Subversion Repositories Games.Rick Dangerous

Rev

Rev 7 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
7 pmbaty 1
// -------------------------------------------------------------------------
2
// | xBRZ: "Scale by rules" - high quality image upscaling filter by Zenju |
3
// -------------------------------------------------------------------------
4
// using a modified approach of xBR:
5
// http://board.byuu.org/viewtopic.php?f=10&t=2248
6
//  - new rule set preserving small image features
7
//  - highly optimized for performance
8
//  - support alpha channel
9
//  - support multithreading
10
//  - support 64-bit architectures
11
//  - support processing image slices
12
//  - support scaling up to 6xBRZ
13
 
14
// -> map source (srcWidth * srcHeight) to target (scale * width x scale * height) image, optionally processing a half-open slice of rows [yFirst, yLast) only
15
// -> support for source/target pitch in bytes!
16
// -> if your emulator changes only a few image slices during each cycle (e.g. DOSBox) then there's no need to run xBRZ on the complete image:
17
//    Just make sure you enlarge the source image slice by 2 rows on top and 2 on bottom (this is the additional range the xBRZ algorithm is using during analysis)
18
//    CAVEAT: If there are multiple changed slices, make sure they do not overlap after adding these additional rows in order to avoid a memory race condition
19
//    in the target image data if you are using multiple threads for processing each enlarged slice!
20
// 
21
// THREAD-SAFETY: - parts of the same image may be scaled by multiple threads as long as the [yFirst, yLast) ranges do not overlap!
22
//                - there is a minor inefficiency for the first row of a slice, so avoid processing single rows only; suggestion: process at least 8-16 rows
23
 
24
 
25
#include <stddef.h> // for size_t
26
#include <stdint.h> // for uint32_t
27
#include <stdbool.h> // for bool
28
#include <memory.h> // for memset()
29
#include <limits.h>
30
#include <math.h>
31
 
32
 
33
// prototypes of exported functions
34
void xbrz_scale (size_t factor, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight, bool has_alpha_channel);
35
void nearest_neighbor_scale (const uint32_t *src, int srcWidth, int srcHeight, uint32_t *trg, int trgWidth, int trgHeight);
36
 
37
 
38
// algorithm configuration
39
#define XBRZ_CFG_LUMINANCE_WEIGHT 1
40
#define XBRZ_CFG_EQUAL_COLOR_TOLERANCE 30
41
#define XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD 3.6
42
#define XBRZ_CFG_STEEP_DIRECTION_THRESHOLD 2.2
43
 
44
 
45
// blend types
13 pmbaty 46
#define BLEND_NONE     0
47
#define BLEND_NORMAL   1 // a normal indication to blend
7 pmbaty 48
#define BLEND_DOMINANT 2 // a strong indication to blend
49
 
50
 
51
// handy macros
52
#ifndef MIN
53
#define MIN(a,b) ((a) < (b) ? (a) : (b))
54
#endif // MIN
55
#ifndef MAX
56
#define MAX(a,b) ((a) > (b) ? (a) : (b))
57
#endif // MAX
58
#define GET_BYTE(val,byteno) ((uint8_t) (((val) >> ((byteno) << 3)) & 0xff))
59
#define GET_BLUE(val)  GET_BYTE (val, 0)
60
#define GET_GREEN(val) GET_BYTE (val, 1)
61
#define GET_RED(val)   GET_BYTE (val, 2)
62
#define GET_ALPHA(val) GET_BYTE (val, 3)
63
#define CALC_COLOR24(colFront,colBack,M,N) (uint8_t) ((((uint8_t) (colFront)) * ((unsigned int) (M)) + ((uint8_t) (colBack)) * (((unsigned int) (N)) - ((unsigned int) (M)))) / ((unsigned int) (N)))
64
#define CALC_COLOR32(colFront,colBack,weightFront,weightBack,weightSum) ((uint8_t) ((((uint8_t) (colFront)) * ((unsigned int) (weightFront)) + ((uint8_t) (colBack)) * ((unsigned int) (weightBack))) / ((unsigned int) (weightSum))))
65
#define BYTE_ADVANCE(buffer,offset) (((char *) buffer) + (offset))
66
 
67
 
68
// compress four blend types into a single byte
69
#define getTopL(b)    ((uint8_t) (0x3 & ((uint8_t) (b) >> 0)))
70
#define getTopR(b)    ((uint8_t) (0x3 & ((uint8_t) (b) >> 2)))
71
#define getBottomR(b) ((uint8_t) (0x3 & ((uint8_t) (b) >> 4)))
72
#define getBottomL(b) ((uint8_t) (0x3 & ((uint8_t) (b) >> 6)))
73
#define setTopL(b,blend_type)    *(b) |= (((uint8_t) (blend_type)) << 0) // buffer is assumed to be initialized before preprocessing!
74
#define setTopR(b,blend_type)    *(b) |= (((uint8_t) (blend_type)) << 2)
75
#define setBottomR(b,blend_type) *(b) |= (((uint8_t) (blend_type)) << 4)
76
#define setBottomL(b,blend_type) *(b) |= (((uint8_t) (blend_type)) << 6)
77
 
78
 
79
typedef struct blendresult_s
80
{
81
   uint8_t
82
      blend_f, blend_g,
83
      blend_j, blend_k;
84
} blendresult_t;
85
 
86
 
87
typedef struct kernel_3x3_s
88
{
89
   uint32_t
90
      a, b, c,
91
      d, e, f,
92
      g, h, i;
93
} kernel_3x3_t;
94
 
95
 
96
typedef struct kernel_4x4_s //kernel for preprocessing step
97
{
98
   uint32_t
99
      a, b, c, d,
100
      e, f, g, h,
101
      i, j, k, l,
102
      m, n, o, p;
103
} kernel_4x4_t;
104
 
105
 
106
typedef struct colorformat_s
107
{
108
   int bpp;
109
   void (*alphagrad) (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N);
110
   double (*dist) (uint32_t pix1, uint32_t pix2);
111
} colorformat_t;
112
 
113
 
114
typedef struct outmatrix_s
115
{
116
   size_t size;
117
   uint32_t* ptr;
118
   int stride;
119
} outmatrix_t;
120
 
121
 
122
typedef uint32_t *(outmatrixreffunc_t) (outmatrix_t *mat, size_t I, size_t J);
123
 
124
 
125
typedef struct scaler_s
126
{
127
   int factor;
128
   void (*blend_line_shallow)           (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref);
129
   void (*blend_line_steep)             (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref);
130
   void (*blend_line_steep_and_shallow) (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref);
131
   void (*blend_line_diagonal)          (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref);
132
   void (*blend_corner)                 (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref);
133
} scaler_t;
134
 
135
 
136
/////////////////////////////////
137
// shallow line scaling functions
138
 
139
static void blend_line_shallow_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
140
{
141
   color_format->alphagrad (outmatrix_ref (out, 2 - 1, 0), col, 1, 4);
142
   color_format->alphagrad (outmatrix_ref (out, 2 - 1, 1), col, 3, 4);
143
}
144
static void blend_line_shallow_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
145
{
146
   color_format->alphagrad (outmatrix_ref (out, 3 - 1, 0), col, 1, 4);
147
   color_format->alphagrad (outmatrix_ref (out, 3 - 2, 2), col, 1, 4);
148
   color_format->alphagrad (outmatrix_ref (out, 3 - 1, 1), col, 3, 4);
149
   *outmatrix_ref (out, 3 - 1, 2) = col;
150
}
151
static void blend_line_shallow_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
152
{
153
   color_format->alphagrad (outmatrix_ref (out, 4 - 1, 0), col, 1, 4);
154
   color_format->alphagrad (outmatrix_ref (out, 4 - 2, 2), col, 1, 4);
155
   color_format->alphagrad (outmatrix_ref (out, 4 - 1, 1), col, 3, 4);
156
   color_format->alphagrad (outmatrix_ref (out, 4 - 2, 3), col, 3, 4);
157
   *outmatrix_ref (out, 4 - 1, 2) = col;
158
   *outmatrix_ref (out, 4 - 1, 3) = col;
159
}
160
static void blend_line_shallow_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
161
{
162
   color_format->alphagrad (outmatrix_ref (out, 5 - 1, 0), col, 1, 4);
163
   color_format->alphagrad (outmatrix_ref (out, 5 - 2, 2), col, 1, 4);
164
   color_format->alphagrad (outmatrix_ref (out, 5 - 3, 4), col, 1, 4);
165
   color_format->alphagrad (outmatrix_ref (out, 5 - 1, 1), col, 3, 4);
166
   color_format->alphagrad (outmatrix_ref (out, 5 - 2, 3), col, 3, 4);
167
   *outmatrix_ref (out, 5 - 1, 2) = col;
168
   *outmatrix_ref (out, 5 - 1, 3) = col;
169
   *outmatrix_ref (out, 5 - 1, 4) = col;
170
   *outmatrix_ref (out, 5 - 2, 4) = col;
171
}
172
static void blend_line_shallow_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
173
{
174
   color_format->alphagrad (outmatrix_ref (out, 6 - 1, 0), col, 1, 4);
175
   color_format->alphagrad (outmatrix_ref (out, 6 - 2, 2), col, 1, 4);
176
   color_format->alphagrad (outmatrix_ref (out, 6 - 3, 4), col, 1, 4);
177
   color_format->alphagrad (outmatrix_ref (out, 6 - 1, 1), col, 3, 4);
178
   color_format->alphagrad (outmatrix_ref (out, 6 - 2, 3), col, 3, 4);
179
   color_format->alphagrad (outmatrix_ref (out, 6 - 3, 5), col, 3, 4);
180
   *outmatrix_ref (out, 6 - 1, 2) = col;
181
   *outmatrix_ref (out, 6 - 1, 3) = col;
182
   *outmatrix_ref (out, 6 - 1, 4) = col;
183
   *outmatrix_ref (out, 6 - 1, 5) = col;
184
   *outmatrix_ref (out, 6 - 2, 4) = col;
185
   *outmatrix_ref (out, 6 - 2, 5) = col;
186
}
187
 
188
///////////////////////////////
189
// steep line scaling functions
190
 
191
static void blend_line_steep_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
192
{
193
   color_format->alphagrad (outmatrix_ref (out, 0, 2 - 1), col, 1, 4);
194
   color_format->alphagrad (outmatrix_ref (out, 1, 2 - 1), col, 3, 4);
195
}
196
static void blend_line_steep_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
197
{
198
   color_format->alphagrad (outmatrix_ref (out, 0, 3 - 1), col, 1, 4);
199
   color_format->alphagrad (outmatrix_ref (out, 2, 3 - 2), col, 1, 4);
200
   color_format->alphagrad (outmatrix_ref (out, 1, 3 - 1), col, 3, 4);
201
   *outmatrix_ref (out, 2, 3 - 1) = col;
202
}
203
static void blend_line_steep_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
204
{
205
   color_format->alphagrad (outmatrix_ref (out, 0, 4 - 1), col, 1, 4);
206
   color_format->alphagrad (outmatrix_ref (out, 2, 4 - 2), col, 1, 4);
207
   color_format->alphagrad (outmatrix_ref (out, 1, 4 - 1), col, 3, 4);
208
   color_format->alphagrad (outmatrix_ref (out, 3, 4 - 2), col, 3, 4);
209
   *outmatrix_ref (out, 2, 4 - 1) = col;
210
   *outmatrix_ref (out, 3, 4 - 1) = col;
211
}
212
static void blend_line_steep_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
213
{
214
   color_format->alphagrad (outmatrix_ref (out, 0, 5 - 1), col, 1, 4);
215
   color_format->alphagrad (outmatrix_ref (out, 2, 5 - 2), col, 1, 4);
216
   color_format->alphagrad (outmatrix_ref (out, 4, 5 - 3), col, 1, 4);
217
   color_format->alphagrad (outmatrix_ref (out, 1, 5 - 1), col, 3, 4);
218
   color_format->alphagrad (outmatrix_ref (out, 3, 5 - 2), col, 3, 4);
219
   *outmatrix_ref (out, 2, 5 - 1) = col;
220
   *outmatrix_ref (out, 3, 5 - 1) = col;
221
   *outmatrix_ref (out, 4, 5 - 1) = col;
222
   *outmatrix_ref (out, 4, 5 - 2) = col;
223
}
224
static void blend_line_steep_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
225
{
226
   color_format->alphagrad (outmatrix_ref (out, 0, 6 - 1), col, 1, 4);
227
   color_format->alphagrad (outmatrix_ref (out, 2, 6 - 2), col, 1, 4);
228
   color_format->alphagrad (outmatrix_ref (out, 4, 6 - 3), col, 1, 4);
229
   color_format->alphagrad (outmatrix_ref (out, 1, 6 - 1), col, 3, 4);
230
   color_format->alphagrad (outmatrix_ref (out, 3, 6 - 2), col, 3, 4);
231
   color_format->alphagrad (outmatrix_ref (out, 5, 6 - 3), col, 3, 4);
232
   *outmatrix_ref (out, 2, 6 - 1) = col;
233
   *outmatrix_ref (out, 3, 6 - 1) = col;
234
   *outmatrix_ref (out, 4, 6 - 1) = col;
235
   *outmatrix_ref (out, 5, 6 - 1) = col;
236
   *outmatrix_ref (out, 4, 6 - 2) = col;
237
   *outmatrix_ref (out, 5, 6 - 2) = col;
238
}
239
 
240
///////////////////////////////////////////
241
// steep and shallow line scaling functions
242
 
243
static void blend_line_steep_and_shallow_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
244
{
245
   color_format->alphagrad (outmatrix_ref (out, 1, 0), col, 1, 4);
246
   color_format->alphagrad (outmatrix_ref (out, 0, 1), col, 1, 4);
13 pmbaty 247
   color_format->alphagrad (outmatrix_ref (out, 1, 1), col, 5, 6); // [!] fixes 7/8 used in xBR
7 pmbaty 248
}
249
static void blend_line_steep_and_shallow_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
250
{
251
   color_format->alphagrad (outmatrix_ref (out, 2, 0), col, 1, 4);
252
   color_format->alphagrad (outmatrix_ref (out, 0, 2), col, 1, 4);
253
   color_format->alphagrad (outmatrix_ref (out, 2, 1), col, 3, 4);
254
   color_format->alphagrad (outmatrix_ref (out, 1, 2), col, 3, 4);
255
   *outmatrix_ref (out, 2, 2) = col;
256
}
257
static void blend_line_steep_and_shallow_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
258
{
259
   color_format->alphagrad (outmatrix_ref (out, 3, 1), col, 3, 4);
260
   color_format->alphagrad (outmatrix_ref (out, 1, 3), col, 3, 4);
261
   color_format->alphagrad (outmatrix_ref (out, 3, 0), col, 1, 4);
262
   color_format->alphagrad (outmatrix_ref (out, 0, 3), col, 1, 4);
13 pmbaty 263
   color_format->alphagrad (outmatrix_ref (out, 2, 2), col, 1, 3); // [!] fixes 1/4 used in xBR
7 pmbaty 264
   *outmatrix_ref (out, 3, 3) = col;
265
   *outmatrix_ref (out, 3, 2) = col;
266
   *outmatrix_ref (out, 2, 3) = col;
267
}
268
static void blend_line_steep_and_shallow_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
269
{
270
   color_format->alphagrad (outmatrix_ref (out, 0, 5 - 1), col, 1, 4);
271
   color_format->alphagrad (outmatrix_ref (out, 2, 5 - 2), col, 1, 4);
272
   color_format->alphagrad (outmatrix_ref (out, 1, 5 - 1), col, 3, 4);
273
   color_format->alphagrad (outmatrix_ref (out, 5 - 1, 0), col, 1, 4);
274
   color_format->alphagrad (outmatrix_ref (out, 5 - 2, 2), col, 1, 4);
275
   color_format->alphagrad (outmatrix_ref (out, 5 - 1, 1), col, 3, 4);
276
   color_format->alphagrad (outmatrix_ref (out, 3, 3), col, 2, 3);
277
   *outmatrix_ref (out, 2, 5 - 1) = col;
278
   *outmatrix_ref (out, 3, 5 - 1) = col;
279
   *outmatrix_ref (out, 4, 5 - 1) = col;
280
   *outmatrix_ref (out, 5 - 1, 2) = col;
281
   *outmatrix_ref (out, 5 - 1, 3) = col;
282
}
283
static void blend_line_steep_and_shallow_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
284
{
285
   color_format->alphagrad (outmatrix_ref (out, 0, 6 - 1), col, 1, 4);
286
   color_format->alphagrad (outmatrix_ref (out, 2, 6 - 2), col, 1, 4);
287
   color_format->alphagrad (outmatrix_ref (out, 1, 6 - 1), col, 3, 4);
288
   color_format->alphagrad (outmatrix_ref (out, 3, 6 - 2), col, 3, 4);
289
   color_format->alphagrad (outmatrix_ref (out, 6 - 1, 0), col, 1, 4);
290
   color_format->alphagrad (outmatrix_ref (out, 6 - 2, 2), col, 1, 4);
291
   color_format->alphagrad (outmatrix_ref (out, 6 - 1, 1), col, 3, 4);
292
   color_format->alphagrad (outmatrix_ref (out, 6 - 2, 3), col, 3, 4);
293
   *outmatrix_ref (out, 2, 6 - 1) = col;
294
   *outmatrix_ref (out, 3, 6 - 1) = col;
295
   *outmatrix_ref (out, 4, 6 - 1) = col;
296
   *outmatrix_ref (out, 5, 6 - 1) = col;
297
   *outmatrix_ref (out, 4, 6 - 2) = col;
298
   *outmatrix_ref (out, 5, 6 - 2) = col;
299
   *outmatrix_ref (out, 6 - 1, 2) = col;
300
   *outmatrix_ref (out, 6 - 1, 3) = col;
301
}
302
 
303
//////////////////////////////////
304
// diagonal line scaling functions
305
 
306
static void blend_line_diagonal_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
307
{
308
   color_format->alphagrad (outmatrix_ref (out, 1, 1), col, 1, 2);
309
}
310
static void blend_line_diagonal_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
311
{
13 pmbaty 312
   color_format->alphagrad (outmatrix_ref (out, 1, 2), col, 1, 8); // conflict with other rotations for this odd scale
7 pmbaty 313
   color_format->alphagrad (outmatrix_ref (out, 2, 1), col, 1, 8);
13 pmbaty 314
   color_format->alphagrad (outmatrix_ref (out, 2, 2), col, 7, 8);
7 pmbaty 315
}
316
static void blend_line_diagonal_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
317
{
318
   color_format->alphagrad (outmatrix_ref (out, 4 - 1, 4 / 2), col, 1, 2);
319
   color_format->alphagrad (outmatrix_ref (out, 4 - 2, 4 / 2 + 1), col, 1, 2);
320
   *outmatrix_ref (out, 4 - 1, 4 - 1) = col;
321
}
322
static void blend_line_diagonal_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
323
{
13 pmbaty 324
   color_format->alphagrad (outmatrix_ref (out, 5 - 1, 5 / 2 + 0), col, 1, 8); // conflict with other rotations for this odd scale
7 pmbaty 325
   color_format->alphagrad (outmatrix_ref (out, 5 - 2, 5 / 2 + 1), col, 1, 8);
13 pmbaty 326
   color_format->alphagrad (outmatrix_ref (out, 5 - 3, 5 / 2 + 2), col, 1, 8);
7 pmbaty 327
   color_format->alphagrad (outmatrix_ref (out, 4, 3), col, 7, 8);
328
   color_format->alphagrad (outmatrix_ref (out, 3, 4), col, 7, 8);
329
   *outmatrix_ref (out, 4, 4) = col;
330
}
331
static void blend_line_diagonal_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
332
{
333
   color_format->alphagrad (outmatrix_ref (out, 6 - 1, 6 / 2 + 0), col, 1, 2);
334
   color_format->alphagrad (outmatrix_ref (out, 6 - 2, 6 / 2 + 1), col, 1, 2);
335
   color_format->alphagrad (outmatrix_ref (out, 6 - 3, 6 / 2 + 2), col, 1, 2);
336
   *outmatrix_ref (out, 6 - 2, 6 - 1) = col;
337
   *outmatrix_ref (out, 6 - 1, 6 - 1) = col;
338
   *outmatrix_ref (out, 6 - 1, 6 - 2) = col;
339
}
340
 
341
///////////////////////////
342
// corner scaling functions
343
 
344
static void blend_corner_2x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
345
{
346
   // model a round corner
13 pmbaty 347
   color_format->alphagrad (outmatrix_ref (out, 1, 1), col, 21, 100); // exact: 1 - pi/4 = 0.2146018366
7 pmbaty 348
}
349
static void blend_corner_3x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
350
{
351
   // model a round corner
13 pmbaty 352
   color_format->alphagrad (outmatrix_ref (out, 2, 2), col, 45, 100); // exact: 0.4545939598
353
   //color_format->alphagrad (outmatrix_ref (out, 2, 1), col,  7, 256); // 0.02826017254 -> negligible + avoid conflicts with other rotations for this odd scale
354
   //color_format->alphagrad (outmatrix_ref (out, 1, 2), col,  7, 256); // 0.02826017254
7 pmbaty 355
}
356
static void blend_corner_4x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
357
{
358
   // model a round corner
13 pmbaty 359
   color_format->alphagrad (outmatrix_ref (out, 3, 3), col, 68, 100); // exact: 0.6848532563
360
   color_format->alphagrad (outmatrix_ref (out, 3, 2), col,  9, 100); // 0.08677704501
361
   color_format->alphagrad (outmatrix_ref (out, 2, 3), col,  9, 100); // 0.08677704501
7 pmbaty 362
}
363
static void blend_corner_5x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
364
{
365
   // model a round corner
13 pmbaty 366
   color_format->alphagrad (outmatrix_ref (out, 4, 4), col, 86, 100); // exact: 0.8631434088
367
   color_format->alphagrad (outmatrix_ref (out, 4, 3), col, 23, 100); // 0.2306749731
368
   color_format->alphagrad (outmatrix_ref (out, 3, 4), col, 23, 100); // 0.2306749731
369
   //color_format->alphagrad (outmatrix_ref (out, 4, 2), col,  1,  64); // 0.01676812367 -> negligible + avoid conflicts with other rotations for this odd scale
370
   //color_format->alphagrad (outmatrix_ref (out, 2, 4), col,  1,  64); // 0.01676812367
7 pmbaty 371
}
372
static void blend_corner_6x (uint32_t col, outmatrix_t *out, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref)
373
{
374
   // model a round corner
13 pmbaty 375
   color_format->alphagrad (outmatrix_ref (out, 5, 5), col, 97, 100); // exact: 0.9711013910
376
   color_format->alphagrad (outmatrix_ref (out, 4, 5), col, 42, 100); // 0.4236372243
377
   color_format->alphagrad (outmatrix_ref (out, 5, 4), col, 42, 100); // 0.4236372243
378
   color_format->alphagrad (outmatrix_ref (out, 5, 3), col,  6, 100); // 0.05652034508
379
   color_format->alphagrad (outmatrix_ref (out, 3, 5), col,  6, 100); // 0.05652034508
7 pmbaty 380
}
381
 
382
/////////////////////////////////////
383
// scaler objects for various factors
384
 
385
static const scaler_t scalers[] =
386
{
387
   { 2, blend_line_shallow_2x, blend_line_steep_2x, blend_line_steep_and_shallow_2x, blend_line_diagonal_2x, blend_corner_2x },
388
   { 3, blend_line_shallow_3x, blend_line_steep_3x, blend_line_steep_and_shallow_3x, blend_line_diagonal_3x, blend_corner_3x },
389
   { 4, blend_line_shallow_4x, blend_line_steep_4x, blend_line_steep_and_shallow_4x, blend_line_diagonal_4x, blend_corner_4x },
390
   { 5, blend_line_shallow_5x, blend_line_steep_5x, blend_line_steep_and_shallow_5x, blend_line_diagonal_5x, blend_corner_5x },
391
   { 6, blend_line_shallow_6x, blend_line_steep_6x, blend_line_steep_and_shallow_6x, blend_line_diagonal_6x, blend_corner_6x },
392
};
393
 
394
/////////////////////////////////////////////////////
395
// alpha gradient functions for various color formats
396
 
397
static void alphagrad24 (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N)
398
{
399
   // blend front color with opacity M / N over opaque background: http://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending
400
   *pixBack = ((CALC_COLOR24 (GET_RED   (pixFront), GET_RED   (*pixBack), M, N) << 16)
401
             | (CALC_COLOR24 (GET_GREEN (pixFront), GET_GREEN (*pixBack), M, N) <<  8)
402
             | (CALC_COLOR24 (GET_BLUE  (pixFront), GET_BLUE  (*pixBack), M, N) <<  0));
403
}
404
static void alphagrad32 (uint32_t *pixBack, uint32_t pixFront, unsigned int M, unsigned int N)
405
{
406
   // find intermediate color between two colors with alpha channels (=> NO alpha blending!!!)
407
   const unsigned int weightFront = GET_ALPHA (pixFront) * M;
408
   const unsigned int weightBack = GET_ALPHA (*pixBack) * (N - M);
409
   const unsigned int weightSum = weightFront + weightBack;
410
   *pixBack = (weightSum == 0 ? 0 :
411
               (((uint8_t) (weightSum / N))                                                                     << 24)
412
               | (CALC_COLOR32 (GET_RED   (pixFront), GET_RED   (*pixBack), weightFront, weightBack, weightSum) << 16)
413
               | (CALC_COLOR32 (GET_GREEN (pixFront), GET_GREEN (*pixBack), weightFront, weightBack, weightSum) <<  8)
414
               | (CALC_COLOR32 (GET_BLUE  (pixFront), GET_BLUE  (*pixBack), weightFront, weightBack, weightSum) <<  0));
415
}
416
 
417
/////////////////////////////////////////////////////
418
// color distance functions for various color formats
419
 
420
static double dist24 (uint32_t pix1, uint32_t pix2)
421
{
13 pmbaty 422
   // 30% perf boost compared to plain distYCbCr()!
423
   // consumes 64 MB memory; using double is only 2% faster, but takes 128 MB
424
   static float diffToDist[256 * 256 * 256] = { 0 };
7 pmbaty 425
   static bool is_initialized = false;
426
   if (!is_initialized)
427
   {
428
      for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores)
429
      {
430
         const int r_diff = GET_RED (i) * 2 - 0xFF;
431
         const int g_diff = GET_GREEN (i) * 2 - 0xFF;
432
         const int b_diff = GET_BLUE (i) * 2 - 0xFF;
433
 
434
         const double k_b = 0.0593; //ITU-R BT.2020 conversion
435
         const double k_r = 0.2627; //
436
         const double k_g = 1 - k_b - k_r;
437
 
438
         const double scale_b = 0.5 / (1 - k_b);
439
         const double scale_r = 0.5 / (1 - k_r);
440
 
441
         const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr!
442
         const double c_b = scale_b * (b_diff - y);
443
         const double c_r = scale_r * (r_diff - y);
444
 
445
         diffToDist[i] = (float) (sqrt ((y * y) + (c_b * c_b) + (c_r * c_r)));
446
      }
447
      is_initialized = true;
448
   }
449
 
450
   const int r_diff = (int) GET_RED (pix1) - (int) GET_RED (pix2);
451
   const int g_diff = (int) GET_GREEN (pix1) - (int) GET_GREEN (pix2);
452
   const int b_diff = (int) GET_BLUE (pix1) - (int) GET_BLUE (pix2);
453
 
13 pmbaty 454
   return (diffToDist[  (((r_diff + 0xFF) / 2) << 16) // slightly reduce precision (division by 2) to squeeze value into single byte
455
                      | (((g_diff + 0xFF) / 2) <<  8)
456
                      | (((b_diff + 0xFF) / 2) <<  0)]);
7 pmbaty 457
}
458
static double dist32 (uint32_t pix1, uint32_t pix2)
459
{
460
   // Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1]
461
   //    1. if a1 = a2, distance should be: a1 * distYCbCr()
462
   //    2. if a1 = 0,  distance should be: a2 * distYCbCr(black, white) = a2 * 255
463
   //    3. if a1 = 1,  ??? maybe: 255 * (1 - a2) + a2 * distYCbCr()
13 pmbaty 464
   // return MIN (a1, a2) * distYCbCrBuffered(pix1, pix2) + 255 * abs(a1 - a2);
465
   // => following code is 15% faster:
7 pmbaty 466
   const double d = dist24 (pix1, pix2);
467
   const double a1 = GET_ALPHA (pix1) / 255.0;
468
   const double a2 = GET_ALPHA (pix2) / 255.0;
469
   return (a1 < a2 ? a1 * d + 255 * (a2 - a1) : a2 * d + 255 * (a1 - a2));
470
}
471
 
472
///////////////////////////////////////
473
// color format objects for various bpp
474
 
475
static colorformat_t color_format_24 = { 24, alphagrad24, dist24 };
476
static colorformat_t color_format_32 = { 32, alphagrad32, dist32 };
477
 
478
//////////////////////////////////////////////////////////
479
// output matrix reference functions for various rotations
480
 
481
static uint32_t *outmatrixref_0   (outmatrix_t *mat, size_t I, size_t J) { return (mat->ptr + I * mat->stride + J); }
482
static uint32_t *outmatrixref_90  (outmatrix_t *mat, size_t I, size_t J) { return (mat->ptr + (mat->size - 1 - J) * mat->stride + I); }
483
static uint32_t *outmatrixref_180 (outmatrix_t *mat, size_t I, size_t J) { return (mat->ptr + (mat->size - 1 - I) * mat->stride + (mat->size - 1 - J)); }
484
static uint32_t *outmatrixref_270 (outmatrix_t *mat, size_t I, size_t J) { return (mat->ptr + J * mat->stride + (mat->size - 1 - I)); }
485
 
486
 
487
///////////////////////////
488
// core algorithm functions
489
 
490
 
491
#ifdef _MSC_VER
492
#define FORCE_INLINE __forceinline
493
#elif defined __GNUC__
494
#define FORCE_INLINE __attribute__((always_inline)) inline
495
#else
496
#define FORCE_INLINE inline
497
#endif
498
 
499
 
500
static FORCE_INLINE void preprocess_corners (blendresult_t *result, const kernel_4x4_t *ker, colorformat_t *color_format)
501
{
502
   // detect blend direction
503
   // result: F, G, J, K corners of "GradientType"
504
 
505
   // input kernel area naming convention:
506
   // -----------------
507
   // | A | B | C | D |
508
   // ----|---|---|---|
509
   // | E | F | G | H |   //evaluate the four corners between F, G, J, K
510
   // ----|---|---|---|   //input pixel is at position F
511
   // | I | J | K | L |
512
   // ----|---|---|---|
513
   // | M | N | O | P |
514
   // -----------------
515
 
516
   memset (result, 0, sizeof (blendresult_t));
517
 
518
   if (((ker->f == ker->g) && (ker->j == ker->k)) || ((ker->f == ker->j) && (ker->g == ker->k)))
519
      return;
520
 
521
   const int weight = 4;
522
   double jg = color_format->dist (ker->i, ker->f) + color_format->dist (ker->f, ker->c) + color_format->dist (ker->n, ker->k) + color_format->dist (ker->k, ker->h) + weight * color_format->dist (ker->j, ker->g);
523
   double fk = color_format->dist (ker->e, ker->j) + color_format->dist (ker->j, ker->o) + color_format->dist (ker->b, ker->g) + color_format->dist (ker->g, ker->l) + weight * color_format->dist (ker->f, ker->k);
524
 
13 pmbaty 525
   if (jg < fk) // test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8
7 pmbaty 526
   {
527
      const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * jg < fk;
528
      if (ker->f != ker->g && ker->f != ker->j)
529
         result->blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
530
 
531
      if (ker->k != ker->j && ker->k != ker->g)
532
         result->blend_k = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
533
   }
534
   else if (fk < jg)
535
   {
536
      const bool dominantGradient = XBRZ_CFG_DOMINANT_DIRECTION_THRESHOLD * fk < jg;
537
      if (ker->j != ker->f && ker->j != ker->k)
538
         result->blend_j = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
539
 
540
      if (ker->g != ker->f && ker->g != ker->k)
541
         result->blend_g = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
542
   }
543
 
544
   return;
545
}
546
 
547
 
548
static FORCE_INLINE void blend_pixel (const scaler_t *scaler, const kernel_3x3_t *ker, uint32_t *target, int trgWidth, uint8_t blendInfo, colorformat_t *color_format, outmatrixreffunc_t outmatrix_ref) //result of preprocessing all four corners of pixel "e"
549
{
550
   // input kernel area naming convention:
551
   // -------------
552
   // | A | B | C |
553
   // ----|---|---|
13 pmbaty 554
   // | D | E | F | // input pixel is at position E
7 pmbaty 555
   // ----|---|---|
556
   // | G | H | I |
557
   // -------------
558
 
559
   uint32_t
560
      a, b, c,
561
      d, e, f,
562
      g, h, i;
563
   uint8_t blend;
564
 
565
   if      (outmatrix_ref == outmatrixref_270) { a = ker->c; b = ker->f; c = ker->i; d = ker->b; e = ker->e; f = ker->h; g = ker->a; h = ker->d; i = ker->g; blend = ((blendInfo << 6) | (blendInfo >> 2)) & 0xff; }
566
   else if (outmatrix_ref == outmatrixref_180) { a = ker->i; b = ker->h; c = ker->g; d = ker->f; e = ker->e; f = ker->d; g = ker->c; h = ker->b; i = ker->a; blend = ((blendInfo << 4) | (blendInfo >> 4)) & 0xff; }
567
   else if (outmatrix_ref == outmatrixref_90)  { a = ker->g; b = ker->d; c = ker->a; d = ker->h; e = ker->e; f = ker->b; g = ker->i; h = ker->f; i = ker->c; blend = ((blendInfo << 2) | (blendInfo >> 6)) & 0xff; }
568
   else                                        { a = ker->a; b = ker->b; c = ker->c; d = ker->d; e = ker->e; f = ker->f; g = ker->g; h = ker->h; i = ker->i; blend = blendInfo; } // blendInfo here is equivalent to ((blendInfo << 0) | (blendInfo >> 8)) & 0xff
569
 
570
   if (getBottomR (blend) >= BLEND_NORMAL)
571
   {
572
      uint32_t px;
573
      bool doLineBlend;
574
 
575
      if (getBottomR (blend) >= BLEND_DOMINANT)
576
         doLineBlend = true;
577
      else if (getTopR (blend) != BLEND_NONE && (color_format->dist (e, g) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE)) //but support double-blending for 90° corners
578
         doLineBlend = false; // make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
579
      else if (getBottomL (blend) != BLEND_NONE && (color_format->dist (e, c) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE))
580
         doLineBlend = false; // make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
581
      else if ((color_format->dist (e, i) >= XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
582
               && (color_format->dist (g, h) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
583
               && (color_format->dist (h, i) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
584
               && (color_format->dist (i, f) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE)
585
               && (color_format->dist (f, c) < XBRZ_CFG_EQUAL_COLOR_TOLERANCE))
586
         doLineBlend = false; // no full blending for L-shapes; blend corner only (handles "mario mushroom eyes")
587
      else
588
         doLineBlend = true;
589
 
590
      outmatrix_t out;
591
      out.size = scaler->factor;
592
      out.ptr = target;
593
      out.stride = trgWidth;
594
 
13 pmbaty 595
      px = (color_format->dist (e, f) <= color_format->dist (e, h) ? f : h); // choose most similar color
7 pmbaty 596
 
597
      if (doLineBlend)
598
      {
13 pmbaty 599
         const double fg = color_format->dist (f, g); // test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9
600
         const double hc = color_format->dist (h, c);
7 pmbaty 601
         const bool haveShallowLine = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * fg <= hc) && (e != g) && (d != g);
602
         const bool haveSteepLine   = (XBRZ_CFG_STEEP_DIRECTION_THRESHOLD * hc <= fg) && (e != c) && (b != c);
603
 
604
         if (haveShallowLine)
605
         {
606
            if (haveSteepLine)
607
               scaler->blend_line_steep_and_shallow (px, &out, color_format, outmatrix_ref);
608
            else
609
               scaler->blend_line_shallow (px, &out, color_format, outmatrix_ref);
610
         }
611
         else
612
         {
613
            if (haveSteepLine)
614
               scaler->blend_line_steep (px, &out, color_format, outmatrix_ref);
615
            else
616
               scaler->blend_line_diagonal (px, &out, color_format, outmatrix_ref);
617
         }
618
      }
619
      else
620
         scaler->blend_corner (px, &out, color_format, outmatrix_ref);
621
   }
622
}
623
 
624
 
625
static void scale_image (const scaler_t *scaler, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight, int yFirst, int yLast, colorformat_t *color_format)
626
{
627
   yFirst = MAX (yFirst, 0);
628
   yLast = MIN (yLast, srcHeight);
629
   if (yFirst >= yLast || srcWidth <= 0)
630
      return;
631
 
632
   const int trgWidth = srcWidth * scaler->factor;
633
 
634
   // "use" space at the end of the image as temporary buffer for "on the fly preprocessing": we even could use larger area of
635
   // "sizeof(uint32_t) * srcWidth * (yLast - yFirst)" bytes without risk of accidental overwriting before accessing
636
   const int bufferSize = srcWidth;
637
   uint8_t *preProcBuffer = (uint8_t *) (trg + yLast * scaler->factor * trgWidth) - bufferSize;
638
   memset (preProcBuffer, 0, bufferSize);
639
 
640
   // initialize preprocessing buffer for first row of current stripe: detect upper left and right corner blending
641
   // this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition!
642
   if (yFirst > 0)
643
   {
644
      const int y = yFirst - 1;
645
 
646
      const uint32_t *s_m1 = src + srcWidth * MAX (y - 1, 0);
647
      const uint32_t *s_0 = src + srcWidth * y; //center line
648
      const uint32_t *s_p1 = src + srcWidth * MIN (y + 1, srcHeight - 1);
649
      const uint32_t *s_p2 = src + srcWidth * MIN (y + 2, srcHeight - 1);
650
 
651
      for (int x = 0; x < srcWidth; ++x)
652
      {
653
         blendresult_t res;
654
         const int x_m1 = MAX (x - 1, 0);
655
         const int x_p1 = MIN (x + 1, srcWidth - 1);
656
         const int x_p2 = MIN (x + 2, srcWidth - 1);
657
 
658
         kernel_4x4_t ker; // perf: initialization is negligible
659
         ker.a = s_m1[x_m1]; ker.b = s_m1[x]; ker.c = s_m1[x_p1]; ker.d = s_m1[x_p2]; // read sequentially from memory as far as possible
660
         ker.e = s_0[x_m1];  ker.f = s_0[x];  ker.g = s_0[x_p1];  ker.h = s_0[x_p2];
661
         ker.i = s_p1[x_m1]; ker.j = s_p1[x]; ker.k = s_p1[x_p1]; ker.l = s_p1[x_p2];
662
         ker.m = s_p2[x_m1]; ker.n = s_p2[x]; ker.o = s_p2[x_p1]; ker.p = s_p2[x_p2];
663
 
664
         preprocess_corners (&res, &ker, color_format);
665
 
666
         // preprocessing blend result:
667
         // ---------
13 pmbaty 668
         // | F | G |   // evalute corner between F, G, J, K
669
         // ----|---|   // input pixel is at position F
7 pmbaty 670
         // | J | K |
671
         // ---------
672
 
673
         setTopR (&preProcBuffer[x], res.blend_j);
674
         if (x + 1 < bufferSize)
675
            setTopL (&preProcBuffer[x + 1], res.blend_k);
676
      }
677
   }
678
   //------------------------------------------------------------------------------------
679
 
680
   for (int y = yFirst; y < yLast; ++y)
681
   {
13 pmbaty 682
      uint32_t *out = trg + scaler->factor * y * trgWidth; // consider MT "striped" access
7 pmbaty 683
 
684
      const uint32_t* s_m1 = src + srcWidth * MAX (y - 1, 0);
13 pmbaty 685
      const uint32_t* s_0 = src + srcWidth * y; // center line
7 pmbaty 686
      const uint32_t* s_p1 = src + srcWidth * MIN (y + 1, srcHeight - 1);
687
      const uint32_t* s_p2 = src + srcWidth * MIN (y + 2, srcHeight - 1);
688
 
689
      uint8_t blend_xy1 = 0; // corner blending for current (x, y + 1) position
690
 
691
      for (int x = 0; x < srcWidth; ++x, out += scaler->factor)
692
      {
693
         // all those bounds checks have only insignificant impact on performance!
13 pmbaty 694
         const int x_m1 = MAX (x - 1, 0); // perf: prefer array indexing to additional pointers!
7 pmbaty 695
         const int x_p1 = MIN (x + 1, srcWidth - 1);
696
         const int x_p2 = MIN (x + 2, srcWidth - 1);
697
 
13 pmbaty 698
         kernel_4x4_t ker4; // perf: initialization is negligible
7 pmbaty 699
         ker4.a = s_m1[x_m1]; ker4.b = s_m1[x]; ker4.c = s_m1[x_p1]; ker4.d = s_m1[x_p2]; // read sequentially from memory as far as possible
700
         ker4.e = s_0[x_m1];  ker4.f = s_0[x];  ker4.g = s_0[x_p1];  ker4.h = s_0[x_p2];
701
         ker4.i = s_p1[x_m1]; ker4.j = s_p1[x]; ker4.k = s_p1[x_p1]; ker4.l = s_p1[x_p2];
702
         ker4.m = s_p2[x_m1]; ker4.n = s_p2[x]; ker4.o = s_p2[x_p1]; ker4.p = s_p2[x_p2];
703
 
704
         // evaluate the four corners on bottom-right of current pixel
13 pmbaty 705
         uint8_t blend_xy = 0; // for current (x, y) position
7 pmbaty 706
         {
707
            blendresult_t res;
708
            preprocess_corners (&res, &ker4, color_format);
709
 
710
            // preprocessing blend result:
711
            // ---------
13 pmbaty 712
            // | F | G |   // evalute corner between F, G, J, K
713
            // ----|---|   // current input pixel is at position F
7 pmbaty 714
            // | J | K |
715
            // ---------
716
 
717
            blend_xy = preProcBuffer[x];
13 pmbaty 718
            setBottomR (&blend_xy, res.blend_f); // all four corners of (x, y) have been determined at this point due to processing sequence!
7 pmbaty 719
 
13 pmbaty 720
            setTopR (&blend_xy1, res.blend_j); // set 2nd known corner for (x, y + 1)
721
            preProcBuffer[x] = blend_xy1; // store on current buffer position for use on next row
7 pmbaty 722
 
723
            blend_xy1 = 0;
13 pmbaty 724
            setTopL (&blend_xy1, res.blend_k); // set 1st known corner for (x + 1, y + 1) and buffer for use on next column
7 pmbaty 725
 
13 pmbaty 726
            if (x + 1 < bufferSize) // set 3rd known corner for (x + 1, y)
7 pmbaty 727
               setBottomL (&preProcBuffer[x + 1], res.blend_g);
728
         }
729
 
13 pmbaty 730
         // fill block of size scale * scale with the given color
7 pmbaty 731
         uint32_t *blk = out;
732
         for (int _blk_y = 0; _blk_y < scaler->factor; ++_blk_y, blk = (uint32_t *) BYTE_ADVANCE (blk, trgWidth * sizeof (uint32_t)))
733
            for (int _blk_x = 0; _blk_x < scaler->factor; ++_blk_x)
734
               blk[_blk_x] = ker4.f;
735
 
13 pmbaty 736
         // place *after* preprocessing step, to not overwrite the results while processing the the last pixel!
7 pmbaty 737
 
13 pmbaty 738
         // blend four corners of current pixel
739
         if (blend_xy != 0) // good 5% perf-improvement
7 pmbaty 740
         {
13 pmbaty 741
            kernel_3x3_t ker3; // perf: initialization is negligible
7 pmbaty 742
            ker3.a = ker4.a; ker3.b = ker4.b; ker3.c = ker4.c;
743
            ker3.d = ker4.e; ker3.e = ker4.f; ker3.f = ker4.g;
744
            ker3.g = ker4.i; ker3.h = ker4.j; ker3.i = ker4.k;
745
 
746
            blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, color_format, outmatrixref_0);
747
            blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, color_format, outmatrixref_90);
748
            blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, color_format, outmatrixref_180);
749
            blend_pixel (scaler, &ker3, out, trgWidth, blend_xy, color_format, outmatrixref_270);
750
         }
751
      }
752
   }
753
}
754
 
755
 
756
/////////////////////
757
// exported functions
758
 
759
 
760
void nearest_neighbor_scale (const uint32_t *src, int srcWidth, int srcHeight, uint32_t *trg, int trgWidth, int trgHeight)
761
{
762
   int srcPitch = srcWidth * sizeof (uint32_t);
763
   int trgPitch = trgWidth * sizeof (uint32_t);
764
   int yFirst;
765
   int yLast;
766
 
767
#if 0 // going over source image - fast for upscaling, since source is read only once
768
   yFirst = 0;
769
   yLast = MIN (trgHeight, srcHeight);
770
 
771
   if (yFirst >= yLast || trgWidth <= 0 || trgHeight <= 0)
772
      return; // consistency check
773
 
774
   for (int y = yFirst; y < yLast; ++y)
775
   {
776
      //mathematically: ySrc = floor(srcHeight * yTrg / trgHeight)
777
      // => search for integers in: [ySrc, ySrc + 1) * trgHeight / srcHeight
778
 
779
      //keep within for loop to support MT input slices!
13 pmbaty 780
      const int yTrg_first = (y      * trgHeight + srcHeight - 1) / srcHeight; // = ceil(y * trgHeight / srcHeight)
781
      const int yTrg_last = ((y + 1) * trgHeight + srcHeight - 1) / srcHeight; // = ceil(((y + 1) * trgHeight) / srcHeight)
7 pmbaty 782
      const int blockHeight = yTrg_last - yTrg_first;
783
 
784
      if (blockHeight > 0)
785
      {
786
         const uint32_t *srcLine = (const uint32_t *) BYTE_ADVANCE (src, y * srcPitch);
787
         /**/  uint32_t *trgLine = (uint32_t *) BYTE_ADVANCE (trg, yTrg_first * trgPitch);
788
         int xTrg_first = 0;
789
 
790
         for (int x = 0; x < srcWidth; ++x)
791
         {
792
            const int xTrg_last = ((x + 1) * trgWidth + srcWidth - 1) / srcWidth;
793
            const int blockWidth = xTrg_last - xTrg_first;
794
            if (blockWidth > 0)
795
            {
796
               const uint32_t trgColor = srcLine[x];
797
               uint32_t *blkLine = trgLine;
798
 
799
               xTrg_first = xTrg_last;
800
 
801
               for (int blk_y = 0; blk_y < blockHeight; ++blk_y, blkLine = (uint32_t *) BYTE_ADVANCE (blkLine, trgPitch))
802
                  for (int blk_x = 0; blk_x < blockWidth; ++blk_x)
803
                     blkLine[blk_x] = trgColor;
804
 
805
               trgLine += blockWidth;
806
            }
807
         }
808
      }
809
   }
810
#else // going over target image - slow for upscaling, since source is read multiple times missing out on cache! Fast for similar image sizes!
811
   yFirst = 0;
812
   yLast = trgHeight;
813
 
814
   if (yFirst >= yLast || srcHeight <= 0 || srcWidth <= 0)
815
      return; // consistency check
816
 
817
   for (int y = yFirst; y < yLast; ++y)
818
   {
819
      /**/  uint32_t *trgLine = (uint32_t *) BYTE_ADVANCE (trg, y * trgPitch);
820
      const int ySrc = srcHeight * y / trgHeight;
821
      const uint32_t *srcLine = (const uint32_t *) BYTE_ADVANCE (src, ySrc * srcPitch);
822
      for (int x = 0; x < trgWidth; ++x)
823
      {
824
         const int xSrc = srcWidth * x / trgWidth;
825
         trgLine[x] = srcLine[xSrc];
826
      }
827
   }
828
#endif // going over source or target
829
 
830
   return;
831
}
832
 
833
 
834
void xbrz_scale (size_t factor, const uint32_t *src, uint32_t *trg, int srcWidth, int srcHeight, bool has_alpha_channel)
835
{
836
   if ((factor < 2) || (factor > 6))
837
      return; // consistency check
838
 
839
   scale_image (&scalers[factor - 2], src, trg, srcWidth, srcHeight, 0, srcHeight, (has_alpha_channel ? &color_format_32 : &color_format_24));
840
   return;
841
}