist (ker->b, ker->g) + color_format->dist (ker->g, ker->l) + weight * color_format->dist (ker->f, ker->k); |
||
524 | |||
13 | pmbaty | 525 | if (jg < fk) // test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8 |
7 | pmbaty | 526 | { |
527 | const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * jg < fk; |
||
528 | if (ker->f != ker->g && ker->f != ker->j) |
||
529 | result->blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; |
||
530 | |||
531 | if (ker->k != ker->j && ker->k != ker->g) |
||
532 | result->blend_k = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; |
||
533 | } |
||
534 | else if (fk < jg) |
||
535 | { |
||
536 | const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * fk < jg; |
||
537 | if (ker->j != ker->f && ker->j != ker->k) |
||
538 | result->blend_j = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; |
||
539 | |||
540 | if (ker->g != ker->f && ker->g != ker->k) |
||
541 | result->blend_g = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; |
||
542 | } |
||
543 | |||
544 | return; |
||
545 | } |
||
546 | |||
547 | |||
548 | static FORCE_INLINE void blend_pixel (const scaler_t *scaler, const kernel_3x3_t *ker, uint32_t *target, int trgWidth, uint8_t blendInfo, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) //result of preprocessing all four corners of pixel "e" |
||
549 | { |
||
550 | // input kernel area naming convention: |
||
551 | // ------------- |
||
552 | // | A | B | C | |
||
553 | // ----|---|---| |
||
13 | pmbaty | 554 | // | D | E | F | // input pixel is at position E |
7 | pmbaty | 555 | // ----|---|---| |
556 | // | G | H | I | |
||
557 | // ------------- |
||
558 | |||
559 | uint32_t |
||
560 | a, b, c, |
||
561 | d, e, f, |
||
562 | g, h, i; |
||
563 | uint8_t blend; |
||
564 | |||
565 | if (outmatrix_ref == outmatrixref_270) { a = ker->c; b = ker->f; c = ker->i; d = ker->b; e = ker->e; f = ker->h; g = ker->a; h = ker->d; i = ker->g; blend = ((blendInfo << 6) | (blendInfo >> 2)) & 0xff; } |
||
566 | else if (outmatrix_ref == outmatrixref_180) { a = ker->i; b = ker->h; c = ker->g; d = ker->f; e = ker->e; f = ker->d; g = ker->c; h = ker->b; i = ker->a; blend = ((blendInfo << 4) | (blendInfo >> 4)) & 0xff; } |
||
567 | else if (outmatrix_ref == outmatrixref_90) { a = ker->g; b = ker->d; c = ker->a; d = ker->h; e = ker->e; f = ker->b; g = ker->i; h = ker->f; i = ker->c; blend = ((blendInfo << 2) | (blendInfo >> 6)) & 0xff; } |
||
568 | else { a = ker->a; b = ker->b; c = ker->c; d = ker->d; e = ker->e; f = ker->f; g = ker->g; h = ker->h; i = ker->i; blend = blendInfo; } // blendInfo here is equivalent to ((blendInfo << 0) | (blendInfo >> 8)) & 0xff |
||
569 | |||
570 | if (getBottomR (blend) >= BLEND_NORMAL) |
||
571 | { |
||
572 | uint32_t px; |
||
573 | bool doLineBlend; |
||
574 | |||
575 | if (getBottomR (blend) >= BLEND_DOMINANT) |
||
576 | doLineBlend = true; |
||
577 | else if (getTopR (blend) != BLEND_NONE && (color_format->dist (e, g) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE)) //but support double-blending for 90° corners |
||
578 | doLineBlend = false; // make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes |
||
579 | else if (getBottomL (blend) != BLEND_NONE && (color_format->dist (e, c) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE)) |
||
580 | doLineBlend = false; // make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes |
||
581 | else if ((color_format->dist (e, i) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE) |
||
582 | && (color_format->dist (g, h) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE) |
||
583 | && (color_format->dist (h, i) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE) |
||
584 | && (color_format->dist (i, f) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE) |
||
585 | && (color_format->dist (f, c) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE)) |
||
586 | doLineBlend = false; // no full blending for L-shapes; blend corner only (handles "mario mushroom eyes") |
||
587 | else |
||
588 | doLineBlend = true; |
||
589 | |||
590 | outmatrix_t out; |
||
591 | out.size = scaler->factor; |
||
592 | out.ptr = target; |
||
593 | out.stride = trgWidth; |
||
594 | |||
13 | pmbaty | 595 | px = (color_format->dist (e, f) <= color_format->dist (e, h) ? f : h); // choose most similar color |
7 | pmbaty | 596 | |
597 | if (doLineBlend) |
||
598 | { |
||
13 | pmbaty | 599 | const double fg = color_format->dist (f, g); // test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9 |
600 | const double hc = color_format->dist (h, c); |
||
7 | pmbaty | 601 | const bool haveShallowLine = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * fg <= hc) && (e != g) && (d != g); |
602 | const bool haveSteepLine = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * hc <= fg) && (e != c) && (b != c); |
||
603 | |||
604 | if (haveShallowLine) |
||
605 | { |
||
606 | if (haveSteepLine) |
||
607 | scaler->blend_line_steep_and_shallow (px, &out, color_format, outmatrix_ref); |
||
608 | else |
||
609 | scaler->blend_line_shallow (px, &out, color_format, outmatrix_ref); |
||
610 | } |
||
611 | else |
||
612 | { |
||
613 | if (haveSteepLine) |
||
614 | scaler->blend_line_steep (px, &out, color_format, outmatrix_ref); |
||
615 | else |
||
616 | scaler->blend_line_diagonal (px, &out, color_format, outmatrix_ref); |
||
617 | } |
||
618 | } |
||
619 | else |
||
620 | scaler->blend_corner (px, &out, color_format, outmatrix_ref); |
||
621 | } |
||
622 | } |
||
623 | |||
624 | |||
625 | static void scale_image (const scaler_t *scaler, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight, int yFirst, int yLast, colorformat_t *color_format) |
||
626 | { |
||
627 | yFirst = MAX (yFirst, 0); |
||
628 | yLast = MIN (yLast, srcHeight); |
||
629 | if (yFirst >= yLast || srcWidth <= 0) |
||
630 | return; |
||
631 | |||
632 | const int trgWidth = srcWidth * scaler->factor; |
||
633 | |||
634 | // "use" space at the end of the image as temporary buffer for "on the fly preprocessing": we even could use larger area of |
||
635 | // "sizeof(uint32_t) * srcWidth * (yLast - yFirst)" bytes without risk of accidental overwriting before accessing |
||
636 | const int bufferSize = srcWidth; |
||
637 | uint8_t *preProcBuffer = (uint8_t *) (trg + yLast * scaler->factor * trgWidth) - bufferSize; |
||
638 | memset (preProcBuffer, 0, bufferSize); |
||
639 | |||
640 | // initialize preprocessing buffer for first row of current stripe: detect upper left and right corner blending |
||
641 | // this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition! |
||
642 | if (yFirst > 0) |
||
643 | { |
||
644 | const int y = yFirst - 1; |
||
645 | |||
646 | const uint32_t *s_m1 = src + srcWidth * MAX (y - 1, 0); |
||
647 | const uint32_t *s_0 = src + srcWidth * y; //center line |
||
648 | const uint32_t *s_p1 = src + srcWidth * MIN (y + 1, srcHeight - 1); |
||
649 | const uint32_t *s_p2 = src + srcWidth * MIN (y + 2, srcHeight - 1); |
||
650 | |||
651 | for (int x = 0; x < srcWidth; ++x) |
||
652 | { |
||
653 | blendresult_t res; |
||
654 | const int x_m1 = MAX (x - 1, 0); |
||
655 | const int x_p1 = MIN (x + 1, srcWidth - 1); |
||
656 | const int x_p2 = MIN (x + 2, srcWidth - 1); |
||
657 | |||
658 | kernel_4x4_t ker; // perf: initialization is negligible |
||
659 | ker.a = s_m1[x_m1]; ker.b = s_m1[x]; ker.c = s_m1[x_p1]; ker.d = s_m1[x_p2]; // read sequentially from memory as far as possible |
||
660 | ker.e = s_0[x_m1]; ker.f = s_0[x]; ker.g = s_0[x_p1]; ker.h = s_0[x_p2]; |
||
661 | ker.i = s_p1[x_m1]; ker.j = s_p1[x]; ker.k = s_p1[x_p1]; ker.l = s_p1[x_p2]; |
||
662 | ker.m = s_p2[x_m1]; ker.n = s_p2[x]; ker.o = s_p2[x_p1]; ker.p = s_p2[x_p2]; |
||
663 | |||
664 | preprocess_corners (&res, &ker, color_format); |
||
665 | |||
666 | // preprocessing blend result: |
||
667 | // --------- |
||
13 | pmbaty | 668 | // | F | G | // evalute corner between F, G, J, K |
669 | // ----|---| // input pixel is at position F |
||
7 | pmbaty | 670 | // | J | K | |
671 | // --------- |
||
672 | |||
673 | setTopR (&preProcBuffer[x], res.blend_j); |
||
674 | if (x + 1 < bufferSize) |
||
675 | setTopL (&preProcBuffer[x + 1], res.blend_k); |
||
676 | } |
||
677 | } |
||
678 | //------------------------------------------------------------------------------------ |
||
679 | |||
680 | for (int y = yFirst; y < yLast; ++y) |
||
681 | { |
||
13 | pmbaty | 682 | uint32_t *out = trg + scaler->factor * y * trgWidth; // consider MT "striped" access |
7 | pmbaty | 683 | |
684 | const uint32_t* s_m1 = src + srcWidth * MAX (y - 1, 0); |
||
13 | pmbaty | 685 | const uint32_t* s_0 = src + srcWidth * y; // center line |
7 | pmbaty | 686 | const uint32_t* s_p1 = src + srcWidth * MIN (y + 1, srcHeight - 1); |
687 | const uint32_t* s_p2 = src + srcWidth * MIN (y + 2, srcHeight - 1); |
||
688 | |||
689 | uint8_t blend_xy1 = 0; // corner blending for current (x, y + 1) position |
||
690 | |||
691 | for (int x = 0; x < srcWidth; ++x, out += scaler->factor) |
||
692 | { |
||
693 | // all those bounds checks have only insignificant impact on performance! |
||
13 | pmbaty | 694 | const int x_m1 = MAX (x - 1, 0); // perf: prefer array indexing to additional pointers! |
7 | pmbaty | 695 | const int x_p1 = MIN (x + 1, srcWidth - 1); |
696 | const int x_p2 = MIN (x + 2, srcWidth - 1); |
||
697 | |||
13 | pmbaty | 698 | kernel_4x4_t ker4; // perf: initialization is negligible |
7 | pmbaty | 699 | ker4.a = s_m1[x_m1]; ker4.b = s_m1[x]; ker4.c = s_m1[x_p1]; ker4.d = s_m1[x_p2]; // read sequentially from memory as far as possible |
700 | ker4.e = s_0[x_m1]; ker4.f = s_0[x]; ker4.g = s_0[x_p1]; ker4.h = s_0[x_p2]; |
||
701 | ker4.i = s_p1[x_m1]; ker4.j = s_p1[x]; ker4.k = s_p1[x_p1]; ker4.l = s_p1[x_p2]; |
||
702 | ker4.m = s_p2[x_m1]; ker4.n = s_p2[x]; ker4.o = s_p2[x_p1]; ker4.p = s_p2[x_p2]; |
||
703 | |||
704 | // evaluate the four corners on bottom-right of current pixel |
||
13 | pmbaty | 705 | uint8_t blend_xy = 0; // for current (x, y) position |
7 | pmbaty | 706 | { |
707 | blendresult_t res; |
||
708 | preprocess_corners (&res, &ker4, color_format); |
||
709 | |||
710 | // preprocessing blend result: |
||
711 | // --------- |
||
13 | pmbaty | 712 | // | F | G | // evalute corner between F, G, J, K |
713 | // ----|---| // current input pixel is at position F |
||
7 | pmbaty | 714 | // | J | K | |
715 | // --------- |
||
716 | |||
717 | blend_xy = preProcBuffer[x]; |
||
13 | pmbaty | 718 | setBottomR (&blend_xy, res.blend_f); // all four corners of (x, y) have been determined at this point due to processing sequence! |
7 | pmbaty | 719 | |
13 | pmbaty | 720 | setTopR (&blend_xy1, res.blend_j); // set 2nd known corner for (x, y + 1) |
721 | preProcBuffer[x] = blend_xy1; // store on current buffer position for use on next row |
||
7 | pmbaty | 722 | |
723 | blend_xy1 = 0; |
||
13 | pmbaty | 724 | setTopL (&blend_xy1, res.blend_k); // set 1st known corner for (x + 1, y + 1) and buffer for use on next column |
7 | pmbaty | 725 | |
13 | pmbaty | 726 | if (x + 1 < bufferSize) // set 3rd known corner for (x + 1, y) |
7 | pmbaty | 727 | setBottomL (&preProcBuffer[x + 1], res.blend_g); |
728 | } |
||
729 | |||
13 | pmbaty | 730 | // fill block of size scale * scale with the given color |
7 | pmbaty | 731 | uint32_t *blk = out; |
732 | for (int _blk_y = 0; _blk_y < scaler->factor; ++_blk_y, blk = (uint32_t *) BYTE_ADVANCE (blk, trgWidth * sizeof (uint32_t))) |
||
733 | for (int _blk_x = 0; _blk_x < scaler->factor; ++_blk_x) |
||
734 | blk[_blk_x] = ker4.f; |
||
735 | |||
13 | pmbaty | 736 | // place *after* preprocessing step, to not overwrite the results while processing the the last pixel! |
7 | pmbaty | 737 | |
13 | pmbaty | 738 | // blend four corners of current pixel |
739 | if (blend_xy != 0) // good 5% perf-improvement |
||
7 | pmbaty | 740 | { |
13 | pmbaty | 741 | kernel_3x3_t ker3; // perf: initialization is negligible |
7 | pmbaty | 742 | ker3.a = ker4.a; ker3.b = ker4.b; ker3.c = ker4.c; |
743 | ker3.d = ker4.e; ker3.e = ker4.f; ker3.f = ker4.g; |
||
744 | ker3.g = ker4.i; ker3.h = ker4.j; ker3.i = ker4.k; |
||
745 | |||
746 | blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, color_format, outmatrixref_0); |
||
747 | blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, color_format, outmatrixref_90); |
||
748 | blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, color_format, outmatrixref_180); |
||
749 | blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, color_format, outmatrixref_270); |
||
750 | } |
||
751 | } |
||
752 | } |
||
753 | } |
||
754 | |||
755 | |||
756 | ///////////////////// |
||
757 | // exported functions |
||
758 | |||
759 | |||
760 | void nearest_neighbor_scale (const uint32_t *src, int srcWidth, int srcHeight, uint32_t *trg, int trgWidth, int trgHeight) |
||
761 | { |
||
762 | int srcPitch = srcWidth * sizeof (uint32_t); |
||
763 | int trgPitch = trgWidth * sizeof (uint32_t); |
||
764 | int yFirst; |
||
765 | int yLast; |
||
766 | |||
767 | #if 0 // going over source image - fast for upscaling, since source is read only once |
||
768 | yFirst = 0; |
||
769 | yLast = MIN (trgHeight, srcHeight); |
||
770 | |||
771 | if (yFirst >= yLast || trgWidth <= 0 || trgHeight <= 0) |
||
772 | return; // consistency check |
||
773 | |||
774 | for (int y = yFirst; y < yLast; ++y) |
||
775 | { |
||
776 | //mathematically: ySrc = floor(srcHeight * yTrg / trgHeight) |
||
777 | // => search for integers in: [ySrc, ySrc + 1) * trgHeight / srcHeight |
||
778 | |||
779 | //keep within for loop to support MT input slices! |
||
13 | pmbaty | 780 | const int yTrg_first = (y * trgHeight + srcHeight - 1) / srcHeight; // = ceil(y * trgHeight / srcHeight) |
781 | const int yTrg_last = ((y + 1) * trgHeight + srcHeight - 1) / srcHeight; // = ceil(((y + 1) * trgHeight) / srcHeight) |
||
7 | pmbaty | 782 | const int blockHeight = yTrg_last - yTrg_first; |
783 | |||
784 | if (blockHeight > 0) |
||
785 | { |
||
786 | const uint32_t *srcLine = (const uint32_t *) BYTE_ADVANCE (src, y * srcPitch); |
||
787 | /**/ uint32_t *trgLine = (uint32_t *) BYTE_ADVANCE (trg, yTrg_first * trgPitch); |
||
788 | int xTrg_first = 0; |
||
789 | |||
790 | for (int x = 0; x < srcWidth; ++x) |
||
791 | { |
||
792 | const int xTrg_last = ((x + 1) * trgWidth + srcWidth - 1) / srcWidth; |
||
793 | const int blockWidth = xTrg_last - xTrg_first; |
||
794 | if (blockWidth > 0) |
||
795 | { |
||
796 | const uint32_t trgColor = srcLine[x]; |
||
797 | uint32_t *blkLine = trgLine; |
||
798 | |||
799 | xTrg_first = xTrg_last; |
||
800 | |||
801 | for (int blk_y = 0; blk_y < blockHeight; ++blk_y, blkLine = (uint32_t *) BYTE_ADVANCE (blkLine, trgPitch)) |
||
802 | for (int blk_x = 0; blk_x < blockWidth; ++blk_x) |
||
803 | blkLine[blk_x] = trgColor; |
||
804 | |||
805 | trgLine += blockWidth; |
||
806 | } |
||
807 | } |
||
808 | } |
||
809 | } |
||
810 | #else // going over target image - slow for upscaling, since source is read multiple times missing out on cache! Fast for similar image sizes! |
||
811 | yFirst = 0; |
||
812 | yLast = trgHeight; |
||
813 | |||
814 | if (yFirst >= yLast || srcHeight <= 0 || srcWidth <= 0) |
||
815 | return; // consistency check |
||
816 | |||
817 | for (int y = yFirst; y < yLast; ++y) |
||
818 | { |
||
819 | /**/ uint32_t *trgLine = (uint32_t *) BYTE_ADVANCE (trg, y * trgPitch); |
||
820 | const int ySrc = srcHeight * y / trgHeight; |
||
821 | const uint32_t *srcLine = (const uint32_t *) BYTE_ADVANCE (src, ySrc * srcPitch); |
||
822 | for (int x = 0; x < trgWidth; ++x) |
||
823 | { |
||
824 | const int xSrc = srcWidth * x / trgWidth; |
||
825 | trgLine[x] = srcLine[xSrc]; |
||
826 | } |
||
827 | } |
||
828 | #endif // going over source or target |
||
829 | |||
830 | return; |
||
831 | } |
||
832 | |||
833 | |||
834 | void xbrz_scale (size_t factor, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight, bool has_alpha_channel) |
||
835 | { |
||
836 | if ((factor < 2) || (factor > 6)) |
||
837 | return; // consistency check |
||
838 | |||
839 | scale_image (&scalers[factor - 2], src, trg, srcWidth, srcHeight, 0, srcHeight, (has_alpha_channel ? &color_format_32 : &color_format_24)); |
||
840 | return; |
||
841 | } |